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Abstract. The initial value problem for the focusing Manakov system with nonzero

boundary conditions at infinity is solved by developing an appropriate inverse scattering

transform. The analyticity properties of the Jost eigenfunctions is investigated, and

precise conditions on the potential that guarantee such analyticity are provided. The

analyticity properties of the scattering coefficients is also established rigorously, and auxiliary

eigenfunctions needed to complete the bases of analytic eigenfunctions are derived. The

behavior of the eigenfunctions and scattering coefficients at the branch points is discussed,

as are the symmetries of the analytic eigenfunctions and scattering coeffiecients. These

symmetries are used to obtain a rigorous characterization of the discrete spectrum and to

rigorously derive the symmetries of the associated norming constants. The asymptotic

behavior of the Jost eigenfunctions is derived systematically. A general formulation of the

inverse scattering problem as a Riemann-Hilbert problem is presented. Explicit relations

among all reflection coefficients are given, and all entries of the scattering matrix are

determined in the case of reflectionless solutions. New soliton solutions are explicitly

constructed and discussed. These solutions, which have no analogue in the scalar case,

are comprised of dark-bright soliton pairs as in the defocusing case. Finally, a consistent

framework is formulated for obtaining solutions corresponding to any number of simple zeros

of the analytic scattering coefficients, leading to any combination of bright and dark-bright

soliton solutions.
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1. Introduction

Vector nonlinear Schrödinger (NLS) equations model the evolution of multi-component

weakly nonlinear dispersive wave trains in many physical contexts [3, 20, 26, 29]. In some

cases, these equations are completely integrable [2, 3, 6, 15, 18, 23], and the initial value

problem can in principle be solved by the inverse scattering transform (IST).

This work is concerned with the Manakov system, i.e., the two-component vector

nonlinear Schrödinger equation

iqt +qxx +2σ(q2
o−‖q‖

2)q = 0, (1.1)

with non-zero boundary conditions (NZBC) at infinity:

lim
x→±∞

q(x, t) = q± = qoeiθ± . (1.2)

Hereafter: q = q(x, t) and qo are 2-component vectors, ‖ · ‖ is the standard Euclidean norm,

qo = ‖qo‖, θ± are real numbers, and subscripts x and t denote partial differentiation throughout.
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The extra term q2
o in (1.1) was added so that the asymptotic values of the potential are

independent of time.

The IST for the scalar NLS equation [i.e., the one-component reduction of (1.1)] was

developed in [31] for the focusing case with zero boundary conditions (ZBC) (i.e., for qo = 0)

and in [32] for the defocusing case with NZBC (see also Refs. [1, 3, 4, 15]). The IST for (1.1)

with ZBC was derived in [22] and generalized in [2]. On the other hand, the IST for the

Manakov system (1.1) with NZBC remained an open problem for a long time, and even some

questions for the scalar defocusing case were addressed only recently [10, 14]. A successful

approach to the IST for the defocusing Manakov system was presented in [24] and rigorously

revisited in [9]. The focusing case, however, remained completely open. In fact, even the IST

for the scalar focusing NLS equation with NZBC remained a long-standing open problem until

recently, when it was developed in [8] and used in [7] to study the behavior of solutions. Here

we build on the work of [8] to develop the IST for the Manakov system (1.1) in the focusing

case (σ = −1) with NZBC. We should note that, as in the defocusing case, the generalization

of the IST from the scalar case to the vector case is highly nontrivial, which is a reflection of

the added complexity of the corresponding solutions.

The outline of this work is the following: in Section 2 we formulate the direct problem

(taking into account automatically the time evolution); in Section 3 we characterize the

discrete spectrum; in Section 4 we formulate the inverse problem; and in Section 5 we derive

the soliton solutions. Section 6 contains a final discussion. The proofs of all theorems,

lemmas, and corollaries in the text are given in the Appendix. Throughout, asterisk denotes

complex conjugation, and superscripts T and † denote, respectively, matrix transpose and

matrix adjoint. We use I and 0 to denote the identity matrix and zero matrix of appropriate

size, respectively. Also, we denote, respectively, with Ad, Ao, Abd and Abo the diagonal, off-

diagonal, block diagonal, and block off-diagonal parts of a 3× 3 matrix A. In addition, we

will use the shorthand notation

ẑ = −q2
o/z. (1.3)

2. Direct scattering

2.1. Lax pair, Riemann surface and uniformization

The focusing Manakov system [i.e., the 2-component VNLS equation (1.1) with σ = −1] is

associated with the following Lax pair:

φx = Xφ, φt = Tφ, (2.1)

where

X(x, t,k) = −ikJ+Q , T(x, t,k) = 2ik2J− iJ(Qx −Q2−q2
o)−2kQ , (2.2a)

J =

(

1 0T

0 −I

)

, Q(x, t) =

(

0 rT

q 0

)

, (2.2b)

and r = −q∗. That is, (1.1) is the compatibility condition

Xt −Tx + [X,T] = 0 (2.3)

(also known as the zero-curvature condition [3, 23]) which ensures that φxt = φtx (as is easily

verified by direct calculation and noting that JQ = −QJ). As usual, the first half of (2.1) is

referred to as the scattering problem. In the development of the IST, we take φ(x, t,k) as a
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3×3 matrix. Moreover, we formulate the IST in a way that allows the reduction qo→ 0 to be

taken explicitly throughout.

As in the scalar case [8], in order to define the Jost eigenfunctions, one must first solve

the asymptotic scattering problem as x→±∞, which is

φx = X±φ, (2.4)

where X± = −ikJ+Q± = limx→±∞X. The eigenvalues of X± are ik and ±iλ, where

λ = (k2
+q2

o)1/2. (2.5)

As in the scalar case, λ(k) is branched. To deal with this, we introduce the two-sheeted

Riemann surface defined by (2.5). The branch points are the values of k for which λ(k) = 0,

i.e., k = ±iqo. We take the branch cut on i[−qo,qo], and we define λ(k) as in [8]. Next, we

introduce the uniformization variable by defining

z = k+λ. (2.6)

The inverse transformation is

k = (z+ ẑ)/2, λ = (z− ẑ)/2. (2.7)

We can then express all k-dependence of eigenfunctions and scattering data in terms of z,

thereby eliminating all square roots. Note that, formally, the uniformization variable has the

same expression in terms of k and λ as in the defocusing case [15, 24], but the resulting map is

quite different. Let Co be the circle of radius qo centered at the origin in the complex z-plane.

The branch cuts on the two sheets of the Riemann surface are mapped onto Co; The first sheet,

CI, is mapped onto the exterior of Co; the second sheet, CII, is mapped onto the interior of

Co. Moreover, z(∞I) =∞ (where ∞I is the point at infinity in CI), z(∞II) = 0 (where ∞II is

the point at infinity in CII), zIzII = q2
o, |k| → ∞ in CI corresponds to z→∞, and |k| → ∞ in

CII corresponds to z→ 0. Throughout this work, subscripts ± will denote normalization as

x→ −∞ or as x→∞, respectively, whereas superscripts ± will denote projections from the

left and the right of the appropriate contour in the complex z-plane, respectively.

2.2. Jost solutions and scattering matrix

The continuous spectrum consists of all values of k (on either sheet) such that λ(k) ∈ R. As

in the scalar case, that is k ∈ R∪ i[−qo,qo] [8]. [This is in contrast with the defocusing case,

where the continuous spectrum is the subset (−∞,−qo]∪ [qo,∞) of the real k-axis [24, 32].]

In the complex z-plane, the corresponding set is Σ = R∪Co. For any 2-component vector

v = (v1, v2)T , define

v⊥ = (v2,−v1)†. (2.8)

We may then write the eigenvalues and the corresponding eigenvector matrices of the

asymptotic scattering problem (2.4) as

iΛ(z) = diag(−iλ, ik, iλ), E±(z) =

(

1 0 iqo/z

iq±/z q⊥±/qo q±/qo

)

, (2.9)

respectively, so that

X±E± = E±iΛ. (2.10)
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It will be useful to note that

detE±(z) = 1+q2
o/z

2 := γ(z), (2.11a)

E−1
± (z) =

1

γ(z)























1 −iq
†
±/z

0 γ(z)(q⊥± )†/qo

−iqo/z q
†
±/qo























. (2.11b)

Let us now discuss the asymptotic time dependence. As x→ ±∞, we expect that the time

evolution of the solutions of the Lax pair will be asymptotic to

φt = T±φ, (2.12)

where T± = 2ik2J+ iJQ2
± + iq2

oJ− 2kQ±. The eigenvalues of T± are −i(k2
+ λ2) and ±2ikλ.

Since the boundary conditions (BC) are constant, the zero-curvature condition (2.3) in the

limit x→±∞ yields [X±,T±] = 0, so X± and T± admit common eigenvectors. In particular,

T±E± = −iE±Ω, (2.13)

where Ω(z) = diag(−2kλ,k2
+ λ2,2kλ). Then for all z ∈ Σ, we can define the Jost solutions

φ±(x, t,z) as the simultaneous solutions of both parts of the Lax pair satisfying the BC

φ±(x, t,z) = E±(z)eiΘ(x,t,z)
+o(1), x→±∞, (2.14)

where Θ(x, t,z) is the 3×3 diagonal matrix

Θ(x, t,z) = Λ(z)x−Ω(z)t = diag(θ1(x, t,z), θ2(x, t,z),−θ1(x, t,z)) , (2.15)

and where, owing to (2.10) and (2.13),

θ2(x, t,z) = kx− (k2
+λ2)t , θ1(x, t,z) = −λx+2kλt . (2.16)

The advantage of introducing simultaneous solutions of both parts of the Lax pair is that the

scattering coefficients will be independent of time.

To make the above definitions rigorous, we factorize the asymptotic behavior of the

potential and rewrite the first part of the Lax pair (2.1) as

(φ±)x = X±φ±+∆Q±φ±, (2.17)

where ∆Q± = Q −Q±. We remove the asymptotic exponential oscillations and introduce

modified Jost eigenfunctions:

µ±(x, t,z) = φ±(x, t,z)e−iΘ(x,t,z), (2.18)

so that

lim
x→±∞

µ±(x, t,z) = E±(z). (2.19)

Introducing the integrating factor ψ±(x, t,z) = e−iΘ(x,t,z)E−1
± (z)µ±(x, t,z)eiΘ(x,t,z), we can then

formally integrate the ODE for µ±(x, t,z) obtain

µ−(x, t,z) = E−+
x
∫

−∞

E−ei(x−y)ΛE−1
− ∆Q−µ−e−i(x−y)Λdy, (2.20a)

µ+(x, t,z) = E+−
∞
∫

x

E+ei(x−y)ΛE−1
+ ∆Q+µ+e−i(x−y)Λdy. (2.20b)

One can now rigorously define the Jost eigenfunctions as the solutions of the integral

equations (2.20). In fact, in Appendix A.1, we prove the following:
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Theorem 2.1. If q(·, t)− q− ∈ L1(−∞,a) or, correspondingly, q(·, t)− q+ ∈ L1(a,∞) for any

constant a ∈ R, the following columns of µ−(x, t,z) or, correspondingly, µ+(x, t,z) can be

analytically extended onto the corresponding regions of the complex z-plane:

µ−,1 : z ∈ D1, µ−,2 : Imz < 0, µ−,3 : z ∈ D4, (2.21a)

µ+,1 : z ∈ D2, µ+,2 : Imz > 0, µ+,3 : z ∈ D3, (2.21b)

where the domains of analyticity D1, . . . ,D4 are

D1 = {z : Imz > 0∧ |z| > qo}, D2 = {z : Imz < 0∧ |z| > qo}, (2.22a)

D3 = {z : Imz < 0∧ |z| < qo}, D4 = {z : Imz > 0∧ |z| < qo}. (2.22b)

Note that D1∪D2∪D3∪D4 = C.

Equation (2.18) implies that the same analyticity and boundedness properties also hold

for the columns of φ±(x, t,z). Note that four fundamental domains of analyticity are present

for the focusing Manakov system with NZBC. This is in contrast to the defocusing Manakov

system (where the eigenfunctions are analytic either in the upper-half plane or the lower-half

plane [9, 24]) and to the scalar focusing NLS equation, where the fundamental domains are

D1 ∪D3 and D2 ∪D4 [8]. (The difference from the scalar case can be traced to the presence

of the additional eigenvalue ik in the 3×3 scattering problem.)

We now introduce the scattering matrix. If φ(x, t,z) solves (2.1), we have ∂x(detφ) =

trXdetφ and ∂t(detφ) = trTdetφ. Since trX = ik and trT = −i(k2
+λ2), Abel’s theorem yields

∂

∂x
[det(φ±(x, t,z)e−iΘ(x,t,z))] =

∂

∂t
[det(φ±(x, t,z)e−iΘ(x,t,z))] = 0. (2.23)

Then (2.14) implies

detφ±(x, t,z) = γ(z)eiθ2(x,t,z), (x, t) ∈ R2, z ∈ Σ \ {±iqo}. (2.24)

That is, φ−(x, t,z) and φ+(x, t,z) are two fundamental matrix solutions of the Lax pair, so there

exists an invertible 3×3 matrix A(z) such that

φ−(x, t,z) = φ+(x, t,z)A(z), z ∈ Σ \ {±iqo}. (2.25)

As usual, A(z) = (ai j(z)) is referred to as the scattering matrix. Note that thanks to the explicit

time dependence in the BCs (2.14) for the Jost eigenfunctions, A(z) is independent of time.

Moreover, (2.24) and (2.25) imply

detA(z) = 1, z ∈ Σ \ {±iqo}. (2.26)

It is also convenient to introduce B(z) :=A−1(z) = (bi j(z)). In the scalar case, the analyticity of

the diagonal scattering coefficients follows trivially from their representations as Wronskians

of analytic eigenfunctions. This approach, however, is not applicable to the vector case.

Nonetheless, as in the defocusing case [9], this problem can be circumvented using an

alternative integral representation for the eigenfunctions. Said representation is found in

Appendix A.2. Combining the alternative integral representations with a Neumann series

expansion yields the following result:

Lemma 2.2. For all z in the interior of their corresponding domains of analyticity, the

modified eigenfunctions µ±(x, t,z) are bounded for all x ∈ R.

As in the defocusing case, this result will be important to the classification of the discrete

spectrum (discussed in Section 3.1). Also, a straightforward combination of the scattering

relation (2.25) and the alternative integral representation of the eigenfunctions yields the

following result.
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Figure 1. Left: The regions of analyticity of the Jost eigenfunctions and diagonal scattering

coefficients in the complex z-plane (cf. section 2.2). Also indicated are the auxiliary

eigenfunctions in each region (cf. section 2.3). Right: The symmetries of the discrete spectrum

and the regions D+ (gray) and D− (white) and the orientation of Σ for the Riemann-Hilbert

problem in section 4.

Proposition 2.3. For z ∈ Σ, the Jost eigenfunctions exhibit the following asymptotic behavior

as x tends to the opposite limit from the BC:

µ+(x, t,z) = E−(z)eiΘ(x,t,z)B(z)e−iΘ(x,t,z)
+o(1), x→−∞, (2.27a)

µ−(x, t,z) = E+(z)eiΘ(x,t,z)A(z)e−iΘ(x,t,z)
+o(1), x→∞. (2.27b)

Finding explicit expressions for the limits of the modified eigenfunctions as x tends to

the other infinity in the interior of the corresponding domains of analyticity would require the

use of triangular decompositions of the scattering matrix (as in [25] for the defocusing case).

Such expressions and their derivation are omitted for brevity.

In any case, using Lemma 2.2, in Appendix A.3, we obtain the analyticity properties of

the scattering coefficients.

Theorem 2.4. Under the same hypotheses as in Theorem 2.1, the following scattering

coefficients can be analytically extended off of Σ in the following regions:

a11 : z ∈ D1, a22 : Imz < 0, a33 : z ∈ D4, (2.28a)

b11 : z ∈ D2, b22 : Imz > 0, b33 : z ∈ D3. (2.28b)

Unlike the defocusing case [9, 24], all the diagonal entries of the scattering matrix are analytic

in some part of the complex plane. The list of eigenfunctions and scattering coefficients that

are analytic in each fundamental domain is shown in Fig. 1 (left). Note that the columns

φ±,2(x, t,z) are analytic in two domains, unlike the columns φ±,1(x, t,z) and φ±,3(x, t,z).

Similarly, the scattering coefficients a22(z) and b22(z) are analytic in all of the lower-half

plane and upper-half plane, respectively, unlike a11(z), b11(z), a33(z), and b33(z).

