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The Flow Complex: A Data Structure for Geometric Modeling* 

Joachim Giesen t Matthias John ~ 

Abstract  

Structuring finite sets of points is at the heart of compu- 
tational geometry. Such point sets arise naturally in many 
applications. Examples in R 3 are point sets sampled from the 
surface of a solid or the locations of atoms in a molecule. A 
first step in processing these point sets is to organize them in 
some data structure. Structuring a point set into a simplicial 
complex like the Delaunay triangulation has turned out to 
be appropriate for many modeling tasks. Here we introduce 
the flow complex which is another simplicial complex that 
can be computed efficiently from a finite set of points. The 
flow complex turned out to be well suited for surface recon- 
struction from a finite sample and for some tasks in struc- 
tural biology. Here we study mathematical and algorithmic 
properties of the flow complex and show how to exploit it in 
applications. 

1 Introduct ion  

In applications point sets often come unstructured, 

which does not mean, however, that  their distribution 

is arbitrary. For example the input of the surface 

reconstruction problem is just a finite set of points, 

but the points are constrained to lie on the surface of 

some solid. Another maybe little less intuitive example 

are cavities in proteins. Atoms of the protein cannot 

be located in such a cavity. Tha t  is, if the point set 

contains all locations of the atoms in a protein it 

cannot contain any point that  lies in such a cavity. 

In geometric modeling one asks for a geometric model 

of such constraints. In the two examples that  would 

either be a model of the surface from which the points 

are sampled or a model of the cavity. A popular way 

to model such constraints is as a simplicial complex. 

In fact surfaces and cavities were successfully nmdeled 

as subcomplexes of the Delaunay triangulation of the 

sample points [1, 2, 3, 5]. 

In this paper  we introduce the flow complex as an 

alternative to the Delaunay triangulation and show that  

it is also well suited for surface reconstruction and for 

the identification of some sorts of cavities in proteins. 
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The flow complex is closely related to the Delaunay 

triangulation, but neither complex is a subcomplex of 

the other. The striking difference is tha t  it seems much 

easier to extract  a surface or cavity model from the flow 

complex than from the Delaunay triangulation. We will 

demonstrate  this briefly at the end of this paper. In fact, 

if the point set stems from a surface in ~3 then the flow 

complex gives almost a reconstruction. 

Though we applied the flow complex successfully in 

applications the focus of this paper  is the theory that  

lies behind the definition and computat ion of the flow 

complex. The start ing point of our study is a distance 

function associated with a finite set of sample points in 

~3. This function assigns to every point in ~3 its least 

distance to any of the sample points. I t  is intimately 

related to the Voronoi diagram of the sample points. 

The distance function has a unique direction of steepest 

ascent at  almost every point. The points where such 

a direction does not exist are the critical points of 

the distance function, i.e. its local ext rema and saddle 

points. We study where a point in ~ flows if it always 

follows the direction of steepest ascent of the distance 

function. I t  turns out tha t  all points either flow into a 

local maximum, a saddle point or to infinity. The set 

of all points tha t  flow into a critical point is called 

the stable manifold of this critical point. We call the 

collection of all stable manifolds the flow complex of 

the sample points. 

The main contributions of this paper  are new insights in 

a distance function tha t  was already well studied in the 

context of Voronoi diagrams and Delaunay triangula- 

tions. These insights lead to the definition of a new data  

structure - the flow complex - that  we have successfully 

applied in surface reconstruction and the identification 

of pockets in proteins. In particular, we give an efficient 

algorithm to compute the flow complex and prove its 

correctness. 

2 Diagrams and critical points  

In this section we summarize, following [4], the basic 

notions that  we will use throughout the paper.  

V o r o n o i  d i a g r a m .  Let P be a finite set of points in 
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2 3 . The Voronoi cell of p E P is given as 

Vp = {X E 2 3 : Vq E P - {p}, IIx - Pil -< I[ x - qll)}- 

The sets Vp are convex polyhedra or empty  since the set 

of points that  have the same distance from two points 

in P forms a hyperplane. Closed facets shared by two 

Voronoi cells are called Voronoi facets, closed edges 

shared by three or more Voronoi cells are called Voronoi 

edges and the points shared by four or more Voronoi 

cells are called Voronoi vertices. The te rm Voronoi 

object can denote either a Voronoi cell, facet, edge or 

vertex. The Voronoi diagram of P is the collection of 

all Voronoi objects. It  defines a cell decomposition of 2 3 . 

D e l a u n a y  d i a g r a m .  The Delaunay diagram of a 

set of points P is dual to the Voronoi diagram of P.  

The convex hull of four or more points in P defines a 

Delaunay cell if the intersection of the corresponding 

Voronoi cells is not empty  and there exists no superset 

of points in P with the same property. Analogously, the 

convex hull of three or two points defines a Delaunay 

face or Delaunay edge, respectively, if the intersection 

of their corresponding Voronoi cells is not empty. 

