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e e�ect of a temperature dependent variable viscosity �uid �ow down an inclined plane with a free surface is investigated. 
e
�uid lm is thin, so that lubrication approximation may be applied. Convective heating e�ects are included, and the �uid viscosity
decreases exponentially with temperature. In general, the �ow equations resulting from the variable viscosity model must be solved
numerically. However, when the viscosity variation is small, then an asymptotic approximation is possible. 
e full solutions for
the temperature and velocity proles are derived using the Runge-Kutta numerical method. 
e �ow controlling parameters such
as the nondimensional viscosity variation parameter, the Biot and the Brinkman numbers, are found to have a profound e�ect on
the resulting �ow proles.

1. Introduction


e study of the �ow of a viscous �uid with temperature
dependent properties is of great importance in industries
such as food processing, coating, and polymer processing, see
Macosko andOron et al. [1, 2]. In industrial systems �uids can
be subjected to extreme conditions such as high temperature,
pressure, and shear rates. External heating such as the
ambient temperature and high shear rates can lead to a high
temperature being generated within the �uid. 
is may have
a signicant e�ect on the �uid properties. It is a well-known
fact in �uid dynamics studies that the property which is most
sensitive to temperature rise is viscosity, see Myers et al. [3].
Fluids used in industries such as polymer �uids have a vis-
cosity that varies rapidly with temperature and this may give
rise to strong feedback e�ects, which can lead to signicant
changes in the �ow structure of the �uid, seeWyle andHuang
[4]. Due to the strong coupling e�ect between the Navier-
Stokes and energy equations, viscous heating also plays an
important role in �uids with strong temperature dependence,
see Costa and Macedonio [5]. In this paper we focus on the
e�ect of temperature on the viscosity. In particular, we inves-
tigate the viscosity variation by Reynolds law [5] or Nahme’s
law [3], which assumes that the viscosity varies exponentially
with temperature. Myers et al. [3] studied the �ow of variable

viscosity between parallel plates with shear heating. Costa
and Macedonio [5] applied the temperature dependent vis-
cosity model to study magma �ows. Elbashbeshy and Bazid
[6] investigated the e�ect of temperature dependent viscosity
on heat transfer over a moving surface. In their investigation,
the �uid viscosity model varies as an inverse linear function
of temperature. 
e work in [6] was extended in [7] to
include variable internal heat generation. 
e solution was
obtained using the Runge-Kutta numerical method, and
results presented show that when the coe�cient of viscosity
variation parameter increases, the temperature of the �uid
(water) increases slightly, whilst the opposite is true for the
velocity proles. Elbarbary and Elgazery [8] investigated the
e�ects of variable viscosity and variable thermal conductivity
on heat transfer from moving surfaces with radiation. In
their work the �uid viscosity also varies as an inverse linear
function of temperature, and the thermal conductivity varies
as a linear function of temperature. 
e e�ect of convective
heat transfer is extremely important in understanding the
�ow structure of many �uids used in industrial and natural
applications. 
e present paper is aimed at investigating the
e�ect of convective heat transfer on the �ow of a viscous �uid
with exponential temperature dependent viscosity, down an
inclined plane with a free surface.
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Figure 1: 
e geometry of the problem.

2. Problem Formulation

Figure 1 represents a two-dimensional laminar �ow with a
free surface. 
e gure depicts an innitely wide channel
of typical length scale � in the � direction and height �
in the � direction. 
e �uid �ows down a plane inclined at
an angle �, and the dominant driving force for the �ow is
gravity, denoted �. 
e ambient temperature is denoted ��,
the �uid temperature is denoted�, and the temperature at the
bottom surface is denoted ��. 
e �uid viscosity 	will not be
specied, but the viscosity of the �uid will vary exponentially
with temperature.

In developing the mathematical model for the �uid �ow,
the following assumptions will be made:

(i) the �uid is incompressible, but the viscosity, 	(�), is
temperature dependent;

(ii) the governing equations are derived for a thin lm
�ow such that lubrication theory may be applied;

(iii) the lm height � is considered to be constant;

(iv) the �ow regime is laminar.

