
The FlowAdapter: Enable Flexible Multi-Table Processing
on Legacy Hardware

Heng Pan
Institute of Computing

Technology, Chinese Academy
of Sciences, China

panheng@ict.ac.cn

Hongtao Guan
Institute of Computing

Technology, Chinese Academy
of Sciences, China

guanhongtao@ict.ac.cn

Junjie Liu
Institute of Computing

Technology, Chinese Academy
of Sciences, China

liujunjie@ict.ac.cn

Wanfu Ding
Huawei Technologies Co. Ltd.
dingwanfu@huawei.com

Chengyong Lin
Huawei Technologies Co. Ltd.
linchengyong@huawei.com

Gaogang Xie
Institute of Computing

Technology, Chinese Academy
of Sciences, China
xie@ict.ac.cn

ABSTRACT
OpenFlow is one of the most potential technique to enable
innovation in network. To enable OpenFlow more flexibility
and high-efficiency, multi-table pipeline has been introduced
in OpenFlow. A HAL(Hardware Abstraction Layer) is pro-
posed to address the incompatibility of flow table pipeline
between legacy switch hardware and the controller. How-
ever, the burden of controller will be increased greatly. In
this paper, an innovative middle layer called FlowAdapter
is proposed. It converts flow entry rules from the controller
flow table pipeline to switch hardware flow table pipeline,
so that the same rules can be fitted into different types of
hardware. With FlowAdapter, legacy OpenFlow hardware
can be used to support multi-table pipeline rules. Located in
switch, FlowAdapter is transparent to the controller. With
a prototype implementation, we find that the FlowAdapter
performs rules conversion effectively.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Store and
forward networks; C.2.2 [Network Protocols]: Routing
protocols; C.2.3 [Computer-Communication Network-
s]: Network Operation; C.2.6 [Internet working]: Routers

General Terms
Soft Defined Networking, Algorithms, Design, Experimen-
tation

Keywords
OpenFlow, equivalent conversion, flow table, FlowAdapter,
middleware

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
HotSDNąŕ13, August 16, 2013, Hong Kong, China.
Copyright 2013 ACM 978-1-4503-2178-5/13/08 ...$15.00.

1. INTRODUCTION
OpenFlow [1] is one of the most promising approaches

to enable innovation in network and becomes a hot top-
ic among industry and academia. A number of network
switch vendors have great interest in OpenFlow, including
Huawei, Cisco, IBM, and NEC. They also launched their
own OpenFlow1.0-enabled switch and other SDN based so-
lutions in data center network. The establishment of ONF
(Open Networking Foundation) has helped the standardiza-
tion of OpenFlow. In OpenFlow 1.1 specification [2], multi-
table pipeline has been introduced to make the switch more
flexible and extensible. However, the implementation of such
a pipeline in hardware can be very complicated.

Even though TCAM (Ternary Content Addressable Mem-
ory) is the de facto standard in industry to achieve high
performance FIB lookup [3,6], the flexibility of TCAM based
multi-table pipeline is quite limited. The multi-table pipeline
can be implemented with multiple TCAM chips or a shared
TCAM chip, but both of which has either limited pipeline
stages or uncertain pipeline delay. In addition, in OpenFlow
1.3 spectification, the length of all match fields exceeds 1000
bits, whereas the length of entries in a TCAM chip is rela-
tively limited, usually ranging from 36 to 576 bit. Moreover,
the hardware capabilities of diverse switches may be differ-
ent. It also brings about a big challenge for the controller
to put the same rule set into diverse hardware pipeline.

The controller-issued rules (also called user-defined rules),
which are generated by user applications through a ”network
operating system”like NOX [7], do not consider switch hard-
ware capabilities. Depending on user applications, the form
of the user-defined rules can be various ranging from single
table pipeline rule to multi-table pipeline rule. On the other
way, the lack of flexibility in switch hardware is impossible
to adapt different form of rules in hardware pipeline design.
For example, suppose a user-defined rule requires to issue a
flow entry to flow table 5 of an OpenFlow-enabled switch.
Unfortunately, the hardware switch only contains three flow
tables. For another example, suppose a user-defined rule
issues a flow entry with IP SRC field to flow table 1. Never-
theless, flow table 1 of the hardware switch may not support
IP SRC match field. How can rules be run on fixed switch
hardware while maintaining their flexibility? How can the

85

same rule set be issued to switches with different capabili-
ties?

