
The Folk Theorem for Games with Private
Almost-Perfect Monitoring∗

Johannes Hörner† Wojciech Olszewski‡

January 2005

Abstract

We prove the folk theorem for discounted repeated games under private, almost-perfect
monitoring. Our result covers all finite, n-player games satisfying the usual full-dimensionality
condition. Mixed strategies are allowed in determining the individually rational payoffs. We
assume no cheap-talk communication between players and no public randomization device.
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1 Introduction

The central result of the literature on discounted repeated games is probably the folk theorem
(Fudenberg and Maskin (1986)): with only two players, or when a full dimensionality condition
holds, any feasible payoff vector Pareto-dominating the minmax point of the stage game is
achieved by some subgame-perfect equilibrium of the infinitely repeated game provided that
the players are sufficiently patient. Under some identifiability conditions, this result has been
subsequently generalized by Fudenberg, Levine and Maskin (1994) to the case in which players
do not observe the chosen action profile, but only a public signal that is a stochastic function
of the action profile. For that purpose it suffices to consider a restricted class of sequential
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equilibria. In perfect public equilibria (PPE), players’ continuation strategy only depends on
the public history, that is, on the history of public signals. The analysis of PPE is tractable
because after any history the continuation strategies correspond to an equilibrium in the original
game, so that the set of PPE payoffs can be characterized by techniques borrowed from dynamic
programming (see Abreu, Pearce and Stacchetti (1990)).1

Thus, common knowledge of relevant aspects of players’ histories plays an essential role in
the proofs of the folk theorem so far. This sort of common knowledge is missing in games with
private monitoring. In such games, each player only observes a private signal that is a stochastic
function of the action profile. If, for each action profile, the signals of all players are perfectly
correlated, then the monitoring is public, and if moreover the signals are perfectly correlated
with the action profile, the monitoring is perfect. Yet, in general, signals are neither perfect nor
public, so that players share no public information to coordinate continuation play. This paper
shows that the folk theorem is robust. It remains valid under the standard full-dimensionality
assumption, provided only that the private signals are sufficiently close to perfect. In particular,
signals are not restricted to be almost-public or conditionally independent.
More specifically, take any finite n-player game whose set of feasible, individually rational

payoffs has non-empty interior V ∗, where the individually rational payoffs are determined by
considering (independent) mixed strategies. Consider the canonical signal space, in which a
player’s set of signals is the set of action profiles of its opponents. More general signal spaces
are discussed in Section 5. Monitoring is ε-perfect if, for any player i, under any action profile
a, player i obtains signal σi = a−i with probability at least 1− ε. The parameter ε is the noise
level. When ε = 0, monitoring is perfect. Payoffs are discounted at common factor δ ∈ (0, 1).
No public randomization or communication device is assumed. Given discount factor δ, denote
by E (δ, ε) the set of average payoff vectors in the repeated game that are sequential equilibrium
payoffs for all ε-perfect monitoring structures. This paper shows that:

∀v∈V ∗ ∃δ̄<1,ε̄>0 ∀(δ,ε)∈(δ̄,1)×[0,ε̄) v ∈ E (δ, ε) .

Observe that the result does not posit any particular order of limits, as it holds for a joint
neighborhood of discount factors and noise levels. In addition, the result states that the payoff
vector v is exactly achieved, not only approximated.
There are several related contributions. Lehrer (1990) obtains efficient equilibria while con-

sidering time-average payoffs, while Fudenberg and Levine (1991) require approximate optimiza-
tion. The equilibrium strategies proposed in these papers are no longer equilibrium strategies
once discounting and exact optimization are introduced.
Compte (1998), Kandori and Matsushima (1998), Aoyagi (2002) and Fudenberg and Levine

(2002) prove versions of the folk theorem while allowing players to communicate. While a realistic

1In general, however, the set of sequential equilibrium payoffs is strictly larger than the set of PPE payoffs.
See Kandori and Obara (2004) for details.
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assumption in many applications, communication reintroduces an element of public information
that is somewhat at odds with the motivation of private monitoring as a robustness test outlined
above. Mailath and Morris (2002) prove a folk theorem for almost-perfect monitoring, assuming
in addition that monitoring is also almost-public.
Sekiguchi (1997) achieves the efficient outcome and Bhaskar and Obara (2002) establishes the

folk theorem, under almost-perfect monitoring, for the special case of the two-player prisoner’s
dilemma. They isolate a set of (continuation) strategies closed under best-response: for any
relevant belief a player may have about his opponent’s continuation strategy (within that set),
some strategy within the set is a best-response. Using a different approach, Ely and Välimäki
(2002) and Piccione (2002) prove the folk theorem under almost-perfect monitoring for the two-
player prisoner’s dilemma. They isolate a set of (continuation) strategies satisfying a stronger
property: for any belief a player may have about his opponent’s continuation strategy (within
that set), any strategy within that set is a best-response. This approach has been further used
by Matsushima (2004) to extend the two-player prisoner dilemma’s folk theorem from the case
of almost-perfect monitoring to the case of conditionally independent, but not necessarily almost
perfect, monitoring. Finally, Yamamoto (2004) shows, by modifying the construction of Ely and
Välimäki (2002) and Matsushima (2004), that the efficient outcome can be achieved in a class
of N-player games, similar in structure to the prisoner’s dilemma, under almost-perfect as well
as conditionally independent monitoring.
While the first, belief-based, approach is more general than the second belief-free approach,

it appears less tractable and has not been generalized so far to other stage games. The belief-
free approach has been studied more generally by Ely, Hörner and Olszewski (2004), which
characterizes the set of payoffs that can be achieved using sequential equilibria satisfying this
property. For many stage games, this set of payoffs is larger than the convex hull of static Nash
equilibrium payoffs, but for “almost all” stage games, it fails to yield the folk theorem even under
almost-perfect monitoring.
Although the equilibria studied in this paper are not belief-free, they retain some essential

features of belief-free equilibria. To get some insight into the construction, consider the case
of two players. In each consecutive block of T periods, players use one of two strategies of the
T -finitely repeated stage game. The length T is chosen so that the average payoff over the
horizon T of each of the four resulting strategy profiles surrounds the average payoff vector v
to be achieved overall: if a player uses one of his two strategies, his opponent is guaranteed to
receive more than vi, independently of which of the two strategies he uses himself; if he uses
the other strategy, his opponent gets less than vi, no matter which strategy he uses, among all
strategies of the T -finitely repeated game. Therefore, within each block, a player is not indifferent
over his opponent’s choice of strategy. By choosing appropriately the probability with which a
player uses one or the other strategy at the beginning of each non-initial block (the transition
probabilities), as a function of his recent history and of his recent strategy (that is, of his private
history and strategy within the previous block), we ensure that players are indifferent, at the
beginning of each block, across their two strategies, and weakly prefer those two strategies to all
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others. Further, by choosing appropriately the probability with which a player uses one or the
other strategy in the initial block, we ensure that the payoff vector v is achieved.
This guarantees that beliefs are irrelevant at the beginning of each block, and more generally,

that only beliefs about the recent history matters. Belief-free equilibria obtain for the choice
T = 1.2 One of the insights of the general construction is that the special features of the
prisoner’s dilemma payoff matrix ensuring that the folk theorem obtains with T = 1 obtain for
any stage game, and any payoff to be achieved for that stage game, provided one chooses T ≥ 1
appropriately.3

Sequential rationality poses several difficulties when T > 1. After recent histories that are
consistent with both players having only observed correct signals, a player’s belief about his
opponent’s recent history has a tractable structure: when the noise level is sufficiently small, he
assigns probability almost one to his opponent having observed the same recent history, regardless
of the fine details of the monitoring structure. This is not the case, however, for all other recent
histories (erroneous histories), as in such events, his posterior may dramatically vary with small
differences in the relative likelihood of incorrect signals. As a player’s intertemporal incentives
depend on his opponent’s recent history, specifying best-responses after such histories is much
less tractable. Worse, a player’s belief, and thus best-response, after such a recent history may in
principle depend on his belief about his rival’s recent strategy, and this belief typically depends on
his whole private history, not only his recent one. This would imply that for some types of recent
histories, best-response could not be specified independently of the entire history, destroying the
recursive structure of our construction.
This problem is circumvented as follows. For one of his two strategies (the one yielding lower

payoffs to his rival), it is possible to specify a player’s transition probabilities, at the end of the
block, so as to guarantee that his opponent is indifferent over all strategies within the block,
not only over the two strategy he actually chooses from. This implies that, while computing
his best-response after any recent history, a player may condition on his opponent playing the
other strategy (independently of the beliefs he actually has about the recent strategy used by his
opponent) to determine, given his recent history, the probability distribution over his opponent’s
recent histories. As this best-response depends on what this other strategy specifies, for each
recent history, as well as on the corresponding transition probabilities at the end of the block,
it follows that this strategy, and the transition probabilities that go along, must be determined
jointly, which is achieved here by applying Kakutani’s fixed point theorem.
This guarantees that optimal play after recent histories is indeed a function of that recent

history only. It leaves the play not explicitly specified after erroneous histories (in particular, we
do not know the payoffs contingent on such histories), but it does not pose any major problem.
Roughly because, by choosing transition probabilities that yield lower payoffs contingent on

2More precisely, this is the case for belief-free equilibria using a constant regime (see Ely, Hörner and Olszewski
(2004)).