2.3. Adjoint problem and auxiliary eigenfunctions

Recall that, unlike in the defocusing case [24, 9], all of the columns of φ±(x, t,z) are analytic in

some portion of the complex z-plane. Nonetheless, a complete set of analytic eigenfunctions

is needed to solve the inverse problem, and only two among the columns of φ+(x, t,z) and

φ−(x, t,z) are analytic in any given domain. So one still needs to overcome a defect of

analyticity.
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As in [24], to circumvent this problem we consider the so-called “adjoint” Lax pair

(following the terminology and the idea originally introduced for the three-wave interaction

equations in [21]):

φ̃x = X̃φ̃, φ̃t = T̃φ̃, (2.29)

where X̃ = ikJ+Q∗ and T̃ = −2ik2J+ iJ(Qx −Q2 − q2
o)− 2kQ. Hereafter, tildes will denote

that a quantity is defined for the adjoint problem (2.29) instead of the original one (2.1). Note

that X̃(x, t,z) = X∗(x, t,z∗) and T̃(x, t,z) = T∗(x, t,z∗) for all z ∈ Σ. Denoting by “×” the usual

cross product, for any vectors u,v ∈ C3 one has:

(Ju)×v+u× (Jv)+u×v+ (Ju)× (Jv) = 0 ,

J(u×v) = (Ju)× (Jv),

Q(u×v)+ (QT u)×v+u× (QT v) = 0 ,

JQ2(u×v)+ (J(QT )2u)×v+u× (J(QT )2v) = 0 .

Note also that in the focusing case, QT
= −Q∗, implying Q† = −Q. Similarly to [21] and [24],

using these identities it is straightforward to prove the following:

Proposition 2.5. If ṽ(x, t,z) and w̃(x, t,z) are two arbitrary solutions of the adjoint problem

(2.29), then

u(x, t,z) = eiθ2(x,t,z)[ũ× w̃](x, t,z) (2.30)

is a solution of the Lax pair (2.1).

We use this result to construct four additional analytic eigenfunctions, one in each

fundamental domain. We do so by constructing Jost eigenfunctions for the adjoint problem.

The eigenvalues of X̃± are −ik and ±iλ. Denoting the eigenvalue matrix as −iΛ(z) =

diag(iλ,−ik,−iλ), we can choose the eigenvector matrix as Ẽ±(z) = E∗±(z∗). Note that

det Ẽ±(z) = γ(z). As x→ ±∞, we expect that the solutions of the second equation in (2.29)

will be asymptotic to those of φ̃t = T̃±φ̃. The eigenvalues of T̃± are i(k2
+λ2) and ±2ikλ, and

(2.13) imply T̃±Ẽ± = Ẽ±iΩ. As before, for all z ∈ Σ, we then define the Jost solutions of the

adjoint problem as the simultaneous solutions φ̃±(x, t,z) of (2.29) such that

φ̃±(x, t,z) = Ẽ±(z)e−iΘ(x,t,z)
+o(1), x→±∞. (2.31)

Introducing modified adjoint eigenfunctions µ̃±(x, t,z) = φ̃±(x, t,z)eiΘ(x,t,z) as before, one can

show that the following columns of µ̃±(x, t,z) can be extended into the complex plane:

µ̃−,1 : z ∈ D2, µ̃−,2 : Imz > 0, µ̃−,3 : z ∈ D3, (2.32a)

µ̃+,1 : z ∈ D1, µ̃+,2 : Imz < 0, µ̃+,3 : z ∈ D4. (2.32b)

Again, only two among the columns of µ̃+(x, t,z) and µ̃−(x, t,z) are analytic in the same region.

And as before, φ̃±(x, t,z) are both fundamental matrix solutions of the same problem, and

therefore, we can introduce the adjoint scattering matrix as

φ̃−(x, t,z) = φ̃+(x, t,z)Ã(z). (2.33)

The same techniques used for the original scattering matrix show that for suitable potentials,

the following coefficients can be analytically extended into the following regions:

ã11 : z ∈ D2, ã22 : Imz > 0, ã33 : z ∈ D3, (2.34a)

b̃11 : z ∈ D1, b̃22 : Imz < 0, b̃33 : z ∈ D4. (2.34b)
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where B̃(z) = Ã−1(z). In light of these results, we can define four new solutions of the original

Lax pair (2.1):

χ1(x, t,z) = eiθ2(x,t,z)[φ̃+,1× φ̃−,2](x, t,z), (2.35a)

χ2(x, t,z) = eiθ2(x,t,z)[φ̃−,1× φ̃+,2](x, t,z), (2.35b)

χ3(x, t,z) = eiθ2(x,t,z)[φ̃+,2× φ̃−,3](x, t,z), (2.35c)

χ4(x, t,z) = eiθ2(x,t,z)[φ̃−,2× φ̃+,3](x, t,z). (2.35d)

We call χ1(x, t,z), . . . ,χ4(x, t,z) the auxiliary eigenfunctions. Note that here four different

auxiliary eigenfunctions are needed, in contrast to the defocusing case [9, 24], where only

two auxiliary eigenfunctions must be defined. This is because, in the focusing case, we have

four different domains of analyticity, compared to just the upper-half plane and the lower-half

plane in the defocusing case. Indeed, by construction, we have

Lemma 2.6. For j = 1, . . . ,4, the auxiliary eigenfunction χ j(x, t,z) is analytic for z ∈ D j.

Note that a simple relation exists between the adjoint Jost eigenfunctions and the

eigenfunctions of the original Lax pair (2.1):

Lemma 2.7. For z ∈ Σ and for all cyclic indices j, ℓ, and m,

φ±, j(x, t,z) = eiθ2(x,t,z)[φ̃±,ℓ × φ̃±,m](x, t,z)/γ j(z), (2.36a)

φ̃±, j(x, t,z) = e−iθ2(x,t,z)[φ±,ℓ ×φ±,m](x, t,z)/γ j(z), (2.36b)

where

γ1(z) = 1, γ2(z) = γ(z), γ3(z) = 1. (2.37)

This relation induces a relation between the corresponding scattering matrices:

Corollary 2.8. The scattering matrices A(z) and Ã(z) are related by

Ã(z) = Γ(z)(A−1(z))T
Γ
−1(z), (2.38)

where Γ(z) = diag(1,γ(z),1).

Finally, using Lemma 2.7 and the adjoint scattering relation (2.33) in the definition (2.35)

yields:

Corollary 2.9. For all z ∈ Σ, the Jost eigenfunctions have the following decompositions:

φ−,1(x, t,z) =
1

a22(z)

[

χ3(x, t,z)+a21(z)φ−,2(x, t,z)
]

=
1

a33(z)

[

a31(z)φ−,3(x, t,z)+χ4(x, t,z)
]

,

(2.39a)

φ−,3(x, t,z) =
1

a22(z)

[

χ2(x, t,z)+a23(z)φ−,2(x, t,z)
]

=
1

a11(z)

[

a13(z)φ−,1(x, t,z)+χ1(x, t,z)
]

,

(2.39b)

φ+,1(x, t,z) =
1

b22(z)

[

χ4(x, t,z)+b21(z)φ+,2(x, t,z)
]

=
1

b33(z)

[

b31(z)φ+,3(x, t,z)+χ3(x, t,z)
]

,

(2.39c)

φ+,3(x, t,z) =
1

b22(z)

[

χ1(x, t,z)+b23(z)φ+,2(x, t,z)
]

=
1

b11(z)

[

b13(z)φ+,1(x, t,z)+χ2(x, t,z)
]

.

(2.39d)
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All of these results are proved in Appendix A.4. In addition, similarly to the Jost

eigenfunctions it will be useful to remove the exponential oscillations and define the modified

auxiliary eigenfunctions as

m j(x, t,z) = χ j(x, t,z)eiθ1(x,t,z), j = 1,2, (2.40a)

m j(x, t,z) = χ j(x, t,z)e−iθ1(x,t,z), j = 3,4. (2.40b)

Then, using Lemma 2.2 and (2.35), we can characterize the asymptotic behavior of the

modified auxiliary eigenfunctions as x→±∞:

Lemma 2.10. For all z in the interior of their corresponding domains of analyticity, the

modified auxiliary eigenfunctions m j(x, t,z) ( j = 1, . . . ,4) remain bounded for all x ∈ R.

Like Lemma 2.2, this result will be instrumental to characterizing the discrete spectrum (cf.

Section 3.1).

2.4. Symmetries

For the Manakov system with ZBC, the only symmetry of the scattering problem is the

mapping k 7→ k∗. With NZBC, the symmetries are complicated by the presence of the Riemann

surface, which requires one to keep track of each sheet. Correspondingly, one has two

symmetries, one of which is the analogue of that with ZBC while the other involves a change

of sheet. The symmetries with NZBC are also complicated by the fact that, after removing

the asymptotic oscillations, the Jost solutions do not tend to the identity matrix. Recall that

λII(k) = −λI(k), z = k+λ, ẑ = k−λ, λ = (z− ẑ)/2, and k = (z+ ẑ)/2.

2.4.1. First symmetry. Consider the transformation z 7→ z∗ (mapping the upper-half plane

into the lower-half plane and viceversa), implying (k,λ) 7→ (k∗,λ∗).

Proposition 2.11. If φ is a non-singular solution of the Lax pair, so is w(x, t,z) =

(φ†(x, t,z∗))−1.

Proposition 2.11 is proved in Appendix A.5. There, we also show that, as a consequence:

Lemma 2.12. For all z ∈ Σ, the Jost eigenfunctions satisfy the symmetry

(φ
†
±(x, t,z∗))−1C(z) = φ±(x, t,z) , (2.41)

where

C(z) = diag(γ(z),1,γ(z)). (2.42)

Note also that

(φ−1
± (x, t,z))T

=
1

detφ±(x, t,z)

(

φ±,2×φ±,3,φ±,3×φ±,1,φ±,1×φ±,2
)

(x, t,z) .

Then, substituting (2.39) in (2.41) and using Schwarz reflection principle yields:

Lemma 2.13. The Jost eigenfunctions obey the symmetry relations:

φ∗
+,1(x, t,z∗) =

e−iθ2(x,t,z)

b22(z)

[

φ+,2×χ1
]

(x, t,z), (2.43a)

φ∗−,1(x, t,z∗) =
e−iθ2(x,t,z)

a22(z)

[

φ−,2×χ2
]

(x, t,z), (2.43b)
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φ∗
+,2(x, t,z∗) =

e−iθ2(x,t,z)

γ(z)b11(z)

[

χ2×φ+,1
]

(x, t,z) =
e−iθ2(x,t,z)

γ(z)b33(z)

[

φ+,3×χ3
]

(x, t,z), (2.43c)

φ∗−,2(x, t,z∗) =
e−iθ2(x,t,z)

γ(z)a11(z)

[

χ1×φ−,1
]

(x, t,z) =
e−iθ2(x,t,z)

γ(z)a33(z)

[

φ−,3×χ4
]

(x, t,z), (2.43d)

φ∗
+,3(x, t,z∗) =

e−iθ2(x,t,z)

b22(z)

[

χ4×φ+,2
]

(x, t,z), (2.43e)

φ∗−,3(x, t,z∗) =
e−iθ2(x,t,z)

a22(z)

[

χ3×φ−,2
]

(x, t,z), (2.43f )

where each equation involving χ j(x, t,z) holds for z ∈ D j, j = 1, . . . ,4.

Note that φ±,2(x, t,z) have two different decompositions, one in each of their sub-domains of

analyticity. Moreover, using (2.41) in the scattering relation (2.25), we conclude:

Lemma 2.14. The scattering matrix and its inverse satisfy the symmetry relation:

A†(z∗) = C(z)B(z)C−1(z), z ∈ Σ. (2.44)

Componentwise, for all z ∈ Σ (2.44) yields

b11(z) = a∗11(z∗), b12(z) =
1

γ(z)
a∗21(z∗), b13(z) = a∗31(z∗), (2.45a)

b21(z) = γ(z)a∗12(z∗), b22(z) = a∗22(z∗), b23(z) = γ(z)a∗32(z∗), (2.45b)

b31(z) = a∗13(z∗), b32(z) =
1

γ(z)
a∗23(z∗), b33(z) = a∗33(z∗). (2.45c)

The Schwarz reflection principle then allows us to conclude

b11(z) = a∗11(z∗), z ∈ D2, (2.46a)

b22(z) = a∗22(z∗), Imz > 0, (2.46b)

b33(z) = a∗33(z∗), z ∈ D3. (2.46c)

We can also obtain symmetry relations for the auxiliary eigenfunctions:

Corollary 2.15. The auxiliary eigenfunctions satisfy the following symmetry relations:

χ∗1(x, t,z∗) = e−iθ2(x,t,z)[φ+,1×φ−,2](x, t,z), z ∈ D2, (2.47a)

χ∗2(x, t,z∗) = e−iθ2(x,t,z)[φ−,1×φ+,2](x, t,z), z ∈ D1, (2.47b)

χ∗3(x, t,z∗) = e−iθ2(x,t,z)[φ+,2×φ−,3](x, t,z), z ∈ D4, (2.47c)

χ∗4(x, t,z∗) = e−iθ2(x,t,z)[φ−,2×φ+,3](x, t,z), z ∈ D3. (2.47d)

In addition, the proof of Corollary 2.15 and (2.36) yield:

φ∗±, j(x, t,z∗) = e−iθ2(x,t,z)[φ±,ℓ ×φ±,m](x, t,z)/γ j(z), (2.48)

where j, ℓ, and m are cyclic indices and z ∈ Σ.

2.4.2. Second symmetry. Consider the transformation z 7→ ẑ (mapping the exterior of the

circle Co of radius qo centered at 0 into the interior, and viceversa), implying (k,λ) 7→ (k,−λ).

This symmetry relates the values of the eigenfunctions on the two sheets when k is arbitrary

but fixed (on either sheet). It is easy to show the following:

Proposition 2.16. If φ(x, t,z) is a solution of the Lax pair, so is

W(x, t,z) = φ(x, t, ẑ). (2.49)
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In appendix A.5 we then show that, as a consequence:

Lemma 2.17. For all z ∈ Σ, the Jost eigenfunctions satisfy the symmetry

φ±(x, t,z) = φ±(x, t, ẑ)Π(z), , (2.50)

where

Π(z) =





















0 0 iqo/z

0 1 0

iqo/z 0 0





















. (2.51)

As before, the analyticity properties of the eigenfunctions then allow us to extend all of the

above relations:

φ±,1(x, t,z) =
iqo

z
φ±,3(x, t, ẑ), Imz ≶ 0∧ |z| > qo, (2.52a)

φ±,2(x, t,z) = φ±,2(x, t, ẑ), Imz ≷ 0, (2.52b)

φ±,3(x, t,z) =
iqo

z
φ±,1(x, t, ẑ), Imz ≷ 0∧ |z| < qo. (2.52c)

Also, similarly as before, we can again use (2.25) to conclude

Lemma 2.18. The scattering matrix satisfies the symmetry

A(ẑ) =Π(z)A(z)Π−1(z), z ∈ Σ. (2.53)

Componentwise, we have

a11(z) = a33(ẑ), a12(z) =
iqo

z
a32(ẑ), a13(z) = a31(ẑ), (2.54a)

a21(z) = −
iz

qo

a23(ẑ), a22(z) = a22(ẑ), a23(z) = −
iz

qo

a21(ẑ), (2.54b)

a31(z) = a13(ẑ), a32(z) =
iqo

z
a12(ẑ), a33(z) = a11(ẑ). (2.54c)

An identical set of relations obviously holds for the elements of B(z). The analyticity of the

scattering matrix entries allows us to conclude

a11(z) = a33(ẑ), z ∈ D1, b11(z) = b33(ẑ), z ∈ D2, (2.55a)

b22(z) = b22(ẑ), Imz ≥ 0, a22(z) = a22(ẑ), Imz ≤ 0. (2.55b)

Finally, we combine (2.52) and (2.54) with (2.35) to conclude

Lemma 2.19. The auxiliary eigenfunctions satisfy the symmetries

χ1(x, t,z) =
iqo

z
χ4(x, t, ẑ), z ∈ D1, (2.56a)

χ2(x, t,z) =
iqo

z
χ3(x, t, ẑ), z ∈ D2. (2.56b)

2.4.3. Combined symmetry and reflection coefficients. Of course one can combine the

above two symmetries to obtain relations between eigenfunctions and scattering coefficients

evaluated at z and at −q2
o/z
∗. We omit these relations for brevity.

The following reflection coefficients will appear in the inverse problem:

ρ1(z) =
a21(z)

a11(z)
= γ(z)

b∗
12

(z∗)

b∗
11

(z∗)
, ρ2(z) =

a31(z)

a11(z)
=

b∗
13

(z∗)

b∗
11

(z∗)
, (2.57a)
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ρ3(z) =
a32(z)

a22(z)
=

1

γ(z)

b∗
23

(z∗)

b∗
22

(z∗)
. (2.57b)

The symmetries of the scattering matrix yield

ρ1(ẑ) =
iqo

z

a23(z)

a33(z)
= γ(z)

iqo

z

b∗
32

(z∗)

b∗
33

(z∗)
, ρ2(ẑ) =

a13(z)

a33(z)
=

b∗
31

(z∗)

b∗
33

(z∗)
, (2.58a)

ρ3(ẑ) = −
iz

qo

a12(z)

a22(z)
= −

iz

qoγ(z)

b∗
21

(z∗)

b∗
22

(z∗)
. (2.58b)

The definition of B(z) as A−1(z) yields the following for z ∈ Σ:

a32(z) = b12(z)b31(z)−b11(z)b32(z). (2.59)

In terms of the reflection coefficents, we have

ρ3(z) =
b11(z)b11(ẑ)

a22(z)γ(z)

[

ρ∗1(z∗)ρ∗2(ẑ∗)−
iz

qo

ρ∗1(ẑ∗)

]

, z ∈ Σ. (2.60)

Thus, only two of the reflection coefficients are independent. Once the trace formulae for the

analytic scattering coefficients has been obtained in section 4.3, we will show that one can

combine all of the above symmetries to reconstruct the entire scattering matrix.

