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In the three decades since the FMRFamide peptide was isolated from the mollusk Macro-
callista nimbosa, structurally similar peptides sharing a C-terminal RFamide motif have
been identified across the animal kingdom. FMRFamide-like peptides (FLPs) represent the
largest known family of neuropeptides in invertebrates. In the phylum Nematoda, at least
32 flp-genes are classified, making the FLP system of nematodes unusually complex. The
diversity of the nematode FLP complement is most extensively mapped in Caenorhabditis
elegans, where over 70 FLPs have been predicted. FLPs have shown to be expressed
in the majority of the 302 C. elegans neurons including interneurons, sensory neurons,
and motor neurons. The vast expression of FLPs is reflected in the broad functional reper-
toire of nematode FLP signaling, including neuroendocrine and neuromodulatory effects
on locomotory activity, reproduction, feeding, and behavior. In contrast to the many iden-
tified nematode FLPs, only few peptides have been assigned a receptor and there is the
need to clarify the pathway components and working mechanisms of the FLP signaling
network. Here, we review the diversity, distribution, and functions of FLPs in nematodes.

Keywords: FMRFamide-like peptides, nematodes, C. elegans, neuropeptide, G protein-coupled receptor, feeding
behavior, reproduction

INTRODUCTION
FMRFamide-like peptides (FLPs) are the largest and most diverse
family of neuropeptides known (1, 2). Since the identification
of the founder sequence FMRFamide from the clam Macrocal-
lista nimbosa (3), structurally similar peptides have shown to be
present in animals of all major phyla (4, 5). Sequence variants of
the authentic tetrapeptide have been mainly identified in lophotro-
chozoans (6). In most phyla and especially in nematodes, however,
a diverse repertoire of extended peptides sharing the C-terminal
RFamide motif is found (5, 6). Though, they are thought to have
a common eumetazoan origin, the relatedness of subfamilies of
FLPs remains unclear because of the large sequence diversity (7,
8). Some peptides show high sequence similarity to FMRFamide
suggesting homology to the tetrapeptide, and are therefore often
referred to as FMRFamide-related peptides (FaRPs). FaRPs are
broadly defined as peptides containing the C-terminal sequence
X1 X2 RFamide, with X1 generally representing an aromatic amino
acid, whereas X2 denotes a hydrophobic residue (6, 7). As many
described RFamides differ from the tetrapeptide core for which
evolutionary relationships are difficult to determine, the more
general term FLP will be used here to address all peptides with
a C-terminal RFamide sequence.

FMRFamide-like peptides are intimately involved in a broad
pattern of biological processes as diverse as feeding, cardiovascu-
lar function, and water homeostasis (4–6, 9). Despite the large
sequence diversity, typified by more than 70 family members in
the nematode Caenorhabditis elegans, several functions of FLPs
in the control of energy balance, feeding behavior, reproduction,
and neuromodulation emerge consistently throughout evolution
(10, 11). Biochemical and genetic studies, exploiting mainly C. ele-
gans, have provided insight into the FLP-coordinated regulation of

these processes in nematodes. The central role of FLPs in nematode
biology including reproduction and locomotory activity has also
boosted research on FLP signaling as a target for parasite control in
pathogenic nematodes (12–14). However, a lack of data on func-
tional nematode FLP-receptor couples slows down the progress
in understanding and exploiting the FLP signaling system. Here,
we focus on the evolutionary aspect of FLPs, discussing both the
sequence conservation and diversity in the phylum Nematoda,
and review our knowledge of conserved FLP signaling functions
in nematodes.

FLP REPERTOIRE OF NEMATODES
Initial attempts to identify FLPs relied on molecular cloning of
flp-genes (15, 16), and biochemical characterization of immunore-
active peptide fractions by Edman degradation or gas-phase
sequencing [reviewed by Maule et al. (17) and Day and Maule
(18)]. The first nematode FLP, named AF1 (KNEFIRFa), was bio-
chemically isolated in this way from the parasite Ascaris suum
(19). The completion of the C. elegans genome sequence revealed
a large diversity in the nematode FLP system, boosting the pre-
diction of neuropeptides through in silico data-mining (20–23).
To date, at least 31 flp precursor genes are predicted in C. ele-
gans that give rise to around 70 distinct FLPs [Table 1; Ref.
(24)]. Expression has been confirmed for the majority of these
peptides (Table 1), mainly by peptidomic strategies enabling a
comprehensive analysis of the whole peptide content of organisms
(25–27). In addition, these approaches allow determining the pres-
ence of posttranslational modifications and the exact processing
into bioactive peptides, which may be difficult to accurately pre-
dict when multiple or non-conventional cleavage sites are present
(25). Peptidomic techniques have also been successfully adopted
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Table 1 | Neuropeptide genes encoding FLPs in nematodes.

flp genea Speciesb (C-terminal) peptide

consensus sequencec

C. elegans FLPsd C. elegans flp

expressione

C. elegans receptor

interaction

(EC50 range)f

Reference

flp-1 A. caninum, A. ceylanicum,

A. suum, B. malayi, B. xylophilus,

C. elegans, C. vulgaris, D. immitis,

G. pallida, G. rostochiensis,

H. concortus, H. schachtii, L. loa,

M. arenaria, M. chitwoodi, M. hapla,

M. incognita, M. javanica,

M. paranaensis, N. brasiliensis,

N. americanus, O. onchengi,

O. volvulus, P. redivivus,

P. trichosuri, S. ratti, S. stercoralis,

T. muris, T. spiralis, W. bancrofti

-[P/N/Q/A/] [N/T/D/S/K][F/Y]LRFa SADPNFLRFa,

SQPNFLRFa,

ASGDPNFLRFa,

SDPNFLRFa,

AAADPNFLRFa,

(K)PNFLRFa,

AGSDPNGLRFa,

*(K)PNFMRYa

AIA, AIY, AVA,

AVE, AVK, RIG,

RMG, M5

NPR-22 (100 nM),

NPR-4 (~0.4–9 µM),

NPR-11 (~1–8 µM)

(13, 15, 21,

23–26, 33–44)

flp-2 A. caninum, A. suum, B. xylophilus,

C. elegans, G. pallida, H. concortus,

M. chitwoodi, M. hapla,

M. incognita, M. javanica,

N. americanus, N. brasiliensis,

O. ostertagi, S. ratti

[L/F/V/S/Q][P/R/M][G/R]EP[I/L]RFa LRGEPIRFa,

SPREPIRFa

AIA, RID, PVW,

I5, MC (ASI, M4,

head muscles, an

extra pair of cells

in the head

FRPR-18 (~50 nM) (13, 14, 21, 23,

24, 43, 45)

flp-3 A. suum, B. malayi, B. xylophilus,

C. elegans, D. immitis, G. pallida,

H. glycines, L. loa, M. arenaria,

M. chitwoodi, M. hapla,

M. incognita, O. volvulus,

O. onchengi, S. ratti, W. bancrofti

-[S/A/E/T/N][P/L][L/F/P]GTMRFa SPLGTMRFa,

TPLGTMRFa,

SAEPFGTMRFa,

NPENDTPFGTMRFa,

ASEDALFGTMRFa,

EDGNAPFGTMRFa,

EAEEPLGTMRFa,

SADDSAPFGTMRFa,

NPLGTMRFa

IL1, PQR, SP, CP9 NPR-10 (~60–300 nM),

NPR-4 (≥10 µM)

(13, 21, 23–25,

27, 34, 40, 43, 44,

46, 47)

flp-4 A. caninum, A. ceylanicum,

A. suum, B. malayi, B. xylophilus,

C. elegans, D. immitis, H. glycines,

N. brasiliensis, O. ochengi,

O. volvulus, W. bancrofti

-[A/T/G][Q/N/S/K][P/S][T/S]FIRFa PTFIRFa, ASPSFIRFa ADL, ASEL, AVM,

AWC, FLP, PHA,

PHB, PVD, I5, I6,

NSM

NPR-4 (~5–80 nM) (13, 21, 23, 24,

32, 40, 43, 46)