Taking into account these assumptions, the continuity,
Navier-Stokes, and energy equations are written as follows:
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where the notation is dened in the nomenclature showed at
the end of the paper. 
ese governing equations are nondi-
mensionalised using the following scales:

� = ���, � = ���, � = ���,
V = ��� V

�, � = ����,
	 = 	0	�� = ��� = 	0���2 ��,

� = �0 + (�� − �0) �� = �0 + Δ���,

(2)

where all quantities with prime denote nondimensional
parameters. 
e pressure scale � = 	0��/�2 is standard for
lubrication theory. 
e reference viscosity and the temper-
ature di�erence are denoted by 	0 and Δ�, respectively. To
simplify notation, the primes are omitted from now on. Since
the lm is thin, the aspect ratio � = �/� ≪ 1. Using the
scaled parameters, (1) now becomes
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e Péclet number Pe = �����/� represents the ratio of
convective heat transport to the conductive heat transport,
and the Brinkman number Br = 	0�2/�Δ� represents the
ratio of heat dissipation to �uid conduction. 
e Prandtl
number Pr = 	0��/� denotes the ratio of di�usivity for
momentum to thermal di�usivity. 
e Eckert number Ec =�2/���0 denotes the ratio of kinetic energy to thermal mass.


e velocity scale is given by � = ���2 sin�/	0, which
denotes the ratio of gravitational forces to the dynamic
viscosity. 
e parameter values may vary widely depending
on the particular industrial application or the models under
investigation. 
e parameter values for a lubricant are

	0 ∼ 10−3–0.5 kg/ms, �� ∼ 2000 J/kgK,
� ∼ 10−3m, � ∼ 0.13W/mK,

"� ∼ 103, � ∼ 0.005,
� ∼ 10−4, � ∼ 880–940 kg/m3.

(5)


e experimental values listed above are taken from
several references, [9, page 4], and [10–13]. Using these values
listed above, we obtain

Br = 	0�2�Δ� ∼ 0.01–0.5, Pe = ������ ∼ 105,

PrEc = 	0�2��0 ∼ 5 × 10
−4,

Re = ���	0 ∼ 40–2000,

� = ���2 sin 30	0 ∼ 0.4m/s.

(6)

Despite the fact that the Péclet number is large, the

reduced Péclet number �2Pe ≈ 10−3 is small and may be
neglected in the governing equations. 
e reduced Reynolds

number �2 Re ≈ 1.8 × 10−5 may also be neglected. 
e
reduced quantity PrEc is also assumed to be small, so it will
be neglected from the governing equations. 
e Brinkman
number may be close to unity and so must be retained. Using
the above approximations, (3) may now be reduced to their
nal form:
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e velocity and the temperature proles may be deter-
mined a�er the boundary conditions associated with (7)–(10)
are stated.

3. Boundary Conditions

(i) At � = 0, a no slip boundary condition is applied, and
the temperature at the bottom surface is constant:

� (0) = V (0) = 0, � (0) = 0. (11)

(ii) At the free surface, the shear stress is zero and the
�uid temperature is imposed by the air and substrate,
respectively:

(
�
�)
&&&&&&&&	=ℎ = 0, (
�
� )

&&&&&&&&	=ℎ = Bi (� − 1) , (12)

where Bi = �"�/� is the Biot number and denotes the
ratio of heat transfer to thermal conductivity, Alhama
and Zueco [14] and Makinde [15]. 
e parameters� and "� denote the thermal conductivity and heat
transfer coe�cient, respectively. 
e �uid at the free
surface is exposed to the ambient temperature.Hence,
a cooling condition is applied.

In the following section the variable viscosity model is
introduced, and the equations governing the �ow are coupled
to this model and solved using both analytical and numerical
methods.