Every point in P is called Delaunay vertex. The te rm 

Delaunay object can denote either a Delaunay cell, 

face, edge or vertex. The Delaunay diagram defines a 

decomposition of the convex hull of all points in B. 

This decomposition is a tr iangulation if the points are 

in general position. 

We always refer to the interior and to the boundary  

of Voronoi-/Delaunay objects with respect to their 

dimension, e.g. the interior of a Delaunay edge contains 

all points in this edge besides the endpoints and the 

interior of a vertex and its boundary  are the vertex 

itself. Furthermore,  we always assume general position 

unless s tated differently. 

D i s t a n c e  f u n c t i o n .  Let P be a finite set of points in 

l~ 3 . The distance function induced by P is given as 

h(x) = min{llx - p l ]  2 : p e P}.  

The graph of the distance function h is the lower 

envelope of a set of paraboloids centered at the points 

in P.  Thus the function h is continuous. I t  is smooth 

everywhere besides at points which have the same 

distance from two or more points, i.e. at  points tha t  lie 

on the boundary  of a Voronoi cell. 

R e g u l a r -  a n d  c r i t i c a l  p o i n t s .  Following the criti- 

cal point theory for distance functions developed in 

Riemannian geometry [7] we define the gradient of a 

Figure 1: A one dimensional example tha t  shows the 

graph of the distance function induced by three points. 

distance function h at x as a set F(x) of unit vectors. In 

case tha t  h is smooth at  x we set F(x) = {Vh / IIVhl[} 

or {0} if Vh vanishes at x. At all other points, i.e. 

points tha t  lie on the boundary  of a Voronoi cell, let 

F(x) be the set of unit vectors ~ with points p E P 
IIp-=ll 

for which I i x -  Pll 2 = h(x). Note tha t  in the lat ter  

case F(x) contains more than  one vector. The distance 

function h is regular at x if F(x) is contained in an 

open hemisphere of S 2. Otherwise we say tha t  it is 

critical at x. Note tha t  the zero vector is not contained 

in any open hemisphere of S 2. Thus critical points of a 

smooth function are also critical in this more general 

setting. We define the index of a critical point as the 

dimension of the span of the vectors in F(x).  Critical 

points of index 0 and 3 are local minima and maxima,  

respectively. Critical points of index 1 and 2 are called 

saddle points. 

We defer the simple proof of the following lemma to the 

full version of this paper.  

LEMMA 2.1. Let P be a finite set of points such that 

Voronoi and their dual Delaunay objects intersect in 

their interiors if they intersect at all. Then the critical 

points of the distance function h are the intersection 

points of Voronoi objects V and their dual Delaunay 

object a. The index of a critical point is the dimension 

ofa. 

In the following we always assume tha t  Voronoi and 

their dual Delaunay objects intersect in their interiors 

if they intersect at  all. Other intersections are degen- 

erate in the sense tha t  they are unstable under small 

per turbat ions of the point set. 

3 I n d u c e d  f l ow  

We want to s tudy how the points in ]R 3 move if they 

always follow the direction of steepest ascent of the 

distance function h. The curve tha t  a point x E 2 3 

follows during this motion is called the orbit  of x. For 

smooth distance functions the computa t ion  of a single 
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orbit results in the solution of an ordinary differential 

equation. Since the distance function h is not smooth 

everywhere, we cannot apply the theory of ordinary dif- 

ferential equations here. Nevertheless individual orbits 

can also be computed for h. An essential ingredient of 

this computat ion is the notion of the driver of a point 

x E ll~ 3. The driver of x is a point d E ~3 such that  

the direction of the vector x - d is the direction of the 

steepest ascent of h at x. Thus knowing the driver of x 

means knowing in which direction x is going to move. 

D r i v e r .  Given x E R a. Let V be the lowest di- 

mensionai Voronoi object in the Voronoi diagram of 

B tha t  contains x and let a be the dual Delaunay 

object of V. The driver of x is the point on a closest to x. 

Figure 2: The critical points of the distance function 

from Figure 1 and the direction of steepest ascent 

of the distance function at one point. Note that  in 

one dimension the only critical points of the distance 

function are local minima @ and local max ima  @. 

The individual orbits of the points in ~3 can be derived 

from a so called flow on ~a which is a function from 

[0, oc) x ~3 to ]R 3 . 

I n d u c e d  flow. The flow ¢ induced by a finite point 

set P is given as follows: For all critical points x of the 

height function associated with P we set: 

¢(t,  z)  = z ,  t e [0, ~)  

Otherwise let y be the driver of x and R be the ray 

originating at x and shooting in the direction x - y. Let 

z be the first point on R whose driver is different from y. 