3Thus, T -period blocks do not serve the purpose of statistical discrimination between actions, as in Radner
(1986) or Matsushima (2004), but the purpose of enlarging the set of payoffs generated by belief-free equilibria.
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erroneous histories, players can be given incentives not to “trigger” such histories, and since
such histories appear with small probability, total payoffs are not affected much by the play on
erroneous histories.
The case with more than two players creates additional challenges, related to coordination

and dimensionality issues. The construction in that case is more intricate, but we postpone
discussion of it to the relevant section. While the construction for n > 2 also works for n = 2, it
is more natural to introduce this construction by first considering the case of two players.
Section 2 introduces the notation and states the results. Section 3 presents the construction

for two players, first under perfect monitoring, and then under imperfect private monitoring.
Section 4 presents the construction for n > 2 players, following the same two steps as for n = 2.
Finally, Section 5 relaxes the restriction on the signal set and offers concluding comments.

2 Notation and result

Consider the following finite n-person game. Each player i = 1, ..., n has a (finite) action set
Ai and a (finite) set of signals Σi. Without loss of generality, assume that Ai contains at least
two elements, for all i. Throughout Sections 2 to 4, we maintain the assumption that Σi = A−i,
where A−i := A1 × · · · ×Ai−1 ×Ai+1 × · · · ×An. This assumption is convenient to measure the
distance of a particular monitoring structure from perfect monitoring.
For each action profile a ∈ A := A1 × · · · × An, m (· | a) specifies a probability distribu-

tion over Σ := Σ1 × · · · × Σn. The collection of probability distributions over signal profiles
{m (· | a) : a ∈ A} defines the monitoring structure. For each action profile a ∈ A, mi (· | a)
denotes the marginal distribution of m (· | a) over Σi. Thus, mi (σi | a) is the probability that
player i receives signal σi ∈ Σi under action profile a ∈ A.
We focus attention on the case in which the monitoring structure is close to perfect monitoring.

Following Ely and Välimäki (2002), we formalize this notion as follows: for ε ≥ 0, the monitoring
structure {m (· | a) : a ∈ A} is ε-perfect if for each player and each action profile a ∈ A,

mi (σi = a−i | a) ≥ 1− ε.

That is, under any action profile, the probability that a player observes an erroneous signal
does not exceed ε. The perfect monitoring structure is a special case that obtains for ε = 0.
Observe that this definition is stated in terms of marginal distributions only. Therefore, while
this definition is consistent with almost-public or conditionally independent signals, it does not
impose any such restriction. We do not impose any full-support restriction either.
Mixed actions are unobservable. For any finite set W , let 4W denote the set of probability

distributions over W . With some abuse of notation, we use 4A := 4A1 × · · · ×4An to denote
the set of (independent) mixed action profiles. Similarly, 4A−i := 4A1×· · ·×4Ai−1×4Ai+1×
· · · ×4An. No public randomization device is assumed.
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Player i’s realized payoff in the stage game, ui : Ai ×Σi → R, is a function of his action and
signal alone, so that his expected payoff gi : A→ R is given by

gi (a) =
X
σi∈Σi

mi (σi | a)ui (ai, σi) .

The domain of gi is extended to mixtures α ∈ 4A in the usual manner:

gi (α) =
X
a∈A

α (a) gi (a) ,

where α (a) denotes the probability assigned to action profile a by the mixture α ∈ 4A. Observe
that repeated games with public monitoring are special cases of this formulation. If signals are
perfectly correlated with each other, we obtain a game with imperfect public monitoring, while
under the perfect monitoring structure, we obtain a standard game with perfect monitoring.
Players share a common discount factor δ < 1. All repeated game payoffs, both infinite and

finite, are discounted, and their domain is extended to mixed strategies in the usual fashion;
unless explicitly mentioned otherwise (as will occur), all payoffs are normalized by a factor 1− δ,
sometimes referred to as the average, or normalized payoffs. Total, or unnormalized payoffs are
payoffs that are discounted, but not normalized.
For each i, the minmax payoff v∗i of player i (in mixed strategies) is defined as

v∗i := min
α−i∈4A−i

max
ai∈Ai

gi (ai, α−i) .

Choose α∗−i ∈ 4A−i so that
v∗i = max

ai∈Ai

gi
¡
ai, α

∗
−i
¢
.

The action α∗−i is the (not necessarily unique) minmax action against player i, and v∗i is the
smallest payoff that the other players can keep player i below in the static game.4

Let:

U := {(v1, . . . , vn) | ∃a ∈ A, ∀i, gi (a) = vi} ,
V := Convex Hull of U ,

and
V ∗ := Interior of {(v1, . . . , vn) ∈ V | ∀i, vi > v∗i } .

The set V consists of the feasible payoffs, and V ∗ is the set of payoffs in the interior of V that
strictly Pareto-dominate the minmax point v∗ := (v∗1, . . . , v

∗
n). We assume throughout that V

∗

is non-empty. Given discount factor δ, recall that E (δ, ε) is the set of average payoff vectors in

4Under some imperfect monitoring structures, it may be possible to keep player i’s payoff even lower if n ≥ 3,
as signals may allow players −i to correlate their actions without being observed by player i.
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the repeated game that are sequential equilibrium payoffs for all ε-perfect monitoring structures.
We can now state our main result.
Theorem 1:5 (The Folk Theorem) For any (v1, . . . , vn) ∈ V ∗, if players discount the future

sufficiently little and the noise level is sufficiently small, there exists a sequential equilibrium of
the infinitely repeated game where, for all i, player i’s average payoff is vi. That is,

∀v∈V ∗ ∃δ̄<1,ε̄>0 ∀(δ,ε)∈(δ̄,1)×[0,ε̄) v ∈ E (δ, ε) .

The proof uses the following notations. A t-length (private) history for player i is an element
of Ht

i := (Ai × Σi)
t. A pair of t-length histories is denoted ht. Such a pair is also referred to as

a history. As (private) histories are always indexed by the relevant player, no confusion should
arise. Each player’s initial history is the null history, denoted ∅. Let Ht denote the set of all
t-length histories, Ht

i the set of i’s (private) t-length histories, H = ∪tHt the set of all histories,
and Hi = ∪tHt

i the set of all (private) histories for i. A repeated-game (behavior) strategy for
player i is a mapping si : Hi → 4Ai. The mixed action prescribed by strategy si, given private
history hti is denoted si [h

t
i], while the probability assigned to action any ai by si [h

t
i] is denoted

si [h
t
i] (ai). The set of all strategies of player i in the infinitely repeated game is denoted Si, and

a strategy profile is denoted s ∈ S := S1× · · · ×Sn. For any history hti ∈ Hi, let si|hti denote the
continuation strategy derived from si after history hti, and si|H 0

i the restriction of si to the set
of histories H 0

i ⊂ Hi.
For T ≥ 1, we shall also consider the game repeated T times (henceforth simply referred

to as the finitely repeated game). The set of all t-length (private) histories of player i in the
T -finitely repeated game is denoted by Ht

i , the set of all histories by H
T
i = ∪t≤THt

i and the set of
(behavior) strategies in the finitely repeated game by ST

i . For t ≤ T , we use the same notation
for continuation strategies as in the case of the infinitely repeated game.
Three types of repeated game payoffs are considered. Given strategy profile s ∈ S, player

i’s payoff is denoted Ui(s) in the infinitely repeated game. Given strategy profile s ∈ ST :=
ST
1 × · · · × ST

n , player i’s payoff is denoted U
T
i (s) in the finitely repeated game. Finally, we shall

consider the finitely repeated game augmented by a transfer πi : HT
i+1 → R at the end of the last

period (identifying 1 and n+1). Given π := (π1, . . . , πn) and some history hTi+1, player i’s payoff
in this auxiliary scenario is defined as UA

i

¡
hTi+1, πi

¢
:= UT

i

¡
hTi+1

¢
+ (1− δ) δTπi

¡
hTi+1

¢
, and its

definition extended to strategies s ∈ ST in the usual fashion. Let U(s), UT (s) and UA (s, π)
denote the corresponding payoff vectors. Continuation payoffs given some private history hti are
denoted Ui(s | hti), UT

i (s | hti) and UA
i (s, π | hti).

Given some strategy profile s−i ∈ ST
−i := ST

1 ×· · ·×ST
i−1×ST

i+1×· · ·×ST
n and transfer πi, let

Bi(s−i, πi) denote the set of auxiliary scenario best-responses of player i. Finally, given a set of
histories HE

i ⊂ HT
i , a strategy s−i ∈ ST

−i, a strategy s̄i ∈ ST
i and transfer πi, let Bi(s−i, πi | si)

5Theorem 1 does not rule out equilibrium payoffs outside V ∗ (see footnote 4), although we believe that player
i’s minmax payoff in the repeated game tends to his stage game minmax payoff v∗i as ε → 0. Also, we do not
know whether the full dimensionality condition can be dropped with only two players.
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denote the set of strategies that maximize player i’s auxiliary-scenario payoff against s−i, πi
among all strategies si ∈ ST

i such that si | HE
i = si | HE

i .
By B(v, λ), we mean the ball around payoff vector v of radius λ; by coW , the convex hull of

a set W , and by #W , the cardinality of the finite set W .

