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Abstract

A model for the flow of a thin film, with and without solidification, on an arbitrary three-

dimensional substrate is presented. The problem is reduced to two simultaneous partial

differential equations for the film and solid layer thicknesses. The flow model (with the

solidification rate set to zero) is the first such model to describe thin film flow on an arbitrary

three-dimensional surface. Various limits are investigated to recover previous models for flow

on flat, cylindrical and two-dimensional curved surfaces. With solidification a previous model

for accretion on a flat substrate is retrieved. It is shown how the model may be reduced to

standard forms, such as solidification on a flat surface, circular and non-circular cylinders,

aerofoils and spheres. Numerical solutions are obtained by combining an ADI scheme with

a shock capturing method. Results are presented for flow and accretion on a flat surface,

aerofoil and sphere.
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1 Introduction

The flow of a thin fluid film with a single free surface has been the subject of intense

investigation for a number of years, see [1, 2] for example. Recently a new level of complexity

has been added to the problem by coupling the flow to a solidification model. Poots [3] has

studied the steady flow of a water layer on an ice surface forming on a cylindrical power

cable. Myers et al [4] study the unsteady flow of a solidifying fluid layer on a flat substrate,

with the primary motive of predicting ice accretion on aircraft. The purpose of the current

paper is to generalise such models. In the following a model will be developed to predict

the flow and solidification of a thin fluid layer on an arbitrary three-dimensional surface. By

setting the solid thickness to zero a general thin film flow model is obtained. This is the first

general, three-dimensional curvilinear thin film flow model in the published literature.

The primary motivation for this work is the prediction of ice shapes on structures and

aircraft. Ice accretion has been modelled for many years, following the pioneering work of

Stefan [5, 6]. An informative account of structural icing may be found in Poots [3]. Lock

[7] deals with numerous forms of icing, including structural and in-flight. Structural icing is

of particular interest in the US and Canada following the ‘Great Ice Storm’ of 1998 which

caused billions of dollars of damage to power transmission and communication networks [8,

9]. Ice accretion has been shown to be the prime cause of a number of in-flight incidents and

crashes and is therefore of ongoing concern to aircraft manufacturers throughout the world

[10, 13]. The work described in Myers et al is currently being used in a commercial aircraft

icing code, ICECREMO [11, 12] . An overview of aircraft icing may be found in [10, 11, 13].

Other processes involving the solidification of a thin flowing liquid layer include coating and

spray forming. Coating has a vast number of applications, a number of references may be

found in [1]. Spray forming, where an object is formed by the continual deposition of a fine

spray, is studied in [14, 15].

Structural and aircraft icing typically occurs when supercooled droplets from clouds,

freezing rain or drizzle impact on a cold surface. In very cold conditions the droplets freeze

almost instantaneously to form rime ice. In this situation the ice growth rate is proportional
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to the amount of fluid impacting at each point, known as the ‘catch’ or ‘collection efficiency’.

Rime ice accretion is relatively well understood. In milder conditions a proportion of the

impacting fluid can remain liquid for some time. This leads to glaze ice accretion. Since

glaze accretion involves a liquid layer flowing on top of the ice surface, glaze ice shapes are

significantly more difficult to predict than rime ice and consequently poorly understood.

In the following section, §2, the accretion and flow model is derived. Since the flow is

the most complicated part of the model this is dealt with first in §2.2. The approximation

employed to derive the flow model is not the standard lubrication approximation which

requires both the square of the aspect ratio, ǫ2, and the reduced Reynolds number, ǫ2Re, to

be small. In the following terms of O(ǫ, ǫ2Re) will be neglected. This is not a significant

restriction to lubrication theory since for many practical applications ǫ2Re > ǫ and so the

leading order result is not affected. On the other hand, the derivation and expressions for

fluid flux and velocities are significantly simplified by this approach. Dry accretion is dealt

with in §2.3.1. Wet accretion, which must be coupled to the flow model, is dealt with in

§2.3.2. In §3 the model is reduced to standard geometries: flat surface, cylinder and sphere.

Numerical results are presented for each of these situations and also accretion on an aerofoil

in §4.

2 Governing equations for fluid flow and solidification

2.1 Non-dimensionalisation

The following derivation is in non-dimensional form, all variables are defined in the Nomen-

clature section. The non-dimensional variables are related to their dimensional counterparts

(which are denoted by overbars) as follows:

s1 = Ls1 s2 = Ls2 η = Hη = ǫLη

u = Uu v = Uv w = ǫUw

p = Pp t = τt W = WW

T = (T f − T s)T + T s ,
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where H and L represent height and length-scales. Note, this means that the dimensional

co-ordinates must have the dimension of length. Care should be taken when the natural

parameterisation involves an angle, for example in cylindrical co-ordinates s1 = θ is an

obvious choice, but the correct choice in the current theory is the arc-length, s1 = Rθ. The

aspect ratio ǫ = H/L ≪ 1. The time-scale

τ =
ρfH

ρaW
(1)

is determined by the rate at which fluid enters the system. In situations where there is no

fluid impacting at the free surface, ρaW = 0, the time-scale should be chosen according to

the driving forces for the flow. However, the following theory remains the same. The local

velocity of the droplets in the air is denoted W, this is scaled with a typical value W , the

fluid velocity scale U = L/τ .

2.2 Fluid flow

Figure 1 near here

The problem configuration is shown on Figure 1. Incoming fluid impacts on the substrate.

An accretion layer of thickness b forms, on top of this a thin fluid film of thickness h may be

present. The accretion temperature is denoted T , the fluid temperature χ. The substrate

is defined by r = R(s1, s2), where (s1, s2) are orthogonal surface co-ordinates. Provided the

accretion or fluid layer is thin, a point in the accretion or fluid layer may be defined by

r = R(s1, s2) + ǫηn(s1, s2) , (2)

where ǫ ≪ 1 is the aspect ratio, η is the co-ordinate orthogonal to the substrate and n is

the unit normal. To determine the derivatives in the governing equations the scaling factors

h1, h2, h3 must first be determined. These are defined as

h2
1 =

∂r

∂s1

· ∂r

∂s1

= E(1 − ǫηκ1)
2 , (3)

h2
2 =

∂r

∂s2

· ∂r

∂s2

= G(1 − ǫηκ2)
2 , (4)

h2
3 =

∂r

∂η
· ∂r

∂η
= ǫ2 , (5)
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where the first fundamental forms are

E =
∂R

∂s1

· ∂R

∂s1

F =
∂R

∂s1

· ∂R

∂s2

= 0 G =
∂R

∂s2

· ∂R

∂s2

,

and F = 0 since (s1, s2) are orthogonal. The curvatures are defined as

κ1 = −∂R

∂s1

· ∂n

∂s1

(

∂R

∂s1

· ∂R

∂s1

)

−1

=
∂2R

∂s1
2
· n

(

∂R

∂s1

· ∂R

∂s1

)

−1

=
L

E
(6)

κ2 = −∂R

∂s2

· ∂n

∂s2

(

∂R

∂s2

· ∂R

∂s2

)

−1

=
∂2R

∂s2
2
· n

(

∂R

∂s2

· ∂R

∂s2

)

−1

=
N

G
. (7)

The second fundamental forms are

L = n · ∂2R

∂s1
2

M = n · ∂2R

∂s1s2

= 0 N = n · ∂2R

∂s2
2

,

where M = 0 since (s1, s2) are geodesic co-ordinates. In deriving (6), (7) and M = 0 the

derivatives of

∂R

∂s1

· n = 0 =
∂R

∂s2

· n

with respect to s1 and s2 have been used.

With the standard lubrication approximation, as well as neglecting terms of order ǫκ,

the components of the Navier-Stokes equation may now be written as

∂2u

∂η2
=

1

E1/2

∂p

∂s1

− Bg · e1 + O
(

ǫ, ǫ2Re
)

, (8)

∂2v

∂η2
=

1

G1/2

∂p

∂s2

− Bg · e2 + O
(

ǫ, ǫ2Re
)

, (9)

∂p

∂η
= ǫBg · n + O

(

ǫ, ǫ2Re
)

, (10)

where the scale-factors hi have been used to determine the derivatives. The unit vectors in

the (s1, s2) directions are

e1 =
1

E1/2

∂R

∂s1

e2 =
1

G1/2

∂R

∂s2

(11)

and the normal n = e1 × e2. The Bond number B = ǫ2ρfgL2/(µU), is the ratio between

gravity and viscous forces. The term ǫB is retained in the leading order balance (10) since
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the value of B is, as yet, undetermined. This gravity term will drive the flow only when

all other forces are O(ǫ), i.e. when the substrate is almost horizontal over a significant

region and surface forces are negligible. In this case the correct choice of velocity scale is

U = ǫ3ρfgL2/µ and gravity balances pressure gradient in equation (10). However, since this

case is a simple and limited extension of the present analysis (which has also been covered

previously [4]) the gravity term in equation (10) will be neglected from now on. For an

incompressible fluid the continuity equation is

∂

∂s1

(G1/2u) +
∂

∂s2

(E1/2v) +
∂

∂η
(E1/2G1/2w) = 0 . (12)

Equations (8) – (10), (12) require solving subject to the following boundary conditions.