Note that  such a z need not exist in ~ if x is contained 

in an unbounded Voronoi object. In this case let z be 

the point at infinity in the direction of R. We set: 

x - y  

¢( t ,  z )  = z + t ll z _ y l - - - - - - i  ' t e [0,  IIz - z l l ]  

F o r  t > IIz - z l l  t h e  f l o w  is  g i v e n  a s  f o l l o w s :  

4,(t ,  x )  = ~ ( t  - IIz - z l l  + IIz - z l l ,  z )  

= 4' ( t  - IIz - z l l ,  ¢ ( l l z  - x l l ,  x ) )  

We will show later that  the function ¢ is well defined. 

O r b i t s  a n d  f l xpo in t s .  Given x E ~3 and an induced 

flow ¢. The curve 

Cx : [0, o0) ~ ~ 3 ,  t ~ ¢(t,  z)  

is called the orbit of x. A point x E ~3 is called a 

fixpoint of ¢ if ¢(t, x) = x for all t > 0. 

• • 

% ............ j 

• ? ' -~~  . 

/ /" 

Figure 3: A two dimensional example that  shows four 

orbits of the flow induced by seven points. The Voronoi 

diagram of the point set is also shown. 

OBSERVATION 3.1. The following is true. 

(1) The fixpoints of ¢ are the critical points of the 

distance .function h. 

(2) The orbits of ¢ are piecewise linear curves that are 

linear in Voronoi objects. 

Because of the first observation we refer to a fixpoint of 

¢ as a minimum, saddle or maximum if the correspond- 

ing critical point of the distance function is a minimum, 

saddle point or maximum, respectively. 

LEMMA 3.1. The flow ¢ has no closed orbits. 

Proof. Observe tha t  for every x E II~ 3 the distance 

function associated with P is growing along the orbit 

¢= for all values t E [0, o o) such that  ¢=(t) is not a 

fixpoint of ¢. Thus there are no dosed orbits possible. 

The following lemmas prepare the well-foundedness 

proof (Theorem 3.1) for the induced flow. 

LEMMA 3.2. All points in the interior of a Voronoi 

object V have the same driver. 
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Proof. Remember  tha t  for x E II~ 3 its driver is a point  

y E a t ha t  is closest to x where a is the Delaunay object  

dual to the lowest dimensional Voronoi object  V tha t  

contains x. 

Since the affine hulls of V and a are or thogonal  to  each 

other  they intersect in exact ly one point.  Let  z be this 

intersection point.  Let  y E a be the point  closest to  z. 

Note  tha t  it is possible t ha t  y = z. Since all vectors 

y~ - z with y~ E a are or thogonal  to all vectors x - z 

with x in the affine hull of V we have by Py thago ra s  

theorem for all x in the affine hull of V and all y '  E a,  

IIx - y ' l l  = IIx - z l l  2 + I I z -  y' l l  2 

_> I I x -  z l l  2 + IIz - yl l  

= I I x - y l l  2 

Thus  y is the  closest point  on a for all x in the interior 

of V, i.e. y is the driver of  all these points.  

COROLLARY 3.1. The flow ¢ has only finitely many 

drivers. 

P o w e r  a n d  p o w e r  d i s t a n c e .  We want  to  assign a 

weight to every driver and refer to  this weight as 

the power of the driver. Let  d be a driver and V be 

the highest  dimensional  Voronoi object  whose interior 

points  are driven by d. Let  a be the  dual Delaunay 

object  of V. Let  x = argminz,evHX r - dll. The  power 

rd assigned to  d is defined by the following expression, 

rd ---- ] I X  - -  dl] 2 - IIx - Pll 2 for any p E P f3 a. 

Here P is the finite set of points  t ha t  induces the flow. 

Observe tha t  

(1) The  definition of the power rd is independent  of the  

choice of  p E P M a. 

(2) If  d E P then the power of d is zero. 

The  power distance of a point  y E ~2 f rom d is defined 

a s  

~-d(Y) = IlY -- d[] 2 - rd. 

The  proof  of the following l emma shows tha t  the def- 

inition of power for a driver does not  depend on the 

specific choice of x. Every  point  in V would lead to the 

same value for the power. 

LEMMA 3.3. Let d be a driver and V be the highest 

dimensional Voronoi object whose interior points are 

driven by d. Let a be the dual Delaunay object of V 

and let p E P M a. The power distance ~d on V is jus t  

the squared Euclidean distance from p. 

Proof. Let  y e V a rb i t ra ry  and x = a rgmin= ,evHx ' -d l I .  

We have by the definition of power, 

~d(Y) = ILY - dll 2 - rd 

= Ily - dll 2 - Ilx - dll 2 -4- IIx - pll 2 

Remember  tha t  the  driver d is the closest point  in a to  

the intersection point  z of the affine hulls of  V and a.  

