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Abstract

Based on our analysis of the hopcount of the shortest path between two arbitrary nodes in the

class Gp(N) of random graphs, the corresponding ßooding time is investigated. The ßooding time

TN(p) is the minimum time needed to reach all other nodes from one node.

We show that, after scaling, the ßooding time TN(p) converges in distribution to the two-fold

convolution Λ(2∗) of the Gumbel distribution function Λ(z) = exp(−e−z), when the link density

pN satisÞes NpN

(log N)3 →∞ if N →∞.
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1 Introduction

In order to offer high quality multimedia services as telephony, real-time video, Þle transfer, etc. over

an Internet-like future network, all routers in a subnet or an autonomous domain must have a same,

consistent view of the network topology. If, at a certain router, signiÞcant changes in the available

resources occur or a periodic timer triggers for an update of the routing tables, this router may decide

to inform all other peers in the subnet about these changes. The most commonly used process that

informs each node (router) about changes in the network topology is called ßooding : the source node

initiates the ßooding process by sending the packet with topology information to all adjacent neighbors

and every router forwards the packet on all interfaces except for the incoming one and duplicate packets

are discarded. Flooding is particularly simple and robust since it progresses, in fact, along all possible

paths from the emitting node to the receiving node. Hence, a ßooded packet reaches a node in the

network in the shortest possible time (if overheads in routers are ignored). Therefore, an interesting

problem lies in the determination of the ßooding time TN , which is the minimum time needed to

inform all nodes in a network with N nodes. Only after a time TN , all topology databases at each
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router in the network are again synchronized, i.e. all routers possess the same topology information.

The ßooding time TN is deÞned as the minimum time needed to reach all N − 1 remaining nodes
from a source node over their respective shortest paths. In a network, each link is speciÞed by a link

weight, a positive real number. The shortest path between two given nodes is the path between these

nodes, that minimizes the sum of the link weights along that path.

In this paper we focus on the ßooding time TN(p) in the random graph Gp(N), where the link

weights are exponentially distributed positive numbers with mean 1. In [5], a Þrst-passage percolation

result on the random graph Gp(N) was obtained for the case that the probability p = pN of an

edge(link) being present tends to zero as N → ∞, in such a way that NpN → ∞. The number of
edges(hops) HN of the shortest path between two arbitrary nodes was shown to satisfy

E
£
xHN

¤
= κN(x)(1+ o(1)), N →∞, (1)

where

κN(x) =
Γ(x+N)

Γ(N + 1)Γ(x+ 1)
, (2)

and Γ(x) is the Gamma function.

Although the random graph is not a good model for the graph of the Internet, the asymptotic

distribution of HN given by (1) has a remarkable Þt with measured Internet data as shown in [8].

It is reasonable to assign random weights to the edges, because operators are suggested by Cisco�s

OSPF implementation to use link weights that are inverse proportional to the bandwidth of the links.

Moreover, we showed in [8] that, within the class of polynomial weights with distribution function

(d.f.) F (x) = xα, x ↓ 0; α > 0, only uniform weights, α = 1, or equivalently exponential weights, gave
a proper Þt. Finally, measurements of the number of links in a multicast shortest path tree rooted at

a source node also justiÞes the remarkable accuracy of the shortest path tree derived from Gp(N) with

exponential weights [9]. Hence, shortest path trees computed from the random graph with exponential

weights seem, on empirical grounds, a good model for shortest path trees in the Internet.

Our main result is that for the random graph Gp(N), where p = pN , satisÞes NpN/(logN)
3 →∞,

the distribution of the fooding time TN(p), properly normalized, converges to the two-fold convolution

of the Gumbel distribution (see Theorem 3.1). It is interesting to compare this result with the following

different result by Bollobás [3, Theorem 10, p. 233] which holds under identical technical conditions

for pN . If NpN/(logN)
3 → ∞, then the limit distribution of the diameter of the random graph

Gp(N), denoted by diam(Gp(N)) is concentrated on two consecutive integers d = d(N) ≥ 2 and

d + 1. More precisely, for each c > 0 and with pN ∈ (0, 1), deÞned by pdNd−1 = log(N/c) and if

NpN/(logN)
3 →∞, then

lim
N→∞

Pr[diam(Gp(N)) = d] = 1− lim
N→∞

Pr[diam(Gp(N)) = d+ 1] = e
−c/2.