On the accreting surface, η = b, there is no slip

u = v = 0 . (13)

At the free surface, η = b + h, there is continuity of shear and normal stresses

A1 =
∂u

∂η
, A2 =

∂v

∂η
, p − p0 = C ′σκ′, (14)

where Ai = h0Ai/(µU) denotes the non-dimensional shear stress. The shear could be due to a

constant air shear [4, 18], or surface tension gradient [16, 17, 28]. The normal stress condition,

(14), involves the ambient pressure, p0, the mean curvature at the free surface, κ′, and an

inverse capillary number, C ′ = ǫ2σ0/µU which represents the ratio between surface tension

and viscous forces. It is denoted C ′ to distinguish it from the standard inverse capillary

number C = ǫ3σ0/µU . With certain fluids the dimensional surface tension σ = σ0σ(s1, s2)

may vary with position, in which case the shear stress components, Ai, represent the surface

tension gradient. When dealing with derivatives of pressure the derivatives of surface tension

must also be calculated, see [28] for example. When the surface tension is constant σ ≡ 1.

The mean curvature at r = R+ ǫ(b + h)n is the sum of the principal curvatures in the s1, s2

directions, κ′ = κ′

1 + κ′

2. The principal curvatures are the eigenvalues of

(

L′ M ′

M ′ N ′

)

− λ

(

E ′ F ′

F ′ G′

)

= 0 , (15)
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where

E ′ = E(1 − ǫ(b + h)κ1)
2 + O(ǫ2) , F ′ = O(ǫ2) , G′ = G(1 − ǫ(b + h)κ2)

2 + O(ǫ2)

L′ = L + ǫ
∂2

∂s1
2
(b + h) − ǫ(b + h)κ2

1E , M ′ = O(ǫ) ,

N ′ = N + ǫ
∂2

∂s2
2
(b + h) − ǫ(b + h)κ2

2G .

Since M ′ = O(ǫ), F ′ = O(ǫ2) the curvatures are simply

κ′

1 =
L′

E ′
+ O(ǫ2) = κ1 + ǫκ2

1(b + h) +
ǫ

E

∂2

∂s1
2
(b + h) + O(ǫ2) (16)

κ′

2 =
N ′

G′
+ O(ǫ2) = κ2 + ǫκ2

2(b + h) +
ǫ

G

∂2

∂s2
2
(b + h) + O(ǫ2) . (17)

Hence

p = p0 + C ′σκ′ (18)

= p0 − C ′σ

(

κ1 + κ2 + ǫ(b + h)(κ2
1 + κ2

2) + ǫ

[

1

E

∂2

∂s1
2
(b + h) +

1

G

∂2

∂s2
2
(b + h)

])

+ O(ǫ2) .

When the flow is driven by pressure gradient it is clear from (18) that, whenever the substrate

curvature is non-constant and O(1) it is the substrate curvature, κ1 + κ2, that dominates

the surface tension terms and therefore drives the flow. In this case the final terms of

O(ǫC ′) in equation (18) should be neglected. When the mean substrate curvature is small,

κ1 + κ2 ∼ O(ǫ), the terms involving the accretion and fluid heights become important and

the standard inverse capillary number C = ǫC ′ is recovered. This occurs, for example, on an

almost flat substrate, see §3.1. Alternatively if the mean substrate curvature is approximately

constant, κ1+κ2 ∼ constant+O(ǫ), such as occurs on an almost circular cylinder or spherical

substrate (see §3.2, 3.4) then all of the surface tension terms in the pressure gradient are

again O(ǫC ′).

At the accretion-fluid and fluid-air interfaces there is continuity of mass flux:

ρ1n
′ · (u1 − ub) = ρ2n

′ · (u2 − ub) , (19)

where ρk and uk are the density and velocity in each phase and ub is the velocity of the

boundary between the two phases, n′ is the normal to the surface. The normal at the
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accretion-fluid interface is

n′ =

(

∂r

∂s1

× ∂r

∂s2

) ∣

∣

∣

∣

∣

∂r

∂s1

× ∂r

∂s2

∣

∣

∣

∣

∣

−1

(20)

where

∂r

∂s1

=
∂R

∂s1

+ ǫb
∂n

∂s1

+ ǫ
∂b

∂s1

n = (1 − ǫbκ1)
∂R

∂s1

+ ǫ
∂b

∂s1

n , (21)

with a similar expression for ∂r/∂s2. Therefore

n′ = n − ǫ

E1/2

∂b

∂s1

e1 −
ǫ

G1/2

∂b

∂s2

e2 + O(ǫ2) . (22)

The values for the velocities at the accretion-fluid interface, required in (19), are

ub =
∂r

∂t
= ǫ

∂b

∂t
n u1 = (0, 0, ǫw) u2 = (0, 0, 0) , (23)

where u1 is the fluid velocity (which is zero in the s1, s2 directions due to the no-slip condi-

tion), u2 is the solid velocity and ρ1 = ρf , ρ2 = ρs. To leading order in ǫ the normal velocity

condition at η = b is

w =

(

1 − ρs

ρf

)

∂b

∂t
. (24)

If the fluid and solid densities are the same then w = 0 on η = b. Normal fluid motion only

occurs if there is a density difference and the fluid must move to accommodate the new solid.

At the air-fluid interface the normal is

n′ = n − ǫ

E1/2

∂

∂s1

(b + h)e1 −
ǫ

G1/2

∂

∂s2

(b + h)e2 + O(ǫ2) , (25)

and the velocities are

ub =
∂r

∂t
= ǫ

∂

∂t
(b + h)n u1 = ǫ

ρf

ρa

(W · e1,W · e2,W · n) u2 = (u, v, ǫw) , (26)

where u1,u2 now represent the air (droplet) and fluid velocities respectively. The velocity

of the incoming fluid is denoted W. As with gravity this will be expressed in an external

(as opposed to surface) co-ordinate system. The density of the fluid in the air is denoted

ρa. The factor ǫρf/ρa occurs due to the chosen time-scale. In dimensional form the velocity
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u1 may be expressed as Uu1 = W (W · e1,W · e2,W · n), where U = L/τ and according to

equation (1), W = ρfH/(ρaτ), hence W/U = ǫρf/ρa. The density of fluid in the air stream

is, in practical situations, significantly less than the density of the fluid film, ρa ≪ ρf . In

the following ρa/ρf will be neglected with respect to O(1) terms. To leading order in ǫ the

normal velocity condition at η = b + h is therefore

w =

(

∂b

∂t
+

∂h

∂t

)

+ W · n +
1

E1/2
u

∂

∂s1

(b + h) +
1

G1/2
v

∂

∂s2

(b + h) . (27)

The pressure is determined by integrating (10) subject to (18)

p = p0 − C ′σ

(

κ1 + κ2 + ǫ(b + h)(κ2
1 + κ2

2) + ǫ

[

1

E

∂2

∂s1
2
(b + h) +

1

G

∂2

∂s2
2
(b + h)

])

. (28)

The O(ǫC ′) terms are retained in this expression so that flows over a constant curvature

surface may be modelled. Since it is pressure gradient, rather than pressure, which may

drive a flow, when κ1, κ2 are constant the driving force consists solely of the O(ǫC ′) terms.

The driving force is then O(C) where C = ǫC ′ is the standard capillary number. The

velocities are determined by integrating (8), (9) subject to (13), (14)

u =

(

1

E1/2

∂p

∂s1

− Bg · e1

) (

η2 − b2

2
− (η − b)(b + h)

)

+ A1(η − b) (29)

v =

(

1

G1/2

∂p

∂s2

− Bg · e2

) (

η2 − b2

2
− (η − b)(b + h)

)

+ A2(η − b) . (30)

As discussed in the introduction terms of O(ǫ) have been neglected in deriving this

expression. However, it is a simple matter to integrate the velocity equations whilst retaining

O(ǫ) terms. The velocity expressions then involve logarithms of η. In the limit ǫ → 0

equations (29), (30) are retrieved. Weidner et al [27] have used the logarithmic form in a

study of flow on a cylinder.