3 Two-player Games

As discussed in the introduction, the construction retains some of the features of belief-free
equilibria (see Ely, Hörner and Olszewski (2004)). Belief-free equilibria in two-player games are
sequential equilibria for which, for every history ht =

¡
hti, h

t
−i
¢
, player i’s continuation strategy

si|hti is a best-response to his opponent’s continuation strategy s−i|ht−i; that is, given any private
history hti, player i would be willing to play according to si|hti even if he secretly learnt player
−i’s private history ht−i. Belief-free equilibria assume away the problem of statistical inference,
and can be analyzed by means of recursive techniques building on the concepts of self-generation
due to Abreu, Pearce and Stacchetti (1990). In a belief-free equilibrium s = (s1, s2), for each
player i, there exists a sequence of subsets {At

i}
∞
t=0 of Ai (independent of histories, but possibly

depending on calendar time) such that any strategy of player i that adheres to this sequence
from period t on, that is, for which

∀r≥t,∀hri si (h
r
i ) ∈ Ar

i ,

is an optimal continuation strategy, independently of player−i’s history ht−i. Belief-free equilibria
typically support a large set of payoffs, but in general this set is not large enough to establish
the folk theorem for almost-perfect monitoring. A notable exception is the prisoner’s dilemma.
In particular, in the case of the prisoner’s dilemma, any feasible and individually rational payoff
vector that is Pareto-dominated by the efficient payoff vector can be obtained as a belief-free
equilibrium payoff vector provided the noise level is small enough. Moreover, the corresponding
sequence of subsets can be chosen to be constant: ∀i, ∀t, At

i = Ai = Ai. To see this, let Ai :=
{C,D}, and normalize the payoff vectors of (C,C) and (D,D) to (1, 1) and (0, 0) respectively.
Consider perfect monitoring. Observe that, for every v ∈ (0, 1)2, there exists actions αG

−i and
αB
−i ∈ 4A−i such that:

min
Ai

gi
¡
ai, α

G
−i
¢
> vi > max

Ai

gi
¡
ai, α

B
−i
¢
.

Indeed, pick αG
−i = C and αB

−i = D. This means that, in any given period, player−i has an action,
within his set of optimal actions A−i, that forces his opponent’s payoff below vi no matter what
he does, and another action, within his set of optimal actions A−i, that guarantees his opponent
a payoff above vi no matter which action his opponent chooses from his set Ai. Therefore, player
−i’s current choice of action can be used to give a high or a low flow payoff to player i. Further,
by conditioning his future choice of action within A−i on his current action and on the signal
he observes in the current period, player −i can make player i indifferent between his various
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actions within Ai. The overall payoff vi is then achieved by an initial (private) randomization
between αG

−i and αB
−i.

This argument does not work for all other games. For example, if vi is close to player i’s
minmax level, αB

−i must be close to the minmax action α∗−i, implying that A−i must include the
support of the minmax action. Yet there may very well be, within that support, actions that
yield player −i low payoffs (even payoffs below his own minmax level) no matter what player
i does. In fact, the prisoner’s dilemma is the only known example for which the construction
works for all v ∈ V ∗.
The starting point of our analysis is that this convenient payoff structure can be recovered, for

any stage game and any payoff v ∈ V ∗, if one considers the normal form of the finitely repeated
game, for some finite number of repetitions that depends on the stage game and v. That is,
given v, we exhibit T , and for each player, a set of strategies Si ⊂ ST

i , with two distinguished
elements sG−i, s

B
−i ∈ S−i such that

min
Si

UT
i

¡
si, s

G
−i
¢
> vi > max

STi

UT
i

¡
si, s

B
−i
¢
.

Viewing the infinitely repeated game as the infinite repetition of the finitely repeated game, it
is then possible, abstracting from the issues related to sequential rationality within the finitely
repeated game, to replicate the construction of belief-free equilibria. In any given block of T
periods, player −i has a strategy, within his set of optimal actions S−i, that forces his opponent’s
average payoff in the block below vi no matter which strategy he chooses from ST

i , and another
strategy, within his set of optimal actions S−i, that guarantees his opponent an average payoff
in the block above vi no matter which strategy his opponent chooses from his set Si. Therefore,
player −i’s choice of strategy within the current block can be used to give a high or a low flow
payoff to player i . Further, by conditioning his future choice of strategy within S−i on his current
strategy and on the history he observes within the current block, player −i can make player i
indifferent between his various strategies within Si. The payoff vi is then achieved by an initial
(private) randomization between sG−i and sB−i.
Thus, the time horizon of the infinitely repeated game is divided into T -period blocks, and

for each player i there exists a subset Si of ST
i , such that any strategy which from the start of

block n, picks within each future block an element of Si, is an optimal continuation strategy at
the beginning of the block, independently of player −i’s history. That is, let sni | hnTi denote the
restriction of si | hnTi to the (n+ 1)-st block. The strategy s−i is such that, if si is any strategy
with the property that

∀m≥n,∀hmT
i

smi | hmT
i ∈ Si,

for any history hmT
i following history hnTi , then si | hnTi is an optimal continuation strategy at

the beginning of the block, independently of hnT−i .
If T > 1, such a block equilibrium typically fails to be belief-free. There are histories within a

block such that a player’s set of optimal actions depends on the history. However, it depends only
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on the recent history (the finite, terminal segment of the player’s private history, corresponding
to the actions taken and signals observed within the current block).
Because such an equilibrium is not belief-free, sequential rationality within each block raises

several difficulties, as mentioned in the introduction. These difficulties affect the specific way Si,
sGi and s

B
i are defined. It is convenient to first define Si, sGi and sBi under perfect monitoring. Yet

the reasons behind some peculiarities of those definitions will only become clear in the following
subsection.

3.1 Perfect Monitoring

Fix a stage game, and let v be any payoff vector in V ∗. To construct a subgame-perfect equi-
librium achieving v , provided players are sufficiently patient, it is necessary to first define some
payoff vectors and action profiles.

v

V ∗

r
wGB

rwGGrwBG

r
wBB

player 2’s
payoff

player 1’s payoffv1 v1

v2

v2

-

6

r

Figure 1

Take four payoff vectors wGG, wGB, wBG, wBB in V ∗ such that: (i) wGG
1 > v1 and wGG

2 > v2;
(ii) wGB

1 > v1 and wGB
2 < v2; (iii) wBG

1 < v1 and wBG
2 > v2; (iv) wBB

1 < v1 and wBB
2 < v2. That

is, these four payoff vectors surround the payoff vector v. More precisely, there exists vi < vi
such that the interior of co(

©
wGG, wGB, wBG, wBB

ª
) contains the rectangle

[v1, v1]× [v2, v2].

See Figure 1. Assume that there exists pure action profiles aGG, aGB, aBG, aBB achieving those
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payoffs. That is,

gi(a
GG) = wGG

i , gi(aGB) = wGB
i , (1)

gi(a
BG) = wBG

i , gi(aBB) = wBB
i .

While such action profiles typically do not exist, there always exist anm and four finite sequence
of action profiles

©¡
aXY
1 , ..., aXY

m

¢
∈ Am : X,Y ∈ {B,G}

ª
, such that wXY , defined as the average

discounted payoff vector over the sequence
©
aXY
1 , ..., aXY

m

ª
, X,Y ∈ {B,G}, satisfies properties

(i)-(iv) for sufficiently high discount factors. If m > 1, the construction that follows must be
accordingly modified, by replacing each single period within a block but the first by a finite
sequence of length m, and each occurrence of the action profile aXY by the finite sequence of
action profiles

¡
aXY
1 , ..., aXY

m

¢
. The details are omitted. We will show that each payoff in the set

[v1, v1]× [v2, v2] is achieved by some block equilibrium. The length of the blocks is specified later.
Throughout the subsection, the time index t refers to the number of periods relative to the block
under consideration, not to the absolute number of periods in the infinitely repeated game. In
particular, hti refers to the recent history only, simply referred to as a history. Since monitoring
is perfect and i’s signal can be identified with −i’s actions, hti = ht−i, up to the ordering of signals
and actions.
For each i, partition the set of actions of player i into two non-empty subsets Gi and Bi. The

action chosen within the first period of each block plays essentially a role of communication. If,
in the first period of a block (t = 1), player i picks an action from the set Gi, we say that he
sends message Mi = G; otherwise, we say that he sends message Mi = B.
We define now Si ⊂ ST

i . The set of strategies S1, S2 are all strategies s1 ∈ ST
1 , s2 ∈ ST

2 ,
satisfying, for i = 1, 2

(∗2) If hti =
¡
a, aGG, aGG, . . . , aGG

¢
for some a ∈ G1×G2, then si (ht) = aGGi , i = 1, 2. If ht1 =¡

a, aGB, aGB, . . . , aGB
¢
for some a ∈ B1 ×G2, then s1 (h

t
1) = aGB1 ; if ht2 =

¡
a, aBG, aBG, . . . , aBG

¢
for some a ∈ G1 ×B2, then s2 (h

t
2) = aBG2 .