The  vectors d -  z and x -  z are or thogonal  to each other ,  

because we have d E a and x E V. Hence we get  

Ilx - dll 2 = IIx - zll 2 "4- II z - dII 2, 

" r ' which follows f rom P y t h a g o  as theorem. From an anal- 

ogous reasoning we obta in  

Ilx - Pll 2 = IIx - zil 2 + IIz - Pll 2- 

This leads to 

~rd(y) = IIY -- dll 2 - IIz - dll 2 -4- IIz - pll 2 

We apply  an analogous reasoning a th i rd  and a four th  

t ime to  get  

IIY - dll 2 = IIY - zll 2 -4- IIz - dll 2 

and  

IlY - PII 2 = I ly  - z l l  2 + IIz - p l l  2 

which leads to  

 d(y) = I l y - p l l  2 = 

LEMMA 3.4. The power o] the drivers in the sequence of 

drivers associated with an orbit Cx is always monotone 

decreasing, i.e. every driver occurs at most  once in the 

sequence of drivers associated with q~x. 

Proof. For every z E ~3 let Dz be the  set of potent ia l  

drivers of  z, i.e. all drivers conta ined in the Delaunay  

object  dual  to  the lowest dimensional  Voronoi object  V 

tha t  contains z. 

Let  us collect some propert ies  of Dz. 

(1) According to  L e m m a  3.2 the set Dz is always finite. 

(2) For every z '  sufficiently close to z we have Dz, C 

Dz,  because V has the smallest dimension among  

all Voronoi objects  t h a t  have a non empty  inter- 

section with a sufficiently small ne ighborhood  of z 

and all these Voronoi objects  have a non empty  in- 

tersect ion with V, i.e. the dual Delaunay  objects  of 

all these Voronoi objects  are conta ined in the dual  

Delaunay  object  of  V. 
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Let t E (0, c~) be such that  the driver d of ¢=(t) is 

different from the driver of ¢~ (t - e) for all sufficiently 

small ~ > 0. The orbit ¢~ is continuous by definition. 

Thus we have for a fixed ~ > 0 which is sufficiently 

small that  the driver d ~ of ¢~(t - v )  is a potential driver 

of ¢~ (t). Tha t  is, 

I I ¢ = ( t )  - dl l  < I I ¢ = ( t )  - d ' l l .  

On the other hand we have from Lemma 3.3 

(t))  = (t))  

since ¢= (t) lies in the boundary of the lowest dimen- 

sional Voronoi object that  contains ~Px(t- e). This and 

the definition of power distance imply that  the power of 

d has to be smaller than the power of d ~. 

THEOREM 3.1. The mapping ¢J is a well defined func- 

tion, i.e. it is defined for every ( t ,x)  E [0, cc) x/I~ 3 . 

Proof. By construction there exists an e > 0 for every 

x E Ilk 3 such that  ¢ is defined on {x} x [0,~), i.e. ¢= is 

defined on [0, ~). This already implies that  ¢= is defined 

on the whole of [0, c~) since ¢= is locally defined for 

every driver and the sequence of drivers associated with 

¢~ is finite according to Corollary 3.1 and Lemma 3.4. 

4 S t a b l e  m a n i f o l d s  a n d  t h e  flow c o m p l e x  

We are not really interested in the individual orbits of 

the points, but want to look on the flow on a coarser 

level. Therefore we group all points together that  flow 

into the same fixpoint of the flow. 

S t ab l e  man i fo lds .  Given an induced flow ¢. The stable 

manifold S(x)  of a fixpoint x E R 3 contains all points 

that  flow into x, i.e. 

Instead of directly working with stable manifolds of 

critical points we introduce a smoothed version which 

has nicer properties. Smoothing essentially means 

taking the closure of the stable manifold. It will become 

obvious later why the following definition is more 

complicated. 

S m o o t h e d  s t ab l e  man i fo ld s .  Let x be a critical point 

of index i of an induced flow. Let S be the set of 

points in S(x)  that  have a neighborhood in S(x)  that  is 

homeomorphic to an open subset of IR d, d = i + 1 , . . . ,  3. 

Let S t be the boundary of S(x)  - S  in 11¢ 3. The smoothed 

stable manifold o f x  is the set S*(x) = (S(x)  - S)  U S'. 

"o . . . . .  9 '  I t , , o : ~ _  ' - -:?/ / 

r 

F 

Figure 4: A two dimensional example of a stable man- 

ifold of a maximum @ (on the left) and its smoothed 

version on the right. 

An induced flow in ~3 has four different types of 

fixpoints, local minima, saddle points of index 1, saddle 

points of index 2 and local maxima. In the following we 

are going to characterize the smoothed stable manifolds 

of the four different types of fixpoints. 

OBSERVATION 4.1. The smoothed stable manifold of a 

local minimum m contains just  the point m itself since 

no other point flows into m. 

It turns out that  the stable manifold of an index 1 

saddle point is always a Gabriel edge and vice versa. 

G a b r i e l  g r a p h .  The Gabriel graph of a finite set of 

points P in ]l~ is given as follows: Its vertices are the 

points in B and its edges are given by Delaunay edges 

that  intersect their dual Voronoi facet. The edges of 

the Gabriel graph are called Gabriel edges. The Gabriel 

graph is always connected, because it contains the 

minimum spanning tree of P.  