The ßooding time in Gp(N) with all link weights equal to 1 is bounded from above by the diameter

of Gp(N).

The paper is outlined as follows. Exact and asymptotic results for the complete graph, with

exponential link weights, are derived in Section 2. Using a probabilistic setting, Section 3 extends the

results for the complete graph to all connected graphs in Gp(N), satisfying NpN/(logN)
3 →∞.

2



2 The complete graph

2.1 Derivation of the flooding transform

We Þrst show that for the complete graph containing N nodes and with independent, exponentially

distributed link weights (each with mean 1), the ßooding time TN has Laplace transform

ϕN(x) = E[e
−xTN ] =

Z ∞

0
e−xtfTN (t)dt =

N−1Y
n=1

n(N − n)
n(N − n) + x. (3)

Indeed, as demonstrated in [8], the shortest path problem can be exactly described in terms of the

Markov chain with transition rates

λn,n+1 = n(N − n), n = 1, 2, · · · , N − 1, (4)

where the state n corresponds to the number of discovered nodes. The ßooding time TN equals the

absorption time, starting from state n = 1 of the birth-process with rates (4). By deÞnition of a contin-

uous time Markov chain, the time TN =
PN−1
n=1 τn, where τ1, τ2, · · · , τN−1 are independent, exponen-

tially distributed random variables with parameter λn,n+1. Hence, E[e
−xTN ] = E[exp(−xPN−1

n=1 τn)] =QN−1
n=1 E[e

−xτn ], from which (3) follows.

The average ßooding time equals

E[TN ] =
N−1X
n=1

E [τn] =
N−1X
n=1

1

n(N − n) =
2

N

N−1X
n=1

1

n
=
2

N
(ψ(N) + γ), (5)

where ψ is the digamma function [1, sec. 6.3] and γ is Euler�s constant [1, 6.1.3]. From (5) we conclude

that

E

·
NTN
2

¸
∼ logN,

which demonstrates that the average ßooding time in the complete graph decreases to zero when

N →∞.
The variance of TN equals

var[TN ] =
N−1X
n=1

var(τn) =
N−1X
n=1

1

n2(N − n)2 =
2

N2

N−1X
n=1

1

n2
+

4

N3

N−1X
n=1

1

n
. (6)

For large N , we have that var[TN ] =
π2

3N2 +O
³
logN
N3

´
.

2.2 The asymptotic law for TN

The exact expression (23) for the law of TN (with N = 2M), derived in the appendix, does not provide

much insight. Because we are interested in the ßooding time in large networks, we investigate the

asymptotic distribution of TN , for N large. In fact, we present in this article three different methods to

compute the asymptotic law for TN , each with its own merit. First, in the appendix A.3, we compute

the limit for M →∞ of the exact expression (25) after proper scaling and we Þnd with this method

the convergence rate of (25) towards the limit (12). Second, in this section, that same limit (12) is

found faster and more elegantly. In addition, the scaling law for TN speciÞed by (10) naturally pops
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up. Finally, the third way (Theorem 3.1) uses probabilistic arguments and extends the asymptotic

law of TN derived for the complete graph to the class of random graphs Gp(N) that are connected

almost surely.

Rewrite (3) as

ϕN(x) =
N−1Y
n=1

n(N − n)
n(N − n) + x =

[(N − 1)!]2QN−1
n=1

h
x+ N2

4 −
¡
n− N

2

¢2i . (7)

For N = 2M , using Γ(z+m)
Γ(z+1) =

Qm−1
n=1 (n+ z), we deduce

ϕ2M(x) =

Ã
Γ(2M)Γ(1+

√
x+M2 −M)

Γ(M +
√
x+M2)

!2
. (8)

For large M , there holds
√
x+M2 ∼M + x

2M , provided |x| < 2M . After substitution of x = 2My in
(8), with |y| < 1, we obtain

ϕ2M(2My) ∼ Γ2(1+ y)
Γ2(2M)

Γ2(2M + y)
∼ Γ2(1+ y)(2M)−2y,

from which the asymptotic relation

lim
N→∞

N2yϕN(Ny) = Γ
2(1+ y), |y| < 1, (9)

follows. Equivalently, we have for |y| < 1,

lim
N→∞

E[e−y(NTN−2 logN)] = lim
N→∞

1

N

Z ∞

−∞
e−ytfTN

µ
t+ 2 logN

N

¶
dt = Γ2 (1+ y) .