The ONF Future Group tries to address this chanllage
using a HAL (Hardware Abstraction Layer) [8], which gives
the controller a unified interface, (i.e. HALmodels), to nego-
tiate pipeline capabilities with OpenFlow switch. Through
the negotiation mechanism, the controller can issue rules fit-
ting the switch pipeline capabilities. However, the controller
already has many complex tasks to do, getting status, issu-
ing rules, communicating with hundreds and thousands of
switches. Managing rules for different HAL model switches
can further burden the controller. Additionally, the HAL
solution also requires both the controller and switches to
be updated and aware of the HAL models. To reduce the
complexity of the negotiation, the types and flexibility of
HAL models will be limited which might compromise the
flexibility of multi-table pipeline.

In this paper, we has proposed a three-layer architec-
ture addressing this challenge. The architecture contains
a flexible software data plane, a relatively fixed yet high
performance hardware data plane and a middle layer in be-
tween called FlowAdapter. The software data plane stores
controller-issued flexible rules. The hardware data plane
is used to perform high-speed packet forwarding. And the
function of the FlowAdapter is to convert M-stage multiple
flow table rules into N-stage rules equivalently. So, those
flexible rules stored in the software data plane can be con-
verted and issued to the hardware data plane based on the
capabilities of the hardware. Using this architecture, the
switch hardware is transparent to the controller. Flexible
user-defined rules can be arbitrary issued to any specified
switch without worry about pipeline capabilities. This pa-
per focuses on depicting the design and implementation of
the FlowAdapter, an innovative middle layer, in detail.

To build up the three layer architecture, we implement a
simple hardware data plane using PEARL platform [9] and
run OpenFlow software switch in server as software data
plane [10]. Above all, our key contribution is to present
the first method to complete equivalent conversion of the
rules that makes the OpenFlow network more flexible and
available.

We organize the rest of the paper as follows. In Section 2
we discuss some related work. In Section 3 we show how the
FlowAdapter is designed and implemented. In Section 4, we
evaluate our FlowAdapter in latency of rules conversion. In
Section 5, we discuss some future work. Finally, we conclude
our work in Section 6.

2. RELATED WORK
As we mentioned in the Section 1, some people, in ON-

F Future Group, have proposed a HAL model to address
the challenge of the controller adapting OpenFlow-enabled
switches [8]. The HAL model defines three ways to config-
ure itself. It offers a unified interface to communicate with
the controller. The switch can negotiate with the controller
using the HAL model, so that the controller can issue rules
based on the capability of the switch. In other words, the
model provides a mechanism to make it possible that the
controller can detect the capability of a switch. Then the
controller converts those flexible user-defined rules into the
rules that fitting the capability of the switch. Finally, the
controller issues the converted rules to the switch.

SDN
Application/Controller

Rules

Flow-Adapter

OpenFlow
Switch

Detect
complete

rules

 Equivalent One-
stage flow table

 Equivalent N-stage
flow table

Secure Channal OpenFlow Software Data Plane

Flow
Table

1

Flow
Table

2

Flow
Table

M

...

HW
Table

1

HW
Table

2

HW
Table

N

...

OpenFlow Hardware Data Plane

Figure 1: The architecture of a switch

Another work has been done by Alex X. Liu and Chad R.
Meiners [11], although they were originally not intended to
solve this problem. They use a FDD (Firewall Decision Dia-
gram), a special decision tree, to let a d-dimensional packet
classifier be split into multiple low dimensional classifiers.
Then they use an equal number of TCAM chips to store
those low dimensional classifiers. Accordingly, They let a
d-dimensional lookup be replaced by a multi-stage pipeline
lookup. It refers to how to convert one-stage flow table into
M-stage multiple flow tables equivalently.