LEMMA 4.1. Let s be an index 1 saddle of ¢. The 

smoothed stable manifold S*(s) of s is a Gabriel edge 

and every Gabriel edge is the smoothed stable manifold 

of some index 1 saddle. 

Proof. Every Delaunay edge that  contains some index 

1 saddle is a Gabriel edge and vice versa by Lemma 2.1 

and the definition of Gabriel edges, respectively. It 

remains to show that  the smoothed stable manifold 

S* (s) of every index 1 saddle s is a Gabriel edge. 

Let E be the Delaunay edge that  contains s. By the 

definition of ¢ all interior points of E belong to S(s).  

Hence E C S*(s). We want to show that  E = S*(s).  

Assume there exists x E S*(s) with x ~ E. By the 

definitions of S*(s) and T that  means that  there exists 

y e S(s)  but  y ~ E. 
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Since E contains s the orbit  of y cannot  be disjoint from 

the interior of E,  i.e. Cu has to join E at some point 

z for the first t ime and to stay in E afterwards. The 

point y must  be driven into z by one of the potential  

drivers of z. These are all drivers tha t  are contained 

in the Delaunay object dual to the lowest dimensional 

Voronoi object tha t  contains z. The (potential) driver 

of the interior points in E - {s} is one of the endpoints 

of E.  The point s has both  of these endpoints and s 

itself as potential  drivers. Thus y must  be driven into 

z by one of the endpoints of E ,  because s itself cannot 

drive y into s. But  tha t  means tha t  z cannot  be the first 

point on the orbit  Cy tha t  is contained in E.  Tha t  is a 

contradiction. Thus we have S* (s) = E.  

LEMMA 4.2. Let s be an index 2 saddle of ¢. If  the 

stable manifold S(s) of s does not contain a Voronoi 

vertex then S*(s) is a piecewise linear surface with 

boundary. The boundary of the surface is made up from 

Gabriel edges. 

Proof. Assume tha t  s is a saddle of index 2 such tha t  

S(s) does not contain a Voronoi vertex. According to 

Lemma 2.1 we have tha t  s is the intersection point of a 

Delaunay facet F and its dual Voronoi edge E.  

We are going to construct the surface explicitly. We s tar t  

with the construction of a polygon P whose interior 

points flow into s. This polygon contains s and is 

contained itself in F.  Since we assume general position 

there are three Voronoi facets incident to E.  The drivers 

of these facets are points on Delaunay edges in the 

boundary  of F.  Such a driver might be a saddle of index 

1. Consider a driver d which is not a saddle of index 1. 

The line segment tha t  connects d with s is contained 

in F and intersects the boundary  of the corresponding 

Voronoi facet in two points, namely in s and in a second 

point s t. We get a polyline, i.e. a simple piecewise linear 

curve, from the two segments tha t  connect s t to the 

two Delaunay vertices incident to the Delaunay edge 

tha t  contains d. If  the driver of the Voronoi facet is a 

saddle of index 1 we take its dual Delaunay edge as the 

polyline. Tha t  is, we get three polylines all contained in 

F,  one for each Voronoi facet incident to E .  Let P be 

the polygon whose boundary  is given by these polylines. 

P is contained in F and all its interior points flow into 

s, see Figure 5. I t  can be tr iangulated by connecting s 

with the points s ~ and the Delaunay vertices incident to 

F.  

Let s t be a point as constructed above for a Voronoi facet 

tha t  is not driven by a saddle of index 1. By construction 

s t is contained in a Voronoi edge E ~. Furthermore,  by 

our assumption it has to be an interior point of E ~. 

Since we assume general position E ~ is incident to three 

Voronoi facets. For one of these Voronoi facets we have 

Figure 5: Two examples of polygons tha t  are contained 

in F and whose interior points flow into s. The polygon 

on the left has one index 1 saddle point on its boundary.  

already computed a polyline. For the remaining two 

we do it exactly the same way we did it above for 

P.  Thus we have again three polylines, one for each 

Voronoi facet incident to E t. Two of these polylines 

always intersect in their common Delaunay vertex. Tha t  

is, the three polylines together form a polyline which is 

homeomorphic to S 1. The latter polyline need not be 

contained in a hyperplane but  it can be tr iangulated by 

connecting the point s t with newly computed points s ~ 

and to the Delaunay vertices incident to the Delaunay 

facet dual to E t. This gives us a new tr iangulated surface 

patch whose interior points all flow into s via s t. 

We continue with the above construction until there are 

no more points s f left for which we have not already 

constructed a surface patch. The constructed surface 

patches cannot intersect each other or themselves, be- 

cause this would mean tha t  there are points which flow 

into two directions. This is impossible by the definition 

of ¢. Hence the construction gives us a t r iangulated sur- 

face T with boundary  whose points all belong to S* (s) 

though not all of them belong to S(s). By construction 

the boundary  of the surface is made up from Gabriel 

edges, i.e. Delaunay edges tha t  contain an index 1 sad- 

dle. 