3. Discrete spectrum and asymptotic behavior

3.1. Discrete spectrum

As we show next, the discrete spectrum for the focusing Manakov system with NZBC is

considerably richer than that of both the focusing case with ZBC and the defocusing case

with NZBC.

In order to characterize the discrete spectrum, it is convenient to introduce the following

3×3 matrices, each of which is analytic in one of the four fundamental domains:

Φ1(x, t,z) = (φ−,1(x, t,z),φ+,2(x, t,z),χ1(x, t,z)), z ∈ D1 , (3.1a)

Φ2(x, t,z) = (φ+,1(x, t,z),φ−,2(x, t,z),χ2(x, t,z)), z ∈ D2 , (3.1b)

Φ3(x, t,z) = (χ3(x, t,z),φ−,2(x, t,z),φ+,3(x, t,z)), z ∈ D3 , (3.1c)

Φ4(x, t,z) = (χ4(x, t,z),φ+,2(x, t,z),φ−,3(x, t,z)), z ∈ D4 . (3.1d)

Recalling (2.39), we obtain immediately

WrΦ1(x, t,z) = a11(z)b22(z)eiθ2(x,t,z), z ∈ D1, (3.2a)

WrΦ2(x, t,z) = a22(z)b11(z)eiθ2(x,t,z), z ∈ D2, (3.2b)

WrΦ3(x, t,z) = a22(z)b33(z)eiθ2(x,t,z), z ∈ D3, (3.2c)

WrΦ4(x, t,z) = a33(z)b22(z)eiθ2(x,t,z), z ∈ D4. (3.2d)

Thus, the columns of Φ1(x, t,z) become linearly dependent at the zeros of a11(z) and b22(z).

Similarly, the columns of Φ2(x, t,z) are linearly dependent at the zeros of a22(z) and b11(z),

etc. On the other hand, the symmetries of the scattering coefficients imply that these zeros are

not independent of each other. Indeed, in Appendix A.6 we prove:

Lemma 3.1. Let Imzo > 0. Then

b22(zo) = 0 ⇐⇒ a22(z∗o) = 0 ⇐⇒ a22(ẑ∗o) = 0 ⇐⇒ b22(ẑo) = 0. (3.3)
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Lemma 3.2. Let Imzo > 0 and |zo| ≥ qo. Then

a11(zo) = 0 ⇐⇒ b11(z∗o) = 0 ⇐⇒ b33(ẑ∗o) = 0 ⇐⇒ a33(ẑo) = 0. (3.4)

Lemmas 3.2 and 3.1 imply that discrete eigenvalues appear in symmetric quartets: zn, z∗n,

−q2
o/zn, −q2

o/z
∗
n. (This situation is similar to the scalar case with NZBC [8] and the defocusing

Manakov system with NZBC [24].) It is therefore sufficient to study the zeros of a11(z) and

b22(z) for z ∈ D1. Clearly, there are three possible kinds of eigenvalue quartets corresponding

to a given eigenvalue zo ∈ D1 (i.e., such that Imzo > 0 and |zo| > qo):

1. a11(zo) = 0 and b22(zo) , 0. We call this an eigenvalue of the first kind.

2. a11(zo) , 0 and b22(zo) = 0. We call this an eigenvalue of the second kind.

3. a11(zo) = b22(zo) = 0. We call this an eigenvalue of the third kind.

We next characterize each of these three types of eigenvalues. The following results will be

instrumental to this end:

Lemma 3.3. Suppose Imzo > 0 and |zo| > qo. Then the following statements are equivalent:

(i) χ1(x, t,zo) = 0,

(ii) χ4(x, t, ẑo) = 0,

(iii) There exists a constant bo such that φ−,2(x, t,z∗o) = boφ+,1(x, t,z∗o),

(iv) There exists a constant b̃o such that φ−,2(x, t, ẑ∗o) = b̃oφ+,3(x, t, ẑ∗o).

Lemma 3.4. Suppose Imzo > 0 and |zo| > qo. Then the following statements are equivalent:

(i) χ2(x, t,z∗o) = 0,

(ii) χ3(x, t, ẑ∗o) = 0,

(iii) There exists a constant b̂o such that b̂oφ+,2(x, t,zo) = φ−,1(x, t,zo),

(iv) There exists a constant b̌o such that b̌oφ+,2(x, t, ẑo) = φ−,3(x, t, ẑo).

Remark 3.5. All the results up to this point are valid for zeros of a11(z) and/or b22(z) (in their

appropriate domains of analyticity) of any order. For the remainder of this work we will only

consider discrete eigenvalues that are simple zeros of a11(z) and/or b22(z).

Using the results of this section and the assumption that the discrete eigenvalues are

simple, in Appendix A.6 we prove the following:

Theorem 3.6. Let zo ∈ D1 be a discrete eigenvalue of the scattering problem. That is,

a11(zo)b22(zo) = 0. Then the following are true:

(i) If zo is an eigenvalue of the first kind, there exist constants co, ĉo, čo, and co such that

φ−,1(x, t,zo) = coχ1(x, t,zo)/b22(zo), χ2(x, t,z∗o) = ĉoφ+,1(x, t,z∗o) ,

χ3(x, t, ẑ∗o) = čoφ+,3(x, t, ẑ∗o) , φ−,3(x, t, ẑo) = coχ4(x, t, ẑo).

(ii) If zo is an eigenvalue of the second kind, there exist constants do, d̂o, ďo, and do such that

χ1(x, t,zo) = doφ+,2(x, t,zo) , φ−,2(x, t,z∗o) = d̂oχ2(x, t,z∗o),

φ−,2(x, t, ẑ∗o) = ďoχ3(x, t, ẑ∗o), χ4(x, t, ẑo) = doφ+,2(x, t, ẑo) .
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(iii) If zo is an eigenvalue of the third kind, then χ1(x, t,zo) = χ2(x, t,z∗o) = 0, and there exist

constants fo, f̂o, f̌o, and f o such that

φ−,1(x, t,zo) = foφ+,2(x, t,zo) , φ−,2(x, t,z∗o) = f̂oφ+,1(x, t,z∗o) ,

φ−,2(x, t, ẑ∗o) = f̌oφ+,3(x, t, ẑ∗o) , φ−,3(x, t, ẑo) = f oφ+,2(x, t, ẑo) .

Theorem 3.6 provides a full characterization of the discrete spectrum. In particular,

taking into account the asymptotic behavior of the Jost eigenfunctions and auxiliary

eigenfunctions as x→±∞ in Lemmas 2.2 and 2.10, it is straightforward to see that a discrete

eigenvalue of each kind corresponds to a bound state of the scattering problem [i.e., an

eigenfunction in L2(R)]. This is in marked contrast to the defocusing case, where zeros of the

analytic scattering coefficients off Co do not lead to bound states [9, 24], and is a consequence

of the fact that the scattering problem for the focusing case is not self-adjoint.

3.2. Symmetries of the norming constants

We first rewrite the results of Theorem 3.6 in terms of the modified eigenfunctions, which will

be useful when deriving the residue conditions for the inverse problem. Let {wn}
N1

n=1
be the set

of all eigenvalues of the first kind. Then

µ−,1(x, t,wn) = cnm1(x, t,wn)e−2iθ1(x,t,wn)/b22(wn), (3.5a)

m2(x, t,w∗n) = ĉnµ+,1(x, t,w∗n)e2iθ1(x,t,w∗n), (3.5b)

m3(x, t, ŵ∗n) = čnµ+,3(x, t, ŵ∗n)e2iθ1(x,t,w∗n), (3.5c)

µ−,3(x, t, ŵn) = cnm4(x, t, ŵn)e−2iθ1(x,t,wn). (3.5d)

Let {zn}
N2

n=1
be the set of all eigenvalues of the second kind. Then

m1(x, t,zn) = dnµ+,2(x, t,zn)ei(θ1+θ2)(x,t,zn), (3.6a)

µ−,2(x, t,z∗n) = d̂nm2(x, t,z∗n)e−i(θ1+θ2)(x,t,z∗n), (3.6b)

µ−,2(x, t, ẑ∗n) = ďnm3(x, t, ẑ∗n)e−i(θ1+θ2)(x,t,z∗n), (3.6c)

m4(x, t, ẑn) = dnµ+,2(x, t, ẑn)ei(θ1+θ2)(x,t,zn). (3.6d)

Let {ζn}
N3

n=1
be the set of all eigenvalues of the third kind. Then

µ−,1(x, t, ζn) = fnµ+,2(x, t, ζn)e−i(θ1−θ2)(x,t,ζn), (3.7a)

µ−,2(x, t, ζ∗n) = f̂nµ+,1(x, t, ζ∗n)ei(θ1−θ2)(x,t,ζ∗n ), (3.7b)

µ−,2(x, t, ζ̂∗n) = f̌nµ+,3(x, t, ζ̂∗n)ei(θ1−θ2)(x,t,ζ∗n ), (3.7c)

µ−,3(x, t, ζ̂n) = f nµ+,2(x, t, ζ̂n)e−i(θ1−θ2)(x,t,ζn). (3.7d)

Writing the norming constant relations in this manner will allow us to easily find the

residue conditions of the Riemann-Hilbert problem, which will be introduced in Section 4.1.

However, it will first be necessary to explore how the symmetries of the scattering matrix and

eigenfunctions affect these norming constants. Said symmetries are combined to show:

Lemma 3.7. The norming constants in Theorem 3.6 obey the following symmetry relations:

cn = cn/b22(wn), ĉn = čn = −c∗n, (3.8a)
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dn = −
izn

qo

dn, d̂n = −
d∗n

γ(z∗n)b11(z∗n)
, ďn = −

iqo

z∗n

d∗n

γ(z∗n)b11(z∗n)
, (3.8b)

f n = −
iζn

qo

fn, f̂n = −
a′

22
(ζ∗n)

b′
11

(ζ∗n)

f ∗n

γ(ζ∗n)
, f̌n = −

iqo

ζ∗n

a′
22

(ζ∗n)

b′
11

(ζ∗n)

f ∗n

γ(ζ∗n)
. (3.8c)

3.3. Asymptotic behavior as z→∞ and z→ 0

To normalize the Riemann-Hilbert problem (RHP) (defined in section 4.1), it will be necessary

to examine the asymptotic behavior of the eigenfunctions and scattering data as k→∞. In

terms of the uniformization variable z = k + λ, this requires studying the behavior both as

z→∞ and z→ 0. Consider the following formal expansion for µ+(x, t,z):

µ+(x, t,z) =
∞
∑

n=0
µn(x, t,z), (3.9)

where

µ0(x, t,z) = E+(z), (3.10a)

µn+1(x, t,z) = −
∞
∫

x

E+(z)ei(x−y)Λ(z)E−1
+ (z)∆Q+(y, t)µn(y, t,z)e−i(x−y)Λ(z)dy.

(3.10b)

We will use (3.9) and (3.10) to characterize the asymptotic behavior of the eigenfunctions

as z → ∞ and z → 0. Since doing so will require integration by parts, one must identify

appropriate funcional classes for the potential which guarantee the validity of results. Denote

by W1,1(a,b) the Sobolev space consisting of functions f ∈ L1(a,b) such that the first-order

weak derivative of f is also in L1(a,b). In Appendix A.7, we prove the following:

Lemma 3.8. Let q(·, t)−q− ∈W1,1(−∞,a) and q(·, t)−q+ ∈W1,1(a,∞) for any constant a ∈R.

Then for all m ≥ 0, (3.9) provides an asymptotic expansion for the columns of µ+(x, t,z) as

z→∞ in the appropriate region of the complex z-plane, with

[µ2m]bd = O(1/zm), [µ2m]bo = O(1/zm+1), (3.11a)

[µ2m+1]bd = O(1/zm+1), [µ2m+1]bo = O(1/zm+1). (3.11b)

Lemma 3.9. Let q(·, t)−q− ∈W1,1(−∞,a) and q(·, t)−q+ ∈W1,1(a,∞) for any constant a ∈R.

Then for all m ≥ 0, (3.9) provides an asymptotic expansion for the columns of µ+(x, t,z) as

z→ 0 in the appropriate region of the complex z-plane, with

[µ2m]bd = O(zm), [µ2m]bo = O(zm−1), (3.12a)

[µ2m+1]bd = O(zm), [µ2m+1]bo = O(zm). (3.12b)

Then, evaluating explicitly the first few terms in (3.9), we obtain

Corollary 3.10. As z→∞ in the appropriate regions of the z-plane,

µ±,1(x, t,z) =

(

1

(i/z)q(x, t)

)

+O(1/z2), (3.13a)

µ±,2(x, t,z) =

(

−(i/qoz)q†(x, t)q⊥±
q⊥±/qo

)

+O(1/z2), (3.13b)

µ±,3(x, t,z) =

(

(i/qoz)q†(x, t)q±
q±/qo

)

+O(1/z2). (3.13c)
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Similarly, as z→ 0 in the appropriate regions of the z-plane,

µ±,1(x, t,z) =

(

q†(x, t)q±/q
2
o

(i/z)q±

)

+O(z), (3.14a)

µ±,2(x, t,z) =

(

0

q⊥±/qo

)

+O(z), (3.14b)

µ±,3(x, t,z) =

(

iqo/z

q(x, t)/qo

)

+O(z). (3.14c)

Next, we compute the asymptotic behavior of the auxiliary eigenfunctions χ j(x, t,z),

j = 1, . . . ,4. It will be helpful to remove their exponential oscillations (as we did with the

Jost eigenfunctions). Recall the definitions (2.40) of the modified auxiliary eigenfunctions.

Combining (2.35) with (2.47) we then have:

Lemma 3.11. As z→∞ in the appropriate regions of the z-plane,

m1(x, t,z) =

(

(i/qoz)q†(x, t)q−
q−/qo

)

+O(1/z2), m2(x, t,z) =

(

(i/qoz)q†(x, t)q+
q+/qo

)

+O(1/z2),

m3(x, t,z) =

(

q
†
−q+/q

2
o

(i/q2
oz)q

†
−q+r(x, t)

)

+O(1/z2), m4(x, t,z) =

(

q
†
+q−/q

2
o

(i/q2
oz)q

†
+q−r(x, t)

)

+O(1/z2).

Similarly, as z→ 0 in the appropriate regions of the z-plane,

m1(x, t,z) =

(

(i/qoz)q
†
+q−

0

)

+O(1), m2(x, t,z) =

(

(i/qoz)q
†
−q+

0

)

+O(1),

m3(x, t,z) =

(

0

(i/z)q+

)

+O(1), m4(x, t,z) =

(

0

(i/z)q−

)

+O(1).

Next, we find the asymptotic behavior of the scattering matrix entries. Combining the

results in Corollary 3.10 with the scattering relation (2.25) and the symmetry (2.41) yields

Corollary 3.12. As z→∞ in the appropriate regions of the z-plane,

a11(z) = 1+O(1/z), a22(z) = q
†
−q+/q

2
o+O(1/z), a33(z) = q

†
+q−/q

2
o+O(1/z),

b11(z) = 1+O(1/z), b22(z) = q
†
+q−/q

2
o+O(1/z), b33(z) = q

†
−q+/q

2
o+O(1/z).

Similarly, as z→ 0 in the appropriate regions of the z-plane,

a11(z) = q
†
+q−/q

2
o+O(z), a22(z) = q

†
−q+/q

2
o+O(z), a33(z) = 1+O(z),

b11(z) = q
†
−q+/q

2
o+O(z), b22(z) = q

†
+q−/q

2
o+O(z), b33(z) = 1+O(z).

Finally, we find the asymptotic behavior of the off-diagonal scattering matrix entries.

Again, combining Corollary 3.10 with the scattering relation (2.25) and the symmetry (2.41)

yields

Corollary 3.13. As z→∞ on the real z-axis,

[A±1(z)]o =
1

q2
o























0 0 0

0 0 r
†
∓r⊥±

0 q
†
±q⊥∓ 0























+O(1/z).
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Similarly, as z→ 0 on the real z-axis,

[A±1(z)]o =
iqo

z





















0 0 0

r
†
∓r⊥± 0 0

0 0 0





















+O(1).

Note that not all off-diagonal entries vanish as z → ∞. (The same happens in the

defocusing case [9].) This, however, does not complicate the inverse problem since the

appropriate combinations of reflection coefficients will still vanish as z→∞.

