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One of the capabilities of focused ion beam systems is ion milling. The purpose of this work is to 

explore this capability as a tool for integrated circuit restructuring. Methods for cutting and 

joining conductors are needed. Two methods for joining conductors are demonstrated. The first 

consists of spinning nitrocellulose (a self-developing resist) on the circuit, ion exposing an area, 

say, 7 X 7 µm, then milling a smaller via with sloping sidewalls through the first metal layer down 

to the second, e-beam evaporating metal, and then dissolving the nitrocellulose to achieve liftoff. 

The resistance of these links between two metal levels varied from 1 to 7 n. The second, simpler 

method consists of milling a via with vertical sidewalls down to the lower metal layer, then 

reducing the milling scan to a smaller area in the center of this via, thereby redepositing the metal 

from the lower layer on the vertical sidewall. The short circuit thus achieved varied from 0.4 to 1.5 

0 for vias of dimensions 3 X 3 µm to 1 X 1 µm, respectively. The time to mill a 1 X l µm via with a 

68 keV Ga+ beam, of220 Pa current is 60 s. In a system optimized for this application, this milling 

time is expected to be reduced by a factor ofat least l 00. In addition, cuts have been made in 1-µm­

thick Al films covered by 0.65 µm of Si02• These cuts have resistances in excess of 20 MO. This 

method of circuit restructuring can work at dimensions a factor of 10 smaller than laser zapping 

and requires no special sites to be fabricated. 

I. INTRODUCTION 

The ability to reconfigure the conductors in an integrated 

circuit after it has been fabricated has a number of practical 

applications, such as defect avoidance, circuit customiza­

tion, circuit testing, failure analysis, and permanent memory 

programming. A wafer-scale digital integrator has been re· 

ported in which the removal of defective circuit blocks and 

the "wiring in" of redundant blocks plays a central role. 1 A 

laser is used to cut conductors and to fuse prefabricated link 

sites, thereby joining conductors. In the fabrication of large 

random access memories laser cutting of conductors is wide­

ly used to replace defective lines. 2 

Several techniques have been developed or explored for 

use in circuit restructuring. For the laser linking of conduc­

tors special sites have been fabricated 1 consisting of sand­

wiches of Al, Si02 , amorphous Si, Si02, and Al, which can be 

reliably laser fused to produce a desired short circuit. Laser 

microchemical etching and deposition have been reported. 3 

For removal of Al a liquid etchant covers the surface and 

etching occurs under the laser spot. For the addition of poly­

Si conductors the circuit is placed in an ambient of 200 Torr 

of diborane-doped silane gas. The e-beam charging of gates 

has also been demonstrated as a technique for restructuring 

integrated circuits or programming EPROM's (erasable 

programmable read only memory). 4 None of these tech­

niques is ideal in every way. Extra fabrication steps, wet 

chemistry, large area, or relatively high resistance links are 

some of the drawbacks. 

The purpose of this work is to explore the focused ion 

beam as a high resolution tool for circuit restructuring or for 

other kinds of circuit microsurgery. 

II. EXPERIMENTAL 

A two-level metal structure shown in Fig. 1 was fabricated 

from existing masks. At the intersection points, which have 

dimensions 10 X 8 µm, the two levels of Al are separated by 

0.65 µm Si02• One of our goals is to create a short circuit 

between these two levels. 

A Ga+ focused ion beam was used with energy between 50 

and 70 KeV and beam current between 100 and 300 pA. 

Beam diameters were from 0.1 to 0. 7 µm. Electrons emitted 

by the ion impact were detected with a channel electron mul­

tiplier to form an image on the CRT. Either the single lens 

column at Hughes Research Laboratories or the 

Microfocus"', a three-lens column with an EXB mass sepa­

rator, at Ion Beam Technologies was used. 

After ion beam fabrication a probe station was used to test 

the result. Four probes were placed on the four pads sur­

rounding a given crossing point (Fig. 1 ). By measuring all 

possible combinations of resistances and averaging appro­

priately, the resistance of the link was measured, and contact 

and conductor resistance was eliminated. 