Integrating the continuity equation across the film gives

w|b+h − w|b = − 1

(EG)1/2

∫ b+h

b

∂

∂s1

(uG1/2) +
∂

∂s2

(vE1/2) dη

= − 1

(EG)1/2

(

∂

∂s1

∫ b+h

b
uG1/2 dη +

∂

∂s2

∫ b+h

b
vE1/2 dη

)

+
1

E1/2
u|b+h

∂

∂s1

(b + h) +
1

G1/2
v|b+h

∂

∂s2

(b + h) . (31)
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Substituting for w via (24), (27) and evaluating the integrals leads to

∂h

∂t
+ ∇s · Q = −ρs

ρf

∂b

∂t
− W · n , (32)

where ∇s represents the surface operator,

∇s · Q =
1

(EG)1/2

(

G1/2 ∂

∂s1

Q1 + E1/2 ∂

∂s2

Q2

)

(33)

and

Q1 =
∫ b+h

b
u dη = −

(

1

E1/2

∂p

∂s1

− Bg · e1

)

h3

3
+ A1

h2

2
, (34)

Q2 =
∫ b+h

b
v dη = −

(

1

G1/2

∂p

∂s2

− Bg · e2

)

h3

3
+ A2

h2

2
. (35)

Equation (32) is the governing equation for the fluid flow. It demonstrates that the film

thickness varies due to fluid flux, solidification rate and the rate at which fluid enters the

system. The flux terms (34), (35) show that the fluid is driven by pressure gradient, gravity

(along the surface) and surface shear. Provided the substrate is not horizontal everywhere,

the pressure gradient depends on the ambient pressure (which may vary significantly around

an aerofoil for example) and surface tension. Equation (32) involves two unknowns, the film

height h and the solid height b. A second equation to close the sytem will be derived in the

following section via an energy balance. In the absence of solidification, b ≡ 0, equation (32)

alone (subject to appropriate boundary conditions) is sufficient to predict the evolution of

a thin fluid layer on an arbitrary three-dimensional surface. It is then a general form of the

fourth-order, nonlinear degenerate parabolic partial differential equation typical of thin film,

free surface flows [1, 2].

2.3 Solidification

The energy balance is derived subject to the following assumptions:

1. The Peclet number, Pe ≪ 1.

2. The previous approximations hold, ǫ, ǫ2Re ≪ 1.
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Assumption 1 means that the energy transfer across the layers is driven by conduction rather

than advection. Assumption 2 may be strengthened to the standard level for lubrication

approximation with ǫ2 ≪ 1 without affecting the following analysis. It will also be assumed

that there is perfect thermal contact between the accretion and substrate and that the

substrate temperature is constant. This means that the substrate has a high thermal mass

and conductivity. A consequence of this restriction is that a proportion of the initial incoming

fluid must solidify. Fluid flow may only occur once a solid layer exists to insulate the fluid

layer from the substrate. With the current non-dimensionalisation the appropriate boundary

condition is T = 0 at η = 0. Obviously it is a simple matter to adapt this to an imperfect

thermal contact and a variable substrate temperature by choosing a cooling condition. For

one-dimensional ice accretion this is considered in Myers & Hammond [19].

Due to this final assumption the accretion occurs in two stages. First, dry accretion

occurs. In this case the accretion shape is completely determined by a mass balance. After

a certain amount of time fluid flows over the accretion. The problem is then governed by

combined mass and energy balances.

2.3.1 Dry accretion

Initially there is no fluid flow and all terms on the left hand side of the mass balance (32)

are identically zero. The solid height is therefore given by

∂b

∂t
= −ρf

ρs

W · n . (36)

In general the air flow varies with space and time and the solution of (36) must be determined

numerically. However, if the air flow and droplet trajectories remain constant in time it may

be integrated immediately

b = −ρf

ρs

W · n t . (37)

Fluid will first appear when the accretion temperature reaches the freezing temperature.

To determine when this occurs the thermal problem must be analysed. The temperature is

specified by

Pe
∂T

∂t
= ∇2T, (38)
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where Pe = ǫ2ρscsL
2/(ksτ) is the Peclet number. In the current study the time-scale

is determined by the rate at which fluid enters the system, τ = ρfH/ρaW , and Pe =

ρsρaWHcs/ksρf . In atmospheric icing calculations ρa ≈ 10−3 kg/m3 is a typical liquid water

content of the air, W ≈ [1, 100]m/s is the velocity of the air flow (the lower limit applies

to structural icing, the upper to aircraft icing), H ≈ 0.1mm for aircraft icing and 1mm for

structural icing, cs ≈ 2050 J/kg K, ks ≈ 2.18 W/m K. The Peclet number Pe ∈ [10−4, 10−2]

is small and therefore may be neglected. The same approximation will hold for other physi-

cally realistic situations however, care should be taken to ensure Pe ≪ 1 before applying the

following approximations. Provided Pe ≪ 1 equation (38) reduces to a quasi-steady form

at leading order:

∂2T

∂η2
= 0 . (39)

This requires solving subject to the following conditions. At the free surface η = b a heat

flux condition holds:

∂T

∂η

∣

∣

∣

∣

∣

η=b

= E0D − E1DT . (40)

The energy terms E0D and E1D can incorporate quantities such as latent heat, kinetic energy,

radiation, conduction and convection. If the air flow varies with time the energy terms will

also be time dependent. Details of these terms for structural and aircraft icing may be

found in [3, 4, 13, 21]. As discussed, at the solid substrate, η = 0, there is continuity of

temperature:

T = 0 . (41)

The appropriate solution of (39) is

T =
E0D

1 + E1Db
η . (42)

Fluid first appears when the top of the layer, η = b, reaches the fusion temperature

T = 1. The corresponding accretion thickness, bf , may be determined by solving (42) with

T = 1 to give

bf =
1

E0D − E1D

. (43)
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If accretion occurs for a sufficiently short time, so that b is never greater than bf , then fluid

will not appear. It is also possible that the ambient conditions are such that fluid will never

appear, i.e. if E0 −E1 ≤ 0. In either case the accretion shape is determined by (36) or (37).

The temperature is given by (42) and the problem is completely solved.

2.3.2 Wet accretion

Once the accretion surface has reached the fusion temperature fluid will appear on the

surface. The mass balance (32) involves two unknowns, the accretion and film heights, b and

h. To close the system an energy balance is required.

At the accretion-fluid interface, η = b, the energy balance is

[ρsEs(us − ub) − ρfEf (u − ub)] · n′ =
τ(T f − T s)

L2
[∇(ksT ) −∇(kfχ)] · n′ , (44)

where E is the enthalpy of each phase and χ is the fluid temperature. The velocities are

specified by equation (23) and the normal on the accreting substrate by (22). The gradient

operator is defined by ∇ = (1/E1/2 ∂/∂s1, 1/G
1/2 ∂/∂s2, 1/ǫ ∂/∂η). Equation (44) states

that the energy created during the phase change is conducted away from the interface either

through the accretion or the fluid layer. Substituting for the velocities and expanding (44)

leads to

S
∂b

∂t
=

∂T

∂η
− kf

ks

∂χ

∂η
+ O

(

ǫ2
)

. (45)

The Stefan number, S = (ρsLfH
2)/(τks(T f − T s)), is the ratio between the phase change

energy and the conductive energy. The latent heat of fusion is defined as the jump in enthalpy

Lf = Ef − Es.

To solve equation (45), expressions for the ice and water temperature gradients are re-

quired. Again, provided Pe ≪ 1, the leading order heat equations simplify to quasi-steady

forms:

∂2T

∂η2
= 0

∂2χ

∂η2
= 0 . (46)

Two boundary conditions are required for each of these equations. The first three use the

fact that the temperature of the ice and the water at the interface is the fusion temperature
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and the temperature at the bottom of the ice layer is zero:

T |η=0 = 0, T |η=b = χ|η=b = 1. (47)

A heat flux condition is applied at the top of the water layer:

∂χ

∂η

∣

∣

∣

∣

∣

η=b+h

= E0F − E1F χ|b+h , (48)

where the two coefficients, E0F and E1F , include kinetic energy, radiation, conduction, con-

vection and evaporation. They may be time dependent if the air flow varies with time. The

solution of equations (46) is then straightforward. The temperature profiles are:

T =
η

b
(49)

χ = 1 +
E0F − E1F

1 + E1F h
(η − b). (50)

The energy balance (45) can be expressed in its final form:

S
∂b

∂t
=

1

b
− kf

ks

E0F − E1F

1 + E1F h
. (51)

The first term of the right hand side of equation (51) is proportional to 1/b. The potential

singularity at b = 0 is prevented by the restriction that the temperature of the solid substrate

is constant and below the solidification temperature. This means that accretion always occurs

initially and (51) only applies when b ≥ bf 6= 0. If a heat flux condition of the form (48)

is applied at the substrate it is possible that bf = 0. However, in this situation the first

term on the right hand side of (51) becomes 1/(a0 + b), where a0 > 0 is a constant and the

potential singularity is eliminated. This situation is particularly relevant to ice accretion on

aircraft in mild conditions.