That is, the only restriction placed on Si is that its elements si ∈ Si be such that, if player
−i sent message M−i = G and both players repeatedly chose the actions determined by Mi and
M−i = G since then, the strategy si requires that player i choose that action. No restriction is
imposed on the specification of si in the initial period; after any history along which M−i = B;
and after any history along which at least one player has deviated (in some period t ≥ 2) from
the actions determined by Mi and M−i = G. Observe that player i’s message Mi defines player
−i’s payoff level, high or low (the superscripts of action profiles are in the reverse order of the
message profiles).
Because only those histories that are off the equilibrium path under perfect monitoring raise

serious problems under imperfect private monitoring, it is useful to consider those strategies in
Si for which there are as few histories off the equilibrium path as possible. To this purpose, for
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each player i and each history hti, define

Ai

¡
hti
¢
=
©
ai ∈ Ai : ∃si∈Si si

£
hti
¤
(ai) > 0

ª
.

The set Ai (h
t
i) is the set of all actions prescribed by Si, that is all the actions that are chosen,

with positive probability, after history hti, by some strategy si ∈ Si. Observe that Ai (h
t
i) is either

Ai or a singleton. For instance, if i = 1, then this singleton is either
©
aGG1

ª
or
©
aGB1

ª
. With

some abuse of notation, we say that Si prescribes action ai whenever Ai (h
t
i) = {ai}.

Given some (small) ρ > 0, denote by Sρ
i the set of strategies si ∈ Si that assign probability

at least ρ to action ai after every history hti and any action ai ∈ Ai (h
t
i), that is,

Sρ
i =

n
si ∈ Si : ∀hti ∀ai∈Ai(hti)

si
£
hti
¤
(ai) ≥ ρ

o
.

For any history, a strategy in Sρ
i assigns positive probability to any action unless this is pre-

cisely ruled out by condition (∗2). In particular, the set of histories off the equilibrium path is
independent of the particular choice of strategy profile s ∈ Sρ

1 × Sρ
2 .

Next, we construct sG−i, s
B
−i ∈ Sρ

−i with the desired properties. Consider for instance −i = 1.
First, define strategy sg1 ∈ S1 as follows. At the beginning of a block, strategy sg1 sends message
M1 = G. That is, choose sg1 [∅] ∈ 4G1. For any history ht1 = (a0, a1, a2, . . . at) such that
a0 ∈ G1 × G2, consider the first action aτ 6= aGG, τ > 1, if any. If aτ1 = aGG1 , aτ2 6= aGG2 , then
sg1 [h

t
1] = α∗1, the action minmaxing player 2. If a

τ
1 6= aGG1 , aτ2 = aGG2 , then choose sg1 [h

t
1] among

the best-responses to α∗2, the action minmaxing him. Otherwise, s
g
1 [h

t
1] = aGG1 . The specification

for the case a0 ∈ B1×G2 (respectively, G1×B2 and B1×B2) is identical, replacing aGGi by aGBi
(respectively, aBGi and aBBi ) everywhere.
That is, strategy sg1 sends message G and specifies the action determined by the pair of

messages until the first unilateral deviation. If player 2 has deviated, strategy sg1 minmaxes
player 2. Otherwise, strategy sg1 is a best-response to minmaxing.
Strategy sb1 ∈ S1 sends messageM1 = B. That is, choose sb1 [∅] ∈ 4B1. For any other history,

sb1 [h
t
i] = sg1 [h

t
i]. Thus, strategy sg1 and sb1 differ only in the message they specify in the initial

period.
If player 1 plays sb1, then player 2 obtains a (per-period) payoff higher than wGB

2 or wBB
2 in

at most two periods: period 1 and the period in which he unilaterally deviates, if any. If player
1 plays sg1 and player 2 plays a strategy s2 ∈ S2, then player 2 can obtain a payoff lower than
wGG
2 or wBG

2 at most in period 1. Therefore, by choosing T large enough, and δ close enough to
one, we can ensure that the average payoff from each of the four strategy profiles is arbitrarily
close to the corresponding payoff vector wXY , X,Y ∈ {G,B}.
Perturb very slightly strategies sgi and sbi so that, after any history hti, player i plays each

action ai ∈ Ai (h
t
i) with probability at least ρ, so as to obtain a pair of strategies s

G
i , s

B
i ∈ Sρ

i

such that the average payoff of player i from any strategy si ∈ Si against sG−i is at least vi, while
the average payoff of player i from any strategy si ∈ ST

i against s−i does not exceed vi.

12



Finally, in order to specify transition probabilities, it is necessary to define two further strate-
gies. While these strategies are not actually used by the players in equilibrium, they are bench-
marks relative to which the actual play (as inferred from the private history) is compared. Let
rGi be a strategy si ∈ Si such that, for every history hti ∈ HT

i , the strategy si|hti yields the lowest
payoff against sG−i among all strategies si ∈ Si. Similarly, let rBi be a strategy si ∈ ST

i such
that, for every history hti ∈ HT

i , the strategy si|hti yields the highest payoff against sB−i among all
strategies si ∈ ST

i . Without loss of generality, we may take r
G
i and rBi to be pure.

Enlarging the box [v1, v1]× [v2, v2] if necessary, we may assume that:

UT
i (r

G
i , s

G
−i) = vi and UT

i (r
B
i , s

B
−i) = vi.

We conclude this subsection by establishing the two-player folk theorem under perfect monitoring.

Theorem 1 (n = 2, perfect monitoring): Under perfect monitoring, for any (v1, v2) ∈ V ∗,
if players discount the future sufficiently little, there exists a block equilibrium of the infinitely
repeated game where, for all i, player i’s average payoff is vi.

Proof : For each i, construct a strategy for player −i as follows. At the beginning of each block,
player −i’s continuation strategy only depends on its state u ∈ [vi, vi]. Thus, the state space is
[vi, vi], the set of possible continuation payoffs of player i. The initial state is vi.
At the beginning of each block, in state u ∈ [vi, vi], player −i performs an initial randomiza-

tion: for q ∈ [0, 1] such that u = qvi+(1−q)vi, player−i picks strategy sG−i with probability q and
strategy sB−i with probability 1− q. Thus, player −i uses one or the other strategy throughout
the block as a function of the outcome of this initial randomization.
To define transition probabilities, consider first the case in which player −i plays sG−i within

the block. In this case, given the realized history hT−i in the block, consider all periods t along
this history in which player i deviated from the action prescribed by rGi . Let θt denote the
difference between player i’s unnormalized continuation payoff from playing rGi from period t on
and player i’s unnormalized continuation payoff from choosing i’s action as observed by player
−i in period t, followed by reversion to rGi from period t + 1 on. Let θGt := min{0, θt}, and
πGi
¡
hT−i
¢
:= δ−T

PT
t=1 δ

t−1θGt . Pick δ close enough to 1 so that
¡
1− δT

¢
πGi
¡
hT−i
¢
> vi− vi for all

histories hT−i. At the end of the block, player −i transits to the state:

vi +
¡
1− δT

¢
πGi
¡
hT−i
¢
, (2)

which is in [vi, vi] for any history h
T
i . Observe that, if player i knew that player −i was playing

sG−i, every strategy si ∈ Si would be a best-response. That is, player −i “punishes” player i from
taking any continuation strategy that improves upon the continuation strategy derived rGi by the
exact amount that makes him indifferent between deviating or not from the action prescribed
by rGi . For any deviation consistent with a continuation strategy in Si, this is necessarily a
punishment, by definition of rGi . Observe that, as θ

G
t = min{0, θt}, player −i’s transition proba-

bility is unaffected by deviations that yield a lower continuation payoff than the payoff from the
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continuation strategy derived from rGi , as such deviations are necessarily unprofitable for player
i.
Suppose now that player −i plays sB−i. Similarly, given the realized history hTi in the block,

consider all periods t along this history in which player i deviated from the action prescribed
by rBi . Let θ

B
t denote the difference between player i’s unnormalized continuation payoff from

playing rBi from period t on, and player i’s unnormalized continuation payoff from choosing i’s
action as observed by player −i in period t, followed by reversion to rBi from period t + 1 on.
By definition of rBi , the value θ

B
t is necessarily non-negative. Let π

B
i

¡
hT−i
¢
:= δ−T

PT
t=1 δ

t−1θBt .
Pick δ close enough to 1 so that

¡
1− δT

¢
πBi
¡
hT−i
¢
< vi − vi for all histories h

T
−i. At the end of

the block, player −i then transits to the state:

vi +
¡
1− δT

¢
πBi
¡
hT−i
¢
, (3)

which is in [vi, vi] for any history h
T
i . Observe that, if player i knows that player −i was playing

sB−i, every strategy si ∈ ST
i of player i would be a best-response, so that player i’s choice of

strategy is payoff-irrelevant in this case. This property, which is preserved under imperfect
private monitoring, implies that player i may always assume that player −i is using sG−i, when
computing best-responses.
It follows from equations (2)-(3) and the one-stage deviation property that, given the strategy

of player −i, any strategy si of player i that is such that its restriction to any given block is
an element to Si is a best-response (independently of how si selects this element of Si, at the
beginning of the block, possibly as a function of the entire history). The payoff of player i is
equal to the weighted average of the payoff of playing rGi against s

G
−i and the payoff of playing

rBi against sB−i with weights q and 1 − q. Both the average payoff within the block and the
continuation payoff from playing rGi against sG−i are equal to vi, and both the average payoff
within the block and the continuation payoff from playing rBi against s

B
−i are equal to vi. Thus,

at the beginning of a block, player i’s payoff when player −i’s state is u is qvi + (1− q)vi = u.
Q.E.D.