3.4. Behavior at the branch points

We now discuss the behavior of the Jost eigenfunctions and the scattering matrix at the branch

points k = ±iqo. The complication there is due to the fact that λ(±iqo) = 0, and therefore, at

z=±iqo, the two exponentials e±iλx reduce to unity. Correspondingly, at z=±iqo, the matrices

E±(z) are degenerate. Nonetheless, the term E±(z)ei(x−y)Λ(z)E−1
± (z) appearing in the integral

equations for the Jost eigenfunctions remains finite as z→±iqo:

lim
z→±iqo

E±(z)eiξΛ(z)E−1
± (z) =















1±qoξ ξq
†
±

ξq±
1

q2
o
U±(ξ)















,

where ξ = x− y and U±(ξ) = (1∓ qoξ)q±q
†
± + e∓qoξq⊥± (q⊥± )†. Thus, if (1+ |x|)(q(x, t)−q±) ∈

L1(R±), the integrals in (2.20) are also convergent at z = ±iqo, and the Jost solutions admit a

well-defined limit at the branch points. (This is identical to what happens in the scalar and

defocusing cases [8, 9, 14].) Nonetheless, detφ±(x, t,±iqo) = 0 for all (x, t) ∈ R2. Thus, the

columns of φ±(x, t, iqo) [as well as those of φ±(x, t,−iqo)] are linearly dependent. Comparing

the asymptotic behavior of the columns of φ±(x, t,±iqo) as x→±∞, we obtain

φ±,1(x, t, iqo) = φ±,3(x, t, iqo), φ±,1(x, t,−iqo) = −φ±,3(x, t,−iqo). (3.15)

Next, we characterize the limiting behavior of the scattering matrix near the branch points. It

is easy to combine the identity (2.24) with the scattering relation (2.25) to express all entries

of the scattering matrix A(z) as Wronskians:

a jℓ(z) =
z2

z2+q2
o

W jℓ(x, t,z)e−iθ2(x,t,z),

where

W jℓ(x, t,z) =Wr(φ−,ℓ(x, t,z),φ+, j+1(x, t,z),φ+, j+2(x, t,z)) ,

and j + 1 and j + 2 are calculated modulo 3. We then have the following Laurent series

expansions about z = ±iqo:

ai j(z) =
ai j,±

z∓ iqo

+a
(o)

i j,±
+O(z∓ iqo), z ∈ Σ \ {±iqo} , (3.16)

where, for example,

a11,± = ±
iqo

2
W11(x, t,±iqo)e±qo(x∓iqot),

a
(o)

11,±
=

[

±
iqo

2

d

dz
W11(x, t,z)|z=±iqo +W11(x, t,±iqo)

]

e±qo(x∓iqot) .
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Note that in (3.16), the subscript “+” is used to indicate quantities associated with the Laurent

series expansion of ai j(z) about z = iqo, while the subscript “−” corresponds to quantities

associated with the Laurent series expansion of ai j(z) about z = −iqo. This is in contrast to the

rest of this work, where such subscripts denote normalization as x→±∞. Summarizing, the

asymptotic expansion of A(z) in a neighborhood of the branch point is

A(z) =
1

z∓ iqo

A±+A
(o)
± +O(z∓ iqo),

where A
(o)
± = (a

(o)

i j,±
),

A± = a11,±





















1 0 ±1

0 0 0

∓1 0 −1





















+a12,±





















0 1 0

0 0 0

0 ∓1 0





















,

and a12,± = ±(iqo/2)W12(x, t,±iqo)e±qo(x∓iqot). Note that the second row of A± is identically

zero because a2 j,± = ±(iqo/2)W j2(x, t,±iqo)e±qo(x∓iqot), which is zero by virtue of (3.15).

4. Inverse problem

4.1. Riemann-Hilbert problem

As usual, the inverse scattering problem is formulated in terms of an appropriate RHP. To

this end, we need suitable jump conditions that express eigenfunctions meromorphic in D1

in terms of eigenfunctions that are meromorphic in D2 (and similarly for the other regions).

The desired eigenfunctions are the columns of Φ j(x, t,z) ( j = 1, . . . ,4) in (3.1), and, as in the

defocusing case, the jump conditions are provided by the scattering relation (2.25). Using

these relations, in Appendix A.8 we then prove:

Lemma 4.1. Define the piecewise meromorphic function M(x, t,z) as M(x, t,z) =M j(x, t,z)

for z ∈ D j ( j = 1, . . . ,4), where

M1(x, t,z) =Φ1e−iΘ[diag(a11,1,b22)]−1
=

(

µ−,1

a11
,µ+,2,

m1

b22

)

, z ∈ D1 , (4.1a)

M2(x, t,z) =Φ2e−iΘ[diag(1,a22,b11)]−1
=

(

µ+,1,
µ−,2

a22
,

m2

b11

)

, z ∈ D2 , (4.1b)

M3(x, t,z) =Φ3e−iΘ[diag(b33,a22,1)]−1
=

(

m3

b33
,
µ−,2

a22
,µ+,3

)

, z ∈ D3 , (4.1c)

M4(x, t,z) =Φ4e−iΘ[diag(b22,1,a33)]−1
=

(

m4

b22
,µ+,2,

µ−,3

a33

)

, z ∈ D4 . (4.1d)

Then M j(x, t,z) satisfy the jump conditions

M+(x, t,z) =M−(x, t,z)[I− eiΘ(x,t,z)L(z)e−iΘ(x,t,z)], z ∈ Σ, (4.2)

where M =M+ for z ∈ D+ = D1 ∪D3 and M =M− for z ∈ D− = D2 ∪D4 (namely, M+ =M1

for z ∈ D1, M+ =M3 for z ∈ D3, M− =M2 for z ∈ D2, and M− =M4 for z ∈ D4) and where the

superscripts ± denote, respectively, projections from the left and the right of the appropriate

contour in the complex z-plane. Here Σ = Σ1 ∪ Σ2 ∪ Σ3 ∪ Σ4, where Σ j is the boundary of



The focusing Manakov system with NZBC 19

D j∩D j+1 mod 4 (oriented so that D+ is always to its left), and the matrix L(x, t,z) is given on

each portion of the contour as

L(z) =





















iqo

z
ρ1ρ̂3−R2−ρ1R2ρ3

iqo

z
ρ̂3+R2ρ3 −R2−

iqo

z
γρ̂3R3−γR2ρ3R3

−ρ1 0 γR3

−ρ1−ρ2 ρ3 −γρ3R3





















, z ∈ Σ1 ,

L(z) =





















R̂2R2 0 −R2

0 0 0

R̂2 0 0





















, z ∈ Σ2 ,

L(z) =

























−ρ̂1R̂2 ρ̂2ρ3−
iqo

z
ρ̂3 ρ̂2

iz
qo
ρ̂1R̂2−

iz
qo
γR̂3−γρ̂2R̂2R3 γ

[

ρ̂3R̂3+ ρ̂2ρ3R3

]

γρ̂2R3

R̂2 −ρ3 0

























, z ∈ Σ3 ,

L(z) =























ρ2ρ̂2 0 ρ̂2
iqoγ

z
R̂3[1−ρ2ρ̂2]−ρ1+

iz
qo
ρ̂1ρ2 0 γ[ρ3−

iqo

z
ρ̂2R̂3]− iz

qo
ρ̂1

−ρ2 0 0























, z ∈ Σ4 ,

where ρ j = ρ j(z) and R j = ρ
∗
j
(z∗) for j = 1, . . . ,4, and where the circumflex accent denotes

evaluation at ẑ = −q2
o/z.

The various sections of the contour are illustrated in Fig. 1 (right). In order for the above RHP

to admit a unique solution, one must also specify a suitable normalization condition. In this

case, this condition is provided by the leading-order asymptotic behavior of M± as z→∞ and

the pole contribution at 0 to help regularize the RHP (4.2). More precisely, using the results

from Section 3.3 together with the definitions in (4.1), we have that

M(x, t,z) =M∞+O(1/z), z→∞, (4.3a)

M(x, t,z) = (i/z)M0+O(1), z→ 0, (4.3b)

where

M∞ =

(

1 0 0

0 q⊥+/qo q+/qo

)

, M0 =

(

0 0 qo

q+ 0 0

)

. (4.4)

Note that each limit is expressed in terms of the asymptotic behavior of the potential as x→∞

(instead of x→−∞). This is because the definition of M(x, t,z) in (4.1) breaks the symmetry

between the limits x→∞ and x→−∞. In addition, note that M∞ + (i/z)M0 = E+(z). This is

analogous to what happens in the scalar case.

In addition to the asymptotics in (4.3), to fully specify the RHP (4.2) one must also

specify residue conditions. This is done using the characterization of the discrete spectrum

obtained in section 3.1, where we also assumed that all discrete eigenvalues are simple. As a

result of this assumption, the poles of the Riemann-Hilbert problem at the discrete eigenvalues

are all simple. For brevity, we denote by M±
−1,w

(x, t) the residue of M± at z = w. Also, we

introduce the notation M± = (m±
1
,m±

2
,m±

3
). In what follows, we must be careful to remember

the piecewise definitions of M± from Lemma 4.1. Then in Appendix A.8 we prove:

Lemma 4.2. The meromorphic matrices defined in Lemma 4.1 satisfy the following residue

conditions:

M+−1,wn
(x, t) =Cn

(

m+3 (wn),0,0
)

, M−
−1,w∗n

(x, t) = Ĉn

(

0,0,m−1 (w∗n)
)

, (4.5a)

M+
−1,ŵ∗n

(x, t) = −
iw∗n

qo

Čn

(

m−1 (w∗n),0,0
)

, M−−1,ŵn
(x, t) = −

iwn

qo

C̄n

(

0,0,m+3 (wn)
)

, (4.5b)
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M+−1,zn
(x, t) = Dn

(

0,0,m+2 (zn)
)

, M−
−1,z∗n

(x, t) = D̂n

(

0,m−3 (z∗n),0
)

, (4.5c)

M+
−1,ẑ∗n

(x, t) = −
iz∗n

qo

Ďn

(

0,m−3 (z∗n),0
)

, M−−1,ẑn
(x, t) = D̄n

(

m+2 (zn),0,0
)

, (4.5d)

M+−1,ζn
(x, t) = Fn

(

m+2 (ζn),0,0
)

, M−
−1,ζ∗n

(x, t) = F̂n

(

0,m−1 (ζ∗n),0
)

, (4.5e)

M+
−1,ζ̂∗n

(x, t) = −
iζ∗n

qo

F̌n

(

0,m−1 (ζ∗n),0
)

, M+
−1,ζ̂n

(x, t) = F̄n

(

0,0,m+2 (ζn)
)

, (4.5f )

with norming constants

Cn(x, t) =
cn

a′
11

(wn)
e−2iθ1(wn), Ĉn(x, t) =

ĉn

b′
11

(w∗n)
e2iθ1(w∗n), (4.6a)

Čn(x, t) =
čn

b′
33

(ŵ∗n)
e2iθ1(w∗n), Cn(x, t) =

cnb22(wn)

a′
33

(ŵn)
e−2iθ1(wn), (4.6b)

Dn(x, t) =
dn

b′
22

(zn)
ei(θ1+θ2)(zn), D̂n(x, t) =

d̂nb11(z∗n)

a′
22

(z∗n)
e−i(θ1+θ2)(z∗n), (4.6c)

Ďn(x, t) =
ďnb11(z∗n)

a′
22

(ẑ∗n)
e−i(θ1+θ2)(z∗n), Dn(x, t) =

dn

b′
22

(ẑn)
ei(θ1+θ2)(zn), (4.6d)

Fn(x, t) =
fn

a′
11

(ζn)
e−i(θ1−θ2)(ζn), F̂n(x, t) =

f̂n

a′
22

(ζ∗n)
ei(θ1−θ2)(ζ∗n ), (4.6e)

F̌n(x, t) =
f̌n

a′
22

(ζ̂∗n)
ei(θ1−θ2)(ζ∗n ), F̄n(x, t) =

f̄n

a′
33

(ζ̂n)
e−i(θ1−θ2)(ζn), (4.6f )

where the (x, t)-dependence was omitted from the right-hand sides of all equations for

simplicity and where n = 1, . . . ,N1 for equations involving wn, n = 1, . . . ,N2 for equations

involving zn, and n = 1, . . . ,N3 for equations involving ζn.

It is important to realize that the norming constants in (4.6) are not all independent.

More precisely, the symmetries of the norming constants combined with the symmetries of

the scattering matrix yield:

Lemma 4.3. The norming constants in Theorem 4.4 obey the following symmetry relations:

Ĉn(x, t) = −C∗n(x, t), Čn(x, t) = −
q2

o

(w∗n)2
C∗n(x, t),

Cn(x, t) =
q2

o

w2
n

Cn(x, t), D̂n(x, t) = −
D∗n(x, t)

γ(z∗n)
,

Ďn(x, t) = −
iq3

o

(z∗n)3

D∗n(x, t)

γ(z∗n)
, Dn(x, t) = −

iqo

zn

Dn(x, t),

F̄n(x, t) = −
iqo

ζn

Fn(x, t), F̌n(x, t) = −
iq3

o

(ζ∗n)3

F∗n(x, t)

γ(ζ∗n)
, F̂n(x, t) = −

F∗n(x, t)

γ(ζ∗n)
.

4.2. Solution of the Riemann-Hilbert problem

The RHP defined in the previous section can be formally solved by converting it into a mixed

system of algebraic-integral equations by subtracting the asymptotic behavior at infinity, by

regularizing (i.e., subtracting any pole contributions from the discrete spectrum), and then

applying Cauchy projectors. In this way, in Appendix A.8 we prove:



The focusing Manakov system with NZBC 21

Theorem 4.4. The solution of the RHP defined by (4.3) and Lemmas 4.1 and 4.2 is given by

the system of matrix algebraic-integral equations

M(x, t,z) = E+(z)+
N
∑

n=1















M+
−1,vn

z− vn

+

M−
−1,v∗n

z− v∗n
+

M+
−1,v̂∗n

z− v̂∗n
+

M−
−1,v̂n

z− v̂n















−
1

2πi

∫

Σ

M−(ζ)

ζ − z
L(ζ)dζ, (4.7)

where {vn}
N
n=1

denotes the set of all discrete eigenvalues, L = eiΘLe−iΘ, and M(x, t,z) =

M±(x, t,z) for z ∈ D±. Moreover, the eigenfunctions in the residue conditions (4.5) are given

by

m+2 (x, t,z) =

(

0
1
qo

q⊥+

)

+

N2
∑

n=1

[

D̂n

z− z∗n
−

iz∗n

qo

Ďn

z− ẑ∗n

]

m−3 (z∗n)+
N3
∑

n=1

[

F̂n

z− ζ∗n
−

iζ∗n

qo

F̌n

z− ζ̂∗n

]

m−1 (ζ∗n)

−
1

2πi

∫

Σ

(M−L)2(ζ)

ζ − z
dζ , z = zi′ , ζℓ′ , (4.8a)

m−3 (x, t,z) =













iqo

z
1
qo

q+













+

N1
∑

n=1















Ĉnm−
1

(w∗n)

z−w∗n
−

iwn

qo

Cnm+
3

(wn)

z− ŵn















+

N2
∑

n=1

Dnm+
2

(zn)

z− zn

+

N3
∑

n=1

F̄nm+
2

(ζn)

z− ζ̂n

−
1

2πi

∫

Σ

(M−L)3(ζ)

ζ − z
dζ , z = zi′ , (4.8b)

m−1 (x, t,z) =

(

1
i
z
q+

)

+

N1
∑

n=1















Cnm+
3

(wn)

z−wn

−
iw∗n

qo

Čnm−
1

(w∗n)

z− ŵ∗n















+

N2
∑

n=1

Dnm+
2

(zn)

z− ẑn

+

N3
∑

n=1

Fnm+
2

(ζn)

z− ζn

−
1

2πi

∫

Σ

(M−L)1(ζ)

ζ − z
dζ , z = ζ∗ℓ′ ,w

∗
j′ , (4.8c)

m+3 (x, t,z) =













iqo

z
1
qo

q+













+

N1
∑

n=1















Ĉnm−
1

(w∗n)

z−w∗n
−

iwn

qo

Cnm+
3

(wn)

z− ŵn















+

N2
∑

n=1

Dnm+
2

(zn)

z− zn

+

N3
∑

n=1

F̄nm+
2

(ζn)

z− ζ̂n

−
1

2πi

∫

Σ

(M−L)3(ζ)

ζ − z
dζ , z = w j′ , (4.8d)

where i′ = 1, . . . ,N1, j′ = 1, . . . ,N2, and ℓ′ = 1, . . . ,N3 and where for brevity the (x, t)-

dependence was omitted in the right-hand side of (4.7)–(4.8).

A question that can be considered at this point is that of identifying conditions on the

scattering data that guarantee the existence and uniqueness of solutions of the above system

of equations in Theorem 4.4. These questions can be addressed using similar techniques as in

the defocusing case, which was discussed in detail in [9] (even though the vanishing lemmas

for the two cases are different). The upshot is that, notwithstanding the larger size of the

RHP and the fact that the residue conditions are more involved, the issue of existence and

uniqueness of solutions for the focusing and defocusing vector cases is essentially the same

as that of the corresponding scalar cases [4, 5, 33]. We omit the details for brevity.