4. Variable Viscosity Analysis

We now focus on the �uid with an exponential variation of
the form:

	 = 	0'−�(�−�0), (13)

where 	0 is the reference viscosity at the reference temper-
ature �0 and * is the coe�cient of viscosity variation with
temperature Costa and Macedonio [5]. Equation (13) can be
written in nondimensional form,

	 = '∝�, (14)

where ∝= *Δ�. Equation (14) is commonly known as Nah-
me’s exponential law [5] or Reynolds law, see Myers et al.
[3]. Combining (8) and (14), integrating with respect to �,
and applying the boundary conditions (12) give the velocity
gradient,


�

� = (1 − �) '

∝�, (15)

where we have used the fact that 
�/
� = 0 to write (15) as
a result from (9). Equation (15) cannot be integrated further
to determine �, since it involves the temperature � which is
unknown, so it must be solved numerically using the Runge-
Kutta method. Substituting (14) and (15) into the reduced
energy (10) gives


2�

�2 = Br(1 − �)2'��. (16)
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Equations (15) and (16) form a coupled system of nonlin-
ear partial di�erential equations which require a numerical
technique to obtain a full solution. However, when the
viscosity variation is gradual, that is, 6 ≪ 1 and � ∼ O(1),
an asymptotic analysis is possible. 
e main reason for using
an asymptotic analysis is that we can clearly illustrate how the
parameters a�ect the �owby looking into the dominant terms
from the governing equations. 
is approach can be used to
validate numerics.
equestion is how smallmust the param-
eter 6 be? 
erefore, the key factor in determining the stage
at which∝ is small is themagnitude ofΔ�, since * is the �uid
property. In certain industrial applications for lubricating oil,
the experimental values for the temperature may be conned
in the region 50 ∘C ≤ � ≤ 300 ∘C; see [12, 13, 16], for example.
Our interest is on large values Δ�, since∝∼*Δ�, and usually
the �uid property * for lubricant is small. Now taking the
temperature di�erence Δ�∼200 ∘C and * ∼ 0.00242 (see [17,
page 31]), it can easily be shown that∝∼0.5 for a lubricating
oil. It is important to note that for di�erent values of *
and Δ�, the results will obviously yield a di�erent value of∝, depending on the �uid under investigation. 
e velocity
and temperature may then be expanded in a series form,

� = �0+ ∝ �1, (17)

� = �0+ ∝ �1, (18)

where �0, �0, �1, and �1 represent the leading-order terms
and the rst-order perturbation terms in ∝. Substituting for� into (16) yields


2�0
�2 + ∝

2�1
�2 = −Br(1 − �)

2− ∝ �0(1 − �)2 . (19)


e leading order and O(∝) terms from (19) are
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Equations (20) and (21) are solved subject to

�0 = �1 = 0 at � = 0, (
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Integrating (21) with respect to� and applying the bound-
ary conditions in (22) yield

�0 = −Br12 [(1 − �)
4 − (1 − Bi

(Bi − 1))] + (
Bi

(Bi − 1)) �.
(23)

Integrating Equation (21) and applying the boundary con-
ditions (22), we obtain

�1 = Br2

12 [
1
56(1 − �)

2

− 1
60 (5(1 − �)

4

+ Bi

(Bi ℎ = 1) (10�3 − 10�4 + 3�5))]

+ Br2

12 [
Bi

(Bi − 1) (
1

12 (Bi − 1) −
Bi

20 (Bi − 1)) �

+ 11
168] +

Bi

(Bi − 1) (10�3 − 10�4 + 3�5)
+ Bi

(Bi − 1)2 (
1
12 −

Bi

20) �.
(24)


e nal temperature prole is obtained by combining
both (23) and (24) as = �0+ ∝ �1. Similarly, a solution for
the velocity prole can be derived. Combining (15) and (17)
gives


�0
� + 6
�1
� = (1 − �) + ∝ �� (1 − �) . (25)


e leading order and O(∝) terms are therefore


�0
� = (1 − �) , (26)


�1
� = �0 (1 − �) . (27)

Equations (26) and (27) are solved subject to

�0 = �1 = 0 at � = 0. (28)

Equation (26) gives the Newtonian velocity prole as

�0 = �
2 (2 − �) . (29)

A similar expression for (29) may be obtained inMyers et
al. [3]. To obtain �1, (23) and (27) are combined and integrat-
ed subject to (28),

�1 = −Br72 [(1 − �)
6

− 6 ((�2 (2−�))−
Bi �2

6 (Bi − 1) (3−2 �))−1]

+ Bi �2
6 (Bi − 1) (3 − 2�) .