(Continued)
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Table 1 | Continued

flp genea Speciesb (C-terminal) peptide

consensus sequencec

C. elegans FLPsd C. elegans flp

expressione

C. elegans receptor

interaction

(EC50 range)f

Reference

flp-5 A. caninum, A. suum, B. xylophilus,

C. elegans, G. pallida,

G. rostochiensis, H. concortus,

H. glycines, M. arenaria, M. hapla,

M. javanica, M. incognita,

N. brasiliensis, N. americanus,

P. penetrans, S. ratti

-[G/A/N/K][A/Q/P]KFIRFa APKFIRFa, AGAKFIRFa,

GAKFIRFa

ASE, PVT, RMG,

I4, M4,

pharyngeal

muscle, amphidial

neuron (PB, I2),

rays 1,5,7, HOB,

P8

NPR-11 (~1–8 µM) (13, 21, 23–25,

34, 40, 43, 44, 46)

flp-6 A. caninum, A. ceylanicum,

A. suum, B. malayi, B. xylophilus,

C. elegans, D. immitis, G. pallida,

G. rostochiensis, H. concortus,

H. glycines, L. loa, M. chitwoodi,

M. hapla, M. incognita,

M. paranaensis, N. brasiliensis,

N. americanus, O. ochengi,

O. ostertagi, O. volvulus,

P. redivivus, S. ratti, S. stercoralis,

T. circumcincta, W. bancrofti

KS[A/S]YMRFa KSAYMRFa (6x),

*pQQDSEVEREMM

ASE, AFD, ADF,

ASG, PVT, I1 (one

or two pairs of

head cells), rays

2, 5, 6, 7

(13, 21, 23–25,

31, 34, 43, 44, 46,

48, 49)

flp-7 A. caninum, A. suum, B. xylophilus,

C. elegans, G. pallida,

G. rostochiensis, H. concortus,

H. glycines, M. hapla, M. incognita,

M. javanica, N. brasiliensis,

O. ostertagi, S. ratti, S. stercoralis

[A/T/S]P[F/L/M/I][D/Q/A/E]R[S/A/T],

[S/A/T/K][M/L/I][A/V/I]RFa

TPMQRSSMVRFa (2x),

SPMQRSSMVRFa (3x),

SPMERSAMVRFa,

SPMDRSKMVRFa

ALA, AVG, PHB,

PDA, PVW, RIC,

SAA

(RMDV/SMDV,

PHA)

NPR-22 (0.025–5 µM),

FRPR-3 (>1 µM)

(13, 21, 24, 26,

34, 35, 43, 44, 46,

50)

flp-8 A. ceylanicum, A. suum, B. malayi,

B. xylophilus, C. elegans, D. immitis,

H. concortus, L. loa, N. americanus,

N. brasiliensis, O. ochengi,

O. volvulus, S. ratti, T. muris,

T. spiralis, W. bancrofti, X. index

KNEF[I/V]RFa KNEFIRFa (3x) AUA, PVM, URX

(RMG, ADA, an

extra pair of cells

in the head), CP9

(13, 19, 21, 23,

24, 29, 34, 43, 46,

51)

flp-9 A. caninum, A. ceylanicum,

C. elegans, H. concortus,

N. americanus, N. brasiliensis,

O. ostertagi

KPSFVRFa KPSFVRFa NPR-22 (5 µM) (13, 21, 24–26,

35, 52)

(Continued)
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Table 1 | Continued

flp genea Speciesb (C-terminal) peptide

consensus sequencec

C. elegans FLPsd C. elegans flp

expressione

C. elegans receptor

interaction

(EC50 range)f

Reference

flp-10 A. ceylanicum, C. elegans, X. index -[A/T/M][R/A][S/G][G/S/K]Y[I/L]RFa QPKARSGYIRFa AIM, ASI, AUA,

BAG, BDU, DVB,

PQR, PVR, URX,

vulD

EGL-6 (11 nM) (13, 21, 23, 53)

flp-11 A. suum, A. caninum,

A. ceylanicum, B. malayi,

B. xylophilus, C. elegans,

D. immitis, G. pallida,

G. rostochiensis, H. concortus,

H. glycines, L. loa, M. hapla,

M. incognita, M. paranaensis,

N. americanus, N. brasiliensis,

O. ochengi, O. ostertagi,

O. volvulus, P. penetrans, R. similis,

S. ratti, S. stercoralis,

T. circumcincta, W. bancrofti

-M/I/G/A/S][R/A][N/P][A/S/Q/E][P/L],

VRFa

AMRNALVRFa,

ASGGMRNALVRFa,

NGAPQPFVRFa,

*SPLDEEDFAPESPLQa

AUA, BAG, VD,

DA, DD, DVB,

LUA, PHC, PVC,

SAB, URX, uvl,

head muscle

(socket cells),

ray 4

NPR-22 (0.75–2.5 µM),

FRPR-3 (~1 µM), NPR-4

(≥10 µM)

(13, 21, 23–26,

28, 29, 35, 40, 43,

46, 50, 54)

flp-12 A. caninum, A. suum, B. malayi,

B. xylophilus, C. elegans, D. immitis,

G. pallida, G. rostochiensis,

H. concortus, H. glycines, L. loa,

M. arenaria, M. chitwoodi, M. hapla,

M. incognita, M. javanica, M. minor,

M. paranaensis, N. americanus,

N. brasiliensis, O. ochengi,

O. volvulus, S. ratti, W. bancrofti

(K)[R/K/N]NKFEFIRFa RNKFEFIRFa AVA,AVJ, AVH,

BAG, PDA, PVR,

SAA, SDQ, SMB

(BDU), rays 1, 4,

5, 7, CP9

(13, 21, 23, 24,

29, 37–39, 43, 44,

51, 55)

flp-13 A. caninum, A. ceylanicum,

A. suum, B. xylophilus, C. elegans,

D. immitis, G. pallida,

G. rostochiensis, H. concortus,

H. glycines, L. loa, M. chitwoodi,

M. hapla, M. incognita, M. javanica,

N. americanus, N. brasiliensis,

O. ochengi, O. ostertagi,

O. volvulus, P. penetrans,

P.pacificus, S. ratti, S. stercoralis,

W. bancrofti

-P[F/L/I][I/L/M/V]RFa AMDSPFIRFa,

AADGAPFIRFa,

APEASPFIRFa (2x),

AADGAPLIRFa,

ASPSAPFIRFa,

SPSAVPIRFa,

SAAAPLIRFa,

ASSAPFIRFa

ASE, ASG, ASK,

BAG, DD, I5, M3,

M5 (an extra pair

of cells in the

head), VSP

NPR-22 (2.5–5 µM) (21, 23–26, 31,

35, 43, 44, 46, 51,

56, 57)

(Continued)
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Table 1 | Continued

flp genea Speciesb (C-terminal) peptide

consensus sequencec

C. elegans FLPsd C. elegans flp

expressione

C. elegans receptor

interaction

(EC50 range)f

Reference

flp-14 A. caninum, A. ceylanicum,

A. suum, B. malayi, B. xylophilus,

C. elegans, D. immitis, G. pallida,

G. rostochiensis, H. concortus,

L. loa, M. arenaria, M. chitwoodi,

M. hapla, M. incognita, M. javanica,

M. paranaensis, N. americanus,

N. brasiliensis, O. ochengi,

O. volvulus, P. redivivus,

P. trichosuri, P. penetrans,

P.penetrans, R. similis, S. ratti,

S. stercoralis, T. circumcincta,

T. muris, T. spiralis, W. bancrofti

KH[E/D][Y/F][L/V/I]RFa KHEYLRFa (4x) NPR-4 (≥ 10 µM),

NPR-11 (~1 – 8 µM)

(13, 22, 24, 26,

29, 31, 34, 37–40,

43, 44, 51, 55, 58,

59)

flp-15 A. ceylanicum, A. suum, C. elegans,

H. concortus, N. americanus,

N. braziliensis, O. ostertagi,

T. circumcincta

[R/D/G/A][G/V]P[T/S/Q]GPLRFa GGPQGPLRFa,

RGPSGPLRFa

PHA, I2,

socket/sheath

cells (pharyngeal

muscle, several

cells in the head)

NPR-3 (~100–600 nM),

NPR-4 (≥10 µM)

(13, 22–24, 35,

40, 46, 60)

flp-16 A. caninum, A. ceylanicum,

A. suum, B. malayi, B. xylophilus,

C. elegans, D. immitis, G. pallida,

G. rostochiensis, H. concortus,

H. glycines, L. loa, M. hapla,

M. incognita, N. americanus,

N. brasiliensis, O. ochengi,

O. volvulus, O. ostertagi,

P. trichosuri, P. penetrans, P. vulnus,

R. similis, S. ratti, W. bancrofti

[A/G]QTFVRFa AQTFVRFa (2x),

GQTFVRFa

(13, 24, 43, 44,

46)

flp-17 A. caninum, A. suum, B. xylophilus,

C. elegans, H. contortus,

N. americanus, N. brasiliensis,

O. ostertagi, S. ratti, S. stercoralis,

X. index

KS [A/S/Q][F/Y/L][V/I]RFa KSAFVRFa (2x),

KSQYIRFa

BAG, M5 (an

extra pair of cells

in the head), rays

1, 5, 7

EGL-6 (1–28 nM) (13, 22–24, 32,

43, 46, 53)

(Continued)
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Table 1 | Continued

flp genea Speciesb (C-terminal) peptide

consensus sequencec

C. elegans FLPsd C. elegans flp

expressione

C. elegans receptor

interaction

(EC50 range)f

Reference

flp-18 A. caninum, A. ceylanicum,

A. suum, B. xylophilus, C. elegans,

D. immitis, G. pallida,

G. rostochiensis, H. concortus,

L. loa, M. chitwoodi, M. hapla,

M. incognita, M. javanica,

N. americanus, N. brasiliensis,

O. ochengi, O. ostertagi,

O. volvulus, P. pacificus, S. ratti,

S. stercoralis, T. muris, T. spiralis,

W. bancrofti

-[P/Q/A][G/Q/D/A],

[V/M/F/L][V/M/F/L]RFa

(DFD)GAMPGVLRFa,

EMPGVLRFa,

(SYFDEKK)SVPGVLRFa

(3x), EIPGVLRFa,

SEVPGVLRFa,

DVPGVLRFa

AVA, AIY, RIG,

RIM, M2 (M3,

two extra pairs of

cells in the head),

rays 2, 6

NPR-4 (~5–80 nM),

NPR-10

(~60 nM–4.6 µM),

NPR-1

[(−32.2)–(−6.8)]**,

NPR-5a (~20–70 µM),

NPR-5b (~30–800 nM),

NPR-11 (~80 nM–8 µM)