3.2 Imperfect Private Monitoring

In this subsection, we extend the two-player folk theorem under perfect monitoring of the previous
subsection to the case in which the noise level is small enough. This requires modifying the
strategies sGi , s

B
i as well as the transfers π

G
i , π

B
i for all i = 1, 2.

Observe first that the definitions of Si, Sρ
i , of strategies s

G
i , s

B
i ∈ Sρ

i and of transfers π
G
i ,

πBi are well-defined under imperfect private monitoring, as their definitions are stated in terms
of private histories, and the domain of private histories is the same under perfect and imperfect
private monitoring, under the canonical signal structure.
For some histories hti, the continuation strategy specified by sGi | hti and the transfers πGi

applied to the resulting history hTi may be significantly different from the specification above.
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As already mentioned, under perfect monitoring, the set of histories that are off the equilibrium
path given a strategy profile s ∈ Sρ

1 ×Sρ
2 is independent of the particular choice of s. Therefore,

given Sρ
1 , Sρ

2 , we can unambiguously define the set of erroneous histories H
E
i ⊂ HT

i as the set
of all recent histories that are off the equilibrium path. More precisely, the recent history hti is
erroneous if, under perfect monitoring, it is off the equilibrium path for some strategy profile
in Sρ

1 × Sρ
2 . Otherwise the history is non-erroneous. Let H

E,t
i denote the set of all erroneous

t-length histories, and let HN,t
i = Ht

i\HE,t
i denote the complement of HN,t

i . Let

HN
i =

[
t≤T

HN,t
i , HE

i =
[
t≤T

HE,t
i .

Erroneous histories may arise with positive probability under imperfect monitoring. Indeed, if
the monitoring structure happens to satisfy the full support assumption, then with the exception
of histories that follow one’s own deviation, every history, erroneous or not, occurs with positive
probability. Thus, a history hti ∈ HE

i is erroneous since along such a history, if neither player
has deviated from his strategy in Sρ

1 , Sρ
2 , at least one player must have observed an incorrect, or

erroneous signal. This need not be player i: for instance, all signals of player i along the history
in hti may be correct, but player −i may have observed in some period, but the last, an incorrect
signal, that called upon a continuation strategy that is inconsistent with the continuation strategy
he would have followed if he had observed the correct signal.
Since player i’s best-response after a recent history hti ∈ Ht

i depends on −i’s continuation
strategy s−i | ht−i and transfer πi

¡
hT−i
¢
that will result, it depends on his beliefs about ht−i and

on his belief about whether, in the current block, (s−i, πi) is equal to
¡
sG−i, π

G
i

¢
or
¡
sB−i, π

B
i

¢
.

As in the case of perfect monitoring, sB−i (and πBi ) will be jointly defined in a manner ensuring
that, conditional on player −i using sB−i (and πBi ), player i is indifferent over all strategies in
ST
i , and therefore, over all continuation strategies (within the block) after h

t
i ∈ Ht

i , even if h
t
i is

erroneous. Therefore, for every recent history hti ∈ Ht
i , player i may condition on his opponent

playing strategy sG−i (and applying transfer π
G
i ), no matter how unlikely this event may be. Thus,

as sG−i | ht−i only depends on the recent history ht−i ∈ Ht
−i, player i’s best-response after a recent

history hti ∈ Ht
i also depends only on the recent history. This ensures that optimality only

depends on the recent history, and not on the entire history.
If the noise level ε is sufficiently small, in particular small relative to ρ, player i’s belief about

ht−i given h
t
i (that is, the probability distribution over the recent history h

t
−i ∈ Ht

−i, derived from
Bayes’ rule given hti, conditional on s−i = sG−i) is almost degenerate if h

t
i is non-erroneous. In

this case, player i assigns probability almost one to player −i’s recent history ht−i = hti.
6 That

is, if erroneous signals are unlikely, player i assigns probability almost 1 to his opponent’s recent
actions being equal to his own recent signals, and to his opponent’s recent signals being equal
to his own recent actions. Linear algebra can therefore be used to define the transfer πGi that

6Strictly speaking, as hti is a sequence of ordered pairs of i’s actions and i’s signals (−i’s actions), hti and ht−i
differ in the ordering of those pairs.
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guarantees that continuing with strategies from Si (in particular, sGi and sBi defined as under
the perfect monitoring) is optimal after such histories (see Lemma 1 and 2). As non-erroneous
histories occur with probability almost 1, provided the noise level is sufficiently small, transfers
can be specified in a way that ensures that expected payoffs in the auxiliary scenario, at the
beginning of the block, are arbitrarily close to the corresponding expected payoffs under perfect
monitoring.
After erroneous histories hti, however, player i’s belief about ht−i is not necessarily well-

behaved. As player i conditions on at least one incorrect signal having been observed, the
relative likelihood of incorrect signals may drastically affect his belief. For instance, he may
assign low probability to ht−i = hti. Fortunately, erroneous histories occur with small probability,
and therefore, independently of player i’s continuation strategy (within the block) after such
histories, its specification has a small impact on expected payoffs. Nevertheless, observe that, for
hti ∈ HE

i , the optimal continuation strategy s
G
i | hti depends not only on πGi , but also on sG−i | HE

−i;
on the other hand, πGi that guarantees that continuing with strategies from Si is optimal after
non-erroneous histories depends on sG−i | HE

−i and sGi | HE
i . Therefore, it is necessary to define¡

sG1 , π
G
2

¢
and

¡
sG2 , π

G
1

¢
jointly, which is achieved here by applying Kakutani’s fixed-point theorem

(see the proof of Theorem 1).
While continuation play after erroneous histories hardly affects expected payoffs, we need to

make sure that it does not affect incentives after non-erroneous histories. After all, if player i
picks an action outside the support of what his equilibrium strategy prescribes, this results with
probability almost 1 in player −i observing an erroneous history, for which we only know that
an optimal continuation strategy exists. That continuation strategy could potentially yield high
flow payoffs to player i in the remaining periods of the block, so that picking this action could
offer a profitable deviation.
This is an issue, however, only if player i gets the opportunity to pick such an action. This

is where the definition of Sρ
i and of s

B
−i comes into play. If player −i uses sB−i (“punishing”

thereby player i), he sends message M−i = B with probability almost one, when ρ is small
enough. In addition, HN,1

−i = H1
−i, as both sGi and sBi specify totally mixed actions in the first

period. More generally, given message M−i = B, no history ht−i along which player −i has not
deviated himself is erroneous. Therefore, if player −i uses strategy sB−i, then with probability
almost one, no recent history ht−i ∈ HT

−i of player −i is erroneous, independently of player i’s
strategy si ∈ ST

i . In particular, we can use linear algebra to ensure that player −i finds it optimal
to minmax player i in the appropriate contingencies. This guarantees the possibility to punish
player i, independently of the specification of play after erroneous histories.

It is convenient to consider now the auxiliary scenario, described in Section 2. Recall that
Bi(s−i, πi) denotes the set of auxiliary scenario best-responses of player i to the T -period strategy
s−i and to the transfer πi, and that, given strategies s−i, si ∈ ST

i , transfer πi, Bi(s−i, πi | si)
denotes the set of strategies that maximize player i’s auxiliary-scenario payoff against s−i, πi
among all strategies si ∈ ST

i such that si | HE
i = si | HE

i .
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Lemma 1 For every strategy s | HE, there exists ε > 0 such that for ε < ε:
There exists a non-positive transfer πGi : H

T
−i → R− such that

{si ∈ ST
i : si | HN

i = esi | HN
i for some esi ∈ Si and si | HE

i = si | HE
i } ⊂ Bi(s

G
−i, π

G
i | si), (3)

where sG−i | HN
−i = sG−i | HN

−i and s
G
−i | HE

−i = s−i | HE
−i.