4.3. Reconstruction formula, trace formulae and asymptotic phase difference

We can now reconstruct the potential in terms of the norming constants and scattering

coefficients by examining the solution (4.7) of the regularized RHP. Specifically, the first of

Eq. (3.13a) gives the potential in terms of the Jost eigenfunction µ+,1(x, t,z) (as seen in (A.31)),

while the first column of (4.7) with Imz < 0 yields an expression for µ+,1(x, t,z) in terms of

the scattering data. We combine this information to find:
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Theorem 4.5. Let M(x, t,z) be the solution of the Riemann-Hilbert problem in Theorem 4.4.

The corresponding solution q(x, t) = (q1(x, t),q2(x, t))T of the focusing Manakov system with

NZBC (1.2) is reconstructed as

qk(x, t) = q+,k − i
N1
∑

j=1

[

C jm
+

(k+1)3(w j)+ Č jm
+

(k+1)3(ŵ∗j)
]

− i
N2
∑

j=1
D jm

+

(k+1)2(ẑ j)

− i
N3
∑

j=1
F jm

+

(k+1)2(ζ j)−
1

2π

4
∑

j=1

∫

Σ j

(M−L j)(k+1)1(ζ)dζ, k = 1,2, (4.9)

where again the (x, t)-dependence on the right hand side was omitted for brevity.

The last task in the inverse problem is the derivation of the trace formulae, namely the

reconstruction of the analytic scattering coefficients in terms of the scattering data. This is

accomplished by formulating another, appropriate Riemann-Hilbert problem, similar to the

one used to find the trace formulae for the defocusing Manakov system [9, 24]. Using this

approach, in Appendix A.8 we prove:

Lemma 4.6. The analytic scattering coefficients are given explicitly by

a11(z) = exp













1

2πi

∫

Σ

J(ζ)

ζ − z
dζ













N1
∏

n=1

z−wn

z−w∗n

z− ŵ∗n

z− ŵn

N2
∏

n=1

z− ẑn

z− ẑ∗n

N3
∏

n=1

z− ζn

z− ζ∗n
, (4.10a)

b22(z) = exp













−i∆θ−
1

2πi

∫

R

Jo(ζ)

ζ − z
dζ













N2
∏

n=1

z− zn

z− z∗n

z− ẑn

z− ẑ∗n

N3
∏

n=1

z− ζn

z− ζ∗n

z− ζ̂n

z− ζ̂∗n
, (4.10b)

where the reflection coefficients ρ j(z) ( j = 1,2,3) are as defined in (2.57) and the jump

conditions Jo(z) and J(z) are given in (A.40), (A.41), and (A.42).

Trace formulae for the remaining analytic scattering coefficients follow trivially from the

symmetries of the scattering matrix [i.e., the symmetries (2.46) and (2.55)]. It is important

to note that in the reflectionless case, the integrals in (4.10a) and (4.10b) vanish. Note that

the trace formula for a11(z) here includes a contribution from the eigenvalues of type 2, even

though a22(zn) , 0 for all eigenvalues zn of type 2. This is in contrast to the defocusing

Manakov system, where the trace formulae were much simpler, and is a result of the existence

of four fundamental domains of analyticity instead of two [9, 24].

Next, letting z → 0 in (4.10a) and comparing with the asymptotics in Corollary 3.12

yields an expression for the asymptotic phase difference ∆θ = θ+ − θ− for the BC (1.2) of the

potential:

Corollary 4.7. The asymptotic phase difference ∆θ = θ+− θ− is given by

∆θ =
1

2π

∫

Σ

J(ζ)

ζ
dζ −4

N1
∑

n=1
argwn+2

N2
∑

n=1
argzn−2

N3
∑

n=1
argζn. (4.11)

5. Reflectionless potentials and exact soliton solutions

We now look at potentials q(x, t) for which there is no jump across the continuum spectrum.

In this case, the reflection coefficients (2.57) vanish identically, implying that A(z) and B(z)

are diagonal matrices and that the inverse problem reduces to an algebraic system (namely,

equations (4.8a)-(4.8d) without the integrals) whose solution yields the soliton solutions of the

integrable nonlinear equation. We will again make use of the assumption made in section 3.1

that every discrete eigenvalue is simple.
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Theorem 5.1. In the reflectionless case, the solution (4.9) of the focusing Manakov system

with NZBC may be written

q(x, t) =
1

detG

(

detG
aug

1

detG
aug

2

)

, k = 1,2,

where G = I−F , the augmented matrix Gaug is

G
aug

k
=

(

q+,k yT

bk G

)

,

the vectors bk and y are

bk = (bk1, . . . ,bk(2N1+N2+N3))
T , y = (y1, . . . , y2N1+N2+N3

)T ,

and the entries Fi j, bk j, and y j are given by (A.45)–(A.48) in Appendix A.10.

In addition, the trace formulae have simpler expressions in the reflectionless case. Specifically,

as mentioned before, the integrals in (4.10a) and (4.10b) vanish identically in the reflectionless

case, and we obtain:

a11(z) =
N1
∏

n=1

z−wn

z−w∗n

z− ŵ∗n

z− ŵn

N2
∏

n=1

z− ẑn

z− ẑ∗n

N3
∏

n=1

z− ζn

z− ζ∗n
, (5.1a)

b22(z) = e−i∆θ
N2
∏

n=1

z− zn

z− z∗n

z− ẑn

z− ẑ∗n

N3
∏

n=1

z− ζn

z− ζ∗n

z− ζ̂n

z− ζ̂∗n
, (5.1b)

where, as before, N1, N2, N3 denote respectively the number of discrete eigenvalues of type I,

type II and type III. The framework is now in place for the construction of explicit soliton

solutions. We construct explicit solutions for each of the three different types of eigenvalues

and examine their various properties. In doing so, we will be able to clearly see the similarities

and differences among the three types of eigenvalues.

5.1. Type I solitons

Here, we assume N1 = 1 and N2 = N3 = 0. We may also assume without any loss of generality

that q+ = (1,0)T . In addition, suppose

c1 = eξ+iφ, ξ,φ ∈ R, w1 = iZeiα, Z > 1, α ∈ (−π/2,π/2). (5.2)

We then use Theorem 5.1 to find the following explicit solution:

q(x, t) =
cosh[U +2iα]+ 1

2
A[c+2(Z2 sin(s+2α)− sin s)− ic−2(Z2 cos(s+2α)− cos s)]

coshU +A[Z2 sin(s+2α)− sin s]
q+,

where

U(x, t) = c−xcosα− c+2t sin(2α)+ c′o+ ξ,

s(x, t) = c+xsinα+ c−2t cos(2α)+φ,

and where

c± = Z±1/Z, c+2 = Z2
+1/Z2, c−2 = Z2−1/Z2

= c+c−, A = 1/(c′+c′−),

c′o = log(c′+/c
′
−), c′+ = |1−Z2e−2iα|, c′− = (Z+1/Z)/(2cosα).

An example of such a solution is shown in Fig. 2. The properties of these solutions are

discussed in section 5.4.
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5.2. Type II solitons

Here, we assume N2 = 1 and N1 = N3 = 0. In addition, suppose

d1 = eξ+iφ, ξ,φ ∈ R, z1 = Zeiα, Z > qo, α ∈ (0,π).

We then use Theorem 5.1 to find the following explicit solution:

q(x, t) = [cosα+ isinα tanhV(x, t)]e−iαq+−Vo sechV(x, t)e
−

iq2
o

Z xcosα−
iq4

o

Z2
t cos(2α)

q⊥+ ,

where

V(x, t) =
q2

o

Z
xsinα+

q4
o

Z2
t sin(2α)−

1

2
logγ(Z)− ξ, Vo = i

√

γ(Z) sinαeiα+iφ.

It is straightforward to see both that the dark part of the solution achieves its minimum and

the bright part of the solution achieves its maximum when V(x, t) = 0. These values are,

respectively,

qdark,min = qo|cosα|, qbright,max = qo

√

γ(Z) |sinα|.

An example of such a solution is shown in Fig. 3. As with solutions of type I, these solutions

are discussed in section 5.4.

5.3. Type III solitons

Here, we assume N1 = N2 = 0 and N3 = 1. In addition, suppose

f1 = eξ+iφ, ξ,φ ∈ R, ζ1 = Zeiα, Z > qo, α ∈ (0,π). (5.3)

We then use Theorem 5.1 to find the following explicit solution:

q(x, t) = [cosα− isinα tanhW(x, t)]eiαq+−Wo sechW(x, t)eiZxcosα−iZ2t cos(2α)q⊥+ ,

where

W(x, t) = Z sinα(x−2Zt cosα)+ log
√

γ(Z)− ξ, Wo = −(Z/qo)
√

γ(Z) sinαeiφ.

It is straightforward to see both that the dark part of the solution achieves its minimum and

the bright part of the solution achieves its maximum along the straight line W(x, t) = 0. These

values are, respectively,

qdark,min = qo|cosα|, qbright,max = Z
√

γ(Z) |sinα|.

An example of such a solution is shown in Fig. 4.

5.4. Discussion

Solutions of type I are the trivial vectorization of the bright soliton solutions of the scalar

NLS equation with NZBC [8]. Solutions of type II and type III have a bright component

in addition to the expected dark component (which is required to connect the asymptotic

boundary values), as seen in Fig. 3 and Fig. 4. These solutions are the analogue of the dark-

bright soliton solutions of the defocusing Manakov system with NZBC [9]. Note, however,
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Figure 2. One bright soliton solution of the focusing Manakov system obtained by taking

N1 = 1, N2 = N3 = 0, q+ = (1,0)T , w1 = 2eiπ/2.

Figure 3. One dark-bright soliton solution of the focusing Manakov system obtained by taking

N2 = 1, N1 = N3 = 0, q+ = (1,0)T , z1 = 2eiπ/2.

Figure 4. One dark-bright soliton solution of the focusing Manakov system obtained by taking

N3 = 1, N1 = N2 = 0, q+ = (1,0)T , ζ1 = 2eiπ/2.

that while in the defocusing case only one kind of dark-bright soliton exists, here two types of

dark-bright solutions are possible. Note that the two types are distinct by the fact that, while

the minimum of the dark component is the same in both cases, the maximum of the bright
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Figure 5. A one bright, two dark-bright soliton solution of the focusing Manakov system

obtained by taking N1 = N2 = N3 = 1, q+ = (1,0)T , w1 = 2.5eiπ/4, z1 = 1.1eiπ/4, ζ1 = 3eiπ/2.

component takes on different values. Namely, for solutions of type II one has

|q1|min = qo |cosα| , |q2|max = qo

√

γ(Z) |sinα| , (5.4)

while for solutions of type III one has

|q1|min = qo |cosα| , |q2|max = Z
√

γ(Z) |sinα| . (5.5)

On the other hand, it is straightforward to see that solutions of type III can be obtained

formally by taking the analytic continuation of solutions of type II when the eigenvalue Z eiα is

taken inside the circle of radius qo (upon proper redefinition of the norming constants). While

such a situation is not strictly allowed due to the restrictions on the analyticity properties of

the eigenfunctions and scattering coefficients, such an extension is allowed by the final result

for the soliton solution. Of course, the algebraic system discussed earlier allows one to also

easily construct multi-soliton solutions containing a combination of any number of the three

types of solitons.

An example of such a solution is shown in Fig. 5, which describes the interaction between

two dark-bright solitons (whose dark and bright profiles are in the form of a traveling wave

solution) and a bright soliton (whose dark and bright profiles are in the form of a breather-

type solution). Note how the bright soliton experiences a polarization shift as an effect of the

interaction, resulting in a redistribution of energy between the two components, similarly to

what happens in the focusing case with zero BC [22].

6. Conclusions

We have developed the IST for the focusing Manakov system with NZBC, and we have

shown that the problem is significantly more complex than its defocusing counterpart. In

particular, we have seen that the discrete spectrum yields three types of discrete eigenvalues,

each corresponding to a different type of soliton solutions. We expect the results of this paper

to be useful in characterizing recent experiments in nonlinear optics [11, 16, 27] and Bose-

Einstein condensation [19, 30].

It should be noted that the soliton solutions presented in this work might be unstable to

long-wavelength perturbations due to the modulational instability of the constant background.
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On the other hand, some recent studies suggest that some of the soliton solutions themselves

may be the vehicle for the instability [17]. If that scenario is correct, the same phenomenon

might also play out in the vector case. In any case, the results of this work provide a framework

that can be used to study the stability of the soliton solutions, which is still an open question

even in the scalar case.

More in general, a characterization of the nonlinear stage of modulational instability is

still by and large an open problem even in the scalar case. In the case of the scalar NLS

equation with periodic BC, the modulational instability can be attributed to the existence

of homoclinic solutions [1, 28]. On the other hand, even in the case of periodic BC there

is no characterization of what is the long-time behavior of the solutions to the best of our

knowledge. Also, there is no reason to expect that the instability mechanisms in the case

of periodic BC and on the whole line will be the same. (For example, while a threshold

for instability exists in the case of periodic BC, no such threshold exists on the whole

line.) Finally, we emphasize that, since the linearization ceases to be valid as soon as the

perturbations have become comparable to the background, the IST is the only tool with which

one can hope to characterize the nonlinear stage of the modulational instability. Indeed, in

[7] we were able to precisely identify the mechanism for instability within the context of the

IST for the focusing NLS equation with NZBC, using the framework that we had developed

in [9]. It is hoped that those results will enable researchers to answer the above questions

about soliton stability and nonlinear stage of modulational instability, and that the results of

this work will provide the tools to do the same in the vector case.

From a theoretical point of view, the results in this paper open the door for studying

several open problems: (i) An investigation of the case where the analytic scalar coefficients

have double zeros. Soliton solutions corresponding to double poles in the RHP are known to

exist in the scalar case with both ZBC and NZBC; (ii) A study of the long-time asymptotics

using the Deift-Zhou method [12, 13]; (iii) The development of an appropriate perturbation

theory; (iv) The extension of the present approach to the N-component case. Also, a non-

trivial technical issue that was omitted for simplicity is a explicit and detailed proof of

existence of the solutions of the RHP. We should remark that the initial-value problem for

the defocusing N-component coupled nonlinear Schrödinger equation was recently studied

in [25] using the approach of [5], where a rigorous construction was given of the fundamental

analytic eigenfunctions. We believe that a similar formulation to that of [25] and the approach

to the symmetries presented in this work will allow one to construct non-trivial explicit multi-

component solutions. We plan to study some of these problems in the near future.
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Appendix

A.1. Analyticity of the eigenfunctions

Proof of Theorem 2.1. We start by rewriting the first of the integral equations (2.20) that

define the Jost eigenfunctions:

µ−(x, t,z) = E−(z)

[

I+
x
∫

−∞

ei(x−y)Λ(z)E−1
− (z)∆Q−(y, t)µ−(y, t,z)e−i(x−y)Λ(z) dy

]

. (A.1)
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The limits of integration imply that x−y is always positive for µ− (and always negative for µ+).

Also, note that the matrix products on the RHS of (A.1) operate column-wise. In particular,

letting W(x,z) = E−1
− µ−, for the first column w of W, one has

w(x, t,z) =





















1

0

0





















+

x
∫

−∞

G(x−y,z)∆Q−(y, t)E−(z)w(y, t,z)dy , (A.2)

where

G(ξ,z) = diag
(

1,ei(k(z)+λ(z))ξ,e2iλ(z)ξ)E−1
− (z) . (A.3)

Now, we introduce a Neumann series representation for w:

w(x,z) =
∞
∑

n=0
w(n) , (A.4a)

with

w(0)
=





















1

0

0





















, w(n+1)(x, t,z) =
x
∫

−∞

C(x, y, t,z)w(n)(y, t,z)dy , (A.4b)

and where C(x, y, t,z) = G(x − y,z)∆Q(y, t)E−(z). Introducing the L1 vector norm ‖w‖ =

|w1|+ |w2|+ |w3| and the corresponding subordinate matrix norm ‖C‖, we then have

‖w(n+1)(x, t,z)‖ ≤
x
∫

−∞

‖C(x, y, t,z)‖‖w(n)(y, t,z)‖dy . (A.5)

Note that ‖E±‖ ≤ 1+qo/|z| and ‖E−1
± ‖ ≤ (1+qo/|z|)/|γ(z)|. The properties of the matrix norm

imply

‖C(x, y, t,z)‖ ≤ ‖diag(1,ei(k(z)+λ(z))(x−y),e2iλ(z)(x−y))‖‖E−(z)‖‖∆Q(y, t)‖‖E−1
− (z)‖

≤ c(z) (1+ e−(kim(z)+λim(z))(x−y)
+ e−2λim(z)(x−y))‖q(y, t)−q−‖ , (A.6)

where λim(z) = Im λ(z), kim(z) = Im k(z), and c(z) = (1 + qo/|z|)
2/|γ(z)|. Now, recall that

Im λ(z) > 0 for z in D1. On the other hand, c(z)→∞ as z→ ±iqo. Thus, given ε > 0, we

restrict our attention to the domain (D1)ε = D1 \ (Bε(iqo)∪Bε(−iqo)), where Bε(zo) = {z ∈ C :

|z− zo| < εqo}. It is straightforward to show that cε =maxz∈(D1)ε c(z) = 2+2/ε. Next, we prove

that for all z ∈ (D1)ε and for all n ∈ N,

‖w(n)(x, t,z)‖ ≤
Mn(x, t)

n!
, (A.7a)

where

M(x, t) = 3cε

x
∫

−∞

‖q(y, t)−q−‖dy . (A.7b)

We will prove the result by induction, following [2]. The claim is trivially true for n= 0. Also,

note that for all z ∈ D1 and for all y ≤ x, one has 1+e−(kim(z)+λim(z))(x−y)
+e−2λim(x−y) ≤ 3. Then,

if (A.7a) holds for n = j, (A.5) implies

‖w( j+1)(x, t,z)‖ ≤
3cε

j!

x
∫

−∞

‖q(y, t)−q−‖M
j(y, t)dy =

1

j!( j+1)
M j+1(x, t) , (A.8)

proving the induction step (namely, that the validity of (A.7a) for n = j implies its validity

for n = j+ 1). Thus, if q(x, t)− q− ∈ L1(−∞,a] for all finite a ∈ R and for all ε > 0, then
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the Neumann series converges absolutely and uniformly with respect to x ∈ (−∞,a) and to

z ∈ (D1)ε. Similar results hold for µ+(x, t,z). Since a uniformly convergent series of analytic

functions converges to an analytic function, µ−,1(x, t,z) is analytic for z ∈ D1. The rest of

the theorem is proved similarly. Note that since q+ , q− in general, q(·, t)−q− < L1(R),and

therefore, one cannot take a =∞. This problem can be resolved using an approach similar to

[25] or alternatively by deriving a different set of integral equations for the Jost eigenfunctions,

as discussed in the following section. Note also that, as in the scalar case, additional conditions

need to be imposed on the potential to establish convergence of the Neumann series at the

branch points [14]. �

A.2. Alternative integral representation for the Jost eigenfunctions

In order to derive the analyticity properties of the scattering coefficients, we found it necessary

to introduce an alternative integral representation for the Jost eigenfunctions. While the

resulting equations are slightly more complicated than the standard integral equations (2.20),

this representation has the advantage of allowing one to prove explicitly that µ±(x, t,z) remain

bounded for all x ∈ R in their regions of analyticity.