This limit demonstrates that the distribution function of NTN − 2 logN converges to a probability

distribution with Laplace transform Γ2(1+ y). Moreover, we can prove convergence of densities. Let

us deÞne the normalized density function

gN(t) =
1

N
fTN

µ
t+ 2 logN

N

¶
. (10)

By the inversion theorem for Laplace transforms we obtain for t ∈ R,

lim
N→∞

gN(t) = lim
N→∞

1

2πi

Z c+i∞

c−i∞
eytN2yϕN(Ny)dy,

where 0 < c < 1. Since Γ(z) is analytic over the entire complex plane except for simple poles at the

points z = −n for n = 0, 1, 2, ..., we Þnd that N2yϕN(Ny) is analytic whenever the real part of y is

nonnegative. Evaluation along the line Re(y) = c = 0 then gives

lim
N→∞

gN (t) = lim
N→∞

1

2π

Z ∞

−∞
eituN2iuϕN(iNu)du.

As dominating function we take

|eituN2iuϕN(iNu)| = |ϕN (iNu)| ≤
1+ u2

u4
,
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Figure 1: The scaled density gN(t) for three values of N = 2M (dotted lines) and the asymptotic

result (full line).

when |u| > 1, and |ϕN(iNu)| ≤ 1, for |u| ≤ 1. This follows from the Þrst equality in (7), using only

the factors in the product with n = 1 and n = N − 1, and bounding the other factors using
n(N − n)

|n(N − n) + iNu| ≤ 1.

Hence, from Lebesgue�s dominated convergence theorem we obtain

lim
N→∞

gN (t) =
1

2π

Z ∞

−∞
eitu lim

N→∞
N2iuϕN(iNu)du =

1

2πi

Z i∞

−i∞
ety lim

N→∞
N2yϕN(Ny)dy

=
1

2πi

Z i∞

−i∞
etyΓ2(1+ y)dy. (11)

The right-hand side of (9) is a perfect square, which indicates that the limit distribution is a

two-fold convolution. Indeed, the Mellin transform of the exponential function is

e−t =
1

2πi

Z c+i∞

c−i∞
t−yΓ (y) dy, c > 0,

and thus with t = e−u,
d

du

³
e−e

−u´
=

1

2πi

Z c+i∞

c−i∞
eyuΓ (y + 1) dy,

which shows that (11) is the two-fold convolution of the probability density d
dtΛ(t), where Λ(t) = e

−e−t

is known as the Gumbel distribution. Further, the two-fold convolution is given by

d

dt

³
Λ(2∗)(t)

´
= e−t

Z ∞

−∞
e−e

−u
e−e

−(t−u)
du
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= e−t
Z ∞

−∞
exp

·
−2e−t/2 cosh

µ
t

2
− u

¶¸
du

= 2e−t
Z ∞

0
exp

h
−2e−t/2 cosh (u)

i
du = 2e−tK0

³
2e−t/2

´
,

where K0 denotes the modiÞed Bessel function of order zero [1, 9.6]. Hence,

lim
N→∞

gN (t) = g(t) =
d

dt

³
Λ(2∗)(t)

´
= 2e−tK0

³
2e−t/2

´
, (12)

and the corresponding distribution function is

lim
N→∞

Pr[NTN − 2 logN ≤ z] = 2
Z z

−∞
e−tK0(2e−t/2)dt = 2e−z/2K1

³
2e−z/2

´
. (13)

Observe that the right-hand side of (12) is maximal for t = 0.506357, which is slightly smaller

than γ = 0.577261, but still in accordance with E[TN ] given by (5). The asymmetry shows that

{NTN ≥ 2 logN + z} is much more likely than the event {NTN ≤ 2 logN − z}, which conÞrms the
intuition that the ßooding time can be much longer than the average, but not so much shorter than

E[TN ]. Figure 1 illustrates the convergence of gN (t) to the limit in (12). As shown in the Appendix

A.3, the rate of convergence for N →∞ is of order O
¡

1
N1−δ

¢
for any Þxed x and for arbitrarily small

δ > 0.