(30)


e nal velocity prole is given by (29) and (32) as � =�0+∝�1.
enumerical solution is discussed in the following
section.
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5. Numerical Solution


e coupled nonlinear partial di�erential equations (15) and
(16) for the velocity and the temperature proles are solved
numerically using the fourth-order Runge-Kutta integration
scheme. 
e solution for the temperature prole must be
calculated rst and then substituted into the velocity equation
to obtain the solution for the velocity prole. Setting �1 = �
and �2 = 
�/
�, (16) can be written as a system of two rst-
order equations in �1 and �2 of the form,




� [

�1�2] = [
�2−Br(1 − �)2'∝�1] . (31)


is system can be written in vector form,


t

� = @ (t, �) , (32)

where t = (�1, �2). 
e solutions for this system of di�erential
equations are solved subject to the boundary conditions (11)
and (12). 
e Runge-Kutta method requires an initial value,
and the initial value for the temperature �1 is taken as the
boundary condition at � = 0. 
e corresponding initial
value for �2 is randomly chosen. It is important to note that
the best numerical results largely depend on a good guess
for the initial condition; see [6, 7]. Once this initial value
is chosen, we employ the Runge-Kutta method to solve for
the temperature. When the solution of the iterative process
for the Runge-Kutta scheme terminates, then the derivative
for the temperature �2 at the free surface is eventually
corrected using the given boundary conditions (12). 
e set
of parameters ∝, Bi, and Br are coupled to the system of
di�erential equations, and we solve our equations using a
small step size for Δ�. 
e velocity gradient is given by


�

� = (1 − �) '��1 . (33)

Once the temperature prole is calculated, the velocity
prole is computed from (32) using the nite di�erence
scheme,

��+1 = �� + Δ�	 ⋅ (
�
�)
&&&&&&&&(	� , ��). (34)

In Section 6, we will discuss the results for the asymptotic
and numerical methods. We will give account of the ndings
in this paper. We proceed our analysis for comparison of the
asymptotic and numerical solutions.

6. Results and Discussion

Figure 2 depicts a typical application of the temperature de-
pendent model in (16). 
is illustrates the relations between
temperatures of the �uid with the Brinkman number. 
is
also is widely studied by several references, such as Myers et
al. [3] who studied the application in a closed channel and
Makinde [15, 18, 19] who investigated the application with
a free surface �ow. In this case, the critical point for the
temperature is depicted at 0.53 a�er which the two solution
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e channel temperature.
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Figure 3: 
e temperature proles for (18) and numerical solution.

branches are shown. When the temperature is greater than
0.53, the system has no real solution which is indicative of
thermal runaway.

Figure 3 shows the temperature proles corresponding
to (18) where �0 and �1 are given by (23) and (24) and the
numerical solution. In this gure the dotted lines represent
the proles from the asymptotic solution and solid lines for
the numerical solution. 
e results are calculated for the
case Bi = Br = 0.3, so that the Biot and the Brinkman
numbers are of the same magnitude. Di�erent values of ∝
were considered in order to investigate its e�ect on resulting
�ow proles. We start our investigation with a simple case
where∝= 0 for a Newtonian �uid to a maximum of∝ = 0.5
typically, for a lubricating oil. Curves (a), (b), (c), and (d)
display four di�erent values of ∝, namely, ∝ = 0, 0.1, 0.3,
and 0.5. It is important to note that when ∝ increases, the
viscosity of the �uid decreases. 
e temperature of the �uid
in all four curves increases to their maximum temperatures
at the free surface. When∝ increases, the temperature of the
�uid increases due to heat generation by the internal friction
caused by the collision of the �uid particles. 
e Newtonian
case is retrieved in curve (a) with∝.
e numerical results are
in good agreement with the asymptotic as shown in curves
(a) through to (d). In Figure 4, four curves representing the
velocity proles for (17) where �� and �1 are given by (29)
and (32) are plotted together with the numerical solution.
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e velocity proles for varying∝.


ese proles correspond to di�erent values of ∝ as shown
in Figure 3. 
e gure shows that the velocity of the �uid
increases when increases. 
is is a result of the resistance
force to the �ow which decreases as ∝ increases. Curve (a)
displays a Newtonian velocity prole with ∝ = 0, and this
curve increases across the �uid layer to the maximum point
at the top due to the e�ect of the gravitational forces and
lack of resistance force to the �ow. As shown in the gure,
the numerical and asymptotic velocity proles are in good
agreement, particularly for the set of curves (c) and (d).