(13, 16, 24–26,

29, 37, 39, 40, 43,

44, 46, 61, 62)

flp-19 A. caninum, A. suum, B. malayi,

B. xylophilus, C. elegans, D.immitis,

G. pallida, H. concortus, H. glycines,

L. loa, M. hapla, M. incognita,

N. americanus, N. brasiliensis,

O. ochengi, O. volvulus,

P. penetrans, S. ratti, T. circumcincta,

W. bancrofti

-W[A/S][N/S/T][Q/K/S][V/L]RFa WANQVRFa,

ASWASSVRFa

AIN, AWA, BAG,

HSN, URX (an

extra pair of cells

in the tail), rays 5,

7, 9, CEM

(13, 22–26, 32,

34, 43, 44, 46)

flp-20 A. suum, A. caninum, B. xylophilus,

C. elegans, G. pallida, H. concortus,

M. hapla, M. incognita,

N. brasiliensis, P. trichosuri, S. ratti

[A/V]MMRFa AMMRFa (2x) ALM, ASEL,

AVM, LUA, PLM,

PVC, PVM, PVR,

RIB, AIB (PVT)

(13, 22–24, 43,

44)

flp-21 A. caninum, A. suum, B. malayi,

B. xylophilus, C. elegans,

D. immitis, G. pallida, H. concortus,

L. loa, M. hapla, M. incognita,

N. americanus, N. brasiliensis,

O. ochengi, O. ostertagi,

O. volvulus, P. penetrans,

P. pacificus, R. similis, S. ratti,

S. stercoralis, T. circumcincta,

W. bancrofti

-[G/A/S/L][L/A]GPRPLRFa GLGPRPLRFa ADL, ASI,

ASEASH, ASJ,

ASK, FLP, URA,

MC, M4, M2, SP,

DVF, P6, P7, P9

NPR-1 (~2.5–100 nM),

NPR-11 (~1–10 nM),

NPR-5a (~0.6–5 µM),

NPR-5b

(~200–1500 nM)

(13, 24, 40, 43,

44, 47, 61–63)

(Continued)

Fro
n

tiers
in

E
n

d
o

crin
o

lo
gy

|N
euroendocrine

S
cience

June
2014

|Volum
e

5
|A

rticle
90

|6

http://www.frontiersin.org/Neuroendocrine_Science
http://www.frontiersin.org/Neuroendocrine_Science/archive


                                                         

Peym
en

et
al.

N
em

atode
FLP

signaling

Table 1 | Continued

flp genea Speciesb (C-terminal) peptide

consensus sequencec

C. elegans FLPsd C. elegans flp

expressione

C. elegans receptor

interaction

(EC50 range)f

Reference

flp-22 A. caninum, A. ceylanicum,

A. suum, B. malayi, B. xylophilus,

C. elegans, D. immitis, G. pallida,

G. rostochiensis, H. concortus,

H. glycines, L. loa, M. hapla,

M. incognita, N. brasiliensis,

O. ochengi, O. ostertagi,

O. volvulus, P. trichosuri,

P. penetrans, P. pacificus, R. similis,

S. ratti, S. stercoralis,

T. circumcincta, W. bancrofti

-[P/E/A/T/S][P/Q/G/E/N/S][S/G/V/A],

KWMRFa

SPSAKWMRFa (3x) AIM, ASG, AVA,

AVG, AVL, CEP,

PVD, PVW,

RIC,AIZ, RIV,

SMD, URA, uvl, 6

out of 9 CP

NPR-22 (1 µM) (13, 24–26, 35,

43, 44)

flp-23 B. malayi, C. elegans, D. immitis,

L. loa, O. ochengi, O. volvulus,

T. circumcincta, W. bancrofti

-[V/I/T][V/D/K][G/D/F][Q/G/F]QDFLRFa VVGQQDFLRFa,

TKFQDFLRFa

(13, 23, 24, 46)

flp-24 A. caninum, A. ceylanicum,

A. suum, B. malayi, C. elegans,

D. immitis, H. concortus, L. loa,

N. americanus, O. ostertagi,

O. ochengi, O. volvulus, S. ratti,

W. bancrofti

VP[S/N][A/P][G/A]DMM[V/I]RFa VPSAGDMMVRFa (13, 23, 24, 31,

46)

flp-25 A. caninum, A. suum, B. malayi,

C. elegans, D. immitis, G. pallida,

G. rostochiensis, H. concortus,

L. loa, M. chitwoodi, M. hapla,

M. incognita, M. javanica,

N. americanus, N. brasiliensis,

O. ochengi, O. volvulus, S. ratti,

S. stercoralis, W. bancrofti

-[D/A/S/N/T]YD[Y/F][V/I]RFa DYDFVRFa, ASYDYIRFa ASE (13, 24, 26, 44,

46, 64)

flp-26 A. caninum, A. ceylanicum,

A. suum, C.elegans, N. americanus

-[G/S][G/E][G/E/P][L/M/I][A/E]F[H/S/N],

[P/A][N/D][D/M]L[A/S/T]LRFa

(E)FNADDLTLRFa,

GGAGEPLAFSPDML-

SLRFa,

*FRLPFQFFGANEDFNSGLT,

*NYYESKPY

(13, 24, 26, 46)

(Continued)
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C. elegans FLPsd C. elegans flp
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Reference

flp-27 A. caninum, C. elegans, H. glycines,

M. chitwoodi, M. hapla,

M. incognita, M. javanica,

M. paranaensis, N. americanus,

R. similis

[G/T/S/A][K/L/M]G[G/S]RMRFa GLGGRMRFa,

*pQPIDEERPIFME

(13, 24, 26, 44,

46)

flp-28 A. suum, A. caninum, C. elegans,

H. concortus, N. brasiliensis,

O. ostertagi, P. penetrans, S. ratti

-[V/I][L/F]MRFa VLMRFa,

APNRVLMRFa

(13, 24, 26)

flp-31 B. xylophilus, G. pallida,

M. chitwoodi, M. hapla,

M. incognita, P. penetrans

LYRPRGPPRFa (13, 24, 44)

flp-32 A. caninum, B. xylophilus,

C. elegans, G. pallida, H. concortus,

M. hapla, M. incognita,

N. brasiliensis, S. ratti

AMRNSLVRFa (13, 24, 43, 44,

46)

flp-33 A. suum, A. caninum, B. xylophilus,

C. elegans, H. concortus,

N. brasiliensis

APLEGFEDMSGFLRTIDGIQ,

KPRFa

(24, 43, 46, 65)

flp-34 A. suum, A. caninum, B. malayi,

B. xylophilus, C. elegans,

D. immitis, G. pallida, H. concortus,

M. hapla, M. incognita, L. loa,

N. brasiliensis, O. onchengi,

O. volvulus, W. bancrofti

ALNRDSLVASLNNAERLRFa,

*ADISTFASAINNAGRL-

RYa

(24, 46)

aThe flp-coding genes flp-29 and flp-30 were recently suggested to represent orthologs of C. elegans flp-28 and flp-2, respectively, and have been accordingly included in this table (24).
bSpecies: Ascaris suum, Ancylostoma caninum, Ancylostoma ceylanicum, Brugia malayi, Bursaphelenchus xylophilus, Caenorhabditis elegans, Caenorhabditis vulgaris, Dirofilaria immitis, Globodera pallida, Glo-

bodera rostochiensis, Haemonchus concortus, Heterodera glycines, Heterodera schachtii, Loa loa, Meloidogyne arenaria, Meloidogyne incognita, Meloidogyne javanica, Meloidogyne hapla, Meloidogyne paranaensis,

Necator americanus, Nippostrongylus braziliensis, Onchocerca ochengi, Onchocerca volvulus, Ostertagia ostertagi, Panagrellus redivivus, Parastrongyloides trichosuri, Pratylenchus penetrans, Pristionchus pacificus,

Radolphus similis, Strongyloïdes ratti, Strongyloïdes stercoralis, Teladorsagia circumcincta, Trichinella spiralis, Trichuris muris, Wuchereria bancrofti, and Xiphinema index.
cSequences that start with a hyphen have variable N-terminal extensions.
dPeptides indicated in bold have been isolated from C. elegans. Peptides indicated with an asterisks are non-FLPs encoded by the indicated flp gene. The copy number of peptides encoded by the gene is indicated

between brackets.
eExpression patterns were adapted from Ref. (46, 64) and Wormbase (http:// www.wormbase.org).
fThe approximate EC50 range for receptor activation is indicated between brackets and includes receptor activation by all peptides encoded by this precursor.