The wet accretion problem is now in its final form. The accretion and fluid flow are

governed by the coupled mass and energy balances, equations (32) and (51). The energy

balance is relatively easy to deal with but the mass balance is highly nonlinear and difficult

to solve. For this reason, the numerical solutions of §4 focus initially on the fluid flow. The

coupled accretion and fluid flow problem is then a simple extension of the fluid flow results.
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3 Reduction of the governing equations to standard

forms

During the initial stages all of the incoming fluid solidifies and the height b is determined

through the mass balance (36) or (37). The temperature is specified by equation (42). The

accretion continues to be specified by (36) or (37) until the surface, η = b, reaches the phase

change temperature. The accretion thickness at this stage is specified by equation (43).

Subsequently fluid will appear. The flow depends on the geometry and this will be discussed

in the following sections. The energy balance for wet accretion, (51), holds in all geometries.

For simplicity the surface tension will be taken as constant in all the examples, so σ ≡ 1.

3.1 Flat substrate

When the substrate is flat the surface may be specified by setting s1 = x, s2 = y and

R = (x, y, 0). The first and second fundamental forms are

E =
∂R

∂x
· ∂R

∂x
= 1 G =

∂R

∂y
· ∂R

∂y
= 1

L = n · ∂2R

∂x2
= 0 N = n · ∂2R

∂y2
= 0 .

According to equation (11) the substrate and normal vectors are

e1 = (1, 0, 0) e2 = (0, 1, 0) n = (0, 0, 1) .

The fluid pressure, specified by equation (28), is

p = p0 − C

(

∂2

∂x2
(b + h) +

∂2

∂y2
(b + h)

)

. (52)

The flow is governed by equation (32) where the surface operator, equation (33), is

∇s · Q =
∂Q1

∂x
+

∂Q2

∂y
. (53)

The fluxes are

Q1 = −
(

∂p

∂x
− Bg · e1

)

h3

3
+ A1

h2

2
(54)

Q2 = −
(

∂p

∂y
− Bg · e2

)

h3

3
+ A2

h2

2
. (55)
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The pressure is defined by equation (52) and g · e1 = cos θ, g · e2 = cos φ where θ and φ

represent the inclination of the x and y axes to the horizontal.

In the absence of solidification b ≡ 0. If W = 0 the standard equation for the flow of a

thin film on a flat surface is retrieved. It has been studied extensively, see [1, 2] for example.

With W 6= 0 the model describes the flow of an evaporating or condensing thin film, see [2,

38] for example. With b and W non-zero the model reduces to that describing ice accretion

and water flow on a flat surface [4]. A version of this model is currently being used in the

ICECREMO aircraft icing code [11,22].

3.2 Circular cylinder substrate

In cylindrical polars the substrate may be parameterised with s1 = Rθ, s2 = z (note, as

discussed in §2.1, s1 is a length). The substrate is then defined by R = (R cos θ, R sin θ, z),

where R is the constant cylinder radius. For flow on the outside of a cylinder the outward

normal is n = (cos θ, sin θ, 0), flow on the inside requires n = −(cos θ, sin θ, 0). The first and

second fundamental forms are therefore

E = 1 G = 1 L = ± 1

R
N = 0 . (56)

The curvature terms are

κ1 =
L

E
= ± 1

R
κ2 =

N

G
= 0 , (57)

where κ1 > 0 denotes flow inside a cylinder, κ1 < 0 denotes flow on the outside. The pressure

is

p = p0 − C ′

[

± 1

R
+ ǫ

b + h

R2
+ ǫ

(

1

R2

∂2

∂θ2
(b + h) +

∂2

∂z2
(b + h)

)]

. (58)

The flow is governed by equation (32) with

∇s · Q =
1

R

∂Q1

∂θ
+

∂Q2

∂z
. (59)

The fluxes Q1 and Q2 are

Q1 = −
(

1

R

∂p

∂θ
− Bg · e1

)

h3

3
+ A1

h2

2
(60)

Q2 = −
(

∂p

∂z
− Bg · e2

)

h3

3
+ A2

h2

2
, (61)
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where the pressure is defined by equation (58) and

e1 =
1

E1/2

∂R

∂s1

= (− sin θ, cos θ, 0) e2 =
1

G1/2

∂R

∂s2

= (0, 0, 1) n = ±e1 × e2 . (62)

Surface tension driven axisymmetric flow both inside and outside a cylinder has been

considered in [2, 23 - 31]. Neglecting gravity, air shear, derivatives in the θ direction and

setting b = 0, W = 0 the governing equation reduces to

∂h

∂t
+

∂

∂z

[

C
h3

3

∂

∂z

(

h

R2
+

∂2h

∂z2

)]

= 0 . (63)

This equation has been used to describe bubble motion in a capillary tube and the Rayleigh-

Taylor instability in a thin film [23 – 25]. The ratio h/R2 is termed the hoop stress. It behaves

like a negative gravity term, acting to pull the fluid away from the substrate and therefore

destabilises the flow. With gravity acting in the z-direction another term proportional to

∂h3/∂z is introduced into (63), this is discussed in [30, 31]. Weidner et al [27] investigate

flow on a horizontal cylinder. However, initially they retain the full curvature terms in

order to permit droplet formation on the underside of the cylinder. This leads to the flux

containing logarithmic terms, as discussed in §2.2. Subsequently these authors expand the

log term with h/R ≪ 1 to obtain a similar flux expression to that given above. Jensen [26]

considers flow in a circular cylinder with small curvature along the axis. This equation is

most easily retrieved by altering the above definition of the substrate to describe a torus

R = R1(cos θ, sin θ, 0) + R2(cos θ cos φ, sin θ cos φ, sin φ) and setting R2 ≫ R1.

With b and W non-zero the model describes solidification on the surface of a cylinder.

This is of particular interest to the power transmission industry for icing on cables or icicle

formation [8, 20].

3.3 Non-circular cylinder substrate

A non-circular cylinder may be described by the substrate R = (f(s), g(s), z). The parameter

s represents arc-length, so

(

∂f

∂s

)2

+

(

∂g

∂s

)2

= f 2
s + g2

s = 1 , (64)
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where the subscript s denotes derivatives with respect to that variable. The normal is n =

±(−gs, fs, 0), where the ± sign determines whether the normal points inwards or outwards.

The first and second fundamentals are

E = 1 G = 1 L = ±(−gsfss + fsgss) = ±gss

fs

N = 0 .

The curvatures are therefore

κ1 = ±gss

fs

κ2 = 0 .

The fluid pressure is

p = p0 − C ′

[

κ1 + ǫ

(

hκ2
1 +

∂2h

∂s2
+

∂2h

∂z2

)]

. (65)

The flow is governed by equation (32) with

∇s · Q =
∂Q1

∂s
+

∂Q2

∂z
(66)

where

Q1 = −
(

∂p

∂s
− Gg · e1

)

h3

3
+ A1

h2

2

Q2 = −
(

∂p

∂z
− Gg · e2

)

h3

3
+ A2

h2

2
.

The pressure is specified by equation (65) and the surface vectors are specified by (11).

The equations governing flow on a circular cylinder, derived in the previous section, may be

retrieved by setting s = Rθ and f = cos(s/R), g = sin(s/R).