3. OUR FLOWADAPTER

3.1 The Architecture Overview
We propose a mechanism to address the mismatch be-

tween the controller-issued multi-stage rule tables and the
hardware planes. Each OpenFlow-enabled switch contains a
flexible software data plane which can be upgraded to sup-
port new protocols. The hardware data plane of the switch
achieves high-speed packets forwarding. Our FlowAdapter is
a middle layer between the software data plane and the hard-
ware data plane to enable them work together effectively.
Figure 1 shows the architecture of our proposed OpenFlow-
enabled switch.

The FlowAdapter is designed to convert M-stage multi-
ple flow tables issued by the controller into N-stage mul-
tiple flow tables implemented in the hardware data plane
of each switch equivalently. Now, we will first describe our
FlowAdapter at a high level here. We divide the FlowAdapter
into two major stages - MTO (the conversion of M-stage
multiple flow tables into a One-stage flow table), OTN (the
conversion of a One-stage flow table into N-stage multiple
flow tables). One might wonder that why you don’t conduct
the conversion of M-stage multiple flow tables into N-stage
multiple flow tables directly. We think that the value of N
may be 1. In addition, Our FlowAdapter should be com-
patible with the legacy hardware which only stores a single
flow table. Besides, the One-stage flow table can act as a
great bridge in the whole conversion process. It can simpli-

86

Entry 0

Table 0

Goto-table 1
Metadata 1

Table 1

Instruction:
Forwarding

Complete rule

Table 0

Goto-table 1
Metadata 1 Not

Find

Table 1
Incomplete rule

Entry 0

Entry 0

Figure 2: Complete rules and Incomplete rules

fy many complicated processes like eliminating redundant
match fields or actions.

We define a complete rule based on the OpenFlow multi-
table pipeline as follow. A rule consists of one or multiple
flow entries in the OpenFlow multi-stage flow tables. If mul-
tiple flow entries, each flow entry should belong to different
flow tables. In addition, those flow entries use the Goto in-
struction and the Metadata [2] to form a pipeline. Through
the Goto instruction and the Metadata, the pipeline process
can find the next flow entry. In fact, each flow entry has a
Goto instruction except the last one in the pipeline. If and
only if the pipeline process cannot find the next flow entry
through the Goto instruction of the current flow entry, its
rule is incomplete. Otherwise, the rule is complete which
are illustrated in Figure 2. We only think about complete
rules in the M-stage multiple flow tables which should be
converted by our FlowAdapter. So, it is necessary to de-
tect complete rules in the software data plane before the
conversion.

3.2 Equivalence analysis
The FlowAdapter has two major conversion stages, MTO

and OTN. One might argue that how the FlowAdapter can
ensure its equivalence of conversion . It’s well-known that
the functions of flow tables are to match packets, modify
packets match fields and execute actions. The flow tables
can be abstract as a black box. Packets can be taken as
inputs and outputs of the black box. So, two kinds of equiv-
alent multiple flow tables mean that they have the same
outputs if the same packets enter into the two black box-
es respectively. We verify the equivalence of the conversion
depended on three equivalence principles as follows - (1)
the equivalence of packet match result: (2) the equivalence
of packet match fields’ modification, (3) the equivalence of
packet execution actions.

MTO Equivalence. The MTO is to convert a com-
plete rule from the M-stage multiple flow tables to the One-
stage flow table. To meet the three equivalence principles, a

Pipeline of M-stage multiple flow tables

Entry A Entry B

Set mpls=4Match-field-set A Instructions_BMpls=4
Set mpls=4

Instructions_BMatch-field-set A

One-stage flow table

Entry A Entry B

Push vlan
Set vlan=2

Match-field-set A Instructions_BVlan=2
Push vlan
Set vlan=2

Instructions_B
Match-field-set A

Figure 3: Redundant match fields

The first entry The second entry
Match
fields

Pop vlan Vlan=1 Instructions

The pipeline

Figure 4: Inconvertible rule

flow entry of the One-stage flow table, representing a rule,
should contain equivalent match fields and a instruction list.
It means that the match fields of the flow entry should be
constructed based on those flow entries in the correspond-
ing pipeline of the M-stage multiple flow tables. It guaran-
tees the packet match consequence equivalence. As for the
instruction list, it consists of those instruction lists of the
corresponding pipeline in order except pipeline-constructed
instructions like the Goto instruction. It guarantees that
the packet match fields modification and packet execution
actions equivalence. Certainly, the One-stage flow entry al-
so should eliminate its redundant match fields during the
construction process.