3 The flooding time in Gp(N)

We now proceed with the more interesting case where p 6= 1. In Gp(N), for p < 1, the number of

neighbors of a given node has a binomial distribution with average (N − 1)p. This leads to double
stochasticity: both the value of the link weight (exponentially distributed) and the presence of a link

(Bernoulli with parameter p).

Let us Þrst consider the absorption time AN (p) in the Markov process (birth-process) with birth-

rate λn,n+1 = np(N − n), where p = pN . For the complete graph where p = 1, the absorption time
AN(p) is equal to the ßooding time TN(p). For p < 1, this is no longer true because of the double

stochasticity. However, as shown below, for p < 1, the ßooding time TN (p) can be sandwiched between

two absorption times A±N of two associated Markov chains {X±
N(t)}. Therefore, we concentrate Þrst

on the absorption time AN(p) satifying

AN (p) =
N−1X
n=1

τn(p),

where τn(p), 1 ≤ n ≤ N−1, are independent and τn(p) has an exponential distribution with parameter
np(N − n). Then,

ϕN (x; p) = E[e
−xAN (p)] =

N−1Y
n=1

np(N − n)
np(N − n) + x ≡ ϕN (x/p),

which implies that AN(p) is distributed as
TN
p . The analysis in the preceding section yields

lim
N→∞

Pr[NpNAN − 2 logN ≤ z] = Λ(2∗)(z). (14)
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One wonders why a result like (13) or (14) holds for a sum of independent random variables, whereas

it is well known that the Gumbel distribution Λ is one of the extreme value distributions. The norming

constants involved in (13) or (14) are in fact extreme value norming constants. Although TN or AN

is the sum of independent r.v.�s, it is not asymptotically normal because the individual summands

τ1, τ2, · · · , τN−1 do not satisfy the Lindeberg condition [4, p. 262]. This phenomenon can be partly
understood from the following example, which is close to the results (13) and (14) .

Example: We denote by X(1) ≤ X(2) ≤ . . . ≤ X(n), the order statistics of a sample X1, X2, . . . , Xn.
Let Y1 = X(1) and Yj = X(j) − X(j−1), 2 ≤ j ≤ n, denote the spacings of an i.i.d. sequence

X1, X2, . . . ,Xn of exponentially distributed random variables with parameter 1. Then [4, p. 19],

Y1, Y2, . . . , Yn are independent and Yj, 1 ≤ j ≤ n, has an exponential distribution with parameter

(n+ 1− j). Moreover

Pr [(Y1 + . . .+ Yn)− logn ≤ z] = Pr
£
X(n) − logn ≤ z

¤→ Λ(z). ¤

A reasoning similar to this example explains, in the next theorem, why the ßooding time in the

random graph Gp(N) satisÞes (14), with AN replaced by TN(p).

Theorem 3.1 If NpN/(logN)
3 → ∞ as N → ∞, then the ßooding time TN(p) in Gp(N), with

p = pN , satisÞes

lim
N→∞

Pr [NpNTN(pN)− 2 logN ≤ z] = Λ(2∗)(z), (15)

where Λ(2∗) denotes the two-fold convolution of the Gumbel d.f. Λ.

PROOF: We may assume that the random graph Gp(N) is connected [3]. The ßooding time TN(pN)

is then the minimum time to reach all N −1 nodes from source node 1 over the links with exponential
weights. For A > 0 deÞne

N± = bN(1±A(1− pN) logN/(NpN))c,

where bxc denotes the largest integer smaller than or equal to x. In [5], a construction has been
given where the discovery process of nodes in Gp(N) starting from the source node 1 was sandwiched

between two birth processes {X±
N(t), t ≥ 0}, with state space {1, 2, . . . , N±}, initial value X±

N(0) = 1

and birth rate

λ±n,n+1 = n
n
(N − n)pN ±

p
A(N − n)pN(1− pN ) logN

o
. (16)

As a consequence of that construction and the bounds in the proof of Lemma 2.5 of the aforementioned

paper the random variable TN(p) is in between the absorption times A
±
N of the birth processes {X±

N(t)},
with probability exceeding 1 − 2N2−A, which tends to 1, if A > 2. Hence, if we show that for some
A > 2 in each of the birth processes X±

N(t), t ≥ 0, the asymptotic relation (15) is satisÞed with TN(pN)
replaced by A±N , then we are done. We will give the proof for A

+
N (the proof for A

−
N is similar).