**Values represent alteration of current in response to neuropeptide application in Xenopus assay.
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Peymen et al. Nematode FLP signaling

for characterizing and localizing FLPs in other nematodes, mostly
in A. suum (28–32).

Although the FLP repertoire of nematodes has been best stud-
ied in C. elegans, evidence emerges on the distribution of FLPs
in parasitic and free-living species across the nematode phylum
(Table 1). Complete genome sequences have been determined for
few phylum members so far, but transcriptome data is available
for over 60 nematode species (66, 67). In 2005, McVeigh and co-
workers performed a systematic BLAST analysis of EST databases
to investigate FLP sequence diversity within the phylum Nematoda
identifying more than 500 FLPs across 46 species (13). The FLP
complement of other nematodes seems to be generally similar to
that of C. elegans (13, 30, 44). This finding is confirmed by a very
recent study of McCoy and colleagues, who re-investigated the
available genome and transcriptome resources for 17 pathogenic
nematodes (24). Many nematode FLPs display a high degree of
inter-species structural conservation that is independent of their
parasitic or free-living lifestyle [Table 1; Ref. (13)], supporting
a fundamental role of FLPs in nematode biology. Corroborating
this, only one nematode flp gene is thought to be parasite-specific;
the flp-31 gene is absent from the C. elegans genome, but occurs
in several plant parasitic nematodes suggesting a function specific
in phytoparasitism (13, 24, 44). Although flp-31 was previously
predicted from A. suum (32), this gene is considered to be a
sequelog of C. elegans flp-15 (24). Initially, flp-29 and flp-30
were also found to be parasite-specific (13), but a recent inves-
tigation of their C-terminal motif and genomic location suggests
that these genes should be re-designated to respectively flp-28 and
flp-2 (24).

Whereas most FLPs are likely widespread throughout the nema-
tode phylum, variable conservation has been reported for some
family members. Highly conserved nematode flp-genes include
flp-1, flp-6, flp-11, flp-12, flp-14, flp-16, flp-18, flp-19, flp-21, and
flp-22; other genes such as flp-2 and flp-10 have shown to be more
restricted and structurally diverse (13, 24). Interestingly, parasitic
nematodes appear to possess variable proportions of the C. ele-
gans flp-gene complement and variation is highest among distinct
clades (24). Genome-wide analysis of the parasite Meloidogyne
incognita showed that its FLP complement is reduced to about
60% compared to that of C. elegans (44). Two other nematodes,
Trichuris muris and Trichinella spiralis, were shown to display a
dramatically reduced complement of only 13%, whereas A. suum
possesses 84% of C. elegans flp-genes (24) The finding that fewer
flp-genes are expressed in parasitic nematodes as compared to free-
living species has been postulated to be an indication of the more
contained repertoire of stimuli these nematodes encounter dur-
ing their endoparasitic stage (68). Furthermore, more FLPs seem
to be present in the animal parasitic datasets compared to plant
parasitic nematodes (68). Our view on the diversity of FLPs in
nematodes however strongly depends on the available sequence
data. In depth analyses of the increasing number of completed
genome sequences and transcriptome resources should further
expand our understanding of the nematode FLP repertoire in the
near future.

Recent studies estimate the presence of 32 distinct flp-genes
in nematodes (24). Among them are 15 genes that code for N-
terminally extended peptides carrying the classical FaRP motif,

whereas most others peptides share the restricted RFamide core
(Table 1). Although the relatedness of FLPs across metazoans is
often unclear, sequences of the neuropeptide F (NPF) family have
been identified in several invertebrate groups and predicted in the
nematode phylum as well (69). NPF-like peptides are encoded
by the flp-27 precursor that is highly conserved in nematodes,
and contains the C-terminal RXRFamide motif characteristic of
the invertebrate NPF family (70). The plethora of FLPs in nema-
todes is high, given the structural simplicity of their nervous
system harboring around 300 neurons (2, 5, 6). This diversity
of neural messengers is magnified by classical neurotransmit-
ters and a broad range of other neuropeptides of insulin (ins)
and neuropeptide-like protein (nlp) families, of which about 200
peptides are predicted in C. elegans (46, 71).

LOCALIZATION OF FLPs
Immunocytochemical localization of FLPs has been performed in
various nematode species, mainly using antibodies raised against
synthetic FMRFamide or the RFamide motif (18, 37, 55). These
studies suggest that FLPs are widely expressed in the nervous sys-
tem of all nematodes, supporting a general role for FLP signaling
in nematode biology. The broad distribution of immunoreac-
tive neurons, including in motor neurons, fueled the research
effort to decipher nematode FLP signaling and its role in neu-
romotor function, which had already proven to be a successful
target for parasite control (12). Although the vast patterns of
FLP immunoreactivity are generally similar between nematode
species, HPLC-ELISA studies have identified qualitative differ-
ences between free-living and plant parasitic nematodes, sug-
gesting that the distinct peptides present in plant nematodes are
structurally different (72, 73).

Despite immunocytochemistry being immensely useful to
study gross patterns of FLP localization, most of the C-terminally
directed antibodies used were incapable of reliably discriminating
between structurally related FLPs. Gene-specific flp expression has
been mainly investigated in C. elegans, using reporter transgenes
in which LacZ or a fluorescent protein gene is placed under the
control of the endogenous promoter region. Li and co-workers
applied this molecular approach to map the specific expression
patterns of flp-1 to flp-23 genes (22, 23). Just over 50% of the total
number of neurons were found to express flp’s, a wide distribu-
tion in stark contrast to earlier immunochemical studies in which
only 10% of all C. elegans neurons showed FLP reactivity (74).
Expression could be detected in all neuronal cell types, including
interneurons, sensory neurons, and motor neurons. Six flp-genes
were also expressed in non-neuronal cells, including in head mus-
cle (flp-2 and flp-11), pharyngeal muscle (flp-5 and flp-15), socket
and/or sheath cells (flp-11 and flp-15), vulval cells (flp-10), and
uterine cells (flp-11 and flp-2). Although the expression of each
flp gene can be precisely delineated, there is a considerable overlap
with many cells expressing more than one flp gene (23). Most flp-
genes are also expressed in multiple neurons suggesting that some
FLPs have overlapping functions, unlike others fulfilling unique
roles.

In situ hybridization (ISH), which uses nucleotide probes
complementary to specific gene transcripts, offers an attractive
alternative to delineate flp gene expression in other nematodes
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Peymen et al. Nematode FLP signaling

that are less amenable to transgenesis than C. elegans (38, 42, 54,
75). Furthermore, as immunochemistry allows the determination
of neurite morphology facilitating neuronal identification, several
antibodies highly specific to certain A. suum FLPs were recently
generated (42, 76). Another approach for FLP localization con-
sists of direct mass spectrometric analysis on dissected neuronal
tissue without the need of an extensive extraction process (29,
76). Importantly, this technique can identify previously unknown
peptides as no prior sequence information is required. Yew et al.
(29) subjected individually dissected nerve ganglia from A. suum
to mass spectrometric analysis, producing a peptidomic map of
the individual anterior ganglions. FLP distribution appeared to
be much less restricted to specific cells as compared to the gene
expression studies in C. elegans or G. pallida using reporter con-
structs and ISH, thus supporting the notion that FLP expression
differs among nematode species. The authors however also stress
the sampling biases inherent in the use of mass spectrometry.
In large nematodes such as the foot-long A. suum, cell-specific
FLP content can also be rapidly determined by precisely dissecting
individual cells (31, 42).

Taken together, abovementioned studies paint a picture in
which FLPs widely occur in all known nematode neuronal sub-
types and even in non-neuronal tissues. Whereas the gross patterns
of FLP distribution remain consistent across the phylum, more
recent studies indicate that the cellular expression of homologous
FLPs can substantially differ between nematode species (2, 42).
This is remarkable, given that both the general FLP complement
and the basic nervous architecture are conserved, with C. elegans
even considered as a miniature version of A. suum at the level
of neuronal morphology (2, 24, 51, 77, 78). Caution is however
warranted as dissimilarities could be attributed to experimental
differences, with each technique suffering from inherent caveats.
Besides the limited specificity of the commonly used antibod-
ies, transgenic reporter constructs may not contain all regulatory
sequences necessary to recapitulate endogenous gene expression.
Moreover, variability of cellular expression patterns of different
gene products has repeatedly been observed in A. suum, par-
tially due to genetic differences since the worms are not isogenic
(31, 42, 75, 76).

FLP-RECEPTORS IN NEMATODES
Most FLPs are known to act through binding of G protein-
coupled receptors (GPCRs) (79–81). Although the early work
on nematode FLPs primarily focused on peptide identifications,
in vitro and functional studies have started to address the biol-
ogy of their receptors and mode of action. In C. elegans, sequence
similarity or homology to the FLP-receptor family has been pos-
tulated for several of the more than 100 peptide GPCR genes
predicted in the genome (81, 82). The neuropeptide receptor
NPR-1 was previously suggested as a member of the invertebrate
NPF receptor (NPFR) family and related neuropeptide Y receptors
(NPYRs) in mammals (83). Sequence similarity and phylogenetic
clustering suggests additional NPFR/NPYR-like family members
are likely to be present in C. elegans, as well as representatives
related to vertebrate neuropeptide FF receptors, and Drosophila
myosuppressin and FMRFamide receptors (8, 82, 84). Peptides

that functionally activate these GPCRs, with exception of NPR-1,
unfortunately remain unknown.