Proof : Assume without loss of generality that −i = 1 and i = 2. Given a history hT1 , let
(ht1, a2) denote the truncation of h

T
1 to h

t
1 and the signal obtained by player 1 in period t. The

transfer will have the form:

πG2 (h
T
1 ) =

1

δT

"
TX
t=1

δt−1θ(ht1, a2)

#
,

for some function θ (·, ·) to be specified. Pick rG2 ∈ ST
2 to be a strategy that satisfies:

(a) rG2 | HN
2 = s2 | HN

2 for some s2 ∈ S2;
(b) rG2 | HE

2 = s2 | HE
2 ;

(c) ∀ht2 ∈ HN
2 , r

G
2 |ht2 yields the lowest payoff against sG1 , in the T -period repeated game,

among all strategies with properties (a) and (b).
Without loss of generality, assume that rG2 | HN

2 is a pure strategy.
We now define θ(ht1, a2), ∀ht1 ∈ Ht

1, ∀a2 ∈ Σ1 = A2 by backward induction with respect to
t. To satisfy (3), it suffices to pick non-positive values for θ(ht1, a2) such that (given θ(hτ1, a2),
τ > t), the following constraints, or properties, are satisfied:

1. For every history ht2 ∈ HN,t
2 such that S2 prescribes A2, player 2 is indifferent under the

auxiliary scenario between playing all actions a2 ∈ A2, each followed by switching to rG2
from period t+ 1 on;

2. For every history ht2 ∈ HN,t
2 such that S2 prescribes a2 = aGG2 or aBG2 , the payoff of player

2 under the auxiliary scenario to playing a2 exceeds the payoff to playing any other action,
both followed by switching to rG2 from period t+ 1 on.

[Note that the payoff difference across continuation strategies s2 | ht2 of player 2 is independent
of θ(ht1, a2) for et < t as those values cannot be affected by actions taken in periods et ≥ t. The
differences, even the preference ordering over continuation strategies, may of course depend on
the values of θ(ht1, a2) for et > t and a2 ∈ A2, but these values are already determined by backward
induction.]
For every ν > 0, observe that there exists ε/ρ small enough such that: for any history

ht2 ∈ HN,t
2 , there exists a history ht1 ∈ HN,t

1 such that, conditional on observing ht2, player 2
assigns probability at least 1− ν to the event that player 1 observed the corresponding history
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ht1 ∈ HN,t
1 , along which the signals of player 1 along ht1 coincide with the actions of player 2 in

ht2 and the actions of player 1 along ht1 coincide with the signals of player 2 in ht2. Note that,
given two distinct histories ht2, h

0t
2 ∈ HN,t

2 , the corresponding histories ht1 and h0t1 are distinct.
Given any history ht2 ∈ HN,t

2 and any action a2 ∈ A2, consider as a row vector the probabilities
assigned by player 2, conditional on history ht2 and on action a2 taken by player 2 in period t,
to the different histories ht1 ∈ Ht

1 and signals a2 ∈ Σ1 = A2 observed by player 1 in period t.
Construct a matrix Dt by stacking the row vectors for all non-erroneous histories ht2 ∈ HN,t

2 and
actions a2 ∈ A2.
By the previous paragraph, the matrix Dt has full row rank, provided ε/ρ is small enough.

Therefore, there exist values θ(ht1, a2) satisfying constraints 1 and 2. Indeed the number of
columns (rows) of Dt exceeds the number of linear equality (or inequality) constraints that 1-2
imposes on θ(ht1, a2) by k, where k := #H

N,t
2 is the number of t-length non-erroneous histories ht2.

[Say, A2 = {a12, ..., al2} consists of l actions and suppose that, given a history ht2 ∈ HN,t
2 , constraint

1 must be satisfied (the argument for constraint 2 is analogous). That is, l − 1 equations have
to be satisfied: player 2 must be indifferent between playing ak2 and ak+12 for k = 1, ..., l − 1.
Since there are l actions a2, there are l rows of Dt corresponding to each ht2 ∈ HN,t

2 , but only
l − 1 constraints.] Further, we can assume that these values θ(ht1, a2) are all non-positive since
properties 1-2 define the values θ(ht1, a2) up to a constant. Q.E.D.

Let from now on the notation UT
i (s) exclusively refers to player i’s average payoff in the

finitely repeated game under perfect monitoring, given strategy profile s ∈ ST
1 × ST

2 , while
UA
i (s, πi) denotes player i’s average payoff given transfer πi and strategy profile s ∈ ST

1 × ST
2

under imperfect private monitoring. The next Lemma shows that, provided the noise level is
sufficiently small, the applied transfer πGi is arbitrarily close to zero, given s

G
−i, if player i chooses

the “worst” pure strategy against sG−i among all strategies in Si, in the finitely repeated game.

Lemma 2 In Lemma 1, the positive transfer πGi : HT
−i → R− can be chosen so that, for every

si ∈ Bi(s
G
−i, π

G
i | si), (i)

lim
ε→0

UA
i (si, s

G
−i, π

G
i ) = min

si∈Si
UT
i (esi, sG−i); (4)

(ii) πGi is bounded away from −∞, i.e. there exists π (independent of s) such that πGi ≥ π, and
(iii) πGi depends continuously on s.

Proof : To guarantee (4), the constants θ(·, ·) from the proof of Lemma 1 must be further
specified. We will show by backward induction with respect to t that, in addition to properties
1-2, we can assume that:
(i) θ(ht1, a2) tends to 0 as ε → 0 whenever ht1 ∈ Ht

1 is the history corresponding to some
history ht2 ∈ HN,t

2 and a2 = rG2 (h
t
2);

(ii) given a history ht2 ∈ HN,t
2 , the expected transfer that player 2 receives in period T if he

uses the continuation strategy rG2 | ht2 tends to 0 as ε→ 0.
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Let further θ(ht1, a2) = 0, ∀a2 ∈ A2, whenever ht1 does not correspond to any ht2 ∈ HN,t
2 .

Notice further that there exist (not necessarily non-positive) values for θ(ht1, a2) with properties
1-2 such that, for every ht2 ∈ HN,t

2 , θ(ht1, a2) = 0 where h
t
1 is the history corresponding to h

t
2 and

a2 = rG2 (h
t
2). (Remember that the number of constraints imposed on θ(ht1, a2) by 1-2 falls below

the rank of Dt by k). In addition, property 2 can without loss of generality be replaced with
(given θ(hτ1, a2), τ > t):

3. For every history ht2 ∈ HN,t
2 and action a2 ∈ A2 such that S2 prescribes aGG2 (or respectively

aBG2 ) and playing a2 yields payoff in the T -period repeated game higher than or equal to the payoff
to playing the prescribed action, both followed by switching to rG2 from period t+1 on: the payoff
of player 2 under the auxiliary scenario from playing the prescribed action is equal to the payoff
from playing any such a2, both followed by switching to rG2 from period t+ 1 on;
4. For every history ht2 ∈ HN,t

2 and action a2 ∈ A2 such that S2 prescribes aGG2 (or respectively
aBG2 ) and playing a2 yields payoff in the T -period repeated game lower than the payoff to playing
the prescribed action, both followed by switching to rG2 from period t + 1 on: the expectation
of the transfer that player 2 receives in period T if he uses the continuation strategy rG2 | ht2 is
equal to the expectation of the transfer if he plays a2 followed by switching to rG2 from period
t+ 1 on.

Note that properties 3 and 4 imply property 2.
Since θ(ht1, a2) = 0 for h

t
1 corresponding to h

t
2 ∈ HN,t

2 and a2 = rG2 (h
t
2), the expectation of the

transfer that player 2 receives in period T if he uses the continuation strategy rG2 | ht2 tends to 0
as ε→ 0 by the induction hypothesis. This yields (i)-(ii), except that θ(ht1, a2) may be positive.
We shall now show that, for any a2 ∈ A2 and any history ht1 corresponding to some h

t
2 ∈ HN

2 ,
θ(ht1, a2) tends to a non-positive value as ε→ 0. This will guarantee that all values θ(ht1, a2) can
be made non-positive, by subtracting a constant from all of them, and this will not affect the
required properties since the constant can be tending 0 for ε→ 0.
If S2 prescribes A2 at history ht2 ∈ HN,t

2 , then any continuation strategy that uses a2 6= rG2 (h
t
2)

in period t and switches to rG2 from period t + 1 on, satisfies conditions (a) and (b) from the
definition of rG2 ; therefore, by condition (c) of the same definition, such a continuation strategy
yields at least as high a payoff against sG1 in the T -period repeated game as rG2 . Since the
expected transfer to player 2 who uses the continuation strategy rG2 | ht2 tends to 0 for ε → 0,
the expected transfer to player 2 who uses the other continuation strategy has to tend to a non-
positive number; otherwise property 1 would be violated. This in turn implies that the value
θ(ht1, a2), where h

t
1 is the history corresponding to ht2 ∈ HN,t

2 , tends to a non-positive number,
because the difference between θ(ht1, a2) and the expected transfer to player 2 who plays a2 and
switches to rG2 from period t+1 on converges to 0 as ε→ 0. The same argument, except referring
to properties 3 and 4 instead of 1, applies to the histories ht2 ∈ HN,t

2 such that S2 prescribes aGG2
or aBG2 .
The values θ(ht1, a2) can be picked continuous functions of s2 | HE,t

2 . To see this, apply
again backward induction with respect to t. Note first that the system of linear equations: 1,
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3, 4, θ(ht1, a2) = 0 for every ht1 corresponding to some h
t
2 ∈ HN,t

2 and a2 = rG2 (h
t
2), as well as

θ(ht1, a2) = 0 for every ht1 not corresponding to any ht2 ∈ HN,t
2 , uniquely determines θ(ht1, a2)

∀ht1 ∈ Ht
1, ∀a2 ∈ Σ1 = A2. Obviously, this system of equations depends continuously on s.