Observe from the Markov property of {X+
N} that

A+N = τ1 + . . .+ τN+−1,

where the τn are independent and τn has an exponential distribution with parameter nbn, where

bn = (N − n)pN +
p
A(N − n)pN(1− pN) logN.
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Without restriction take N+ odd and write

A+N = R
+
N + S

+
N ,

where

R+N = τ1 + . . .+ τ (N+−1)/2,

S+N = τ (N++1)/2 + . . .+ τN+−1.

From the independence of τn we conclude that R
+
N and S+N are independent. Hence (15) holds if we

show that both

lim
N→∞

Pr
£
NpNR

+
N − logN

¤ ≤ z = Λ(z), (17)

lim
N→∞

Pr
£
NpNS

+
N − logN

¤ ≤ z = Λ(z), (18)

are satisÞed. We start with the proof of (17). Denote by τ∗n = τn−E [τn] = τn−(nbn)−1, the centered
random variable, and split for δ ∈ (0, 1),

R+N −E
£
R+N
¤
= V +N +W+

N ,

where

V +N =
X
n≤Nδ

τ∗n, W+
N =

(N+−1)/2X
n=bNδc+1

τ∗n.

By construction both V +N and W+
N have mean zero. Moreover for each A > 0,

var(NpNW
+
N ) = N

2p2N

(N+−1)/2X
n=bNδc+1

1

n2b2n
∼ N2

(N+−1)/2X
n=bNδc+1

1

n2(N − n)2 → 0,

so that by Chebychev�s inequality [4, p. 151], NpNW
+
N converges to 0 in probability. This implies,

because NpNE
£
R+N
¤
= logN + o(1), that for (17) it is sufficient to show that

lim
N→∞

Pr
£
NpNV

+
N ≤ z¤ = Λ(z). (19)

Put M = bNδc, 0 < δ < 1, and deÞne

Zn = bn · τn, 1 ≤ n ≤M.

Then Zn has an exponential distribution with parameter n, and so according to the example,
PM
n=1Zn−

logM converges in distribution to a random variable Z, with distribution function Λ. Since

NpNτn =
NpNZn
bn

=
Zn

1− n
N +

q
A(1− n

N )(1− pN ) logNNpN

,

we conclude that
PM
n=1NpNτn − logM d→ Z if

PM
n=1(1−NpN/bn)Zn converges to 0 in probability,

which in turn follows if both

MX
n=1

(1−NpN/bn)E [Zn] and
MX
n=1

(1−NpN/bn)2var(Zn),

8



converge to 0. Since E [Zn] =
1
n and var(Zn) =

1
n2 , these two conditions hold for each A > 0 ifs

logN

NpN

MX
n=1

1

n
→ 0,

which is immediate from
PM
n=1

1
n ∼ logM = δ logN and (logN)3/(NpN)→ 0. This proves (19) and

hence (17). The proof of (18) is similar to that of (17) and is therefore omitted. ¤
Acknowledgements. We are indebted to a referee for the observation that lead us to include

Section A.3. With his addition, this paper now contains three different ways to prove the asymptotic

law for TN .
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A Properties of the Laplace transform ϕN and the corresponding

d.f.

A.1 Properties of the Laplace transform ϕN

Let ϕN be the Laplace transform (3).

Lemma A.1 For all N > 1 and Re(x) ≥ 0,

ϕN+2(x) = ϕN (x+N + 1)

µ
N(N + 1)

x+N + 1

¶2
. (20)
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PROOF : From (7) we obtain

ϕN+2(x) =
[(N + 1)!]2QN+1

n=1

h
x+N + 1+ N2

4 −
¡
n− 1− N

2

¢2i
=

[(N − 1)!]2[N(N + 1)]2QN
n=0

h
x+N + 1+ N2

4 −
¡
n− N

2

¢2i
=

[(N − 1)!]2[N(N + 1)]2

(x+N + 1)2
QN−1
n=1

h
x+N + 1+ N2

4 −
¡
n− N

2

¢2i ,
from which (20) is immediate. ¤

Relation (20) consists of Þrst a division by x2 in the x-domain corresponding to a double integration

in the t-domain, followed by a shift over N + 1 which corresponds to a multiplication by e−(N+1)t. It
follows that in the t-domain (20) is equivalent to

fTN+2(t) = (N(N + 1))
2e−(N+1)t

Z t

0
(t− u)fTN (u)du. (21)