In Figures 5 and 6 the temperature and the velocity
proles for a numerical solution are displayed. 
e proles
are plotted to include large values for∝ as shown in curves (c)
through to (h) from∝ = 10 to 62 for the temperature proles

in Figure 5. 
e velocity gradient in (11) increases exponen-
tially with temperature, which eventually feeds back into (12)
through the viscous heating term. 
e Newtonian tempera-
ture prole is shown in curve (a) with ∝= 0, and curve (b)
is plotted with∝= 0.5; these curves are the same as the ones
which are shown in Figure 3 curves (a) and (b). It is important
to note that the large values of∝were randomly chosen to test
the reliability of the numerical scheme.
e resulting temper-
ature proles show that the temperature of the �uid increases
signicantly when ∝ increases. 
e velocity proles are
displayed in Figure 6. Curves (a) through to (f) correspond
to di�erent values of ∝ as displayed in the gure, and other
�ow controlling parameters are the same as those which are
given in Figure 5. 
e velocity of the �uid for all these curves
increases to the maximum velocity occurring at the free sur-
face. In this case, when ∝ increases, the velocity of the �uid
increases due to less resistance force to the �ow. Curves (a)
with∝= 0 and (b) with∝= 0.5 are similar to the ones shown
in Figure 4.
e resulting velocity proles show that for values
of∝> 50, a change in the �ow structure is observed.

In Figure 6, curves (g) and (h) show di�erent �ow behav-
iour as compared to curves (a) through to (f). Since the vis-
cosity of the �uid decreases exponentially when∝ increases,
this therefore causes the �uid to behave like aNewtonian �uid
when ∝ = 58 and 62. Elbashbeshy and Bazid [6] analysed
the e�ect of temperature dependent viscosity on heat transfer
over a continuous moving surface. 
e full solutions for the
velocity and temperature proles were obtained using the
fourth-order Runge-Kutta numerical scheme. 
eir results
indicate that when the viscosity variation parameter increases
for water, the temperature of the �uid increases slightly,
which is in agreement with our results. However, in their
investigation the velocity of the �uid decreases when the
viscosity variation parameter increases.


e e�ect of theBiot number on the resulting temperature
and velocity proles is investigated. 
e importance of the
Biot number is that it helps understand the in�uence of the
ambient temperature on the �ow system. When the Biot
number tends to innity (� → ∞), then both the ambient
temperature and the �uid temperature reache equilibrium
and ∼ 0. However, when the Biot number decreases (� →0), the �uid loses its temperature to the surrounding atmo-
sphere, and this process will have a major in�uence on the
temperature variation of the �uid. An increase in the Biot
number indicates that more heat is lost from the �uid to the
surrounding atmosphere (hence cooling the �uid).When the
Biot number decreases, a reduction in heat transferred to the
surrounding atmosphere occurs, and the �uid gets hotter [11].
Because of the strong feedback between the Navier-Stokes
and the energy equations, the Biot number will have a major
in�uence on the resulting velocity and temperature proles.
Using the parameters listed in the previous section, we can
easily show that Bi = 7.692 ∼ 8. We again begin with a simple
analysis for Bi = 0 to a maximum of Bi = 8 calculated for
lubricating oil. 
e curves for the temperature proles are
shown in Figure 7 with di�erent values of the Biot numbers,
namely, Bi = 0, 0.01, 1, 4, and 8. 
e �uid temperature
increases across the �uid layer to its maximum temperatures
at the free surface as Bi decreases due to reduction in the heat
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Figure 8: 
e velocity proles for varying Bi.