We follow a similar approach to that used in Ref. [14] for the defocusing scalar case.

Since the scattering matrix is time-independent, it is sufficient to do the calculations at

t = 0. With this understanding, we omit the time dependence from the potential and the

eigenfunctions throughout this subsection.

We first note that the scattering problem (2.17) is equivalent to the following problem:

φx = X̄(x,z)φ+ (Q(x)−Q f (x))φ, (A.9)

where

X̄(x,z) = H(x)X+(z)+H(−x)X−(z), Q f (x) = H(x)Q++H(−x)Q−, (A.10)

and H(x) denotes the Heaviside function (namely, H(x) = 1 if x ≥ 0 and H(x) = 0 otherwise).

The advantage of using (A.9) instead of (2.17) is that the “forcing” term Q−Q f vanishes

both as x→ −∞ and as x→ ∞, which leads to integral equations that are better behaved.

[Correspondingly, the factorized problem (A.9) is now the same for both φ− and φ+.] For

z ∈ Σ, we introduce fundamental eigenfunctions φ̄±(x,z) as square matrix solutions of (A.9)

satisfying

φ̄±(x,z) = exX±(z)[I+o(1)], x→±∞. (A.11)

By solving (A.9) in a similar way as (2.20), we obtain

φ̄−(x,z) =G f (x,0,z)+
x
∫

−∞

G f (x, y,z)[Q(y)−Q f (y)]φ̄−(y,z)dy, (A.12a)

φ̄+(x,z) =G f (x,0,z)−
∞
∫

x

G f (x, y,z)[Q(y)−Q f (y)]φ̄+(y,z)dy, (A.12b)

where G f (x, y,z) is the special solution of the homogeneous problem, Gx(x, y,z) =

X̄(x,z)G(x, y,z), satisfying the “initial conditions” G(x, x,z) = I. Namely:

G f (x, y,z) =







































e(x−y)X+(z), x, y ≥ 0,

e(x−y)X−(z), x, y ≤ 0,

exX+(z)e−yX−(z), x,−y ≥ 0,

exX−(z)e−yX+(z), x,−y ≤ 0.

(A.13)
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Using (A.12), we conclude

φ̄±(x,z) =G f (x,0,z) [A∓(z)+o(1)] , x→∓∞, z ∈ R, (A.14)

where

A∓(z) = I∓
∞
∫

−∞

G f (0, y,z)
[

Q(y)−Q f (y)
]

φ̄±(y,z)dy. (A.15)

Since exX±(z) are bounded for x ∈ R when z ∈ Σ, the assumption that Q(x)−Q f (x) ∈ L1(R)

and an application of Gronwall’s inequality imply φ̄±(x,z) are bounded as x → ∓∞. In

addition, comparing (A.13) with the solutions of the asymptotic scattering problem (2.4)

yields φ̄±(x,z)E±(z) = φ±(x,z), so (A.12) imply

φ−(x,z) =G f (x,0,z)E−(z)+
x
∫

−∞

G f (x, y,z)[Q(y)−Q f (y)]φ−(y,z)dy, (A.16a)

φ+(x,z) =G f (x,0,z)E+(z)−
∞
∫

x

G f (x, y,z)[Q(y)−Q f (y)]φ+(y,z)dy. (A.16b)

Note that (A.16a) coincides with (2.20a) for all x ≤ 0 and (A.16b) coincides with (2.20b)

for all x ≥ 0. Additionally, q(x) − q± ∈ L1(R±) implies Q(x) −Q f (x) ∈ L1(R), so we can

use this information and (A.16) to prove Theorem 2.1 as well as to establish that µ±(x,z) =

φ±(x,z)e−ixΛ(z) remain bounded as x→ ∓∞. This result will be instrumental in proving the

analyticity of the entries of the scattering matrix (see Theorem 2.4 and the following section).

A.3. Analyticity of the scattering matrix entries

Note first that, for all z ∈ C,

z ∈ D1⇔ Im(k+λ), Imλ > 0, z ∈ D2⇔ Im(k+λ), Imλ < 0,

z ∈ D3⇔ Im(k−λ) < 0, Imλ > 0, z ∈ D4⇔ Im(k−λ) > 0, Imλ < 0.

The above results can be trivially obtained after noting that 2Imλ = (1 − q2
o/|z|

2) Imz,

Im(k+λ) = Imz, and Im(k−λ) = (q2
o/|z|

2) Imz.

Proof of Theorem 2.4. We compare the asymptotics as x→∞ of φ−(x,z) from (A.14) with

those of φ+(x,z)A(z) from (2.14) to obtain

A(z) = E−1
+ (z)A+(z)E−(z). (A.17)

The expression in (A.17) simplifies to the following integral representation for the scattering

matrix:

A(z) =
∞
∫

0

e−iyΛ(z)E−1
+ (z)[Q(y)−Q+]φ−(y,z)dy

+E−1
+ (z)E−(z)

[

I+
0
∫

−∞

e−iyΛ(z)E−1
− (z)[Q(y)−Q−]φ−(y,z)dy

]

. (A.18)

A similar expression can be found for B(z). We can now examine the individual entries of

(A.18). In particular, the 1,1 entry of (A.18) yields an integral representation for a11(z), and

the corresponding two integrands from (A.18) are, respectively,

eiλy

γ(z)

[

−
i

z
q
†
+∆qφ−,11+∆r1φ−,21+∆r2φ−,31

]

, (A.19a)
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3
∑

j=1

[

c11T1 j+ c12T2 j(e
−i(k+λ)y

+ c13T3 je
−2iλy

]

φ−, j1eiλy, (A.19b)

where ∆q(x) = q(x)−q f (x) (similarly for ∆r(x)) and

E−1
+ (z)E−(z) = (ci j(z)), E−1

− (z)[Q(y)−Q−] = (Ti j(y,z)).

Recall that φ−,1(y,z)eiλ(z)y is analytic for z ∈ D1 and bounded over y ∈ R, so each term in

(A.19a) is analytic for z ∈ D1 and bounded when y > 0. Thus, the first integral in the

representation (A.18) for a11(z) defines an analytic function for all z ∈ D1. Further, recalling

that Imλ and Im(k+λ) have the same sign when z ∈D1, we conclude that each term in (A.19b)

is analytic for z ∈ D1 and bounded when y < 0, so the second integral also defines an analytic

function for all z ∈ D1. Thus, the integral representation (A.18) for a11(z) can be analytically

extended off the real z-axis onto D1. The remainder of Theorem 2.4 is proved similarly. �

A.4. Adjoint problem

Proof of Lemma 2.7. We verify (2.36a) with j= 3. The rest of Lemma 2.7 is proved similarly.

Equations (2.14) and (2.30) yield

v±(x, t,z) = e−iθ1(x,t,z)E±,3(z)+o(1), x→±∞.

However, v± must be a linear combination of the columns of φ±, so there exist scalar

functions a±(z), b±(z), and c±(z) such that v±(x, t,z) = a±(z)φ±,1(x, t,z) + b±(z)φ±,2(x, t,z) +

c±(z)φ±,3(x, t,z). Comparing the asymptotics as x→ ±∞ in (2.14) with those of v± yields

a±(z) = b±(z) = 0 and c±(z) = 1. �

Proof of Corollary 2.8. We suppress the x, t, and z dependence for simplicity. Combining

(2.36) with (2.25) yields φ̃+,1 = (b22b33 − b32b23)φ̃−,1 + γ(b32b13 − b12b33)φ̃−,2 + (b22b13 −

b12b23)φ̃−,3. Combining this with (2.33) yields

b̃11 = b22b33−b32b23, b̃21 = γ(b32b13−b12b33), b̃31 = b12b23−b22b13.

Using a similar process, we find that

b̃12 =
1

γ
(b23b31−b33b21), b̃22 = b33b11−b13b31, b̃32 =

1

γ
(b13b21−b23b11),

b̃13 = b21b32−b31b22, b̃23 = γ(b31b12−b11b32), b̃33 = b11b22−b21b12.

Next, note that

(A(z))T
=





















b22b33−b23b32 b23b31−b21b33 b21b32−b22b31

b13b32−b12b33 b11b33−b13b31 b12b31−b11b32

b12b23−b13b22 b13b21−b11b23 b11b22−b12b21





















.

Combining all this information, we finally obtain (2.38). �

Proof of Corollary 2.9. Substituting (2.33) into (2.35) yields the following for z ∈ Σ:

γχ2 = b̃22eiθ2(x,t,z)[φ̃−,1× φ̃−,2]+ b̃32eiθ2(x,t,z)[φ̃−,1× φ̃−,3], (A.20a)

γχ3 = b̃12eiθ2(x,t,z)[φ̃−,1× φ̃−,3]+ b̃22eiθ2(x,t,z)[φ̃−,2× φ̃−,3]. (A.20b)
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Applying (2.36) to (A.20) yields the following for z ∈ Σ:

γ(z)χ2(x, t,z) = b̃22(z)φ−,3(x, t,z)− b̃32(z)γ(z)φ−,2(x, t,z), (A.21a)

γ(z)χ3(x, t,z) = −b̃12(z)γ(z)φ−,2(x, t,z)+ b̃22(z)φ−,1(x, t,z). (A.21b)

We apply (2.38) to (A.21) to obtain the first of (2.39a) and the first of (2.39b). The rest of

(2.39) is obtained similarly. �

A.5. Symmetries

Proof of Proposition 2.11. Let φ(x, t,z) be a non-singular solution of the Lax pair. Then,

φ
†
x = φ

†X† and φ
†
t = φ

†T†. But since Q† = −Q, we have

wx = −(φ†(z∗))−1φ
†
x(z∗)(φ†(z∗))−1

= −(φ†(z∗))−1φ†(z∗)[ikJ−Q](φ†(z∗))−1
= Xw ,

wt = −(φ†(z∗))−1φ
†
t (z∗)(φ†(z∗))−1

= −[−2ik2J+ iJ(Qx −Q2−q2
o)+2kQ]w = Tw ,

where the (x, t)-dependence was omitted for brevity. Thus, w(x, t,z) is a solution of the Lax

pair. �

Proof of Lemma 2.12. Define

w±(x, t,z) = (φ
†
±(x, t,z∗))−1, z ∈ Σ. (A.22)

Also, note that for all z ∈ C,

(eiΘ(x,t,z∗))† = e−iΘ(x,t,z).

As before, we restrict our attention to z ∈ Σ. The BC (2.14) imply

w±(x, t,z) = (E
†
±(z∗))−1eiΘ(x,t,z)

+o(1), x→±∞. (A.23)

Since both w±(x, t,z) and φ±(x, t,z) are fundamental matrix solutions of the Lax pair (2.1),

there must exist an invertible 3 × 3 matrix C(z) such that (2.41) holds. Comparing the

asymptotics from (A.23) to those from (2.14), we then obtain (2.42). �

Proof of Corollary 2.15. Taking into account the boundary conditions (2.14) and the

corresponding boundary conditions for the adjoint problem, we obtain φ∗±(x, t,z∗) = φ̃±(x, t,z)

for z ∈ Σ. Thus, by the Schwarz reflection principle,

φ∗±,1(x, t,z∗) = φ̃±,1(x, t,z), Im(z) ≷ 0∧ |z| > qo, (A.24a)

φ∗±,2(x, t,z∗) = φ̃±,2(x, t,z), Im(z) ≶ 0, (A.24b)

φ∗±,3(x, t,z∗) = φ̃±,3(x, t,z), Im(z) ≷ 0∧ |z| < qo. (A.24c)

We can then combine (2.35) with (A.24) to obtain (2.47). �

Proof of Lemma 2.17. For z ∈ Σ, define W±(x, t,z) = φ±(x, t, ẑ). Since W± and φ± both solve

the Lax pair (2.1), there must exist an invertible 3× 3 matrix Π(z) such that (2.50) holds.

Comparing the asymptotics of (2.50) with the asymptotics from (2.14) yields

E±(ẑ)eiKΘ(x,t,z)
Π(z) = E±(z)eiΘ(x,t,z), z ∈ Σ, (A.25)

where K = diag(−1,1,−1). From this, we obtain (2.51). �
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A.6. Discrete eigenvalues and symmetries of the norming constants

Proof of Lemma 3.1. The desired results follow from the symmetries (2.44) and (2.53). �

The proof of Lemma 3.2 is similar to the proof of Lemma 3.1 and is omitted.

Proof of Lemma 3.3. [(i)⇔ (ii)] The symmetry (2.56) gives the desired results.

[(i)⇔ (iii)] Follows directly from (2.47a).

[(iii) ⇔ (iv)] Assume that there exists a constant bo such that φ−,2(x, t,z∗o) =

boφ+,1(x, t,z∗o). Applying the symmetry (2.52) and taking b̃o = iqobo/z
∗
o yields the desired

result. The converse is proved similarly. �

The proof of Lemma 3.4 is similar to the proof of Lemma 3.3 and is therefore omitted.

Proof of Theorem 3.6. (i) If χ1(x, t,zo) = 0, then (2.43a) implies φ+,1(z∗o) = 0. This is a

contradiction, so χ1(x, t,zo) , 0. Note that the left hand side of (2.43d) (an analytic function)

will have a pole at z = zo unless [χ1 × φ−,1](x, t,zo) = 0. This is equivalent to the existence

of the desired constant co. The presence of the factor of b22(zo) in the denominator is for

convenience in the formulation of a Riemann-Hilbert problem in later sections. The other

results are proved similarly.

(ii) If χ1(x, t,zo) = 0, then (2.43d) implies φ−,2(x, t,z∗o) = 0. This is a contradiction, so

χ1(x, t,zo) , 0. Note that the left hand side of (2.43a) (an analytic function) will have a pole at

z = zo unless [φ+,2×χ1](x, t,zo) = 0. This is equivalent to the existence of the desired constant

do. The other results are proved similarly.

(iii) Suppose χ1(x, t,zo), 0. Since detΦ1(x, t,zo)= 0, there exist constants g1 and g2 such

that χ1(x, t,zo) = g1φ−,1(x, t,zo)+ g2φ+,2(x, t,zo). However, (2.43a) will have a pole unless

g1 = 0. We use the same argument with (2.43d) to conclude g2 = 0. Thus, χ1(x, t,zo) = 0.

The proof that χ2(x, t,z∗o) = 0 is similar. The existence of the desired norming constants then

follows trivially from Lemmas 3.3 and 3.4. �

Proof of Lemma 3.7. The symmetries (2.52) and (2.56) yield d̂n = −(iz∗n/qo)ďn and (3.8b).

Then, combining (2.43) with (2.35) and comparing the result with (3.6a) yields the rest of

(3.8b). The rest of Lemma 3.7 is proved similarly. �

A.7. Asymptotics as z→∞ and z→ 0

In this section we show how to evaluate the asymptotic behavior of the eigenfunctions.