Together with fT2(u) = e
−t and fT3(u) = 4te

−2t, fTN (u) can be determined for all values of N .
An interesting side result of the recursion is the following. In terms of gN deÞned in (10), the

recursion (21) can be written as

gN+2(t) =
1

N + 2
fTN+2

µ
t+ 2 log(N + 2)

N + 2

¶
=
N2(N + 1)2

N + 2
e−(N+1)

t+2 log(N+2)
N+2

Z t+2 log(N+2)
N+2

0

µ
t+ 2 log(N + 2)

N + 2
− u

¶
NgN(Nu− 2 logN) du.

It was shown in Section 2, that the density gN converges pointwise to the density g, given by (12).

If it is permitted to interchange the limit and the integral below, we obtain

g(t) = lim
N→∞

gN+2(t) = e
−t lim
N→∞

N2

(N + 2)2

Z t

−2 log(N+2)
(t− v)gN

µ
N(v + 2 log(N + 2))

N + 2
− 2 logN

¶
dv

= e−t
Z t

−∞
(t− v)g(v)dv.

The equation g(t) = e−t
R t
−∞(t− v)g(v)dv is equivalent to the well-known differential equation for the

modiÞed Bessel function K0 [1, 9.6].

The limit and integral above can be interchanged if we have moment convergence of the involved

sequence of distribution functions GN(t) =
R t
−∞ gN (v) dv (the minor shifts of the arguments in the

density gN are unimportant, because both G and g are continuous). Moment convergence follows if

the sequence GN or the associated sequence of random variables NTN−2 logN is uniformly integrable

(see [2, p. 32]). By the inequality of Cauchy-Schwarz, we have for each a > 0,Z
|v|≥a

vgN(v) dv = E
£
(NTN − 2 logN)1{|NTN−2 logN |≥a}

¤
≤

n
E
h
(NTN − 2 logN)2

i
Pr[|NTN − 2 logN | ≥ a)]

o1/2
. (22)

10



where 1x is the indicator function. The right-hand side of (22) is small uniformly in N , because by

(5) and (6),

E
h
(NTN − 2 logN)2

i
= var [NTN ] + (E [NTN ]− 2 logN)2 → π2

3
+ 4γ2,

and because for a sufficiently large Pr [|NTN − 2 logN | > a] < ε, uniformly in N , since NTN −2 logN
converges in distribution. This proves that NTN − 2 logN is uniformly integrable.

A.2 Exact expression for Pr[T2M ≤ t]

The transform (3) can be inverted to obtain fTN (t). We prefer the d.f. Pr[TN ≤ t] over the density
function fTN (t). After substitution of

R∞
0 e−xtfTN (t)dt = x

R∞
0 e−xt Pr[TN ≤ t] dt in (3), and with

N = 2M , we obtain, for c > 0,

Pr[T2M ≤ t] = [(2M − 1)!]2
2πi

Z c+i∞

c−i∞
etxdx

x(x+M2)
QM−1
n=1 (n(2M − n) + x)2 .

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

M = 10

M = 20

M = 5

f T 2M
(t)

Figure 2: The density fT2M
(t) for three sizes of the complete graph. For higher values ofM , numerical

difficulties start appearing.

We conÞne further to the even case N = 2M . Closing the contour over the negative Re(x)-plane

and applying Cauchy�s residue theorem yields

Pr[T2M ≤ t] = 1− e−M2t[(2M − 1)!]2
M2

QM−1
n=1 (M − n)4 + [(2M − 1)!]2L,

11



where

L =
M−1X
n=1

d

dx

Ã
etx(x+ n(2M − n))2

x(x+M2)
QM−1
j=1 (j(2M − j) + x)2

!¯̄̄̄
¯
x=−n(2M−n)

.