transferred to the surrounding atmosphere.
e gure clearly
demonstrates that the �uid temperature rises with decreasing
values of the Biot number, and the temperature proles �atten
out at the free surface as $Bi$ decreases, and when Bi = 0,
the temperature prole shows that the temperature gradient
at the free surface is zero. Khaled [11] investigated the rate
of heat and entropy transfer to the slab wall, and the results
showed that the dimensionless temperature in the slab wall
increases as Bi decreases, which is in agreement with our
ndings. 
e corresponding velocity proles are shown in
Figure 8 with di�erent values of the Biot numbers. 
e �uid
velocity increases across the layer to its maximum at the free
surface as the Biot number decreases. 
is is a result of the
resistance force to the �ow which decreases as Bi decreases.


e e�ect of the Brinkman number is displayed in Figures
9 and 10 for the temperature and velocity proles. Other
parameters are given by 6 = 0.3 and Bi = 0.3. Using the
values listed in the previous section, the Brinkman numbers
are given by Br = 0 for the Newtonian case to 0.5 as shown in
Figure 9. We have the Newtonian case displayed in curves (a)
in each gure with a constant viscosity. Increasing Br results
in increased viscous heat dissipation e�ect. 
e temperature
of the �uid increases signicantly when Br increases. In
Figure 9, when Br increases, the �uid heats up quickly, the
viscosity of the �uid drops, and the �ow is faster. As a result,
the �uid velocity increases signicantly in the direction of the
�ow.
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Figure 9: 
e e�ect of the Brinkman number on temperature
proles.
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Figure 10: 
e e�ect of the Brinkman number on the velocity
proles.

7. Conclusion

A steady gravity driven �ow of a temperature dependent
variable viscosity model was investigated. 
e results were
obtained using an asymptotic technique and the fourth-order
Runge-Kutta integration scheme. We used experimental val-
ues for lubricating oil to determine the value of 6 for the
asymptotic approximation terms.
e numerical results were
compared with the asymptotics. 
e Newtonian cases for
both the temperature and velocity of the �uid are retrieved
when 6 is zero, and the results showed good agreement
in all the curves for the temperature and velocity proles.

e e�ects of large values of 6 on the resulting velocity
and temperature proles were further investigated. When6 increase, the temperature and the velocity of the �uid
increase signicantly. However, when 6 = 58, a change
in the �ow structure is observed from the velocity proles.
Since the viscosity of the �uid decreases exponentially when6 increases, the prediction of the velocity proles shows a
di�erent �ow structure. 
is therefore causes the �uid to
behave like a Newtonian �uid, in particular when 6 ≥ 58.
Furthermore, the e�ect of the �ow controlling parameters
such as the Biot and the Brinkman numbers was investigated.
In the case of the Biot number, the temperature of the �uid
increases signicantly when the Biot number decreases due
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to heat lost from the �uid to the surrounding atmosphere,
and as a result, the �uid temperature �attens out at the
free surface. 
e velocity of the �uid increases as the Biot
number decreases, due to less resistance force to the �ow.
e
Brinkman number Br was also investigated, and the results
showed that as Br increases, the temperature of the �uid
increases due to heat dissipation, and the velocity of the �uid
increased signicantly due to the resistance force to the �ow,
which decreases when the Br increases.

Nomenclature

Bi = �"�/�: Biot number
Br = 	0�2/�Δ�: Brinkman numberF�: Heat capacity (J⋅Kg−1⋅K−1)
Ec = �2/���0: Eckert number

�: Acceleration due to gravity (m s2)�: Channel height (m)�: 
ermal conductivity (W⋅m−1⋅K−1)"�: Heat transfer coe�cient (W⋅m−2⋅K−1)�: Channel length (m)�: Pressure scale (Pa)�: Pressure (Pa)
Pe = �����/�: Péclet number

Pr = 	0��/�: Prandtl number

Re = ���/	0: Renolds number�: Time (s)�: Temperature (∘C)��: Ambient temperature (∘C)��: Bottom surface temperature (∘C)Δ�: Temperature drop (∘C)� = ���2 sin�/	0: Velocity scale (m s1)(�, V): Cartesian velocity (m s1)(�, �): Cartesian coordinates (m)�: Aspect ratio of the �ow	: Dynamic viscosity (kg⋅m−1⋅s−1)	0: Dynamic viscosity reference

(kg⋅m−1⋅s−1)Φ: Viscous dissipation function�: Fluid density (Kg⋅m−3)*: Coe�cient of viscosity variation (K−1).
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