So far we know tha t  T C S*(s). Next we want to show 

T = S* (s). Assume there exists x e S*(s) with x ~ T.  

By the definitions of S* (s) and T this implies tha t  there 

exists y E S(s) but  y ~ T. 

Since s E T the orbit  Cy of y cannot be disjoint from the 

interior of the surface T,  i.e. Cu has to join T at  some 

point z and to stay in T afterwards. The point y must  

be driven into z by one of the potential  drivers of z. 

These are all drivers tha t  are contained in the Delaunay 

object dual to the lowest dimensional Voronoi object  

tha t  contains z. The point z cannot be an interior point 

of a Voronoi cell, because two orbits cannot meet  in the 

interior of a Voronoi cell by the definition of ¢. Tha t  is, 

the point z is either an interior- or a boundary  point of 

a Voronoi facet, i.e. an interior point of a Voronoi edge. 
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Let us first discuss the case that  z is an interior point of 

a Voronoi facet. The potential drivers of z are the driver 

of the Voronoi facet that  contains z and the endpoints 

of the Delannay edge dual to this Voronoi facet. But  

by construction T contains the intersection of a small 

neighborhood of z with the line segments connecting 

z to these three drivers. Hence z cannot be the first 

point on the orbit Cy which is contained in T. Tha t  is 

a contradiction. Now assume tha t  z is an interior point 

of a Voronoi edge. The only interior points of Voronoi 

edges contained in T are the points s ~ in the above 

construction. The Delaunay facet dual to the Voronoi 

edge that  contains z contains six drivers. These drivers 

are its three incident Delaunay vertices and one driver 

on every of its three incident Delaunay edges. I t  does 

not contain a driver in its interior since by construction 

it is not intersected by the affine hull of its dual Voronoi 

edge. This implies also that  the driver tha t  we used to 

construct s ~ cannot drive y into z. This driver is one of 

the drivers on the Delannay edges. But by construction 

T contains the intersection of a small neighborhood of 

z with the line segments connecting z to the remaining 

four drivers. Hence z cannot be the first point on the 

orbit Cy which is contained in T. Tha t  is a contradiction. 

Hence S*(s) = T. 

Note that  we do not claim that  the surface is home- 

omorphic to a disk. In fact, the surface need not be 

simply connected, i.e. it can have holes. 

The example in Figure 6 shows that  the lemma does 

no longer hold if S(s) contains a Voronoi vertex. But  

the latter is a very degenerate situation, i.e. it is not 

stable under small per turbat ions of the initial point set. 

This example also motivates our definition of smoothed 

stable manifolds which basically says that  we only keep 

the boundaries of three dimensional inflow regions of 

an index 2 saddle point. 

Figure 6: An example of an index 2 saddle point ® whose 

stable manifold contains a Voronoi vertex o. The inflow 

region of this Voronoi vertex is three dimensional. Tha t  

is, the shown stable manifold contains two and three 

dimensional parts.  

In the following we assume tha t  none of the stable man- 

ifolds of index 2 saddle points contains a Voronoi vertex. 

F l o w  c o m p l e x .  Given a finite set of points in R 3. We 

call the simplicial complex build by the Gabriel graph 

and the tr iangulated surfaces from Lemma 4.2 the flow 

complex of the point set. 

I t  remains to characterize the stable manifolds of the 

maxima. There we need the following lemma whose 

technical proof we defer to the full version of this paper. 

LEMMA 4.3. Let K be the set of all points that do not 

flow to infinity, i.e. 

K = ] ~ 3 - { x E I R ~  : V n E N ~ t n > O s . t .  

v t  > t .  l i e s ( t )  - 011 > n } .  

Let S bet the set of all saddle points, M be the set of 

all maxima and M ~ be the set of all minima of q~. The 

set C = {S(y)  : y e S U M }  covers K - M  ~, i.e. every 

x E K that is not a minimum is contained in exactly one 

stable manifold S(y)  off some saddle point or maximum 

yore. 

THEOREM 4.1. The smoothed stable manifolds off the 

maxima off ¢ are exactly the closures off the bounded 

regions of the stable flow complex provided no stable 

manifold of an index 2 saddle contains a Voronoi vertex. 

Proof. The Euler characteristic of the flow complex can 

be computed as an alternating sum of Betti numbers 

X = - 8 3  + 82 - 81 + fl0, see [8]. All Betti  numbers 

are non negative. The third Betti number f13 is zero 

for trivial reasons. The second Betti  number 82 counts 

the number of non bounding shells, i.e. the number of 

bounded regions of the flow complex. The zeroth Betti  

number  counts the number  of connected components.  

The connectedness of the Gabriel graph and the con- 

struction of the surfaces in Lemma 4.2 imply that  the 

stable flow complex is connected. Hence 80 = 1. Com- 

bining all these informations we get 

X - 1 < # bounded regions of the flow complex. 