Ill. RESULTS 

Two schemes were considered for joining crossing con­

ductors on two levels. They are shown in Figs. 2(a) and 2(b). 
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FIG. I. Pattern of Al conductors on two levels used to test the restructur­

ing. The horizontal conductors are 8 µm wide, and the vertical three paral­

lel conductors, which are on top, are 10 µm wide. Links are made in the 

8 X 10 µm intersection area. 

The first combines a number of techniques: nitrocellulose, a 

self-developing resist, 5 is spun on the wafer; the ion beam is 

used to develop out a small area of the nitrocellulose; then, in 

the middle of this area, the ion beam is used to mill a sloped 

sidewall via which penetrates the top layer of metal and the 

oxide, and extends to the lower level of metal; Al is e-beam 

evaporated and liftoff is performed leaving a metal plug 

which shorts the two layers together. In the second scheme, 

redeposition is used. A via with vertical sidewalls is milled to 

the lower level, then milling is continued over a reduced area 

so that metal redeposits on the vertical sidewall creating a 

short circuit. 

Although the second scheme is preferable because of its 

simplicity, we will also present our results on the first 

scheme. This scheme, with modifications, may have other 

uses, for example, to connect two buried layers in different 

parts of an integrated circuit by milling vias and putting in a 

bridge by liftoff. 

A. Nitrocellulose with evaporation 

Because nitrocellulose self-develops with ion bombard­

ment, 5 via milling and resist, exposure/development are 

combined in one step. (The material removal rate due to self 

development is about three orders of magnitude faster than 

by milling.) The use of conventional resist would require 

aligned optical exposure and ion exposure, as well as wet 

development. However, to use the nitrocellulose scheme two 

questions must be answered; (i) is the circuit visible in the 

scanning ion microscope mode when it is covered by the 

resist, and (ii) does ion beam exposed nitrocellulose have ver­

tical sidewalls suitable for liftoff? Fortunately, a circuit such 

as in Fig. 1 covered by 2 µm of nitrocellulose can be seen in 

the scanning ion microscope mode with a resolution of about 

1 µm. In 10 s, the time needed to take a photo or to align the 

desired spot in the center of the screen, the dose to a 
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FIG. 2. (a) Schematic of the joining of conductors using a film of nitrocellu­

lose spin of the wafer exposed (and developed simultaneously) by the ion 

bean, via milling, metal evaporation, and liftoff. (b) The joining of conduc­

tors using ion redeposition of the lower layer of metal. 

100 X 100 µm area is 1.6 X 1014 ions/cm2
• This is only 3% of 

the dose needed for complete nitrocellulose exposure. To 

answer the second question, ion beam exposed nitrocellulose 

films are shown in Fig. 3. Clearly vertical sidewalls are ob­

served. An undercut profile can be obtained by adding a thin 

film of polymethylmethacrylate (PMMA) over the nitrocel-
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(a) (b) 

FIG. 3 (a) Nitrocellulose (NC) exposure and simultaneous development 

using focused ion beam. On left NC 2-µm-thick exposed to 6X J0
15 

ions/ cm2 in a single pass of the Ga+ ion beam (65 kV, beam diameterO. l to 

0.15 µm). Note the vertical sidewalls and the 0.4 µm linewidth. (b) NC 

covered with 0.15 µm of PMMA. Dose on left is 1.2 X J0' 6 ions/ cm2
• Note 

that on the left the NC is developing out even before the PMMA is milled 

through. The structure on the right, written with a dose of 1.2 X 10
17 

ions/ 

cm2
, is ideal for liftoff. 

lulose, as seen on the right side of Fig. 3. 