There are two situations when FlowAdapter can eliminate
redundant match fields equivalently, which are illustrated in
Figure 3. Situation 1: Flow entry A is in front of flow en-
try B, which are in the same pipeline of the M-stage mul-
tiple flow tables. Entry A has a push-vlan/mpls action in
its instruction list. Entry B has a vlan/mpls match field.
In addition, there is not any pop-vlan/mpls action in the
entries which are between entry A and entry B in the same
pipeline. So the mpls/vlan match field is redundant, because
this field is always matched. Otherwise the corresponding
rule is a error rule, against which cannot be matched by any
packet. Situation 2: If a flow table entry in the pipeline of
M-stage multiple flow tables has a apply-action instruction
which includes a set-field action for a specific type field, we
shouldn’t add the rest of match fields in the pipeline, which
is the same type with the specific field of the set-field action,
into the match fields of the One-stage flow table entry.

Unfortunately, we find that a type of rules can not be con-
verted in the process of MTO equivalently, which are illus-
trated in Figure 4. It means that a packet has two vlan/mpls
fields when it enters into the switch. And the pipeline of M-
stage multiple flow tables wants to match against the second
mpls/vlan match field of the packet. This is a very special
situation when we can not convert this complete rule into a
One-stage multiple flow table entry directly and equivalent-
ly. But, we also present a feasible strategy to address this
problem in the architecture of our FlowAdapter. The strat-
egy is that the FlowAdapter can detect the type of rules.
And then it will upload them to the software data plane. In
other words, those packets matched this type rules should
be processed by the software data plane directly.

OTN Equivalence. The OTN also needs to make sure
the conversion equivalence. It means that a One-stage flow

87

entry needs to be split into multiple flow entries, which
should be used to construct a new pipeline of the N-stage
multiple flow tables. Allowing for the equivalence of packet
execution actions and match fields’ modification, the One-
stage flow entry’s instruction list should be put into the last
flow entry of the new pipeline. The others flow entries’ in-
struction fields only need to be padded by those pipeline-
constructed instructions like Goto and Write-Metadata in-
structions. For the equivalence of packet match consequence,
the match fields of the One-stage flow entry only needs to be
spilt into the new pipeline based on the match fields types
of each flow table.

3.3 MTO conversion
In this section, we describe how we convert the M-stage

multiple flow tables into a One-stage flow table equivalently.
The algorithm for the MTO consists of the following three
steps which are illustrated in Figure 5: (1) N-Tree Construc-
tion: convert the pipeline mapping relation in the M-stage
multiple flow tables to its equivalent N-Tree representation.
(2) Leaf-Node Obtainment: traverse the N-Tree to get its
all leaf nodes which can represent the all complete rules. (3)
One-stage flow table Generation: traverse those leaf nodes
to the root node for getting the match fields and instruc-
tions of all complete rules, construct flow entries for each
complete rule and then generate a One-stage flow table.

3.3.1 N-Tree Construction
OpenFlow uses metadata to achieve the pipeline of M-

stage multiple flow tables. In addition, more than one flow
entry in a flow table may contain the same metadata. So, we
represent the pipeline process using a N-Tree data structure.
Every node in the N-Tree represents a flow entry which is in
the M-stage multiple flow tables. We use these entries which
are in flow table 0 as the root node to construct N-Tree
respectively. One might argue that why we don’t choose
those entries which are in other tables except table 0 as the
root node. Because pipeline process of OpenFlow starts at
the first flow table, flow table 0, and the other tables may be
used depending on the outcome of the matched flow entry.
If the behavior of table miss is continuing to next flow table
of the switch, we’ll conduct a default flow entry for each flow
table to address this situation when the first flow entry of
a complete rule is not in flow table 0. So, we define three
types root nodes for constructing the N-Tree as follows. The
process is illustrated in Figure 5(b).