Thus, the values θ(ht1, a2) depend continuously on s as well. Obviously, θ(ht1, a2) still depends
continuously on s if we subtract from all of them

max
ht1,a2

θ(ht1, a2),

which is a constant that satisfies the desired properties specified above.
Finally, we can choose the transfers θ(ht1, a2) to be bounded away from −∞. To see this, use

backward induction with respect to t. Consider first the perfect monitoring case. Then it can be
assumed that θ(ht1, a2) with properties 1, 3, and 4 is at least as large as:

−B := −T [max
a

u2 (a)−min
a

u2 (a)]− Σs>t[max
hs1,a2

θ(hs1, a2)−min
hs1,a2

θ(hs1, a2)].

Thus, for ε > 0 small enough, we can choose the values θ(ht1, a2) satisfying properties 1, 3, and
4 that all exceed −2B. By compactness of the set of strategies s, it can be therefore assumed
that θ(·) is bounded away from −∞ by some θ independent of s. This implies that π2

¡
hT1
¢
> π,

∀hT1 ∈HT
1
. Q.E.D.

As the counterparts of Lemma 1 and 2 for the case s̄−i = sB−i are straightforward, we gather
them in a unique lemma.

Lemma 3 For every strategy s | HE, there exists ε > 0 such that for ε < ε:
There exist a non-negative transfer πBi : H

T
−i → R+ such that

ST
i = Bi(s

B
−i, π

B
i ), (5)

where sB−i | HN
−i = sB−i | HN

−i and s
B
−i | HE

−i = s−i | HE
−i, and for every si ∈ Bi(s

B
−i, π

B
i ),

lim
ε→0

UA
i (si, s

B
−i, π

B
i ) = max

si∈STi
UT
i (esi, sB−i). (6)

Proof : The argument is similar to Lemma 1 and 2, but simpler. We consider a pure strategy
rB2 of player 2 such that, for every history ht2 ∈ Ht

2 (both erroneous and non-erroneous), the
continuation strategy rB2 |ht2 yields the highest payoff against sB1 in the T -period repeated game.
We again define θ(ht1, a2), ∀ht1 ∈ Ht

1, ∀a2 ∈ Σ1 = A2 by backward induction with respect to
t. Suppose all values θ(hτ1, a2) for τ > t have already been defined, and we are given ht1 ∈ Ht

1

and a2 ∈ Σ1 = A2. Let θ(ht1, a2) be the difference in player 2’s payoff in the T -period repeated
game (given θ(hτ1, a2), τ > t) between playing rB2 |ht2, where ht2 corresponds to ht1, and playing a2
followed by switching to rB2 from period t+ 1 on. By definition, the transfer:

πB2 (h
T
1 ) =

1

δT

"
TX
t=1

δt−1θ(ht1, a2)

#
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satisfies (5), and (6) is satisfied because θ(ht1, a2) = 0 whenever a2 = rB2 (h
t
2). Q.E.D.

Lemmas 1-3 imply that, for any specification of strategies on HE, players can be given
incentives to prefer, among all strategies coinciding with the specified strategy on HE, those that
correspond to some strategy from S onHN , by choosing appropriately the transition probabilities
(in particular, they are indifferent among all such strategies). Those probabilities typically
depend on the specified strategies on HE. Yet the optimal strategies on HE also depend on
the transition probabilities. We will thus define transition probabilities and strategies on HE

simultaneously, by applying a fixed point theorem and use this to establish Theorem 1 for the
case of two players.

Proof of Theorem 1 (2 players): Define s1 | HE
1 and s2 | HE

2 as the first two coordinates of a
fixed point of a correspondence F from the set of all strategies s1 | HE

1 , s2 | HE
2 and non-positive

transfers π1, π2 into itself. Note that the set of all strategies s−i | HE
−i can be identified with a

convex subset of a finite-dimensional Euclidean space; similarly (non-positive) transfers πi can
be identified with a point of a finite-dimensional cube assuming they are bounded away from
−∞ by π.
Consider the correspondence F defined by

F
¡
s1 | HE

1 , s2 | HE
2 , π1, π2

¢
=
©¡
s01 | HE

1 , s
0
2 | HE

2 , π
0
1, π

0
2

¢ª
as the set of (restricted) strategies and transfers such that: s0i | HE

i is the restriction to HE
i of

a strategy of player i that is a best-response (in the auxiliary scenario) to player −i’s strategy
that coincides with sG−i on HN

−i and with s−i on HE
−i and to transfers πi. The transfer π

0
i is

defined as the (non-positive) transfer πGi whose existence is established in Lemmas 1-2, for
s | HE = (s1 | HE

1 , s2 | HE
2 ).

The set F
¡
s1 | HE

1 , s2 | HE
2 , π1, π2

¢
is non-empty and convex, as the set of agent −i’s best-

responses s0−i | HE
−i is non-empty and convex and πGi is single-valued. The best-response corre-

spondence is obviously upper hemi-continuous. Since π0i is independent of πi and, by Lemma 2,
continuous with respect to s | HE, F is upper hemi-continuous.
Let

¡
s1 | HE

1 , s2 | HE
2 , π

G
1 , π

G
2

¢
∈ F

¡
s1 | HE

1 , s2 | HE
2 , π

G
1 , π

G
2

¢
. By construction, playing any

strategy si such that si | HN
i = esi | HN

i for some esi ∈ Si and si | HE
i = si | HE

i is a best-response
against both sG−i, π

G
i and sB−i, π

B
i . It yields the payoffs close to vi and vi, respectively, if ε is

sufficiently close to 0; slightly perturbing the box
Q2

i=1[vi, vi] if necessary, we can assume that
the payoffs are exactly equal to vi and vi.
We show that the payoff set

Q2
i=1[vi, vi] can be achieved under almost perfect private mon-

itoring. Divide the horizon of the infinitely repeated game into T -period blocks with the re-
quired properties. In particular, assume that the discount factor δ̄ is close enough to 1 so that
vi + (1− δT )πGi

¡
hTi
¢
> vi and vi + (1− δ̄

T
)πBi

¡
hTi
¢
< vi for all hTi ∈ HT

i .
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For each i, construct a strategy for player −i as follows. At the beginning of each block,
player −i’s continuation strategy only depends on its state u ∈ [vi, vi]. Thus, the state space is
[vi, vi], the set of possible continuation payoffs of player i. The initial state is vi.
At the beginning of each block, in state u ∈ [vi, vi], player −i performs an initial randomiza-

tion: for q ∈ [0, 1] such that u = qvi + (1 − q)vi, he picks strategy sG−i with probability q and
strategy sB−i with probability 1− q. Thus, player −i uses one or the other strategy throughout
the block as a function of the outcome of this initial randomization.
To define transition probabilities, consider first the case in which player −i plays sG−i within

the block. Given the realized history hTi in the block, player −i transits to the state vi + (1 −
δT )πGi

¡
hTi
¢
∈ [vi, vi] at the end of the block; if player −i plays sB−i within the block, then, at the

end of the block, he transits to the state vi + (1− δT )πBi
¡
hTi
¢
∈ [vi, vi].

It follows from the one-stage deviation property that, given the strategy of player −i, any
strategy for player i such that, in every block, si | HN

i = esi | HN
i for some esi ∈ Si and

si | HE
i = si | HE

i is a best-response. The payoff of player i is equal to the weighted average of the
payoff to playing the best response against sG−i and the payoff to playing the best response against
sB−i with weights q and 1− q. Thus, the payoff of player i in block-state u is qvi + (1− q)vi = u.
Q.E.D.

4 More players

When the stage game involves more than two players, two additional difficulties must be ad-
dressed. First, a player’s opponents must coordinate their play, to punish effectively the player if
necessary, but also to achieve the exact payoff that ensures the player’s willingness to randomize
over his continuation strategies at the beginning of the block. The construction must ensure that
player i maintains the belief that his opponents coordinate their continuation strategies almost
perfectly, whenever this coordination is essential to determine player i’s best-response.
The second difficulty is an issue of dimensionality. With two players, it is possible to generate

a neighborhood of the payoff vector to be achieved by considering only two strategies for each
player. In particular, it is possible to guarantee that, whenever a player uses one particular
strategy among the two, along with the corresponding transfer, his opponent is indifferent over
all possible continuation strategies (within the block). This is an essential element of the con-
struction, as it ensures that recent histories are a sufficient statistic to compute best-responses.
With three players or more, the straightforward generalization of the two-player construction

consists in defining a set of strategies
n
s
M1,...,Mi−1,Mi+1,...,Mn

i :Mj ∈ {G,B}, j 6= i
o
, for each player

i, indexed by the payoff level, high or low, assigned to player j 6= i by his opponents, assuming
they coordinate.7 That is, each player chooses from 2n−1 strategies. To replicate the two-player