There is another way to compute the Euler character- 
3 i 

istic of a simplicial complex. Tha t  is X = ~ i = 0 ( - 1 )  ci, 

where ci denotes the number  of i-dimensional simplices 

in the complex. By construction the flow complex is a 

simplicial complex and we have c3 = 0. To compute the 

remaining numbers let us recall the construction of the 

surfaces in Lemma 4.2. We will count how many ver- 

tices, edges and triangles besides vertices and edges on 

its boundary  every surface contributes to the computa-  

tion of the Euler characteristic X- Remember  that  we 
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constructed these surfaces from patches. We first con- 

structed a polygon P with one inner vertex (the saddle 

of index 2) and as many  inner edges as triangles. We will 

later take care of the vertices and edges in the boundary 

of P.  Thus the contribution to X is 1. Every other patch 

has one vertex and two edges incident to an already con- 

structed patch plus one more triangle than  inner edges. 

Hence the contribution of any such patch to X is zero. 

The only vertices and edges of the flow complex tha t  we 

have not considered so far are exactly the original points 

and the Gabriel edges. The original points are just  the 

minima of the flow ¢ and the Gabriel edges are in a 

one-to-one correspondence with the saddles of index 1. 

The reasoning above shows tha t  all other contributions 

to X can be subsumed in a contribution of 1 for every 

saddle of index 2. Thus we have 

X = # saddles of index 2 

- #  saddles of index 1 

+ #  minima. 

From a generalization of a theorem of Siersma [9] we 

know tha t  

- 1  = # max ima  - # saddles of index 2 + 

# saddles of index 1 - # minima 

Combining all these equations leads to 

# max ima  

_< # bounded regions of the flow complex 

To establish equality in the last inequality it remains 

to show tha t  every bounded region of the flow complex 

contains a maximum. Let x be an interior point of such a 

bounded region K .  The point x cannot  flow to infinity, 

because to do so its flow has to hit the flow complex 

which means tha t  it belongs to this complex and flows 

into a saddle. We know from Lemma 4.3 tha t  every non 

critical point tha t  does not flow to infinity is contained 

in the stable manifold of either a saddle or a maximum. 

We know tha t  x cannot flow into a saddle, because 

otherwise it would be contained in the flow complex. 

Thus x must  flow into a max imum in the interior of 

K .  Hence every bounded region of the flow complex 

contains at least one maximum.  

We conclude tha t  the closures of the bounded regions 

of the flow complex are exactly the smoothed stable 

manifolds of the max ima  of ¢. 

Especially, this theorem states tha t  tha t  boundary  of 

the smoothed stable manifold of a maximum is made 

up from smoothed stable manifolds of index 2 saddle 

points. Tha t  is, the smoothed stable manifolds of critical 

points of different index have a nice recursive structure. 

5 A lg o r i th m 

The proof of Theorem 4.2 leads immediately to an 

efficient algorithm tha t  computes the flow complex of 

a finite set P of points in l~ a . In the following pseudo 

code we show how to compute the triangles of the 

flow complex which is the most  complicated par t  in 

the computat ion of this complex. The purpose of this 

pseudo code is also to present the construction in the 

proof of Theorem 4.2 in a more formal and compact  way. 

STABLEFLOWCOMPLEX(P) 

1 F : = ~  

2 compute Voronoi- and Delaunay diagram of P.  

3 compute the set S of index 2 saddles. 

4 for e a c h s E S d o  

5 f := Delaunay facet tha t  contains s. 

6 Q:=O 

7 for each Delaunay edge e incident to f do  

8 Q.push( (s, e) ) 

9 e n d  for 

10 while  Q ¢ 0 

11 (v, e) := Q.pop 

12 u, w := endpoints of e. 

13 i f  e contains a saddle of index 1 do  

14 F := F 0 {uvw} 

15 else  d o  

16 f := Voronoi facet dual to e. 

17 d := driver of the interior of f .  

18 v ~ := first point on the ray from d to v 

tha t  is contained in f .  

19 F := F U {vv~u, vv~w} 

20 f~ := Delaunay facet dual to the 

Voronoi edge tha t  contains v ~. 

21 for each edge e ~ ¢ e incident to f* do  

22 Q.push( (v', e') ) 

23 e n d  for 

24 e n d  i f  

25 e n d  while  

26 end for 

27 return F 

6 Appl ica t ions  

6.1 Surface recons truc t ion  Surface reconstruction 

is a powerful modeling paradigm. To create a model 

of some solid in ~ one can just sample its surface 

and apply a surface reconstruction algorithm to the 

sample. The most common model produced in surface 

reconstruction is a piecewise linear manifold. In [6] we 

show how to extract  a two dimensional manifold from 

the flow complex. The manifold extraction turns out to 

be much simpler as for Delannay based methods and 

works very well in practice. 
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Figure 7: This example shows the reconstruction of 

the HAPPy BUDDHA data  set from the Stanford 3D 

scanning repository. The flow complex is shown on the 

left and the manifold reconstruction on the right. 