For those flow entries, the first type, in flow table 0, We de-
scribe the process of N-Tree construction as follows. Firstly,
we select a flow entry sequentially in the flow table 0, which
has not been used, as the N-Tree root node. Secondly, we
check whether the instructions of the entry have the action
of Goto-Table. If the answer is no, this N-Tree construction
will end. Otherwise, we go to the specified table to match
its entries using metadata. And all matched entries are used
as the root node’s child nodes. Thirdly, we take these child
nodes as new root nodes and then construct N-Trees recur-
sively and respectively. Finally, we mark that the root node
in flow table 0 has been used.

For the default flow entry in flow table 0, we also select it
as a N-Tree root node, the second type. OpenFlow specifica-
tion tells us that the first flow entry in a complete rule does
not have the metadata. So, the N-Tree’s child nodes consist
of the default flow entry and these flow entries that have

0

1

2

default

t0 t1 t2

0

1

2

default

0

1

2

default

3 3 3

NULL

Flow
Table ID

Entry
ID/d(default)

Next Table
ID/NULL

(a)

Type 1 Type 3

(b)

(c)

Next Table
ID/NULL

IP_SRC IP_DST Instructions

3.2.1.0/24 192.168.0.1 Set_TCP_SRC=1
Goto_table=1

InstructionsIN_PORT TCP_SRC

3 1 Output=2

IP_SRC IP_DST IN_PORT Instructions

3.2.1.0/24 192.168.0.1 3
Set_TCP_SRC=1

Output=2

N-Tree construction

Leaf-Node Obtainment
for Type 1 N-tree

One-stage flow table
Generation (d)

M-stage multiple flow tables

0

1

10

0

21

1

NULL2

1

NULL0

2

NULL1

2

23

1

NULL3

2

Flow Table ID

Entry ID

1d

0

2d

1

23

1

NULLd

2
Type 2

NULL0

1

NULL0

2

NULL1

2

NULL2

1

10

0

NULL0

1

The First Leaf node

Figure 5: The MTO conversion

88

no metadata in the next table. And then these child nodes
should be taken as new root nodes to construct N-Trees re-
cursively and respectively until the last flow table. Though
the above process, we will get a N-Tree that stores the first
flow entries of all the complete rules in the M-stage multi-
ple flow tables except starting from flow table 0. Then, we
use those first flow entries as root nodes, the third type, to
construct N-Tree respectively like the first type root nodes.

However, only the type one and type three root nodes can
represent the rules in M-stage multiple flow tables. It’s a
remarkable fact that this N-tree construction process may
have a pruning operation. It means that the node should be
removed from the N-Tree when no matched entry is found in
the next specific flow table based on the node’s Goto-Table
action.

3.3.2 Leaf-Node Obtainment
After N-Tree construction, the next step is to get all leaf

nodes. A complete rule can be mapped as a path from the
root to a leaf node. Getting the all leaf nodes means getting
the all complete rules which use the root node of the N-Tree
as their first entry. The process is illustrate in Figure 5(c).

3.3.3 One-stage flow table Generation
After Leaf-Node Obtainment, we have got the all complete

rules. So, the next step is to construct a one-stage flow entry
for each rule, whose match fields are filled with the corre-
sponding complete rule’s match fields in order. Their in-
struction lists also consist of the complete rule’s instruction
list in order. Finally, those one-stage flow entries should be
inserted into the One-state flow table.

The process of conversion should also pay attention to
some aspects as follows. Firstly, those instructions about
indicating pipeline relation (e.g. Goto, Write-Metadata in-
struction) shouldn’t be added into the instruction list of
the one-stage flow table entry. Secondly, if a flow table en-
try in the pipeline also has a apply-action instruction which
includes pop/push vlan/mpls action, we also should check
the rest of flow entry in the pipeline including match fields
and instructions based on the previous equivalence analysis.
The process is illustrated in Figure 5(d).