Schwartz & Weidner [29] consider surface tension driven flow on an arbitrary two-

dimensional surface. Neglecting air shear, gravity, derivatives in the z-direction and setting

b = 0, W = 0 equation (32), in this case, reduces to

∂h

∂t
+

∂

∂s

[

C ′
h3

3

∂

∂s

(

κ1 + ǫ

(

κ2
1h +

∂2h

∂s2

))]

= 0 , (67)

where κ1 = gss/fs. There are two main differences between (67) and the corresponding

equation in [29]. Firstly, equation (67) is in non-dimensional form. This makes it clear that
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when κ1 = O(1) and is non-constant it is the substrate shape alone that drives the flow to

leading order. The problem in this case is governed by

∂h

∂t
+

∂

∂s

[

C ′
h3

3

∂κ1

∂s

]

= 0 . (68)

The second difference is that the term κ2
1h is absent in [29]. This occurs as a result of their

expansion of the free surface curvature. Only two terms are taken in this expansion, κ1 and

hss. A neglected term, κ2
1h, occurs at the same order as hss and therefore should also be

retained. This is particularly relevant when κ1 = ±1/R is constant. In this case κ2
1h = h/R2

is the hoop stress term observed in equation (63). When the curvature is small, so that

κ1 = ǫκ′

1 = O(ǫ) the flow is governed by

∂h

∂t
+

∂

∂s

[

C
h3

3

∂

∂s

(

κ′

1 +
∂2h

∂s2

)]

= 0 . (69)

This is the equation derived in [29], which is therefore strictly valid for non-constant curva-

tures of order ǫ. Weidner et al [28] study an evaporating film with variable surface tension

lying on an arbitrary two-dimensional surface. Their governing equation is obtained in the

same manner as (69) with the inclusion of the shear term A1h
2/2, the mass loss W · n and

σ 6= 1.

3.4 Spherical substrate

In this case the surface is parametrised by s1 = Rθ, s2 = Rφ where θ and φ represent

the usual polar and azimuthal angles and R is the radius of the sphere. The substrate is

then R = R(sin θ cos φ, sin θ sin φ, cos θ) and the normal n = ±R/R. The first and second

fundamental forms are

E = 1 G = sin2 θ L = ∓ 1

R
N = ∓ 1

R
sin2 θ . (70)

The curvatures are therefore

κ1 = ∓ 1

R
= κ2 . (71)

The fluid pressure is

p = p0 − C ′

(

∓ 2

R
+ ǫ

[

2

R2
(b + h) +

1

R2

∂2

∂θ2
(b + h) +

1

R2 sin2 θ

∂2

∂φ2
(b + h)

])

. (72)
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The flow is governed by (32) with

∇s · Q =
1

R

∂Q1

∂θ
+

1

R sin θ

∂Q2

∂φ
, (73)

and

Q1 = −
(

1

R

∂p

∂θ
− Bg · e1

)

h3

3
+ A1

h2

2
(74)

Q2 = −
(

1

R sin θ

∂p

∂φ
− Bg · e2

)

h3

3
+ A2

h2

2
. (75)

4 Numerical solution method

The general mathematical model for fluid flow and accretion is specified by equations (32)

and (51). In the absence of accretion the flow model is typical for thin film free surface flows

which are notoriously difficult to solve both analytically and numerically. If the fourth-

order surface tension term is neglected then shocks are likely to develop, particularly in

the vicinity of a moving contact line. Another difficulty associated with the contact line is

the inability of the lubrication approximation to accurately predict fluid behaviour in this

region [32]. It is well-known that the no-slip velocity boundary condition at z = 0 leads to a

multi-valued velocity field in the vicinity of the contact line. This results in a non-integrable

stress singularity. A number of methods to overcome this difficulty have been developed,

such as the introduction of a precursor layer, replacing the no-slip condition by a Navier slip

condition or allowing rolling in an inner region and matching to the outer lubrication model

[1]. In the following a precursor layer of thickness hp will be employed. Since the fluid flow

is the most problematic aspect of the numerical solution this will be dealt with first in §4.1

and 4.2. The coupling with the accretion model is a relatively simple extension and will be

dealt with in §4.3.

4.1 Fluid flow on a two-dimensional surface

In the absence of accretion, the equation governing the two-dimensional fluid flow is:

∂h

∂t
+

∂Q1

∂s1

= −W · n , (76)
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where Q1 is specified by equation (34). This is discretised with constant space and time

steps ∆s1 and ∆t. The water height at the centre of the i − th cell of the grid at time

t = k∆t is denoted hk
i . Provided the numerical domain is sufficiently large, equation (76)

may be solved with the boundary conditions that the first and second derivatives of the flux

are zero (due to the presence of the precursor layer the flux is not necessarily zero at the

boundaries).

A typical finite difference scheme in conservative form for equation (76) is [33, 35]:

hk+1
i = hk

i − W · n ∆t − ∆t

∆s

(

Q1i+1/2
− Q1i−1/2

)

, (77)

where Q1i+1/2
denotes the flux at the boundary of the i− th and (i+1)− th cells. It depends

on the water heights around the i−th cell, hi−3 to hi+3, calculated at time k∆t and (k+1)∆t.

Over most of the domain, the dominant terms in the flux are the shear stress, A1h
2/2, and

the gravity term, Bg · e1h
3/3. If all other terms in the flux are neglected, equation (76) is

likely to develop a shock at the moving front. Preventing the eventual shock from developing

is the surface tension term, which increases with the curvature. However, in many practical

situations there will exist a region of sufficiently high curvature at the front of the flow to

cause numerical problems. To prevent this a shock capturing technique, as described in [4],

will be employed.

Since equation (76) is nonlinear, calculating all terms implicitly in the flux is not possible.

An alternative method is presented in [36] where the derivatives of the film height are

evaluated at time t = (k + 1/2)∆t, using the Crank-Nicolson method, all other terms are

calculated explicitly, at time t = k∆t. To achieve this the flux is divided into two parts,

Q1 = QI + QII , where:

QI =
h3

3

C

E1/2

(

κ2
1

∂h

∂s1

+
1

E

∂3h

∂s1
3

)

,

QII =
h3

3

(

C ′

E1/2

[

∂κ1

∂s1

+ ǫh
∂κ2

1

∂s1

]

− 1

E1/2

∂p0

∂s1

+ Bg · e1

)

+ A1
h2

2
.

The first term is discretised using a Crank-Nicolson scheme, see [36]:

QI
i+1/2 =

(

hk
i+1/2

)3

3

C

E1/2











1

2

∂3h

∂s3

∣

∣

∣

∣

∣

k+1

i+1/2

+
1

2

∂3h

∂s3

∣

∣

∣

∣

∣

k

i+1/2
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+κ2
1





1

2

∂h

∂s

∣

∣

∣

∣

∣

k+1

i+1/2

+
1

2

∂h

∂s

∣

∣

∣

∣

∣

k

i+1/2











. (78)

The second part, QII , contains the terms likely to produce shocks. Numerical experiments

carried out in [4, 44] indicate that the Roe & Sweby scheme with the ‘Superbee’ limiter

provides accurate solutions whilst permitting relatively large time-steps. This requires that

this part of the flux is split once again:

QII
i+1/2 =

(

1 − ci+1/2

)

QUP
i+1/2 + ci+1/2Q

LW
i+1/2 , (79)

ci+1/2 = max (0,min (2r, 1) ,min (r, 2)) ,

r =

(∣

∣

∣ai+1/2−a
∣

∣

∣ − ∆t a2
i+1/2−a/∆s1

)

(hi+1−a − hi−a)
(∣

∣

∣ai+1/2

∣

∣

∣ − ∆t a2
i+1/2/∆s1

)

(hi+1 − hi)
,

a = sign
(

ai+1/2

)

,

where ai+1/2 denotes the wave speed, QUP and QLW represent the upwind and Lax-Wendroff

schemes:

ai+1/2 =











(QII
i+1 − QII

i )/(hi+1 − hi) if hi+1 − hi 6= 0 ,

∂QII/∂h
∣

∣

∣

i+i/2
if hi+1 − hi = 0 ,

QUP
i+1/2 =

1

2

(

QII
i + QII

i+1

)

− 1

2
sign

(

ai+1/2

) (

QII
i+1 − QII

i

)

,

QLW
i+1/2 =

1

2

(

QII
i + QII

i+1

)

− ∆t

2∆s
a2

i+1/2

(

hi+1/2 − hi−1/2

)

,

and QII
i denotes the second part of the flux calculated at the centre of the i − th cell with

a centred scheme at time k∆t. Equation (76) is now fully discretised and the film height
(

hk+1
i

)

i=1..n
may be determined by solving equation (77) with the flux specified by equations

(78) and (79). This leads to a system of n linear equations and the problem reduces to the

inversion of a pentadiagonal matrix. For full details see [36, 44]

In Figure 2 a typical result is shown for flow on a horizontal surface. The rate at which

fluid impacts on the surface is

W · n = −0.5 exp(−3.16s2
1) . (80)

This form is chosen to match physically realistic examples, such as the one discussed in §4.5.