Throughout this section, we will use the shorthand notation

eiΛ̂(M) = eiΛM e−iΛ
=





















m11 e−i(k+λ)m12 e−2iλm13

ei(k+λ)m21 m22 ei(k−λ)m23

e2iλm31 e−i(k−λ)m32 m33





















,

where M is any 3×3 matrix. In order to prove Lemmas 3.8 and 3.9, it will be convenient to

decompose (3.10b) into block-diagonal and block-off-diagonal terms. First, note that for any

3×3 matrices A and B,

[AB]bd = AbdBbd +AboBbo, [AB]bo = AbdBbo+AboBbd. (A.26a)
[

AbdBbd

]

d = [A]d[B]d +
[

Abd

]

o

[

Bbd

]

o, (A.26b)
[

AbdBbd

]

o = [A]d

[

Bbd

]

o+
[

Abd

]

o[B]d. (A.26c)
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We denote the integrand of (3.10b) as

M+(x, y, t,z) = E+(z)ei(x−y)Λ̂(z)
(

E−1
+ (z)∆Q+(y, t)µn(y, t,z)

)

.

In the following calculations we suppress some x, t, and z dependence for brevity when doing

so introduces no confusion. Since ei(x−y)Λ(z) is a diagonal matrix, and since ∆Q+ is a block

off-diagonal matrix,

[M+]bd = [E+]bdei(x−y)Λ̂
(

[E−1
+ ]bo∆Q+(y, t)[µn(y, t,z)]bd + [E−1

+ ]bd∆Q+(y, t)[µn(y, t,z)]bo

)

+ [E+]boei(x−y)Λ̂
(

[E−1
+ ]bd∆Q+(y, t)[µn(y, t,z)]bd + [E−1

+ ]bo∆Q+(y, t)[µn(y, t,z)]bo

)

.

Equation (2.11) implies

[E−1
± ]bd =

1

γ(z)
Γ(z)[E

†
±]bd, [E−1

± ]bo =
1

γ(z)
[E
†
±]bo,

with Γ(z) = diag(1,γ(z),1) as before. We then obtain

[M+]bd =
[E+]bd

γ
ei(x−y)Λ̂

(

[E
†
+]bo∆Q+[µn]bd +Γ[E

†
+]bd∆Q+[µn]bo

)

+
[E+]bo

γ
ei(x−y)Λ̂

(

Γ[E
†
+]
†

bd
∆Q+[µn]bd + [E

†
+]bo∆Q+[µn]bo

)

.

Similarly,

[M+]bo =
[E+]bd

γ
ei(x−y)Λ̂

(

[E
†
+]bo∆Q+[µn]bo+Γ[E

†
+]bd∆Q+[µn]bd

)

+
[E+]bo

γ
ei(x−y)Λ̂

(

Γ[E
†
+]bd∆Q+[µn]bo+ [E

†
+]bo∆Q+[µn]bd

)

.

We now use these relations to decompose the integral in (3.10b). Namely,

−γ[µn+1]bd = [E+]bd

∞
∫

x

[

[E
†
+]bo∆Q+[µn]d + ei(x−y)Λ̂

(

[E
†
+]bo∆Q+

[

[µn]bd

]

o

)

]

dy

+ [E+]bdΓ

∞
∫

x

[

[E
†
+]d

[

∆Q+[µn]bo

]

d + [[E
†
+]bd]o

[

∆Q+[µn]bo

]

o

]

dy

+ [E+]bd

∞
∫

x

ei(x−y)Λ̂
(

Γ[E
†
+]d

[

∆Q+[µn]bo

]

o+Γ[[E
†
+]bd]o

[

∆Q+[µn]bo

]

d

)

dy

+ [E+]bo

∞
∫

x

ei(x−y)Λ̂
(

Γ[E
†
+]bd∆Q+[µn]bd + [E

†
+]bo∆Q+[µn]bo

)

dy, (A.27a)

−γ[µn+1]bo = [E+]bd

∞
∫

x

ei(x−y)Λ̂
(

[E
†
+]bo∆Q+[µn]bo+Γ[E

†
+]bd∆Q+[µn]bd

)

dy

+ [E+]bo

∞
∫

x

[

Γ[[E
†
+]bd]o

[

∆Q+[µn]bo

]

o+ ei(x−y)Λ̂
(

Γ[E
†
+]d

[

∆Q+[µn]bo

]

o

)

]

dy

+ [E+]bo

∞
∫

x

[

ei(x−y)Λ̂
(

Γ[[E
†
+]bd]o

[

∆Q+[µn]bo

]

d

)

+
[

[E
†
+]bo∆Q+

]

d[µn]d

]

dy
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+ [E+]bo

∞
∫

x

[

[

[E
†
+]bo∆Q+

]

o

[

[µn]bd

]

o+ ei(x−y)Λ̂
(

[

[E
†
+]bo∆Q+

]

o[µn]d

)

]

dy

+ [E+]bo

∞
∫

x

ei(x−y)Λ̂
(

[

[E
†
+]bo∆Q+

]

d

[

[µn]bd

]

o

)

dy. (A.27b)

Equations (A.27a) and (A.27b) will allow us to use induction to prove Lemmas 3.8 and 3.9.

Proof of Lemma 3.8. The claims in (3.11a) are trivially true for µ0. Suppose the claims

in (3.11) are true for some n ≥ 0. We then use integration by parts and the facts that

k = z/2 +O(1/z) and λ = z/2 +O(1/z) as z → ∞ to see that the terms on the right hand

side of (A.27a) are O([µn]bd/z), O([µn]bd/z
2), O([µn]bo), O([µn]bo), O([µn]bo/z), O([µn]bo/z),

O([µn]bd/z
2), and O([µn]bo/z

3), respectively, as z→∞.

When n = 2m for some m ∈ N, the first, third, and fourth terms on the right hand side

of (A.27a) are O(1/zm+1), the second, fifth, sixth, and seventh terms are O(1/zm+2), and the

eighth term is O(1/zm+4) (all as z→∞). Then [µn+1]bd = O(1/zm+1), as z→∞.

When n = 2m+ 1 for some m ∈ N, the third and fourth terms on the right hand side

of (A.27a) are O(1/zm+1), the first, fifth, and sixth terms are O(1/zm+2), the second and

seventh terms are O(1/zm+3), and the eighth term is O(1/zm+4) (all as z → ∞). Then

[µn+1]bd = O(1/zm+1) as z→∞.

Similar results hold for the terms in (A.27b) using the same analysis. Also, the same

results hold for µ−(x, t,z) when it is expanded as a series similar to (3.9). �

Proof of Lemma 3.9. The claims in (3.12a) are trivially true for µ0. Suppose the claims in

(3.12) are true for some n ≥ 0. We then use integration by parts and the facts that k = O(1/z)

and λ = O(1/z) as z → 0 to see that the eight terms on the right hand side of (A.27a)

are, respectively, O(z[µn]bd), O(z2[µn]bd), O(z2[µn]bo), O(z2[µn]bo), O(z3[µn]bo), O(z3[µn]bo),

O(z2[µn]bd), and O(z[µn]bo) as z→ 0.

When n = 2m for some m ∈N, the eighth term on the right hand side of (A.27a) is O(zm),

the first, third, and fourth terms are O(zm+1), and the rest are O(zm+2). Then [µn+1]bd = O(zm)

as z→ 0.

When n = 2m+ 1 for some m ∈ N, the first and eighth terms on the right hand side of

(A.27a) are O(zm+1), the second, third, fourth, and seventh terms are O(zm+2), and the rest are

O(zm+3). Then [µn+1]bd = O(zm+1) as z→ 0.

Similar results hold for the terms in (A.27b) using the same analysis. Also, the same

results hold for µ−(x, t,z) when it is expanded as a series similar to (3.9). �

A.8. Riemann-Hilbert problem

Proof of Lemma 4.1. Combining (2.25) with the second of (2.39d) yields

φ+,2(x, t,z) = −

[

a32(z)

a22(z)

b13(z)

b11(z)
+

a12(z)

a22(z)

]

φ+,1(x, t,z)+
φ−,2(x, t,z)

a22(z)
−

a32(z)

a22(z)

χ2(x, t,z)

b11(z)
. (A.28)

Equation (A.28) expresses φ+,2(x, t,z) in terms of eigenfunctions meromorphic in D2.

Examining (2.25) once again as well as equating the two expressions in (2.39d) and solving

for χ1/b22 yields

φ−,1(x, t,z)

a11(z)
= φ+,1(x, t,z)+

a21

a11(z)
φ+,2(x, t,z)+

a31(z)

a11(z)
φ+,3(x, t,z), (A.29a)
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χ1(x, t,z)

b22(z)
=

b13(z)

b11(z)
φ+,1(x, t,z)−

b23(z)

b22(z)
φ+,2(x, t,z)+

χ2(x, t,z)

b11(z)
. (A.29b)

Combining (A.29a) with the second of (2.39d) and then (A.28) expresses φ−,1(x, t,z)/a11(z)

in terms of eigenfunctions meromorphic in D2. The same is done for χ1(x, t,z)/b22(z) by

combining (A.29b) with (A.28). The columns of L1(z) are then obtained by applying (2.57).

The rest of the jump matrices are obtained similarly. �

Proof of Lemma 4.2. The residue conditions (4.6) are trivial results of equations (3.5), (3.6),

and (3.7). �

Proof of Lemma 4.3. We use the following symmetries (obtained from (2.44) and (2.53)):

b′22(zo) = (a′22(zo))∗
∣

∣

∣

∣

z=z∗o
, b′22(zo) =

q2
o

z2
o

(b′22(z))
∣

∣

∣

∣

z=ẑo

,

a′22(z∗o) =
q2

o

(z∗o)2
(a′22(z))

∣

∣

∣

∣

z=ẑ∗o
,

a′11(zo) = (b′11(z))∗
∣

∣

∣

∣

z=z∗o
, a′33(ẑo) = (b′33(z))∗

∣

∣

∣

∣

z=ẑ∗o
,

a′11(zo) =
q2

o

z2
o

(a′33(z))
∣

∣

∣

∣

z=ẑo

, b′11(z∗o) =
q2

o

(z∗o)2
(b′33(z))

∣

∣

∣

∣

z=ẑ∗o
,

along with the symmetries in Lemma 3.7 to obtain the desired results. �

Proof of Theorem 4.4. Define the following Cauchy projectors:

P±( f )(z) =
1

2πi

∫

R

f (ζ)

ζ − (z± i0)
dζ, P̄±( f )(z) =

1

2πi

∫

Σ

f (ζ)

ζ − (z± i0)
dζ, (A.30)

where the orientation of Σ is given in Fig. 1 (right). (Note that this is the same as in the scalar

case [8].) To solve (4.2), we subtract from both sides of (4.2) the asymptotic behavior (4.3) as

well as the residue contributions from the poles. Namely, we subtract

M∞+ (i/z)M0+

N
∑

n=1















M+
−1,vn

z− vn

+

M−
−1,v∗n

z− v∗n
+

M+
−1,v̂∗n

z− v̂∗n
+

M−
−1,v̂n

z− v̂n















.

Note that the left hand side of the resulting regularized RHP is analytic in D+ and is O(1/z)

as z→∞ there. Also, the right hand side is analytic in D− and is O(1/z) as z→∞ there.

Applying the projector P̄± from (A.30) to the regularized RHP and using Plemelj’s formulae

yields (4.7). In order to determine the solution M(x, t,z) completely, we need to compute the

eigenfunctions m1(x, t,wn), µ+,1(x, t,w∗n), etc. We take M =M1 in (4.7), evaluate its second

column at z = zi′ or z = ζℓ′ , and apply the symmetries of the eigenfunctions to obtain (4.8a).

Next, we take M =M2 and evaluate its third column at z∗
i′

to obtain (4.8b). Thirdly, we take

M =M2 and evaluate its first column at z = ζ∗
ℓ′

or z = w∗
j′

to obtain (4.8c). Finally, we take

M =M1 and evaluate its third column at w j′ to obtain (4.8d). This mixed algebraic-integral

system of equations is closed, so we have determined the solution M(x, t,z) of the RHP (4.2)

given in (4.7). �

Proof of Theorem 4.5. The asymptotics in (3.13a) imply

qk(x, t) = −i lim
z→∞

(

zµ+,(k+1)1(x, t,z)
)

, k = 1,2. (A.31)

Comparing the 2,1 and 3,1 elements in the limit as z→∞ of (4.8c) with the corresponding

elements found in (3.13a) yields (4.9). �
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A.9. Trace formulae

Proof of Lemma 4.6. We first derive (4.10b). A cofactor expansion of A(z) along its second

column, combined with the definition (2.57) of the reflection coefficients, yields

logb22(z)− log(1/a22(z)) = − log[1+γ(z)ρ3(ẑ)ρ∗3(ẑ∗)+γ(z)ρ3(z)ρ∗3(z∗)], z ∈ Σ. (A.32)

Since b22(z) and a22(z) are analytic in the upper- and lower-half plane, respectively, (A.32) is

a jump condition that defines a scalar, additive Riemann-Hilbert problem. To remove the pole

singularities coming from the zeros of b22(z) and a22(z), we can define

β+(z) = b22(z)ei∆θ
N2
∏

n=1

z− z∗n

z− zn

z− ẑ∗n

z− ẑn

N3
∏

n=1

z− ζ∗n

z− ζn

z− ζ̂∗n

z− ζ̂n

, z ∈ C+ , (A.33a)

β−(z) = (1/a22(z))ei∆θ
N2
∏

n=1

z− z∗n

z− zn

z− ẑ∗n

z− ẑn

N3
∏

n=1

z− ζ∗n

z− ζn

z− ζ̂∗n

z− ζ̂n

, z ∈ C− . (A.33b)

Now β±(z) are analytic in C±, respectively, β±(z) have no zeros (or poles) in C±, respectively,

and each approaches 1 as z→∞ in the appropriate region of the complex plane. Applying

the projectors P± defined in (A.30) and using Plemelj’s formulae we obtain logβ(z) =

P(log[β+β−]) for all z ∈ C \Σ. Taking into account the explicit form of the jump condition

in (A.32) and taking exponentials then yields (4.10b).

Next we derive (4.10a). Using appropriate cofactor expansions, similarly as above, and

the definition (2.57) of the reflection coefficients yields:

loga11(z)− log(1/b11(z)) = − log

[

1+
1

γ(z)
ρ1(z)ρ∗1(z∗)+ρ2(z)ρ∗2(z∗)

]

, z ∈ Σ , (A.34a)

logb33(z)− log(1/a33(z)) = − log

[

1+
1

γ(z)
ρ1(ẑ)ρ∗1(ẑ∗)+ρ2(ẑ)ρ∗2(ẑ∗)

]

, z ∈ Σ . (A.34b)

Now, however, the situation is complicated by the fact that a11(z), a33(z), b11(z) and b33(z)

are each only analytic in one of the fundamental domains D1, . . . ,D4. In order to formulate a

Riemann-Hilbert problem, one needs a sectionally analytic function over the whole complex

plane. Moreover, since we have four fundamental domains of analyticity, we need additional

jump conditions. Recalling that A(z)B(z) = I, we have a22(z) = b11(z)b33(z)− b13(z)b31(z)

and b22(z) = a11(z)a33(z)−a13(z)a31(z) for all z ∈ Σ. Using again the definitions (2.57) of the

reflection coefficients we then obtain

logb33(z)− log(1/b11(z)) = loga22(z)− log[1−ρ∗2(z∗)ρ∗2(ẑ∗)], z ∈ Σ , (A.35a)

loga11(z)− log(1/a33(z)) = logb22(z)− log[1−ρ2(z)ρ2(ẑ)], z ∈ Σ . (A.35b)

We therefore define

β̄+(z) =















β1(z), z ∈ D1,

β3(z), z ∈ D3,
β̄−(z) =















β2(z), z ∈ D2,

β4(z), z ∈ D4,
(A.36)

where

β1(z) =
a11(z)

p1(z)

N1
∏

n=1

z−w∗n

z−wn

z− ŵn

z− ŵ∗n

N2
∏

n=1

z− zn

z− z∗n

z− ẑ∗n

z− ẑn

, z ∈ D1, (A.37a)

β2(z) =
p∗

1
(z∗)(z)

b11(z)

N1
∏

n=1

z−w∗n

z−wn

z− ŵn

z− ŵ∗n

N2
∏

n=1

z− zn

z− z∗n

z− ẑ∗n

z− ẑn

, z ∈ D2, (A.37b)
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β3(z) =
b33(z)

p∗
2
(z∗)

N1
∏

n=1

z−w∗n

z−wn

z− ŵn

z− ŵ∗n

N2
∏

n=1

z− zn

z− z∗n

z− ẑ∗n

z− ẑn

, z ∈ D3, (A.37c)

β4(z) =
p2(z)

a33(z)

N1
∏

n=1

z−w∗n

z−wn

z− ŵn

z− ŵ∗n

N2
∏

n=1

z− zn

z− z∗n

z− ẑ∗n

z− ẑn

, z ∈ D4, (A.37d)

p1(z) =
N2
∏

n=1

z− zn

z− z∗n

N3
∏

n=1

z− ζn

z− ζ∗n
, p2(z) =

N2
∏

n=1

z− ẑn

z− ẑ∗n

N3
∏

n=1

z− ζ̂n

z− ζ̂∗n
. (A.37e)