Let hn(x) = [x(x+M
2)
QM−1
j=1,j 6=n(j(2M − j) + x)2]−1, then

h0n(x) = −hn(x)
1
x
+

1

x+M2
+ 2

M−1X
j=1,j 6=n

1

x+ j(2M − j)

 ,
and

L =
M−1X
n=1

te−n(2M−n)thn(−n(2M − n)) + e−n(2M−n)th0n(−n(2M − n))

= −
M−1X
n=1

e−n(2M−n)t

n(2M − n)(M − n)2QM−1
j=1,j 6=n(j − n)2(2M − n− j)2

×
t+ 1

n(2M − n) −
1

(M − n)2 − 2
M−1X

j=1,j 6=n

1

(j − n)(2M − n− j)

 .
Using

M−1Y
j=1,j 6=n

(j − n)2(2M − n− j)2 = [(n− 1)!(2M − n− 1)!]2
4(M − n)4 ,

and
M−1X

j=1,j 6=n

1

(j − n)(2M − n− j) =
1

2(M − n)

2M−1−nX
j=n

1

j
− 3

2(M − n)

 ,
we obtain

L = −4
M−1X
n=1

(M − n)2e−n(2M−n)t
n(2M − n)[(n− 1)!(2M − n− 1)!]2

×
t+ 1

n(2M − n) +
1

2(M − n)2 −
1

(M − n)
2M−1−nX
j=n

1

j

 ,
and

Pr[T2M ≤ t] = 1−
µ
2M − 1
M

¶2
e−M

2t − 4
M−1X
n=1

µ
2M − 1
n

¶2n(M − n)2e−n(2M−n)t
(2M − n)

×
t+ 1

n(2M − n) +
1

2(M − n)2 −
1

(M − n)
2M−1−nX
j=n

1

j

 . (23)

By differentiation we obtain the density,

fT2M
(t) = M2

µ
2M − 1
M

¶2
e−M

2t + 4
M−1X
n=1

µ
2M − 1
n

¶2
n2(M − n)2e−n(2M−n)t

×
t+ 1

2(M − n)2 −
1

(M − n)
2M−1−nX
j=n

1

j

 . (24)

12



From (10) and (24), the normalized density follows as,

g2M(t) =
1

2M
fT2M

µ
t+ 2 log(2M)

2M

¶
=

M

2

¡2M−1
M

¢2
(2M)M

e−Mt/2 + 2
M−1X
n=1

¡2M−1
n

¢2
(2M)n(2−

n
M
)
n2(1− n

M
)2e−nt(1−

n
2M

) (25)

×
 t
2
+ log(2M) +

1

2M(1− n/M)2 −
1

(1− n/M)
2M−1−nX
j=n

1

j

 .
A.3 The convergence of g2M to the limit (12)

Starting from the explicit form (25), we prove pointwise convergence of g2M(t) to its limit g(t) =

2e−tK0(2e−t/2), including an estimate of the rate of convergence. Note that t can be negative, since
the support of the random variable 2MT2M − 2 log(2M) is equal to (−2 log(2M),∞), so that for M
large enough each negative t is contained in the support.

For large M , using Stirling�s asymptotic formula [1, 6.1.38],

M ! =
√
2πMM+1/2e−M

µ
1+O

µ
1

M

¶¶
,

we have ¡2M−1
M

¢2
(2M)M

=
((2M − 1)!)2

(M !)2 ((M − 1)!)2 (2M)M

=
23M

4πMM+1

µ
1+O

µ
1

M

¶¶
,

so that the Þrst term in (25) tends for M →∞ to zero, because for Þxed t,

M

2

¡
2M−1
M

¢2
(2M)M

e−Mt/2 = O
³
(Me−t/2/8)−M

´
.

Now take an arbitrary δ, with 0 < δ < 1
2 . For 1 ≤ n ≤M δ,¡

2M−1
n

¢2
(2M)n(2−

n
M
)
e−nt(1−

n
2M

) =
e−nt ((2M − 1)!)2 e n

2

2M
t

(n!)2 (2M − 1− n)!)2 (2M)n(2− n
M
)

=
e−nt(2Met/2)

n2

M

(n!)2

nY
j=1

µ
1− j

2M

¶2

=
e−nt

(n!)2
exp

n2M (log(2M) + t/2) +
nX
j=1

2 log

µ
1− j

2M

¶
=

e−nt

(n!)2

µ
1+O

µ
logM

M1−2δ

¶¶
.