The flow is driven primarily by air shear. The height-scale is chosen as the equilibrium height
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on a horizontal surface, hence h = 1 over most of the domain. The velocity scale, U , is chosen

to make A1 = 1. The various curves represent the film profile at t = 1, 3, 4, 4.5, 5, 7, 9, 11,

15. Since the flux Q1 involves terms proportional to h3 and h2, when h ≪ 1 the film profile

is determined by the balance between the time derivative and the incoming fluid in equation

(76). The early time profile is therefore approximately proportional to the Gaussian shape

specified by (80). The precursor film h = hp = 0.05, can clearly be seen on either side of the

Gausssian. As h increases the air shear term enters the dominant balance and the fluid is

driven to the right. A capillary ridge begins to develop after t = 2.5 and the height of this

ridge increases until around t = 10 after which the height remains constant. The shape of the

capillary ridge may be determined approximately using the method described in [4, 36, 37].

After t = 5 the film profile behind the ridge is determined by the balance between air shear

and the incoming fluid. In this case the bulk film shape may be determined analytically

h =

√

h2
p + 0.5

√

π

3.16

[

1 + erf
(√

3.16s1

)]

. (81)

Matching the bulk and ridge solutions then provides a profile against which the numerical

solution may be verified. However, since the results are too close to distinguish, only the

numerical solution is shown in Figure 2. Further details may be found in [4]. The numerical

solution has also been checked against the explicit solution method described in [4]. The

curves match almost exactly, however the current calculation took approximately thirty

seconds (fifty times less than the explicit solution).

Figure 2 near here

When the surface is inclined, with gravity acting against the shear stress, the evolution of

the water layer is very different. Figure 3 shows the film profile for flow on a surface inclined

at 20◦ to the horizontal, again with a shear stress A1 = 1 and Bg ·e1 = −0.857, at times t =

1, 3, 4, 4.5, 5, 7, 9, 11, 15. The example has been chosen so that gravity almost balances the

shear. At early times the fluid height reflects the incoming Gaussian profile. As the height

increases motion to the right occurs, due to the shear stress, and to the left, due to gravity.

The fluid on the right initially forms a capillary ridge which grows in height, until a critical
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value around h = 1.2, when it ceases to grow and starts to spread out. The fluid continues

to flow in this manner, with no discernible leading capillary ridge. This phenomenon has

been observed in surface tension gradient driven flows [41]. At the left-hand edge of this flat

region the fluid dips. Moving further to the left the height increases to the gravity dominated

region which behaves in a more usual manner, with a capillary ridge forming at early times.

The ridge increases in height, to a certain value, and a flat bulk flow region begins to form

behind the ridge at later times.

Figure 3 near here

4.2 Fluid flow on a three-dimensional surface

In the absence of accretion, the equation governing the three-dimensional fluid flow is (32)

with b ≡ 0. In this case the solution space is divided into an m×n grid, whose cell sizes are

denoted ∆s1 and ∆s2. The film height in the centre of cell (i, j) at time t = k∆t is denoted

hk
i,j.

The generalisation of the two-dimensional scheme to three dimensions is not straightfor-

ward. In three dimensions, solving for the film height requires the inversion of a broadly

banded matrix. An alternative method is to replace the implicit scheme by an Alternat-

ing Direction Implicit (ADI) scheme, or Peaceman-Rachford non-homogeneous scheme [34,

39, 40]. The time step is then divided into two equal parts: when t ∈ [k, k + 1/2]∆t the

flux is evaluated implicitly in the s1 direction and explicitly in the s2 direction; during

t ∈ [k + 1/2, k + 1]∆t the flux is evaluated explicitly in the s1 direction and implicitly

in the s2 direction. The pressure gradient involves two cross derivatives ∂3h/(∂s2
1∂s2) and

∂3h/(∂s1∂s2
2). These could be calculated implicitly but they would add non-pentadiagonal

terms to the matrix. If the cross terms are evaluated explicitly then the film height may

be determined by inverting two pentadiagonal matrices, see [27, 38]. Again all the explicit

terms are evaluated using the Roe and Sweby scheme with the Superbee limiter.

Figure 4 near here
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In Figure 4 an example of flow on an inclined flat surface is shown. The slope is such that

ĝ · e1 = ĝ · e2 = −0.4. The surface shear components act against gravity with A1 = A2 = 1.

The height is scaled with H = 0.1286mm (the equilibrium height for the equivalent two-

dimensional problem), the length is scaled with L = 8.3cm. The incoming fluid is described

by

W · n = −0.5 exp
(

−3.16(s2
1 + s2

2)
)

. (82)

The space and time-steps employed in the calculation were ∆s1 = ∆s2 = 0.0015, ∆t = 0.0005

and the figure shows the result at t = 15. Shear and gravity forces are mainly acting along

the diagonal joining the left and the right corners.

This example includes the different patterns likely to develop for this type of flow:

• The left extremity of the curve is mainly driven by gravity, see the enlargement in 5

(a). Two waves appear on the side of the flow due to the gravity driven spreading

perpendicular to the main flow direction. These two waves join and form a single

capillary ridge which ends at a high peak. This shape strongly resembles the two

dimensional curves described in the previous section.

• The right extremity of the flow shows a very different pattern, as may be observed

from the enlargement in Figure 5 (b). The front forms a semi-circular flat plateau,

surrounded by small side waves created by the balance between gravity driven spreading

and surface tension. There is a distinct step, ∆h ≈ 0.2 from the bulk height to the

plateau height.

• Between the two fronts, the bulk region consists of an approximately flat section which

then slowly increases in height away from the right. At the left extremity the bulk

region levels off again before the peak is reached. The sides of this region display a

small capillary ridge due to the sideways flow driven by gravitational spreading. The

two, approximately constant heights on either side of the origin are determined by the

balance between gravity and shear stress. The two heights are different because near

the origin, where most fluid impacts, the film is sufficiently thick for gravity to dominate
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and drive the most of the fluid to the left. Mathematically, the two different heights

explain the two different type of fronts. The left hand region has a slightly increasing

height and the flux QII is convex, so a Lax shock appears here. On the other side,

the water height is decreasing and QII is concave, consequently an undercompressive

shock develops at the right hand front [42, 43].

Figure 5 near here

4.3 Coupled flow and accretion

As mentioned before, there is an initial period when only dry accretion occurs. In which

case the thickness is determined by equation (36). The discretised form is

bk+1
i,j = bk

i,j − W · n∆t . (83)

Fluid appears when a point or area of the top surface reaches the fusion temperature. The

accretion profile at this time is specified by equation (43). When fluid appears, equation

(83) may still hold in certain regions where the fluid has not yet flowed. Over the rest of

the domain the accretion is governed by equation (51) which is coupled to the flow equation

(32). In discrete form these are

bk+1
i,j = bk

i,j +
1

S

(

1

bk
i,j

− kf

ks

E0F − E1F

1 + E1F hk
i,j

)

∆t , (84)

hk+1
i,j = hk

i,j −
∆t

∆s1

(

Q1i+1/2,j
− Q1i−1/2,j

)

− ∆t

∆s2

(

Q2i,j+1/2
− Q2i,j−1/2

)

− 1

S

(

1

bk
i,j

− kf

ks

E0F − E1F

1 + E1F hk
i,j

)

∆t − W · n∆t . (85)

However, the extent of the wet domain is not known a priori. In order to determine which

model, dry or wet accretion, is appropriate at a given point, the following method is used:

• The fluid and accretion heights are calculated using equations (84) and (85). These

require that bk
i,j 6= 0. For this reason, a precursor ice film bp is specified (typically this

is taken the same as the fluid precursor, bp = 0.05).

• If the new calculated film height is greater than the precursor film, hk
i,j > hp, the wet

accretion model is taken as correct.
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• If the new calculated fluid height is smaller than the precursor film, hk
i,j < hp, this

means that the accretion is dry. The calculated value for the film height is replaced

by the precursor film, hp, and the new ice height is calculated using equation (83).

As the model stands, mass is not conserved. The problem occurs at the interface between

wet and dry accretion. At the dry side of the accretion, the flux takes a small constant value

due to the presence of the precursor film. At the wet side, the flux depends on the height

from the neighbouring points and therefore the wet and dry flux values are not necessarily

the same on either side of the interface. To correct this deficiency, in dry regions, equation

(83) is modified to:

bk+1
i,j = bk

i,j − W · n∆t − ρf

ρs

(

Q1i+1/2,j
− Q1i−1/2,j

∆s1

+
Q2i,j+1/2

− Q2i,j−1/2

∆s2

)

∆t . (86)

Since the flux is constant in the precursor film, the new term on the right hand side is only

non-zero at the dry/wet interface. This method ensures continuity and physically sensible

results for the film height as well as mass conservation.