An example of nitrocellulose exposure and via milling is 

shown in Fig. 4. The 7 X 7 µm opening in the nitrocellulose 

was milled first, then the 1 X 1 µm, followed by the 1. 5 X 1. 5 

µm via. The reason for milling the smaller one first is to 

round off the step at the top of the 1 X 1 via and to avoid 

unwanted redeposition of Si02• After Al evaporation liftoff 

was performed in acetone with ultrasonic agitation. Opti­

mally fabricated vias showed resistances between levels of 1 

to 7 !l. We suspect the variation is due to the fact that the 

sample was exposed to air after ion milling and not annealed 

after e-beam evaporation. 
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FIG. 4. 7 X 7 µm opening on the left in the nitrocellulose 2-µm-thick, the 

dose was 1.5 X 1016 ions/ cm2
• The small central via was milled I X I µm 

with a dose 2.1 X J0' 8 ions/ cm2 followed by 1.5 X 1.5 µm at a dose of 

l.5 X 1018 ions/ cm2
• All doses at 65 kV Ga+ with 220 pA beam current. 

Beam diameter 0.1 to 0.15 µm. Sample covered by 0.2-µm-Al , before lift­

off. The smooth fluid-like protrusion at the edge of the via is due to electron 

exposure of the NC in the SEM. 

B. End-point detection 

If, during the milling of a via, we monitor either the cur­

rent from sample to ground or the electron emission, as seen 

on the display, we get a clear indication of the level being 

milled. This is shown in Fig. 5. While the Al film is milled the 

electron emission is high, the current is high, and the display 

is bright. As the milling breaks through to the oxide the 

current drops, and the display darkens. As seen in the dis­

play this breakthrough does not occur uniformly every­

where at once because the initial Al film is rough. When the 

second deeper Si02 film is reached, the drop in current is not 

as high because the 2.3-µm-high edges of the pit emit elec­

trons strongly. This again is seen in the display as bright 

thick edges. 

[
nm1~ 

1 

i 
..... .J 

F IG. 5. "End-point" detection by monitor­

ing sample current. The current is the sum 

of incident ion current and emitted electron 

(or ion) current. The emitted current is dif­

ferent for Si02 and Al causing a variation as 

a function of milling time or via depth. The 

via is 3 X 3 µm. The lower part of the figure 

shows the display at three points (labeled 

on the curve) during the milling. The beam 

is stepped in 0.1 µ m steps, and the display is 

30 X 30 pixels. 

2 
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FIG. 6. Top view cf milled via with redeposition. On left, scanning ion 

micrograph; on right, scanning electron micrograph. Resistance between 

levels is 0.4 .0.. 

The end-point detection scheme works similarly for vias 

1.5 X 1.5 µm, but for vias 1 X 1 µm no modulation in the 

current or electron emission can be seen. 

By reading off the times taken to mill through the various 

layers from Fig. 5 we can calculate the yield of atoms or 

molecules sputtered per incident ion. With a beam current of 

220 pA at 68 kV Ga+ we get a yield of 3.6 atoms/ion for the 

first Al layer and 2.4 atoms/ion for the second. In another 

measurement on a more open Al film we obtained a yield of 

4.2 atoms/ion. This trend of slower milling for deeper pits is 

in qualitative agreement with earlier measurements.6 For 

Si02 we measured a yield of 2 molecules/ion for an open 

structure and 1.2 molecules/ion for both of the Si02 films of 

our sample. The fact that both films mill at the same rate is 

surprising since one would expect the deeper film to mill 

more slowly. 

C. Links by redeposition 

The redeposition scheme illustrated in Fig. 2(b) was tested 

with via pairs of several dimensions; 3 X 3 µm followed by 

1.5 X 1.5 µm, 1.5 X 1.5 µm followed by 1X 1 µm, and 1X 1 

µm followed by 0. 5 X 0. 5 µm. The results for the largest via 

are seen in Fig. 6 which shows the identical structure viewed 

in a scanning electron microscope (SEM) or a scanning ion 

FIG. 7. Inclined view of a 1X 1 µm via with redeposition. Resistance is 

measured to be 1.5 .0.. 
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microscope (SIM). The SEM, of course, has higher resolu­

tion, but the SIM is more sensitive to topography. As seen in 

Fig. 6, at each site a shallow via nominally 3 x 3 µm was first 

milled on the left to establish its dimensions. Then, by com­

paring its width with the deep via on the right we can mea­

sure approximately the thickness of redeposition to be 0.3 

µm in the center of each edge. 