With the asymptotic expansion of the digamma function ψ(z) [1, 6.3.18], we have for 1 ≤ n ≤Mδ,

log(2M)− 1

(1− n/M)
2M−1−nX
j=n

1

j
= log(2M)− 1

(1− n/M)
2M−1−nX
j=1

1

j
+

1

(1− n/M)
n−1X
j=1

1

j

13



= log(2M)− ψ(2M − n) + γ
(1− n/M) +

1

(1− n/M)
n−1X
j=1

1

j

= O

µ
logM

M1−2δ

¶
− γ +

n−1X
j=1

1

j
.

Denote by an,M(t) the summand in (25), i.e.,

g2M(t) =
M

2

¡
2M−1
M

¢2
(2M)M

e−Mt/2 + 2
M−1X
n=1

an,M(t).

It follows from the above two estimates that for Þxed t and M →∞,¯̄̄̄
¯̄2 bM

δcX
n=1

an,M(t)− e−nt

((n− 1)!)2

 t
2
− γ +

n−1X
j=1

1

j

¯̄̄̄¯̄ = Oµ logMM1−2δ

¶
. (26)

On the other hand we have for Mδ < n ≤M − 1,

|an,M(t)| ≤
¡
2M−1
n

¢2
(2M)n(2−

n
M
)
n2en|t|

µ |t|
2
+ log(2M) +

1

2M

¶
,

because¯̄̄̄
¯̄(1− n/M)2

log(2M) + 1

2M(1− n/M)2 −
1

(1− n/M)
2M−1−nX
j=n

1

j

¯̄̄̄¯̄ ≤ log(2M) + 1

2M
.

Furthermore, we have the identity¡2M−1
n

¢2
(2M)n(2−n/M)

=
nY
k=1

(µ
1

k
− 1

2M

¶2
(2M)

2k−1
M

)
, (27)

which follows easily from
¡2M−1

n

¢
=
¡2M−1
n−1

¢ · 2M−nn . In order to prove that
P
n>Mδ |an,M(t)| is small,

we proceed with an analysis of the individual term in the product (27).

The function h : z 7→ (1z − 1
2M )

2(2M)
2z
M , 1 ≤ z ≤M , is decreasing for z < zM , where

zM =M −M
s
1− 2

log(2M)
∼ M

log(2M)
,

and increasing for z > zM . Further,

h(Mδ) = (2M1−δ − 1)2(2M)−2+2Mδ−1
= O(M−2δ).

For each M and 2 ≤ k ≤M − 1, each of the factors in the product (27) is smaller than or equal to 1,
while for k = 1 the factor converges to 1. Hence for n > Mδ,

nY
k=1

(µ
1

k
− 1

2M

¶2
(2M)

2k−1
M

)
≤

nY
k=Mδ/2

(µ
1

k
− 1

2M

¶2
(2M)

2k
M

)
≤
³
h(Mδ/2)

´n−Mδ/2

,

14



so that

M ·
M−1X

n=bMδc
|an,M(t)| ≤M ·

M−1X
n=bMδc

³
h(Mδ/2)

´n−Mδ/2

n2en|t|
µ |t|
2
+ log(2M) +

1

2M

¶
,

which is small, for M large enough.

To conclude the proof we use the series expansion [1, 9.6.13],

K0(2e
−t/2) =

∞X
n=0

e−nt

(n!)2

 t
2
− γ +

nX
j=1

1

j

 .
Since

M ·
X
n>Mδ

e−nt

(n!)2

 t
2
− γ +

nX
j=1

1

j

→ 0,

the error bounds above for M →∞ and each Þxed t show that

g2M(t) = 2
M−1X
n=1

an,M(t) +O
³
(Me−t/2/8)−M

´

= 2

bMδcX
n=1

an,M(t) +O
¡
M−1¢

= 2

bMδcX
n=1

e−nt

((n− 1)!)2

 t
2
− γ +

nX
j=1

1

j

+Oµ logM
M1−2δ

¶

= 2e−tK0(2e−t/2) +O
µ
logM

M1−2δ

¶
.

The above error estimate is true for each positive δ. Because (logM)/Mδ → 0 for each positive δ, we

may conclude that the rate of convergence is of order M−1+ε, with ε arbitrary small but positive.

15