The numerical solution for flow on an accreting surface is therefore determined by first

calculating the accretion profile immediately before fluid appears, b = bf . Subsequently

equations (84) and (85) hold over the wet region and equation (86) holds in the dry regions.

Figure 6 shows (a) the accretion and (b) the fluid film on a flat plane at t = 60 with the

same conditions to that of §4.2. The energy terms are given by

E0F = 0.235 − 0.0966W · n ,

E1F = 0.164 − 0.095W · n .

These correspond to a physical situation where water droplets exist in a flow field at temper-

ature 272K, the substrate temperature is 271K, the heat transfer coefficient is 500W/K/m2,

the free stream velocity is V∞ = (100, 0, 0)m/s and the incoming fluid is described by equa-

tion (82). The temperatures are chosen close to fusion temperature so that a significant

water layer may develop. Taking the height and velocity scales of §4.1 gives the following

non-dimensional numbers for the problem

ǫ = 1.55 × 10−3 , A1 = 1 , B = 2.52 , C ′ = 2.72 × 10−3 , S = 0.824 .
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Figure 6 near here

The accretion shown in Figure 6 (a) shows a central Gaussian region, corresponding to

the incoming fluid. If the fluid were to solidify immediately upon impact then the accretion

would have a Gaussian profile with a maximum height b = −ρf W · n|s1=s2=0 t/ρs ≈ 33.3

(where ρs = 900, ρf = 1000kg/m3). For the present situation fluid flow has altered the

Gaussian. On the right the hump is caused by the solidification of the air shear driven flow,

on the left a thin hump occurs due to the gravity driven flow. The different amounts of

accretion on either side of the centre reflect the magnitude of the driving force and ease

with which the fluid moves over a dry surface. Clearly surface shear is the dominant driving

force, even though the Bond number B > A the surface shear. This is due to the fact that

A multiplies h2 whilst B multiplies h3 and the water height remains low for a significant

length of time.

It is clear from Figure 6 (b) that the flow with accretion is qualitatively different to that

without (shown in Figure 4). A shock still forms on the left of the picture, on the right side

of the figure the flow is driven to the right by shear stress, gravity also acts to drive the

flow to the left and at the same time accretion removes fluid. This combination results in

the film height decreasing monotonically to the precursor layer and no shock or flat region

appears on the right side.

4.4 Flow and accretion on a sphere

Accretion on a sphere is now studied for the case of a gravity driven film. The two coordinates

s1 and s2 are defined as the lengths along the parallels and meridians respectively. However,

for clarity, the results will be shown using the two spherical coordinate angles φ and θ.

Gravity acts in the direction of increasing θ.

The simulation is carried out with the following parameters:

B = 1 , C ′ = 6.42 × 10−5 , S = 0.43 ,

E0F = 0.00144 − 0.0207W · n , E1F = 0.00307 − 0.04439W · n , ǫ = 3.53 × 10−4 ,

A1 = 0 , A2 = 0 , W · n = −0.7 exp
(

−13.87s2
)

,
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where s =
√

s2
1 + s2

2 denotes the distance to the origin along the surface. These values

correspond to far field and substrate temperatures T∞ = 272K and Ts = 271K, the far

field velocity is V∞ = (5, 0, 0)m·s−1 and the heat transfer coefficient is assumed constant, 5

W/m2/K. The scales are H = 0.12mm, L = 33.98cm, τ = 2.40s. The height-scale is the

appropriate choice for a gravity driven flow on a vertical surface.

Figures 7 (a), (b) near here

Under these conditions water appears on the surface at t = 4.28. The ice accretion at

t = 30 (corresponding to approximately 72s) is shown in Figure 7(a). If all of the incoming

fluid had frozen then the ice shape would be proportional to the Gaussian with maximum

height b = 23.3. The flattening over the top region indicates that water has been present

and moved away from the central region. The film height is shown in Figure 7(b). The

liquid is clearly pushed to the right of the picture (increasing θ) by gravity. As with the flat

inclined surface example, a shock develops at the moving front. However, the wave here is

much smaller due to the lower water level. The simulation has been stopped at this time to

avoid the problem which would occur as fluid accumulates at the bottom of the sphere.

4.5 Flow and accretion on an aerofoil

A more practical application of the current theory will now be described, that of ice accretion

on an aerofoil. This is particularly relevant to ice growth on aircraft and wind turbines, see

[8, 11, 45] for example.

A good approximation to the top half of a NACA0012 aerofoil (with constant cross-

section) is R = (x(p), y(p), z) where

x(p) =
8

∑

i=0

xip
i(1 − p)(8−i) (87)

y(p) =
8

∑

i=0

yip
i(1 − p)(8−i) (88)

and p ∈ [0, 1]. The points (xi, yi) are

(0.0, 0.0), (0.0, 1.48448), (0.99988, 9.76164), (5.99984, 27.39464), (15.00003, 40.74980),

(19.99984, 31.20544), (14.99988, 12.59776), (6.00000, 2.42248), (1.00000, 0.01050) ,
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see [46]. The bottom half of the aerofoil is obtained by symmetry. The surface therefore

forms part of a non-circular cylinder, as discussed in §3.3 (however p does not represent

arc-length, so equation (64) does not hold). The arc-length co-ordinate s is, chosen so that

s = 0 at the leading edge, s < 0 is the bottom half of the aerofoil and s > 0 the top half.

The model inputs were determined using FLUENT V [47] over a clean aerofoil. The

temperatures are the same as in the previous examples, i.e. T∞ = 272, Ts = 271K. The

collection efficiency may be defined as the ratio between the mass of impinging droplets to

the incoming mass that would hit the substrate if the trajectories were straight lines [48].

The collection efficiency must therefore be less than 1. For the current problem a series of

droplets of radius r = 50µm was introduced into the FLUENT flow solution and the air had

a liquid water content ρa = 0.001 kg/m3. The droplet impact points were recorded to provide

the collection efficiency shown in Figure 6 (a). The droplets in the air flow are relatively

small and tend to follow the air flow. The efficiency is therefore a maximum near the

leading edge of the aerofoil where the air flow turns sharply and the droplets cannot follow.

On either side the efficiency decreases rapidly as less droplets impact and more follow the

airflow. Beyond the limits |s| = 1 all the droplets flow around the wing. Ideally the collection

efficiency should be a smooth curve. The oscillations in the figure indicate that a relatively

small number of droplets have impacted in that region so leading to inaccuracies in the

calculation. The flow solution obtained by FLUENT provides the shear stress, pressure and

heat transfer coefficient shown in Figures 6 (b), (c), (d). These are all shown in dimensional

form. The shear stress is negative for s < 0, since the air flow is in the negative s direction

on the bottom surface. The magnitude of the shear stress is greatest just before and after

the leading edge, with a maximum value 15.5Pa. For s > 0 the stress is positive since the air

flows in the positive s direction. The ambient pressure is 101300Pa. Near the leading edge

the pressure is greater than this value. For |s| > 0.3 the pressure is less than this value. The

symmetric form for the aerofoil shape, given by equation (88), means that both sides have

equal suction and no lift would be generated. In reality an aerofoil requires asymmetry to

generate lift in horizontal flight. The heat transfer coefficient is also highest at the leading
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edge. The peak corresponds to a dimensional value of approximately 545 W/m2K. Figures

7 (a), (b) show the ice and water thicknesses on the aerofoil at times t = 500, 1000, 1500

(corresponding to 3, 6, 9 minutes). Initially the ice shape is proportional to the collection

efficiency, so there is a high peak in the centre and no ice beyond |s| = 1. Since the ambient

conditions are mild, water appears at an early time, t = 7, and starts to produce ice away

from this region. When t = 500 the ice extends to |s| ≈ 1.3, at t = 1500 the ice reaches

|s| ≈ 2.2. The ice shape is relatively difficult to interpret due to the competing effects.

However, it is likely that a peak occurs at the centre because the water impacting in this

region is removed very slowly. Near the stagnation point the shear stress is low and the only

driving force is gravity. The thin water film therefore moves very slowly and provides a large

source for new ice. Away from this region the air shear drives the fluid outwards to extend

the limits of the ice region.

The water film, shown in Figure 7 (b) has two peaks around |s| = 0.7. These are caused

by the water (except in the immediate vicinity of s = 0) being driven away from the centre.

As the fluid moves to the thin ice region it starts to freeze and so the water height decreases

rapidly near the accretion edge.