3.4 OTN conversion
Above, we described how we convert M-stage multiple

flow tables into a One-stage flow table equivalently. Howev-
er, the switch often needs to contain multiple tables in the
practical application scenarios. In addition, the OpenFlow-
enabled switch also should support the multi-table pipeline
feature to some extent. Next, we describe the conversion
of the One-stage flow table into N-Stage multiple flow ta-
bles equivalently. The conversion process is made up of 4
steps, which are illustrated in Figure 6 based on previous
illustration: flow table initialization, match fields padding,
instructions padding and flow entry insertion.

Flow Table Initialization Stage. The construction of
N-stage multiple flow tables should be so flexible that the
value of N and the match field types of each flow table can
be set based on the specific switches. It means that the
FlowAdapter should first get the switch pipeline capabilities.
This step only need to confirm the number of flow tables and
the match types of each flow table. Our FlowAdapter pro-
vides a unified interface for programmers. So it can be aware
of the pipeline capabilities by the programmers through the

MAC_SRC MAC_DST

Table 0

IN_PORT

Table 1

ETH_TYPE

IP_SRC

Table 2

IP_DST

TCP_SRC

Table 3

TCP_DST

NULL NULL

Table 0

IN_PORT=3

Table 1

ETH_TYPE
=*

IP_SRC=
3.2.1.0/24

Table 2

IP_DST=1
92.168.0.1

NULL

Table 3

NULL

NULL

Table 0

Write_met
adata=1

Table 1

Goto_Ta
ble=2

Table 2

NULL

Table 3

(a) (b) (c)

remove

Table 0

Table 1

insert

insert

Table 2

remove

Table 3

(d)

Set_TCP_S
RC=1

Output=2

Figure 6: The OTN conversion

unified interface. We suppose that the value of N is 4 and
match field types of each flow table are set as showed in
Figure 6(a).

Match Fields Padding Stage. After flow table ini-
tialization, the next objective is converting One-stage flow
entry into multiple flow entries. We don’t know in advance
the match fields types which the One-stage flow entry con-
tains. So, we construct a initial flow entry for each flow
table. The match field types of these flow entries are limited
by its corresponding flow table. In addition, the initial flow
entries have no any match field. Then we fill the correspond-
ing match field value of the One-stage flow entry to those
flow entries based on their containing match field types. The
flow entry with no match field padded will be set NULL. The
padding process is illustrated in Figure 6(b).

Instructions Padding Stage. In this stage, two kind-
s of instructions should be added into those entries of the
N-stage flow tables. One is these instructions, which are
used for supporting pipeline process, like Goto and Write-
Metadata instructions. The other is the instruction list of
the One-stage flow entry. It is remarkable that only those
flow entries, which has been padded match fields, can be
taken into consideration the instructions padding. The sec-
ond type instruction list will be padded in the last N-stage
flow entry. The last N-stage flow entry means that the table
ID of the flow entry is the biggest among those flow entries
which contain match fields. The others should be padded
with the first type instructions. Moveover, the instruction
fields of flow entries with no match field also be set NULL.
The padding processing is illustrated in Figure 6(c).

Flow Entry Insertion Stage. The last step is to add
the flow entry to its corresponding flow table. It is worth
that the flow entry, whose match fields are NULL, can not
insert its flow table. The Insertion processing is illustrated
in Figure 6(d).

4. EVALUATION
In this section, we present performance results of our Flow-

Adapter implementation. It is crucial to complete the con-
version process in real-time to enable the network perfor-
mance not to be affected. Because of lack of OpenFlow rules
set, we modify some ACL rule set [12] to fit OpenFlow. Our
experiments were performed on a customized machine with

89

500 600 700 800 900 1000
50

60

70

80

90

100

110

120

Number of rules

T
he

 c
on

ve
rs

io
n

tim
e

of
 a

 r
ul

e
(m

iro
se

co
nd

s)

Figure 7: Total conversion time of FlowAdapter

an Intel(R) Xeon(R) CPU with 8 cores running on 64 bit
Ubuntu Linux 10.04.3. The result is illustrated in Figure 7.

From Figure 6, we see that FlowAdapter can perform con-
verting within hundreds of microseconds per rule conversion.
By limiting the conversion latency with in hundreds of mi-
croseconds, it will not affect the network performance. For
the HAL, it not only needs to implement rules conversion in
the controller, but also achieves the implementation of the
HAL in each switch. In addition, it needs to be aware of the
HAL models. Our FlowAdapter shares the burden of rules
conversion instead of the controller.