In general, few nematode FLPs have been matched to their
receptor(s) and the identification of FLP-receptor couples has only
been undertaken in C. elegans (2, 81). Activation by FLPs has been
reported for 13 C. elegans receptors encoded by 10 genes (Table 1),
all of which are members of the rhodopsin family of GPCRs
[reviewed in Ref. (81)]. Deorphanization, i.e., the identification
of receptor ligand(s), is typically done by expressing GPCRs in a
heterologous cellular system such as Xenopus oocytes, mammalian
cells or yeast. Receptor activation can then be detected by moni-
toring downstream steps in the GPCR signaling pathway including
levels of secondary messenger molecules or GTP exchange upon
G protein activation (85). When heterologous GPCRs are chal-
lenged with a peptide library, multiple FLPs are generally found
to activate a single receptor. Peptide motifs essential for receptor
activation are often shared by FLPs derived from the same pre-
cursor protein. For example, Kubiak and co-workers showed that
all peptides from the FLP-15 precursor carrying the highly simi-
lar GPXGPLRFamide motif, recognize the neuropeptide receptor
NPR-3 (60). Likewise, two structurally similar FLPs processed
from the FLP-2 precursor were found to activate C. elegans recep-
tors encoded by the frpr-18 locus (45). By monitoring intracellular
calcium levels, Mertens et al. showed that both FLP-2 peptides
activate two isoforms of the receptor FRPR-18 though with differ-
ent potencies. Whereas SPREPIRFamide (FLP-2A) was active with
nanomolar half-maximal effective concentrations (EC50 values),
FRPR-18 receptors were only activated at micromolar concen-
trations by LRGEPIRFamide (FLP-2B). In contrast, Larsen and
co-workers found FLP-2A and FLP-2B to be equipotent on the
FRPR-18b isoform using a similar calcium mobilization assay in
a different type of cells (14). Receptor pharmacology can thus
vary dependent on the heterologous system, which may be due
to differences in the available G protein signaling machinery or
folding properties that affect the functional expression of a GPCR.
Although in vitro expression systems may not fully reflect endoge-
nous settings, most ligand-receptor couples identified in C. elegans
are supported by functional studies on FLPs and their receptors
(61, 62, 81). Functional evidence on peptide GPCRs and puta-
tive FLP ligands is also emerging in other nematodes (86, 87),
which may serve as a lead in the search for FLP-receptors in these
species.

In C. elegans and likely other nematodes, the FLP signaling
network is highly expanded by GPCRs able of binding multiple
FLPs that, can even originate from different precursor proteins
(Table 1). The neuropeptide receptor NPR-1 was the first FLP-
receptor to be deorphanized in C. elegans, and shown to recognize
both FLP-18 and FLP-21 peptides (61,63). Interestingly, this GPCR
exists in two variants differing by a single amino acid at posi-
tion 215, NPR-1.215F or NPR-1.215V that is likely implicated in
G protein coupling. Substitution of this residue is sufficient for
affecting ligand binding and potency resulting in the differential
regulation of feeding behavior (61, 63, 83). Both receptor vari-
ants are activated by the FLP-21 peptide that is, however, 10-fold
more potent in binding NPR-1.215V than NPR-1.215F (61, 63).
In addition, Rogers and co-workers found that the NPR-1.215V
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Peymen et al. Nematode FLP signaling

variant expressed in Xenopus oocytes can be activated by pep-
tides from the FLP-18 precursor, albeit with lower potencies than
FLP-21 (61). A second study reported by Kubiak et al. did not
identify FLP-18 peptides as the ligands of NPR-1.215V (63), but
the receptor variant was expressed in mammalian cells and dif-
ferences in expression system may account for the discrepancy
in identified ligands in both studies. Both FLP-21 and FLP-18
peptides have been found to activate other C. elegans receptors
as well, including NPR-11 and NPR-5 (40, 62, 88). In addition,
FLP-18 peptides were also identified as ligands of the recep-
tors NPR-4 and NPR-10 (40, 62). An unusual structure-activity
relationship has been suggested for the C. elegans receptor FRPR-
3 (47, 50). Ligands identified for this GPCR include a FLP-7
(TPMQRSSMVRFamide) and FLP-11 (AMRNALVRFamide) pep-
tide, whereas structurally similar peptides encoded on the same
precursor proteins were ineffective at activating the receptor (50).
However, it should be noted that EC50 values for both peptides
reside in the micromolar range (50), and other functional ligands
might activate FRPR-3 with higher potency. FLP-7 and FLP-11
peptides were also shown to activate another receptor, NPR-22,
together with an array of FLPs including FLP-1, FLP-9, FLP-13,
and FLP-22 peptides (35). The potencies of receptor activation
varied from the nanomolar to the micromolar range (Table 1).
Finally, the EGL-6 receptor found to be involved in C. elegans
egg-laying has been coupled to its FLP-10 and FLP-17 ligands in
two ways, by making use of an in vitro assay but also by screen-
ing neuropeptide-encoding transgenes for the ability to inhibit
egg-laying (53).

Although knowledge has been gathered on the receptor biology
of several C. elegans FLPs, our view of nematode FLP-receptors is
far from complete. Deorphanization of GPCRs has been successful
in matching some FLP-receptor couples; however, often a sub-set
of the predicted peptide repertoire is tested such that the array of
ligands acting on a receptor remains incomplete. FLPs are thought
to exert most of their effects through the activation of GPCRs,
but some family members are capable of eliciting fast responses
by gating ion channels (89–91). This mode of action likely also
applies for several nematode FLPs (90–94). The coupling of mul-
tiple peptides to a single GPCR and vice versa greatly enhances
the complexity of FLP signaling in C. elegans. However, the char-
acterization of all functional FLP-receptor couples will be crucial
to further expand our understanding of nematode FLP signaling,
and will uncover whether promiscuity of FLP-receptors can be
generalized in nematodes.

FLP-MEDIATED MODULATION OF NEMATODE PHYSIOLOGY
AND BEHAVIOR
Despite the apparent simplicity of the nematode nervous sys-
tem, harboring around 300 cells, a surprisingly rich behavioral
repertoire has been described (86, 87, 95, 96). The structural
and spatiotemporal gene expression diversity of the nematode
FLP system is reflected in the range of FLP-induced physiolog-
ical responses. The role of FLPs has been extensively described
in previous reviews (2, 5, 6); here, we focus on FLP signaling
functions emerging consistently throughout evolution to illustrate
some of the general principles of FLP signaling gleaned from the
study of nematode peptides. Although C. elegans has been heavily

exploited to investigate the basic biology of FLP signaling, we high-
light some pharmacological and behavioral studies performed on
related nematodes.

NEMATODE FLPs IN THE CONTROL OF FEEDING BEHAVIOR
Although FLPs display a tremendous diversity in structure and
biological activity, their involvement in the regulation of energy
balance and feeding behavior has been described in both inverte-
brate and vertebrate lineages (11). Feeding state is a paramount
environmental factor that guides C. elegans behavior, with a central
role for FLP signaling in for instance the regulation of locomotory
activity, foraging and food intake (5, 6, 46).

C. elegans NPR-1 signaling regulates food-dependent aggregation
behavior
The best characterized example of FLP-modulated behavior in
C. elegans is food-related aggregation. Certain wild-type isolates,
including the standard laboratory strain N2, mainly show a “soli-
tary feeding” phenotype in which worms disperse to feed alone.
Others have a propensity to aggregate into clumps in areas of
high food density, a behavior that is termed “social feeding” (83).
This behavioral polymorphism can be attributed to a single amino
acid difference in the npr-1 gene, which encodes a member of
the NPYR/NPFR family (83). Worms expressing the partial loss-
of-function isoform with a phenylalanine, NPR-1.215F, are social
feeders, whereas strains bearing the npr-1 allele encoding the ver-
sion with a valine, NPR-1.215V, are solitary. Since chemically
generated null mutations of npr-1 convert the solitary wild-type
N2 lab strain into an aggregating one, NPR-1 activity is suggested
to repress aggregating behavior (83).

Both loss-of-function and gain-of-function studies confirm
that FLP-21 acts as the endogenous NPR-1 ligand required for its
activation and consequent suppression of food-dependent aggre-
gation (61). Whereas transgenic overexpression of flp-21 rescues
the social feeding phenotype of NPR-1.215F worms, genomic dele-
tion of flp-21 further enhances worm clumping. However, loss of
flp-21 only slightly increases aggregation in animals bearing the
Val-215 allele, suggesting that another ligand most likely encoded
by the flp-18 gene may functionally substitute for the loss of FLP-
21 ligands (61, 95). FLP-21 furthermore does not appear to act in
NPR-1 dependent acute ethanol tolerance, once again suggesting
that FLP-18 may be a physiological active ligand (97).