5 Conclusion

A model for the flow of a thin, accreting film has been developed. In the absence of solidi-

fication, the model for fluid flow is the first fully three-dimensional thin film formulation on

an arbitrary surface described in the literature. As such it can be applied to a wide variety

of physically realistic thin film free surface flows. The various limiting cases of this model

have been shown to capture previous systems on flat and curved surfaces in both two and

three dimensions and also clarified the conditions under which these models are valid. When

solidification is included the model can be reduced to a previous one concerning ice accretion

on a flat surface.

There are a vast number of papers dealing with thin film free surface flows. These concern

not only the different applications and flow regimes but also the mathematical properties

31



of the governing equations. The addition of solidification to the problem adds a whole new

level of complexity and interest to the problem. The numerical solutions show that the flow

characteristics change considerably even when the accretion rate is small.

The model has a number of limitations. For example, the rate at which fluid enters

the system must be sufficiently slow for the temperature to equilibrate to an approximately

linear profile. The thermal mass of the substrate must be significantly larger than that of

the accretion. The fluid is Newtonian, most coatings are non-Newtonian. A number of these

restrictions are relatively simple to relax. For example, it is a simple matter to allow heat

transfer between the substrate and the accretion. This will permit the modelling of anti-

icing systems and icing of cables, where the ice accretion may be significantly larger than

the cable. In the case of a non-solidifying flow there are a variety of other possible driving

forces which have not been included in this work. However, removing the restrictions and

investigating different driving forces will be the subject of future research.

Verification of the model with accretion is difficult. The most easily available source

of data comes from ice accretion studies. On aircraft the conditions are very severe and

inaccuracies will come from the experimental observations, the flow solution obtained via

FLUENT and the accretion model itself. With atmospheric icing the ambient conditions can

change throughout the course of an icing event and knowing the precise inputs for the model

is problematic. However, it is hoped in the future to verify this model through controlled

experiments for ice accretion on cables. The model for accretion on a flat surface is already

being used and tested in an aircraft icing code and results from this study will be published.

Acknowledgement

TM would like to thank the Oxford Centre for Industrial and Applied Mathematics (OCIAM)

at the University of Oxford for providing the facilities where the majority of this work was

written up and for appointing him as a Visiting Research Fellow.

32



6 Nomenclature

Ai Surface shear

B Bond number

b Ice thickness

C Inverse capillary number

C ′ Non-standard inverse capillary number C = ǫC ′

E, F, G First fundamental forms

EiD Energy term in dry accretion

EiF Energy term in wet accretion

e1, e2 Unit substrate vectors

H Height scale

kf , ks Thermal conductivity of fluid and solid

L,M, N Second fundamental forms

L Length-scale

Lf Latent heat of fusion

n Unit vector normal to substrate

Pe Peclet number

p Fluid pressure

Q = (Q1, Q2) Fluid volume flux vector

R Function defining the substrate

r Function defining current point

S Stefan number

si Surface co-ordinates

T Temperature in solid

Tf Fusion temperature

Ts Substrate temperature

T∞ Far field temperature

u = (u, v, w) Fluid velocity vector
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V∞ Velocity vector for far field air flow

W Local velocity of fluid droplets

W Maximum value of W

ǫ Small parameter, ǫ = H/L

κ1, κ2 Curvature in (s1, s2) directions

η Co-ordinate perpendicular to substrate

ρ Density

χ Temperature in fluid

τ Time-scale
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6. Stefan J. Über die Theorie der Eisbildung, insbesondere über die Eisbildung im Po-

larmeere. S.-B. Wien. Akad. Mat. Natur. 98 pp965-983 1889.

7. Lock G.S.H. The growth and decay of ice. Cambridge University Press (1990).

8. L. Makkonen “Models for the growth of rime, glaze icicles and wet snow on structures”

Phil. Trans. R. Soc. Lond. A 358 2913 (2000).

34



9. M. Farzaneh “Ice accretions on high-voltage conductors and insulators and related

phenomena” Phil. Trans. R. Soc. Lond. A 358 2971 (2000).

10. P. Sparaco Swedish crash prompts clear-ice guidelines, Aviation Week and Space Tech-

nology, 10 pp49-50, 1994.

11. R.W. Gent, N.P. Dart & J.T. Cansdale Aircraft icing, Phil. Trans. R. Soc. Lond. A

358 2873 (2000).

12. Ice accretion modelling. URL http://www.tra3.com/icecremo/.

13. S.K. Thomas, R.P. Cassoni & C.D. MacArthur, Aircraft anti-icing and de-icing tech-

niques and modelling, Journal of Aircraft 33(5) pp841-854, (1996).

14. I.A. Frigaard, Solidification of spray formed billets, J. Engng Math. 31, 411 (1997).

15. E. Gutierrez-Miravete, E.J. Lavernia, G.M. Trapaga, J. Szekely & N.J. Grant, Math-

ematical model of the spray deposition process, Metallurgica Transactions 20A, 71

(1989).

16. D.E. Kataoka & S.M. Troian A theoretical study of instabilities at the advancing front

of thermally driven coating flows, J. Coll. Interf. Sci. 192(2), 350 (1997).

17. D.E. Kataoka & S.M. Troian “Stabilizing the advancing front of thermally driven

climbing films,” J. Coll. Interf. Sci. 203(2), 335 (1998).

18. S. Middleman “The effect of induced air-flow on the spin coating of viscous liquids,”

J. Appl. Phys. 62(6), 2530 (1987).

19. T.G. Myers & D.W. Hammond “Ice and water film growth from incoming supercooled

droplets,” Int. J. Heat Mass Trans. 42, 2233 (1999).

20. K. Arnold, G. Tetzlaff & A. Raabe “Modelling of ice accretion on a non-rotating

cylinder” Meteorol. Zeitschrift 6(3), 120 (1997).

35



21. T.G. Myers “An extension to the Messinger model for aircraft icing” AIAA J. 39(2),

211 (2001).

22. P. Bartlett Development of a new model of ice accretion on aircraft, Proceedings of 9th

International Workshop on Atmospheric Icing on Structures, Chester UK June (2000).

23. P.S. Hammond Nonlinear adjustment of a thin annular film of viscous fluid surrounding

athread of another within a circular cylindrical pipe. J. Fluid Mech. 137, 363-384

(1983).

24. L.W. Schwartz, H.M. Princen & A.D. Kiss On the motion of bubbles in capillary tubes.

J. Fluid Mech. 172, 259-275 (1995).

25. S.G. Yiantsos & B.G. Higgins Rayleigh-Taylor instability in thin viscous films. Phys.

Fluids A(1) 1484-1501 (1989).

26. O.E. Jensen The thin liquid lining of a weakly curved cylindrical tube. J. Fluid Mech.

331, 373-403 (1997).

27. D.E. Weidner, L.W. Schwartz & M.H. Eres Simulation of coating layer evolution and

drop formation on horizontal cylinders. J. Colloid & Interf. Sci. 187, 243-258 (1997).

28. D.E. Weidner, L.W. Schwartz & R.R. Eley Role of surface tension gradients in cor-

recting coating defects in corners. J. Colloid & Interf. Sci. 179, 66-75 (1996).

29. Schwartz L.W. & Weidner D.E. Modeling of coating flows on curved surfaces. J. Engng

Math. 29 pp91-103 1995.

30. A.L. Frenkel Nonlinear theory of strongly undulating thin films flowing down vertical

cylinders. Europhys. Lett. 18, 583-588 (1992).

31. S. Kalliadasis & H-C Chang Drop formation during coating of vertical fibres. J. Fluid

Mech. 261, 135-168 (1994).

32. E.B. Dussan V. & S.H. Davis On the motion of fluid-fluid interface along a solid surface.

J. Fluid Mech. 65 71-95 (1974).

36



33. R.J. LeVeque. Numerical methods for conservation laws, Lectures in Mathematics,
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Figure 1: Configuration for solidification and fluid flow
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Figure 2: Two-dimensional fluid film driven by surface shear at times t =1, 3, 4, 4.5, 5, 7, 9,
11, 15
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Figure 3: Two-dimensional fluid film driven by surface shear and gravity at times t =1, 3,
4, 4.5, 5, 7, 9, 11, 15
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Figure 5: Close-up of moving fronts from Figure 4: (a) left hand front (b) right hand front
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Figure 6: (a) Accretion thickness on a flat substrate at t = 60 (b) corresponding film
thickness
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Figure 7: (a) Accretion thickness on a sphere at time t = 30 (b) corresponding film
thickness
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Figure 8: Flow around an aerofoil: (a) Collection efficiency (b) shear stress (c) pressure (d)
heat transfer coefficient
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Figure 9: (a) Ice thickness on aerofoil at t = 500, 1000, 1500 (b) corresponding water
thickness
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