Figure 9: On the left, a space filling model of a molecule 

made up from six atoms in two dimensions. The atoms 

of this molecule do not define a void. On the right, if we 

grow the disks a void emerges which gets destroyed if we 

grow the disks further. The point at x is a maximum, i.e. 

at x another void which was created earlier has already 

been destroyed. 

6.2 P o c k e t s  in  P r o t e i n s  A union of balls in ll~ 3 

where each ball represents an atom is a natural way 

to model proteins. Such models are called space filling 

models. A ball is represented by a pair (z, r) E ~3 x 

[0, ec), where z E R 3 denotes the center of the ball and 

r denotes its radius. In space filling models the balls are 

centered at the locations of the corresponding atoms. 

One can get these locations for example from X-ray 

diffraction of the crystallized protein. The radius of the 

ball is usually taken to be the van der Waals radius of 

the corresponding atom plus the radius of some solvent 

molecule also modeled as a ball. 

The concept of pockets was introduced in [5] to model 

essential cavities in proteins. The definitions given in [5] 

are all based on the (weighted) Delaunay triangulation 

of a set of balls, but inspired our work on the flow 

complex. Let B be the set of balls used in the space 

filling model of some protein. A void is defined as a 

compact connected region in the complement of the 

union of balls in B. If we let the balls in B grow 

new voids are created and existing ones get destroyed. 

Finally all voids get destroyed. See Figure 9 for two 

snapshots of such a growth process for a union of disks 

in the plane. 

While the balls grow a void shrinks until it finally 

consists of only a single point before it vanishes. We 

can define a distance function from a finite set of balls 

similarly to the definition of the distance function from 

a finite set of points that  we have considered so far. 

The point where a void vanishes is a maximum of the 

distance function associated with B. We group such 

maxima together if they can be connected by a path 

in the complement of the space filling model inside the 

convex hull of the bail centers, i.e. in the complement of 

the space occupied by the balls in B which is contained 

in the convex hull of the ball centers. Essentially, these 

groups of maxima define a pocket. There are different 

approaches to assign a shape to a pocket. The approach 

we take here is based on extension of the flow complex 

for a finite set of balls. The shape we assign to a pocket 

is not essentially different from the shape assigned in [5], 

but we think that  in the context of flow diagrams the 

concept of pockets is easier to grasp. 

We partition the set of critical points of the flow 

induced by B into two sets. The first set contains all 

critical points that  are covered by balls from the space 

filling model, i.e. every such critical point is contained 

in at least one ball from B. The critical points in the 

second set are all critical points not contained in the 

first set. We call the critical points from the first set 

negative and the points from the second set positive. 
The maxima at which a void vanishes are exactly 

the positive maxima. We are going to use the stable 

manifolds of the positive critical points to define a 

pocket. The collection of all these stable manifolds is 

called restricted flow complex. See Figure 10 for an 

example. 

P o c k e t .  A pocket is a maximal connected component 

of the restricted flow complex, i.e. the component is 

connected and there is no larger connected component 

in the restricted flow complex that  contains it. 
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Figure 8: On the left, a pocket in a fat ty acid that  does not have an opening to the outside. In the middle a 

pocket with one opening to the outside in some receptor protein. On the right, a pocket with two openings to the 

outside in a Gramicidin protein. Here the boundaries of the pockets are visualized which were determined using 

the characterization in Theorem 4.1. 

Figure 10: An example of a restricted flow complex. This 

complex contains the stable manifolds of two saddles 

® and two maxima @. It defines one pocket. At both 

maxima voids get destroyed if we grow the disks. 

7 Conc lus ion  and future work 

We have introduced a new family of simplicial complexes 

called flow complex. Their  definition was inspired by the 

work done in [5] and thus it is not surprising that  the 

flow complex can be used to model pockets in proteins. 

But  we think that  the concept of pockets is easier to 

grasp in the context introduced here. More surprisingly 

the flow complex turned out to be well suited for surface 

reconstruction. 

We have implemented the algorithm FLOWCOMPLEX 

for weighted points. This algorithm is conceptually sim- 

ilar to the algorithm presented here, but  more involved 

in parts. The algorithm performs well in practice, e.g. 

the computation of flow complex of 144,647 points sam- 

pled from the surface of the BUDDHA model takes 69 

seconds on a 480 Mhz Sun Ultra Sparc II workstation. 

At the moment we know neither the combinatorial 

nor the algorithmic complexity of the flow diagram 

though there is a trivial O(n 8) upper bound. Our 

implementation suggests that  this bound is far too large. 

On the other hand we know that  in two dimensions the 

complexity of the flow diagram is larger than that  of the 

Delaunay triangulation, namely O(n2). 
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