The food-dependent aggregation of social npr-1 mutant worms
relies on chemosensory responses in a number of different sensory
neurons exposed to the environment and the pseudocoelomic
body fluid. Due to their specific localization in C. elegans, these
cells are able to detect various adverse or stressful conditions (98,
99). Despite expression of npr-1 in at least 20 neurons (99), the
inter/motorneuron RMG seems to be the cellular hub of the NPR-1
mediated feeding behavior (100). Anatomical gap junctions con-
nect RMG to five sensory neurons known to promote aggregation,
including the nociceptive ASH and ADL neurons and the URX
oxygen sensor (101). In a hub-and-spoke model in which RMG
functions as the central hub, RMG is suggested to integrate signals
from various sensory neurons to stimulate aggregation using its
own chemical synapses. Furthermore, due to the bidirectionality
of the gap junctions, RMG in turn modulates the responses of
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its associated sensory neurons having their own synaptic outputs
(100). NPR-1 however inhibits the gap junction driven activation
of RMG, either by downregulating the gap junctions or by altering
RMG excitability (99, 100).

NPR-1 functions as a modulator of many neurons and behav-
ioral responses, not only in response to food but also to other key
environmental parameters of which ambient O2 and CO2 levels
appear to have a major influence. NPR-1 modulates aerotaxis as
well as the integration of sensory cues of food availability, internal
metabolic state and O2 levels (100, 102–106). NPR-1 also alters the
sensitivity to environmental repellents (e.g., pheromones, CO2),
innate immune responses, and tolerance to ethanol (107–113).
The fact that flp-18 and flp-21 mutants often display more sub-
tle phenotypes in these studies indicates that NPR-1 might have
additional ligands. Furthermore, the expression patterns of flp-
18 and flp-21 have limited overlap and it is not known how
the expression of both genes or release of their peptide prod-
ucts is regulated. Despite the wide neuronal expression pattern
of npr-1, RMG can be pinpointed as the cellular locus of NPR-
1 function for a number of behaviors. Besides “social feeding,”
npr-1 expression in RMG acts synergistically with the primary
heat sensing machinery to regulate aversive behaviors at high tem-
perature, with npr-1 or flp-21 loss-of-function animals showing
an increased threshold for heat avoidance (112). Similarly, RMG-
specific rescue of npr-1 restores pheromone avoidance defects in
the npr-1 mutant background (114). Furthermore, NPR-1 and
its FLP-18 and FLP-21 ligands are required for locomotion qui-
escence during lethargus, a quiescent behavioral state occurring
before each of the four molts, with increased activity in the
RMG circuit promoting locomotion arousal (115). The RMG-
hub-and-spoke circuit therefore appears to be a multifunctional
sensory circuit integrating various stimuli that heavily depends on
FLP neuropeptidergic signaling in order to coordinate behavioral
output.

Other FLPs modulating food-related behaviors
Besides aggregation, FLPs are implicated in other feeding behav-
iors such as the regulation of energy balance and metabolism
according to perceived food availability (11). In C. elegans, loss-of-
function of the flp-18 precursor gene causes defects in chemosen-
sation, foraging, and formation of the arrested dauer developmen-
tal stage that is induced by stress conditions (62). In addition, these
mutants display increased levels in intestinal fat and reduced aer-
obic metabolism, strongly suggesting that FLP-18 neuropeptides
are involved in fat storage and metabolism (62). FLP-18 peptides
activate the neuropeptide receptors NPR-4 and NPR-5, and loss-
of-function of these GPCRs recapitulates some of the phenotypic
effects observed in flp-18 mutants (62, 88). Cohen and co-workers
found that npr-4 is expressed in a number of sites including the
intestine, whereas NPR-5 is present in several sensory neurons
and head, neck, and body wall muscles. FLP-18 signaling through
activation of NPR-4 in intestinal muscle was shown to regulate
the accumulation of intestinal fat. NPR-5 however modulates the
activity of a number of amphid sensory neurons that directly sense
environmental cues, of which the chemosensory ASJ neurons are
critical in dauer formation (Figure 1A) (116).

Environmental food availability also strongly influences C. ele-
gans food-seeking behavior. When feeding on a bacterial lawn, C.
elegans spends most of its time slowly moving within a restricted
area. Upon removal from their food source, animals however ini-
tiate an intensive local search behavior characterized by repetitive
bursts of reversing and turning in a restricted immediate area.
After prolonged food withdrawal (≥15 min off-food), FLP-18 neu-
ropeptides released from the primary interneuron AIY and to a
lesser extent from RIG interneurons, activate a switch in behav-
ioral state from this local search to dispersal in which turning
events are suppressed (62, 117). FLP-18 peptides were found to
act on the neuropeptide receptor NPR-4 in AVA interneurons and
RIV motor neurons that regulate reversal frequency and turn-
ing bias, respectively (Figure 1B) (117, 122). NPR-4 signaling by
FLP-18 peptides may therefore reduce local search behavior by
modulating the activity of these neurons (62). Upstream in the
circuit, AIY interneurons, which release FLP-18, receive synaptic
input from various sensory neurons. As such, they presumably
play an integrative role enabling the regulation of locomotory
behaviors in response to environmental perception. Among the
presynaptic partners is the AWC olfactory neuron pair that is a
prominent player in local search behavior (117). Both neurons
are stimulated following the removal of an attractive odorant that
serves as a cue for food presence (119). Upon odorant removal,
the AWC neurons provide glutamatergic input to downstream
interneurons that will accordingly reorient locomotory behav-
ior by stimulating local search behavior. Glutamate release was
found to hyperpolarize AIY neurons that express FLP-18 and
suppress turning, via the glutamate-gated Cl− channel GLC-3.
On the other hand, AIB interneurons that promote turning are
depolarized by glutamate via the AMPA/kainate-like glutamate
receptor GLR-1, resulting in directed chemotaxis behavior along
odor gradients (119, 120, 123). Taken together, these observa-
tions fit within a model in which sensory detection of food
availability can coordinately regulate adequate responses such
as foraging behavior and energy metabolism via FLP signaling
(Figure 1).

Interestingly, there is evidence for a neuropeptide-mediated
sensorimotor feedback loop that dampens the odor-evoked activ-
ity of the AWC neurons, hereby limiting local search behavior
(120). When odor is sensed, the AWC neurons release buccalin-
related NLP-1 peptides, which in turn act upon the NPR-11
receptor on AIA to modulate INS-1 peptide secretion. Closing
the feedback loop, INS-1 acts on the AWC sensory neurons to
modulate their responsiveness to sensory stimuli (Figure 1C).
Although strong evidence from mutant and other studies demon-
strate a functional NLP-1/NPR-11 relationship, other peptides
have been shown to activate the receptor with EC50 values in
the nanomolar range, including FLP-21 (1–10 nM) and FLP-
18 [(SYFDEKK)SVPGVLRFa, 80–800 nM] (40). As mentioned
above, the FLP-21 peptide modulates behavior in the context
of food and other environmental parameters through activa-
tion of the receptor NPR-1, and is expressed in ADL, ASE, and
ASH sensory neurons among others (61, 63, 111). ASE neu-
rons in particular are implicated in food-dependent behavior,
as they are mainly responsible for chemotaxis to water-soluble
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FIGURE 1 | FLP signaling regulates C. elegans foraging and
metabolism. (A) FLP-18 peptides are released from AIY in response to
sensory cues relaying food availability. By acting on the receptors NPR-4 in
the intestine and NPR-5 in ciliated neurons, FLP-18 peptides control fat
storage; while activation of NPR-5 in ASJ neurons regulates dauer
formation. (B) To regulate odor responses and foraging strategy, FLP-18
peptides signal through NPR-4 in AVA and RIV neurons that control
reversal frequency and turning bias, respectively. (C) Peptidergic feedback

modulates sensory responses in C. elegans. In response to odor, the AWC
olfactory neuron releases NLP-1 neuropeptides, which act on the NPR-11
receptor on AIA to modulate INS-1 peptide secretion. INS-1 subsequently
closes the feedback loop by modulating AWC’s responsiveness to sensory
stimuli. AIA could act as a local integrator of sensory information, with FLP
sensory peptides driving similar neuropeptidergic feedback loops to
modulate the responsiveness to sensory stimuli [adapted from Ref. (62,
117–121)].

attractants (116, 124). Which neurons functionally act down-
stream of ASE in water-soluble chemotaxis has not been fully
understood. AIA interneurons are prominent targets of ASE,
hereby hinting on a functional FLP-21/NPR-11 interaction consis-
tent with the observed in vitro data. Although this interaction has
not been uncovered in previous studies, it remains interesting to
investigate whether NPR-11 signaling in AIA by FLP sensory pep-
tides can activate a neuropeptidergic feedback loop to modulate
the gain or temporal properties of the sensory activation process,
analogous to that for AWC olfactory neurons (118, 120). AIA could
in that respect act as a local integrator of sensory information
(Figure 1).