5. FUTURE WORK
The algorithm of N-Tree construction is not optimized.

It only achieves it by force. So, the N-Tree construction
of the FlowAdapter needs to be improved to add or delete
nodes incrementally instead of rebuilding the N-Tree in the
future. In addition, we need to improve the FlowAdapter
to support the type rules of inconvertible by itself instead of
the software data plane.

In addition, we will spend more time on stripping our
FlowAdpater from the switch. Because the compute re-
sources in the switch are typically scarce. The FlowAdpater
will be presented as a strategy to implement an OpenFlow
agent.

6. CONCLUSION
In this paper, we design and implement a novel middle

layer called FlowAdapter to achieve the conversion of M-
stage multiple flow tables to N-stage multiple flow tables.
The FlowAdapter is a middle layer between the software
data plane and hardware data plane in the switch. In view
of the lack of flexibility of the hardware data plane, the
FlowAdapter can adapt multi-table rules from the controller
to different switch hardware capabilities. The application
of the controller can construct and issue rules depending
on its own requirement, despite of the various capabilities
of flow table pipeline in switch hardware. In other words,
the FlowAdapter can enable the flexible multi-table pipeline
processing in legacy hardware.

7. ACKNOWLEDGMENTS
This work was supported in part by National Natural Sci-

ence Foundation of China (NSFC) under Grants 61133015
and 61202411, National High-tech R&D Program of Chi-
na under Grant 2013AA013501, Strategic Priority Research
Program of CAS under Grant XDA06010303 and the Huawei
Technologies Co. Ltd.

8. REFERENCES
[1] McKeown, N., Anderson, T., Balakrishnan, H.,

Parulkar, G., Peterson, L., Rexford, J., Shenker, S.,
Turner, J. OpenFlow: enabling innovation in campus
networks. ACM SIGCOMM Computer
Communication Review. 38, 69́lC74 (2008)

[2] OpenFlow switch specification.
http://www.openflow.org/documents/openflow-spec-
v1.1.0.pdf.

[3] F. Baboescu, S. Singh, and G. Varghese. Packet
classification for core routers: Is there an alternative
to CAMs? In Proc. IEEE INFOCOM, 2003.

[4] A. Bremler-Barr and D. Hendler. Space-efficient
TCAM-based classification using gray coding. In Proc.
26th Annual IEEE Conf. on Computer
Communications (Infocom), May 2007.

[5] Q. Dong, S. Banerjee, J. Wang, D. Agrawal, and A.
Shukla. Network virtualization: Implementation steps
towards the future internet. In Proc. ACM Sigmetrics,
pages 311-322, 2006.

[6] K. Lakshminarayanan, A. Rangarajan, and S.
Venkatachary. Algorithms for advanced packet
classification with ternary CAMs. In Proc. ACM
SIGCOMM, pages 193-204, August 2005.

[7] Natasha Gude, Teemu Koponen, Justin Pettit, Ben
Pfaff, Martin Casadao, Nick McKeown and Scott
Shenker. NOX: Towards an operating system for
networks. In SIGCOMM CRR (2009).

[8] ONF OpenFlow Futures.
https://www.opennetworking.org/.

[9] Xie, G., He, P., Guan, H., Li, Z., Xie, Y., Luo, L.,
Zhang, J., Wang, Y., Salamatian, K. PEARL: a
programmable virtual router platform.
Communications Magazine, IEEE. 49, 71–77 (2011)

[10] Of12softswitch: An open-source software data plane.
https://github.com/CPqD/of12softswitch.

[11] Chad R. Meiners, Alex X. Liu and Eric Torng. TCAM
SPliT: Optimizing Space, Power, and Throughput for
TCAM-based Packet Classification Systems.
Proceedings the 2011 ACM/IEEE Seventh Symposium
on Architectures for Networking and Communications
Systems, Pages 200-210.

[12] The rules set of Evaluation Packet Classification,
http://www.arl.wustl.edu/ hs1/PClassEval.html

90