Vias of these dimensions connected the top and bottom 

films of Al with a resistance of 0.4 fl. Vias of 1.5 x 1.5 µm 

followed by 1 X 1 µm also had 0.4 fl resistance. The smaller 

vias, 1X 1 µm followed by 0.5 X0.5 µm, had 1.3 to 1.5 fl 

resistance. Figure 7 shows a via 1 X 1 µm with redeposition. 

(In a normal incidence view the bottom of the via cannot be 

seen, indicating that in the SEM, as well as the SIM end­

point detection above, the electrons cannot get out.) We 

have also observed that a hole of approximate diameter of 

0.2 µm milled by a stationary beam in some cases resulted in 

a 30 fl connection. We do not as yet understand the mecha­

nism for the conduction. The advantage of this small via is 

that it can be milled in a few seconds, whereas the larger vias 

above require 1- 4 min. 

D. Cuts in conductors 

The focused ion beam can be used to simply mill away part 

of a conductor to create a desired open circuit. We have 

made cuts varying in width from 0.1 to 1.2 µm. The very 

smallest cut showed an open circuit of 100 kfl but then broke 

down at 0.5 V to produce a short. A SEM examination 

showed balls of material, presumably Al, bridging the open­

ing. The larger cuts always had resistances in excess of 20 

Mfl (the limit of our meter). In one case an electrometer was 

used and 109 fl measured. A cut is shown in Fig. 8. Our 

results are summarized in Table I. 

FIG. 8. Scanning electron micrograph of an ion milled cut made in a conduc­

tor, 1-µm-thick Al, covered by 0.6 µm of SiO,. resistance greater than 20 

M.O.. 
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TABLE I. Summary of results. 

Dimensions Time Resistance 

Links (µm) (s) (!l) 

Nitrocellulose (NC) and evaporation 7 X 7 patch 37 1-7 

1.5 X 1.5 via 

Redeposition 3X3 via 230 0.4 

1.5 X 1.5 red. 

1.5 x 1.5 86 0.4 

IX I 

IX I 62 1.3 

0.5x0.5 

Redeposition (?) 0.2diam 4 30 

Cuts lOX 1.2X 1.5 900 >20M 

10X0.7X 1.5 450 >20M 

10xo.1x1.5 180 100 K 

IV. DISCUSSION 

The above results indicate that the focused ion beam is a 

potential circuit restructuring tool, particularly if a limited 

number of interventions are needed. It possesses several ad­

vantages compared to other techniques such as laser zap­

ping, laser deposition or etching, and e-beam charging of 

gates: (a) both links and cuts as well as imaging are done 

with the same instrument, (b) resistance of links is low, (c) 

no special fabrication is needed, i.e., any crossing conductors 

can be connected. 

The milling times quoted in Table I do not fairly represent 

the capabilities of this technique. In most cases, a larger 

beam diameter is expected to work as well as 0.1- 0.15 µm. 

Tripling the diameter decreases the time by about an order of 

magnitude, since the current density remains constant. In 

addition, a machine with a current density of 10 A/cm2
, 

compared to our I A/cm2
, has been reported. 7 With in­

creased current density and larger beam diameter the inter­

vention time will be reduced by a factor of 100 or more. 

Thus, the focused ion beam is a versatile and potentially 

practical tool for circuit restructuring to avoid defects, for 

circuit customization or minor design changes after fabrica­

tion, and for circuit microsurgery in failure analysis. 
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V.SUMMARY 

The focused ion beam is able to make micron and submi­

cron links in two crossing conductors in an integrated cir­

cuit. It can also make cuts of submicron dimensions in con­

ductors buried under Si02 • No special sites need to be 

fabricated. These features make it a candidate for circuit 

restructuring. In addition, the focused ion beam can be used 

to make minor design charges in fabricated circuits, to open 

or make contacts for circuit testing, to alter circuits for fail­

ure analysis, and in other situations where few interventions 

are needed. Thus it is a powerful tool for integrated circuit 

microsurgery. 
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