In addition to the regulation of foraging behavior and metabo-
lism, feeding in C. elegans is closely linked to pharyngeal pumping
activity (125). Pumping activity is regulated by an intrinsic pha-
ryngeal nervous system (126), but neurohormones released from
neurons extrinsic to this cellular system can also influence pump-
ing behavior (127). Several FLPs act on pharyngeal muscle to either
excite or inhibit pumping (34, 128, 129). Despite the disadvantage
of its size, numerous electrophysiological studies have been per-
formed to reveal the effect of FLPs on pharyngeal preparations in
C. elegans. Surprisingly, many of the tested FLPs modulate action

potential frequency, suggesting an impressive neurochemical com-
plexity of the feeding circuit (34, 128, 129). Different FLPs have
been found to exert opposite effects on action potential frequencies
of pharyngeal muscles. Stimulatory peptides include FLPs derived
from the flp-5, 6, 8, and 14 precursor genes, whereas others elicit
inhibitory effects on serotonin-induced depolarization of pharyn-
geal muscles like flp-1, 3, 9, 13, and 16 encoded peptides. By using
wild-type worms and mutants with deficits in synaptic signaling,
it was shown that FLP-13 (APEASPFIRFa) acts directly on the
pharyngeal muscle, while FLP-8 acts via the pharyngeal neuronal
circuit (34). These results are consistent with the fact that the
majority of excitatory and inhibitory peptides were encoded on
genes shown to be expressed in the C. elegans pharyngeal nervous
system (23). It therefore appears that multiple FLPs are involved
in feeding behavior by modulating pharyngeal activity, as sup-
ported by findings in A. suum (54, 130–132). Using a modified
pressure transducer, Brownlee and colleagues measured changes in
intrapharyngeal pressure to monitor the contraction of the Ascaris
radial pharynx muscle. PF3 (AF8, KSAYMRFa) causes a biphasic
response in the pharynx of A. suum, with hyper-contraction fol-
lowing an initial relaxation. AF1 (KNEFIRFa), however, leaves the
muscle in a more relaxed state (130, 132).
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Effects of FLPs on locomotion
Besides locomotory activity, the control of the neuromuscular
junctions that drive locomotion is certainly also to be considered in
the context of nematode feeding, as it enables the worm to migrate
toward food sources. Diverse inhibitory and excitatory activities
have been reported in A. suum on body wall muscles upon the
application of FLPs (54, 91, 133–136). Data obtained from this
type of studies do, however, not always facilitate a better under-
standing of in vivo physiological functions. Although an array of
FLP peptides clearly shows muscle-based effects, denervation of
somatic muscle strips can alter or even abolish the activity of many
FLPs indicating that FLP-receptors do not only reside on muscles
(1, 92). Electrophysiological studies indeed demonstrate that FLPs,
such as AF1, can act through modulation of neuronal conductance
of motor neurons in addition to their muscle-based effects (137).
Contrary to AF1, the effects of AF8 (KSAYMRFa) on somatic mus-
cle of A. suum are uniquely differential and context-dependent.
While application to dorsal muscles causes slow relaxation,AF8 has
profound excitatory effects on ventral muscles (49). Remarkably,
this is the only known nematode peptide to show such differen-
tial neuromusculatory activity. Stretton et al. have characterized
the effects of C. elegans and Ascaris FLPs on the synaptic activity
of Ascaris motor neurons (138). They identified five major neu-
ronal response types, theoretically corresponding to at least five
FLP-receptor subtypes. These differences might possibly be attrib-
uted to different receptors, second messengers, or the combination
of both.

In order to understand the in vivo functions of neuropep-
tides, comprehensive analyses on locomotory behaviors of intact
nematodes have been carried out. In A. suum, direct injection
of synthetic FLPs into the body cavity elicits diverse behavioral
responses including effects on body waveforms, body length, and
paralysis (19, 96, 138, 139). Similarly, the normal locomotory
behavior is severely disrupted when flp-coding genes are silenced
by RNAi, as was shown for flp-14 and flp-32 in G. pallida (87,
140). FLPs also have profound impacts on the migrational abil-
ities of parasitic nematodes toward their host, as illustrated by
RNAi silencing of flp-14 and flp-18 in M. incognita (86, 141). Host
delivered RNAi of flps as non-chemical based control strategy for
parasitic nematodes is therefore gaining importance (142).

When on a solid surface, C. elegans lays on its side and moves in
a sinusoidal fashion by undulating contractions and relaxations of
dorsal and ventral longitudinal body wall muscles. These muscles
use acetylcholine (ACh) and GABA as their primary excitatory and
inhibitory neurotransmitters, respectively, and disruption of either
of these transmitter biosynthetic pathways leads to severely unco-
ordinated locomotion (143–145). FLP-1 peptides are also required
for the smooth sinusoidal movement of the animals, as inactiva-
tion of flp-1 in C. elegans causes hyperactive movement (146).
FLP-1 has been found to modulate ACh signaling (147), hereby
providing a possible direct link to the regulation of locomotion.
FLP-1 as well as FLP-18 peptides were also recently implied in
the homeostatic balance of excitation-inhibition coupling in the
locomotor circuit that drives body wall muscle contractions (148).
This neuropeptide modulation primarily acts on the GABAergic
neural transmission at the neuromuscular junctions,where FLP-18
peptides act directly on muscles via the NPR-5 receptor to either

inhibit contraction or to promote relaxation. However, the FLPs
also appear to have an effect on other cell types to coordinate
locomotory output. In addition, Wani and co-workers performed
a large-scale RNAi screen to identify genes that mediate endoge-
nous dopamine signaling in C. elegans, an important system
controlling worm locomotion (149). The identification of FLP-1
peptides in this study suggests that FLP signaling may be required
for dopamine synthesis and release from dopaminergic neurons
or for modulating dopamine signaling in dopamine-receptive
neurons.

FLP-COORDINATED REGULATION OF FEEDING AND NOCICEPTION
One salient feature of neuropeptide modulation common to both
vertebrates as invertebrates is their role in gating and controlling
the gain of peripheral sensory inputs (150, 151). In vertebrates,
FLP signaling has been repeatedly linked to the modulation of
opioid signaling and nociception, whereas the opioid system par-
ticipates in the regulation of feeding (11, 152, 153). This recurrent
interplay makes it conceivable to state that FLP and opioid systems
could interact to integrate feeding with stress. Such coordinated
regulation would enable animals to decide whether to engage in
feeding-related behaviors when presented with an attractive food
source in the presence of aversive or noxious stimuli (11). Fur-
thermore, the primary FMRFamide sequence is embedded within
an endogenous mammalian opioid peptide derived from the Met-
enkephalin precursor, suggesting that enkephalins and FLPs may
have coevolved from a common ancestral peptide and share func-
tional links (154). These findings imply that synergistic pathways
between stress and feeding behavior might have been evolutionary
conserved.

The coordinated regulation of food-dependent behavior
(aggregation) and stress perception (nociception) has been thor-
oughly documented in C. elegans. The manifestation of aggre-
gating behavior involves multiple pathways linking the RMG
hub neuron by gap junctions to nociceptive (ASH and ADL),
oxygen-sensing (URX), and chemosensory neuron spokes (98–
100). Simultaneous ablation of ASH and ADL attenuates aggrega-
tion, implying that this behavior may be a response to repulsive
or stressful environmental stimuli (98). Aggregation could sup-
ply a defense to the animal, with group feeding stimulating dauer
formation or prompting the secretion of enzymes that inactivate
bacterial toxins (98). The induction of solitary behavior by the FLP
receptor NPR-1 hints that its actions may antagonize responses of
ASH and ADL to stressful cues. As both neuron types synthesize
FLP-21 (61), they are believed to be able to induce solitary behavior
under certain conditions. Given that NPR-1 is expressed in ASH
nociceptors, it may also directly modulate their sensory responses
correlated to feeding state and food availability (99).

Surprisingly, NPR-1 is able to uncouple two overlapping cir-
cuits downstream of the ASH nociceptor (151). ASH utilizes gluta-
matergic synapses to signal to interneurons that control backward
locomotion associated with the avoidance response to noxious
stimuli (155, 156). In contrast, aggregation is driven by electrical
gap junction signaling between ASH and the RMG hub neuron.
Neuromodulation of RMG by NPR-1 uncouples the aggregation
circuitry thus making it functionally silent, while sparing the func-
tion of the ASH-mediated avoidance circuit. This organization
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allows ASH to differentially generate behaviors depending on the
neuromodulatory state, with aggregation occurring only when
NPR-1 activity is low, and avoidance occurring regardless of mod-
ulation. One attractive hypothesis is that the dynamics of this
circuit is differentially regulated by distinct sensory cues. A high
intensity aversive cue might trigger the release of FLP-21 pep-
tides and subsequently suppress the aggregation behavior, hereby
facilitating efficient escape from highly noxious stimuli without
the interference of motor programs for aggregation. The poly-
modal ASH nociceptor is exquisitely suited to detect various aver-
sive stimuli, but other (FLP releasing) sensory neurons may also
impinge on the RMG circuit. The RMG-hub-and-spoke circuit
perfectly illustrates how information flow through worm circuits
depends on neuromodulatory states defined by neuropeptides
(Figure 2). The principle of circuit flexibility relying on connec-
tivity modulation also extends to vertebrates as exemplified by
stress-induced analgesia, an acute suppression of pain generated
mediated by opioids (151, 157, 158).