Note that β̄±(z) are analytic in D±, respectively, have no zeros (or poles) there, and each

approaches 1 as z→ ∞ in the appropriate region of the complex plane. Equations (A.34)

and (A.35) can be written in terms of β1(z), . . . ,β4(z). Specifically, (A.34) yields

logβ1(z)− logβ2(z) = − log

[

1+
1

γ(z)
ρ1(z)ρ∗1(z∗)+ρ2(z)ρ∗2(z∗)

]

, z ∈ Σ , (A.38a)

logβ3(z)− logβ4(z) = − log

[

1+
1

γ(z)
ρ1(ẑ)ρ∗1(ẑ∗)+ρ2(ẑ)ρ∗2(ẑ∗)

]

, z ∈ Σ . (A.38b)

Moreover, using (A.37) and (4.10b) to simplify (A.35) yields

logβ3(z)− logβ2(z) =
1

2πi

∫

R

J∗o(ζ)

ζ − z
dζ − log[1−ρ∗2(z∗)ρ∗2(ẑ∗)], z ∈ Σ, (A.39a)

logβ1(z)− logβ4(z) = −
1

2πi

∫

R

Jo(ζ)

ζ − z
dζ − log[1−ρ2(z)ρ2(ẑ)], z ∈ Σ, (A.39b)

where

Jo(z) = log[1+γ(z)ρ3(ẑ)ρ∗3(ẑ∗)+γ(z)ρ3(z)ρ∗3(z∗)]. (A.40)

Together, (A.38) and (A.39) are the jump conditions for the Riemann-Hilbert problem for

the sectionally analytic function β̄(z) defined in (A.36), with jump conditions J1(z), . . . , J4(z),

where

J1(z) = − log

[

1+
1

γ(z)
ρ1(z)ρ∗1(z∗)+ρ2(z)ρ∗2(z∗)

]

, (A.41a)

J2(z) =
1

2πi

∫

R

J∗o(ζ)

ζ − z
dζ − log[1−ρ∗2(z∗)ρ∗2(ẑ∗)], (A.41b)

J3(z) = − log

[

1+
1

γ(z)
ρ1(ẑ)ρ∗1(ẑ∗)+ρ2(ẑ)ρ∗2(ẑ∗)

]

, (A.41c)

J4(z) = −
1

2πi

∫

R

Jo(ζ)

ζ − z
dζ − log[1−ρ2(z)ρ2(ẑ)], (A.41d)

and with Jo(z) defined as in (A.40). More precisely, we have

log β̄+(z)− log β̄−(z) = J j(z), z ∈ Σ j (A.42)

for j = 1, . . . ,4, and where the Σ j are as defined in Lemma 4.1.

Applying the projectors P̄± defined in (A.30), using Plemelj’s formulae and taking into

account the jump conditions (A.41) then yields

log β̄(z) =
1

2πi

∫

Σ

J(ζ)

ζ − z
dζ , z ∈ C \Σ . (A.43)
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Taking the exponential of both sides of (A.43) with z ∈ D1 yields

a11(z)

p1(z)
= exp













1

2πi

∫

Σ

J(ζ)

ζ − z
dζ













N1
∏

n=1

z−wn

z−w∗n

z− ŵ∗n

z− ŵn

N2
∏

n=1

z− z∗n

z− zn

z− ẑn

z− ẑ∗n
. (A.44)

Simplifying this expression for a11(z) yields (4.10a). �

Proof of Corollary 4.7. It is straightforward to see that taking the limit as z→ 0 in the trace

formula (4.10a) for a11(z) and comparing with the asymptotics in Corollary 3.12 yields the

desired result. �

A.10. Reflectionless solutions

The coefficients bk j and y j appearing in Theorem 5.1 are defined as follows:

bk j(x, t) =



































































































q+,k/qo, j = 1, . . . ,N1,

iq+,k/w
∗
j−N1

, j = N1+1, . . . ,2N1,

(−1)k+1
q∗
+,k̄

qo
+

q+,k
qo

N2
∑

n=1
G

(1)
n (z j−2N1

)

+iq+,k
N3
∑

n=1
G

(2)
n (z j−2N1

)/ζ∗n ,

j = 2N1+1, . . . ,2N1+N2,

(−1)k+1
q∗
+,k̄

qo
+

q+,k
qo

N2
∑

n=1
G

(1)
n (ζ j−2N1−N2

)

+iq+,k
N3
∑

n=1
G

(2)
n (ζ j−2N1−N2

)/ζ∗n ,

j = 2N1+N2+1, . . . ,2N1+N2+N3,

(A.45)

y j(x, t) =







































iC j, j = 1, . . . ,N1,

−(iw∗
j−N1

/qo)Č j−N1
, j = N1+1, . . . ,2N1,

iD̄ j−2N1
, j = 2N1+1, . . . ,2N1+N2,

iF j−2N1−N2
, j = 2N1+N2+1, . . . ,2N1+N2+N3,

(A.46)

where k = 1,2 and k̄ = 3− k. For simplicity, we define

G
(1)
n (x, t,z) =

D̂n(x, t)

z− z∗n
−

iz∗n

qo

Ďn(x, t)

z− ẑ∗n
, G

(2)
n (x, t,z) =

F̂n(x, t)

z− ζ∗n
−

iζ∗n

qo

F̌n(x, t)

z− ζ̂∗n
, (A.47a)

G
(3)
n (x, t,z) =

Ĉn(x, t)

z−w∗n
, G

(4)
n (x, t,z) = −

iwn

qo

C̄n(x, t)

z− ŵn

, G
(5)
n (x, t,z) =

Dn(x, t)

z− zn

, (A.47b)

G
(6)
n (x, t,z) =

F̄n(x, t)

z− ζ̂n

, G
(7)
n (x, t,z) =

Cn(x, t)

z−wn

, G
(8)
n (x, t,z) = −

w∗n

qo

Čn(x, t)

z− ŵ∗n
, (A.47c)

G
(9)
n (x, t,z) =

D̄n(x, t)

z− ẑn

, G
(10)
n (x, t,z) =

Fn(x, t)

z− ζn

. (A.47d)

Using (A.47), the coefficients Fi j are defined as follows. For i, j = 1, . . . ,N1,

Fi j(x, t) =G
(4)

j
(wi) . (A.48a)

For i = 1, . . . ,N1 and j = N1+1, . . . ,2N1,

Fi j(x, t) =G
(3)

j−N1
(wi) . (A.48b)
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For i = 1, . . . ,N1 and j = 2N1+1, . . . ,2N1+N2,

Fi j(x, t) =G
(5)

j−2N1
(wi) . (A.48c)

For i = 1, . . . ,N1 and j = 2N1+N2+1, . . . ,2N1+N2+N3,

Fi j(x, t) =G
(6)

j−2N1−N2
(wi) . (A.48d)

For i = N1+1, . . . ,2N1 and j = 1, . . . ,N1,

Fi j(x, t) =G
(7)

j
(w∗i−N1

) . (A.48e)

For i, j = N1+1, . . . ,2N1,

Fi j(x, t) =G
(8)

j−N1
(w∗i−N1

) . (A.48f )

For i = N1+1, . . . ,2N1 and j = 2N1+1, . . . ,2N1+N2,

Fi j(x, t) =G
(9)

j−2N1
(w∗i−N1

) . (A.48g)

For i = N1+1, . . . ,2N1 and j = 2N1+N2+1, . . . ,2N1+N2+N3,

Fi j(x, t) =G
(10)

j−2N1−N2
(w∗i−N1

) . (A.48h)

For i = 2N1+1, . . . ,2N1+N2 and j = 1, . . . ,N1,

Fi j(x, t) =
N2
∑

n=1
G

(1)
n (zi−2N1

)G
(4)

j
(z∗n)+

N3
∑

n=1
G

(2)
n (zi−2N1

)G
(4)

j
(z∗n) . (A.48i)

For i = 2N1+1, . . . ,2N1+N2 and j = N1+1, . . . ,2N1,

Fi j(x, t) =
N2
∑

n=1
G

(1)
n (zi−2N1

)G
(3)

j−N1
(z∗n)+

N3
∑

n=1
G

(2)
n (zi−2N1

)G
(8)

j−N1
(ζ∗n) . (A.48j)

For i, j = 2N1+1, . . . ,2N1+N2,

Fi j(x, t) =
N2
∑

n=1
G

(1)
n (zi−2N1

)G
(5)

j−2N1
(z∗n)+

N3
∑

n=1
G

(2)
n (zi−2N1

)G
(9)

j−2N1
(ζ∗n) . (A.48k)

For i = 2N1+1, . . . ,2N1+N2 and j = 2N1+N2+1, . . . ,2N1+N2+N3,

Fi j(x, t) =
N3
∑

n=1
[G

(1)
n (zi−2N1

)G
(6)

j−2N−1−N2
(z∗n)+G

(2)
n (zi−2N1

)G
(10)

j−2N1−N2
(ζ∗n)] . (A.48l)

For i = 2N1+N2+1, . . . ,2N1+N2+N3 and j = 1, . . . ,N1,

Fi j(x, t) =
N2
∑

n=1
G

(1)
n (ζi−2N1−N2

)G
(4)

j
(z∗n)+

N3
∑

n=1
G

(2)
n (ζi−2N1−N2

)G
(4)

j
(z∗n) . (A.48m)

For i = 2N1+N2+1, . . . ,2N1+N2+N3 and j = N1+1, . . . ,2N1,

Fi j(x, t) =
N2
∑

n=1
G

(1)
n (ζi−2N1−N2

)G
(3)

j−N1
(z∗n)+

N3
∑

n=1
G

(2)
n (ζi−2N1−N2

)G
(8)

j−N1
(ζ∗n) . (A.48n)

For i = 2N1+N2+1, . . . ,2N1+N2+N3 and j = 2N1+1, . . . ,2N1+N2,

Fi j(x, t) =
N2
∑

n=1
G

(1)
n (ζi−2N1−N2

)G
(5)

j−2N1
(z∗n)+

N3
∑

n=1
G

(2)
n (ζi−2N1−N2

)G
(9)

j−2N1
(ζ∗n) . (A.48o)

Finally, for i, j = 2N1+N2+1, . . . ,2N1+N2+N3,

Fi j(x, t) =
N3
∑

n=1
[G

(1)
n (ζi−2N1−N2

)G
(6)

j−2N−1−N2
(z∗n)+G

(2)
n (ζi−2N1−N2

)G
(10)

j−2N1−N2
(ζ∗n)] . (A.48p)

As usual, the (x, t)-dependence was omitted from the right hand side of the above equations

for brevity.

Proof of Theorem 5.1. We consider the equations for the eigenfunctions in Theorem 4.4 in

the reflectionless case. Evaluating the second and third entries of these equations at the
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appropriate eigenvalues, we obtain the following algebraic system of equations for k = 1,2

and k̄ = 3− k:

m+(k+1)2(zi′ ) = (−1)k+1
q∗
+,k̄

qo

+

N2
∑

n=1

[

D̂n

zi′ − z∗n
−

iz∗n

qo

Ďn

zi′ − ẑ∗n

]

m−(k+1)3(z∗n)

+

N3
∑

n=1

[

F̂n

zi′ − ζ
∗
n

−
iζ∗n

qo

F̌n

zi′ − ζ̂
∗
n

]

m−(k+1)1(ζ∗n), i′ = 1, . . . ,N2, (A.49a)

m+(k+1)2(ζℓ′ ) = (−1)k+1
q∗
+,k̄

qo

+

N2
∑

n=1

[

D̂n

ζℓ′ − z∗n
−

iz∗n

qo

Ďn

ζℓ′ − ẑ∗n

]

m−(k+1)3(z∗n)

+

N3
∑

n=1

[

F̂n

ζℓ′ − ζ
∗
n

−
iζ∗n

qo

F̌n

ζℓ′ − ζ̂
∗
n

]

m−(k+1)1(ζ∗n), ℓ′ = 1, . . . ,N3, (A.49b)

m−(k+1)3(z∗i′ ) =
q+,k

qo

+

N1
∑

n=1

















Ĉnm−
(k+1)1

(w∗n)

z∗
i′
−w∗n

−
iwn

qo

Cnm+
(k+1)3

(wn)

z∗
i′
− ŵn

















+

N2
∑

n=1

Dnm+
(k+1)2

(zn)

z∗
i′
− zn

+

N3
∑

n=1

F̄nm+
(k+1)2

(ζn)

z∗
i′
− ζ̂n

, i′ = 1, . . . ,N2, (A.49c)

m−(k+1)1(w∗j′ ) =
iq+,k

w∗
j′

+

N1
∑

n=1

















Cnm+
(k+1)3

(wn)

w∗
j′
−wn

−
iw∗n

qo

Čnm−
(k+1)1

(w∗n)

w∗
j′
− ŵ∗n

















+

N2
∑

n=1

Dnm+
(k+1)2

(zn)

w∗
j′
− ẑn

+

N3
∑

n=1

Fnm+
(k+1)2

(ζn)

w∗
j′
− ζn

, j′ = 1, . . . ,N1, (A.49d)

m−(k+1)1(ζ∗ℓ′ ) =
iq+,k

ζ∗
ℓ′

+

N1
∑

n=1

















Cnm+
(k+1)3

(wn)

ζ∗
ℓ′
−wn

−
iw∗n

qo

Čnm−
(k+1)1

(w∗n)

ζ∗
ℓ′
− ŵ∗n

















+

N2
∑

n=1

Dnm+
(k+1)2

(zn)

ζ∗
ℓ′
− ẑn

+

N3
∑

n=1

Fnm+
(k+1)2

(ζn)

ζ∗
ℓ′
− ζn

, ℓ′ = 1, . . . ,N3, (A.49e)

m+(k+1)3(w j′ ) =
q+,k

qo

+

N1
∑

n=1

















Ĉnm−
(k+1)1

(w∗n)

w j′ −w
∗
n

−
iwn

qo

Cnm+
(k+1)3

(wn)

w j′ − ŵn

















+

N2
∑

n=1

Dnm+
(k+1)2

(zn)

w j′ − zn

+

N3
∑

n=1

F̄nm+
(k+1)2

(ζn)

w j′ − ζ̂n

, j′ = 1, . . . ,N1, (A.49f )

where, as before, the (x, t)-dependence was omitted for simplicity. Next, we substitute (A.49c)

and (A.49e) into both (A.49a) and (A.49b) and combine the result with (A.47) to obtain the

following for z = zi′ and z = ζℓ′ :

m+(k+1)2(z) = (−1)k+1
q∗
+,k̄

qo

+
q+,k

qo

N2
∑

n=1
G

(1)
n (z)+ iq+,k

N3
∑

n=1

G
(2)
n (z)

ζ∗n

+

N2
∑

n=1

N1
∑

n′=1
G

(1)
n (z)[G

(3)

n′
(z∗n)m−(k+1)1(w∗n′ )+G

(4)

n′
(z∗n)m+(k+1)3(wn′ )]

+

N2
∑

n=1

N2
∑

n′=1
G

(1)
n (z)G

(5)

n′
(z∗n)m+(k+1)2(zn′ )

+

N2
∑

n=1

N3
∑

n′=1
G

(1)
n (z)G

(6)

n′
(z∗n)m+(k+1)2(ζn′ )
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+

N3
∑

n=1

N1
∑

n′=1
G

(2)
n (z)[G

(7)

n′
(ζ∗n)m+(k+1)3(wn′ )+G

(8)

n′
(ζ∗n)m−(k+1)1(w∗n′ )]

+

N3
∑

n=1

N2
∑

n′=1
G

(2)
n (z)G

(9)

n′
(ζ∗n)m+(k+1)2(zn′ )+

N3
∑

n=1

N3
∑

n′=1
G

(2)
n (z)G

(10)

n′
(ζ∗n)m+(k+1)2(ζn′ ). (A.50)

Together, equations (A.49d), (A.49f), and (A.50) comprise closed systems of linear equations.

We now rewrite this system so as to solve it using Cramer’s rule. First, we define xk =

(xk1, . . . , xk(2N1+N2+N3))
T for k = 1,2, where

xk j =







































m+
(k+1)3

(w j), j = 1, . . . ,N1,

m−
(k+1)1

(w∗
j−N1

), j = N1+1, . . . ,2N1,

m+
(k+1)2

(z j−2N1
), j = 2N1+1, . . . ,2N1+N2,

m+
(k+1)2

(ζ j−2N1−N2
), j = 2N1+N2+1, . . . ,2N1+N2+N3.

Then we may rewrite the above closed systems of equations as (I− F)xk = bk, where the

remaining quantities are as defined in the theorem. Using Cramer’s rule, it is easy to see that

the components of the solutions of the closed systems are

xk j =

detG
aug

k j

detG
, j = 1, . . . ,2N1+N2+N3, k = 1,2,

where G
aug

k j
= (G1, . . . ,G j−1,bk,G j+1, . . . ,G2N+N2+N3

). Substituting this into the reconstruction

formula (4.9) and using the definition (A.46) of the y j yields the desired results. �
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