NEMATODE REPRODUCTION: FLP MODULATION OF EGG-LAYING AND
SEXUAL BEHAVIOR
FMRFamide-like peptide signaling modulates nematode repro-
ductive behaviors such as egg-laying and copulation. Neuropep-
tides encoded by the C. elegans flp-1 gene are suggested to modulate
egg-laying rates, since flp-1 deletion mutants show a defect in the
timing of these events (159). This FLP-1-dependent regulation is
furthermore dependent on food abundance (159). In a genome-
wide RNAi study, Keating et al. (160) reported that knockdown of
the FLP receptor FRPR-3 increases brood size and the rate of egg-
laying (160). Besides genetic studies, FLPs have been directly tested
for activity on muscles associated with the female reproductive

FIGURE 2 | Inhibition of the RMG interneuron by NPR-1. Signaling from
ASH and ADL neurons induces aggregation through gap junctions with
RMG. RMG is the hub neuron of a gap junction network connecting various
sensory neurons known to trigger aggregation. ASH and ADL also mediate
acute avoidance behavior through synaptic signaling. Both types of
connections are differentially regulated by the NPR-1 receptor, with FLP
signaling inhibiting the gap junction driven activation of RMG and not being
essential to ASH-mediated avoidance [adapted from Ref. (100, 151)].

system (134, 161). When applied to the ovijector of A. suum, for
example, AF1 causes a biphasic effect transiently relaxing and then
contracting the tissue, whereas both AF2 (KHEYLRFa) and PF3
(AF8, KSAYMRFa) have inhibitory effects (133).

Egg-laying in C. elegans is also modulated by flp-10 and flp-17
encoded peptides (53). These FLPs are able to activate the EGL-6
receptor that is present in the HSN motor neurons innervating
the vulval musculature, hence regulating egg-laying behavior (53,
101, 162). In comparison to wild-type C. elegans, egl-6 overex-
pression and gain-of-function mutants display slower egg-laying
rates, suggesting an inhibitory receptor function (53). Both pep-
tides encoded by flp-17 are expressed in a pair of BAG sensory
neurons, whereas flp-10 is expressed in several neuronal and non-
neuronal tissue. Laser-ablation and overexpression experiments
suggest that the vulva and spermatheca are the principal source
of the endogenous FLP-10 peptide acting on EGL-6 (23, 53). This
leads to a simple model in which relevant sensory cues control FLP-
10/FLP-17 secretion, hereby directly modulating the activity of
the egg-laying motor neurons to suppress egg-laying in unsuitable
environments (Figure 3). Inhibition of the HSN motor neuron
by EGL-6 seems to be synergistically to cholinergic inhibition of
egg-laying upon unfavorable conditions (53).

Although C. elegans populations almost entirely consist of self-
fertilizing hermaphrodites, males arise infrequently under certain
environmental conditions. Males strikingly differ from their her-
maphrodite counterparts in their complex mating behavior in
which males turn backwards along the hermaphrodite body until
their tail contacts the vulva, after which copulation is engaged.

FIGURE 3 | FLP signaling suppresses egg-laying in unsuitable
environments. BAG neurons release FLP-17 neuropeptides in response to
unfavorable conditions. These peptides are able to activate the EGL-6
receptor on HSN motor neurons, hereby inhibiting egg-laying. Release of
FLP-10 by the vulva and spermatheca along with subsequent EGL-6
signaling further inhibits egg-laying, with the exact triggering stimuli still
uncharacterized. Under unfavorable conditions, cholinergic signals (ACh)
may be independently invoked by other sensory circuits to synergistically
inhibit egg-laying [adapted from Ref. (53, 81)].
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Peptidergic signaling by FLP-8, FLP-10, FLP-12, and FLP-20 is
required for the sensory transduction in male turning behavior
(163). Loss-of-function mutations in corresponding genes each
induce repeated turning, with males continually circling the her-
maphrodite instead of initiating copulation after a single turn.
Although these flp-genes are somewhat dispersedly expressed in
various sensory neurons and interneurons, flp-20 expression in
the mechanosensitive cells completely rescues the mutant’s turn-
ing phenotype (163). FLP-20 is therefore hypothesized to con-
vey somatosensory information to terminate the turning pro-
gram and initiate copulation. How gender-specific modifications
of the shared touch circuitry of male and hermaphrodite ner-
vous systems contribute to copulatory behaviors still remains
unknown.

FLP SIGNALING IN LEARNING BEHAVIOR
A growing body of evidence, including from studies on mollusks
and arthropods, implicates FLPs in the regulation of learning
behavior (164–166). C. elegans displays a remarkable level of
behavioral plasticity similar to that observed in higher organisms
(95, 167, 168), including non-associative (adaptation, habituation)
and associative learning behaviors (169). For example, C. elegans
can learn to approach or avoid tastes, odors, oxygen, or tempera-
tures that predict the presence or absence of food. Both short-term
and long-term forms of memory have been demonstrated in C.
elegans (95).

In C. elegans, FLP-20 is involved in tap habituation, a type
of non-associative learning behavior (170). C. elegans reverses its
locomotion in response to a non-localized mechanical stimulus
generated by tapping the culture plate containing the animal, a
behavior known as the tap withdrawal response. Repeated taps
result in habituation as measured in a decrement of both the ampli-
tude and the frequency of this reversal (171). Mutants for the flp-20
gene show deficits in the relatively short-term 12-h memory fol-
lowing a massed training session. On the other hand, flp-20 is not
required for long-term memory of tap habituation that lasts up to
48-h after temporally spaced training in which the same amount
of training is presented with interval resting periods (172). This
and other studies illustrate how two types of memory within the
same learning paradigm are induced by distinct molecular mech-
anisms that are differentially initiated depending on the temporal
pattern of the training regimen. The flp-20 gene is specifically
required within the mechanosensory neurons that presumably
release FLP-20 peptides to activate downstream neurons required
for short-term memory consolidation. This type of memory cor-
relates with a flp-20-dependent increase of synaptic vesicles in the
terminals of the mechanosensory neurons (170). This and other
studies suggest that the molecular changes underlying short-term
memory arise and are maintained at the level of the sensory neu-
rons. Pre-synaptic changes in particular seem indispensable, and
likely entail differential release of signaling molecules to dampen
the reversal response in the context of tap habituation.

CONCLUSION
The nematode FLP system comprises an intertwined signaling net-
work with a broad array of neuropeptides operating within an
anatomically small nervous system. FLP diversity translates into

a central role of this neuropeptide family in various aspects of
nematode biology. Functional studies in nematodes support the
evolutionary continuity of FLPs as key regulators of energy bal-
ance, feeding behavior, reproduction, and sensory modulation.
In general, the FLP complement has shown to be widely con-
served throughout the phylum though some peptides show a
more restricted distribution, with the latter potentially as a con-
sequence of adaptation to a specific lifestyle such as parasitism
(2, 24, 42). The particular cellular distribution of FLPs appears
not to be fully conserved across nematodes, in contrast to the
slow rate at which the nematode nervous system evolves at the
cellular level. Rapidly evolving peptide expression could therefore
reveal to be an essential factor in the generation of species-specific
behavior, furthermore facilitating the radiation of nematodes into
a variety of habitats including as parasites of both animals and
plants (12).

In C. elegans, the flp-genes have overlapping expression pat-
terns, with at least half of all neurons expressing one or more FLPs
(173). This implies that some neurons use a repertoire of FLP
peptides in addition to other messengers, which may be deployed
in a context-dependent way rendering these cells multifunctional.
Such multiplexing could contribute to increase the complexity
of information processing in a numerally simple nervous system,
hereby supporting the rich behavioral palette of nematodes. Given
their broad diversity and expression, neuropeptides are exquisitely
suited to actively recruit particular cellular circuits depending on
the environmental and internal context. This type of neuromodu-
lation appears to be an irreducible part of circuit flexibility in the
nematode nervous system (174).

The considerable amounts of data on nematode FLP function
derived from neuronal and neuromuscular bioassays demonstrate
an impressive complexity in the FLP signaling system. On the other
hand, the knowledge of FLP-receptor interplay remains sparse,
and most of our current understanding is derived from C. ele-
gans in which several FLP-receptors have been coupled to their
peptide ligands by in vitro assays and in vivo functional studies.
A common theme in these studies is that a single receptor can be
activated by multiple FLPs encoded by one or more genes. How-
ever, this apparent receptor promiscuity will need to be proven
physiologically relevant, as a whole layer in the control of FLP
signaling may reside in the spatiotemporal expression patterns of
both receptor and ligand molecules. With the increasing num-
ber of completed genome projects and transcriptome resources,
putative FLP-receptors can readily be identified using bioinfor-
matics, and C. elegans data as a scaffold, broadening our view
on FLP signaling in other nematodes. In addition, further recep-
tor deorphanization and subsequent localization of these proteins
will, together with the extensive data regarding FLP distribution,
shed light on specific FLP functioning within the modulation and
coordination of nematode behavior and physiology.
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