7We do not know whether it is possible to prove the result, for all stage games, by considering a more restricted
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construction, it would then be necessary to specify strategies and transfers such that, for every
player i, and for all but one strategy profiles of player i’s opponents, player i is indifferent over
all his continuation strategies. Thus, player i must be indifferent over all continuation strategies
(within the block), for some strategy profiles of his opponents that assign him a high payoff,
as there are more than one such strategy profile. This is a demanding requirement for most
stage games, as player i must then be willing to pick actions that yield low stage-game payoffs
independently of his opponents’ actions (a notable exception, here again, is the n-prisoner’s
dilemma, for which the difficulty does not arise).
Coordination is roughly8 achieved as follows. Each player i is responsible for the payoff of

his successor, player i+1 (identifying player n+ 1 and 1), and uses the history he observed and
the strategy he played in the previous block to decide whether player i+1’s continuation payoff
should be high or low. He then announces his decision through a choice of action (a message)
in the initial period of the current block. The profile of such messages determines the strategy
profile that should be played within the block. This, however, only ensures that players believe
just after the initial period that coordination will obtain with high probability, and does not
preclude that, after some recent histories, player i believe that this coordination has actually
failed. To make sure that, whenever such coordination is payoff-relevant, player i maintains a
high degree of confidence in his opponent successfully coordinating and keeping doing so, we
introduce a second round of messages (through choices of actions) at the end of the block. If
coordination among i + 1’s opponents fails, player i learns (with high probability) about the
cause of this failure at the end of the block, and he adjusts his transfer to make player i + 1’s
choice of action within the block payoff-irrelevant. The failure of coordination may relate to the
strategy profile to be used by player i+1’s opponents within the block, but also to the date and
identity of a unilateral deviator from the action profile to be chosen with high probability in each
period of the block. To make sure that player i learns about the cause of the failure players need
several periods of messages, but the duration of this communication may be taken arbitrarily
short, relative to the actual play phase.
That is, each player may safely assume that his opponents coordinate (with high probability),

even if his recent history suggests otherwise, as if they do not, he will be made indifferent across
all his actions, once miscoordination is revealed at the end of the block.
This does not solve the second problem. While a player may condition on the event that

his opponents coordinate, he still has beliefs about what strategy profile they are coordinating
on. After non-erroneous histories (defined in a similar way to the previous section), he assigns
probability almost 1 to the particular strategy profile consistent with his recent history, including
the initial messages. After erroneous histories, however, his belief about this strategy profile may
depend on his entire history, rather than on his recent history alone. To circumvent this difficulty,
we add another initial round of communication, in which each player i + 1 must “repeat” what

set of strategy profiles.
8The actual construction described in the next two subsections is slightly more complex.
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strategy profile he believes his opponents intend to play. If he gets this wrong (more precisely,
if the repeated strategy profile does not coincide to the intended strategy profile according to
the signals of player i), transfers are adjusted so as to ensure that player i + 1 is indifferent
over all continuation strategies within the remaining periods of the block. But this transfer also
guarantees that a player repeats what he truly believes his opponents intend to play.
This guarantees that, after any recent history, a player may not only assume that his oppo-

nents coordinate, but also that they coordinate on the strategy profile he repeated within that
recent history, as he is indifferent over all continuation strategies (within the block) otherwise. In
this way, we ensure that, after any history, the best-response only depends on the recent history.
This device, that is useless with two players, comes at a cost when signal spaces more general
than canonical are considered, as described in Section 5. Indeed, it requires that, when player
i+1 repeats what he thinks his opponents intend to play, player i+1 assigns probability almost 1
to player i observing a “correct” signal (conditional on which player i assigns probability almost
1 to player i + 1 communicating what he actually did), conditional on any signal player i + 1
may observe himself in that period. If all other players use totally mixed actions whenever it is
player i+1’ turn to send this message, this necessarily obtains under the canonical signal space,
provided the noise level is small enough. This fails, however, for some richer signal spaces.

4.1 Perfect Monitoring

Let v be the payoff vector from the interior of V ∗ that we wish to achieve. Take 2n payoff vectors
wM , where M = (M1, ...,Mn), and Mi ∈ {G,B} such that: (a) wM

i > vi if Mi = G; (b) wM
i < vi

if Mi = B. There exist vi < vi such that the interior of co(
©
wM : M ∈ {G,B}n

ª
) contains the

box
[v1, v1]× · · · × [vn, vn].

As in the two-player case, assume that there exist pure action profiles aM such that

ui(a
M) = wM

i .

Otherwise replace action profiles by finite sequences of action profiles, as described in Section 3.
We follow the notational conventional of Section 3. We show that the payoff set

Qn
i=1[vi, vi] can

be achieved in block strategies.
The play in a block will be divided into five phases.
Phase 1 (period 1): every player i simultaneously sends message G or B. For each i, we

partition Ai into two non-empty sets Gi and Bi. If, in the first period of a block (t = 1), player
i chooses an action from the first set, we say that he sends message Mi = G; otherwise, we say
that he sends message Mi = B. In all strategies of player i defined below, it is understood that
he sends message Mi by uniformly randomizing over all actions in the corresponding element of
the partition, Gi or Bi.
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Phase 2 (periods t = 2, ..., n(n− 1) + 1): players consecutively “report” the message vector
that corresponds to all signals they have observed in period 1 (they do not report their own
message). That is, player 1 first reports these signals, while all other players uniformly ran-
domize over all their actions; then player 2 reports his signals, while all other players uniformly
randomize over all their actions, and so forth. More formally, this is achieved by using the
partitions described in phase 1. To report the signals player i observed in the initial period,
that imply message profile M−i = (M1, ...,Mi−1,Mi+1, ...,Mn), Mj ∈ {G,B} all j 6= i, player i
randomizes uniformly over all actions in Ai in all periods of Phase 2, except in the n− 1 periods
(i− 1) (n− 1)+ 2, . . . , i (n− 1)+ 1, in which he consecutively randomizes over all actions in the
element of the partition that corresponds to the message Mj ∈ {G,B}. For instance, in period
(i− 1) (n− 2)+ 2, player i > 1 sends message Mi = G (respectively B) if the signal he obtained
about player 1 in the initial period is an element of G1 (respectively B1), and so forth.
Phase 3 (periods t = n(n − 1) + 2, ..., 2n(n − 1) + 1): players “repeat” consecutively their

predecessors’ reports. That is, first player 2 repeats what he observed player 1 report in Phase 2,
while all other players uniformly randomize over all the actions in their action sets; next player
3 repeats what he observed player 2 report in Phase 2, and so forth. By convention, player n is
the predecessor of player 1. The details are the straightforward analogues of those in Phase 2,
and are therefore omitted.
Phase 4 (periods t = 2n(n− 1) + 1, ..., T − k): see below for the specification.
Phase 5 (periods T − k + 1,T − k + 2, ..., T ): in period T − k + 1, every player i sends first

the message Mi = G or B. Then player i reveals his signals about the message profile M sent in
Phase 1, whether all players (according to his signals) were playing aM in every period of Phase
4, where fM = (Mn,M1,M2, . . . ,Mn−1). [fM has been used (instead of M) as the superscript of
the action profile, because player i + 1’s payoff depends on player i’s message and the i + 1-st
coordinate of the superscript reflects whether player i+ 1’s payoff is high or low.] If he reports
a deviation from aM , then player i announces if the first such deviation was unilateral, in which
case he also reports: (i) the identity of the player who first deviated and (ii) the period in which
this first deviation occurred. All these announcements take place in periods T − k + 2, ..., T ,
where k is chosen such that all such reports can be completed. Without loss of generality, we
can take k of order log T . All elements are trivial to report, except the period in which the
first unilateral deviation from aM occurred, if any. This period can be announced in no more
than 1+ log T periods by dichotomous signaling: the first message signals whether the deviation
occurred in the first half or the second half of Phase 4; once this half is determined, the second
message further signals whether the deviation occurred in the first half or the second half within
that half, and so forth.

The play in Phase 4 is determined by the messages sent in Phase 1. As before, we first define
Si+1 ⊂ ST

i+1, i = 0, 1, ..., n−1, as the sets of all (behavior) strategies si+1 in the T -period repeated
game satisfying the following condition:
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(∗n) In Phase 3, si+1 repeats player i’s report from Phase 2, as inferred from player i + 1’s
private history. Suppose M is the message profile sent in Phase 1, according to player i + 1’s
private history. If Mi = G, then player i + 1 plays aMi+1 in all periods of Phase 4 provided that,
according to player i+1’s private history, players have played aM in all periods t̄, 2n(n−1)+1 ≤
t < t.

Note that no restriction is imposed on the actions chosen in Phases 1, 2 and 5. To avoid
clutter, the condition (∗n) above is informal in two respects. The first sentence is not meant
to imply that strategy si+1 specifies uniform randomization over the actions in the appropriate
element in the partition, as described above, but simply that si+1 assigns probability 0 to any
action in the other element of the partition. That is, the condition only restricts the support of
the actions specified in Phase 3. Second, “as inferred from player i + 1’s private history” and
“according to player i+1’s private history” refer to the fact that si+1 is defined relative to i+1’s
private history only, so that the condition Si+1 remains well-defined under imperfect monitoring.
As in the case of two players, we say that Si prescribes some set of actions Ai (h

t
i), given

some private history hti, if Ai (h
t
i) is the set of all actions ai such that, for some strategy si ∈ Si,

si assigns positive probability to action ai conditional on history hti. That is, given hti,

Ai

¡
hti
¢
=
©
ai ∈ Ai : ∃si∈Si si

£
hti
¤
(ai) > 0

ª
.

In Phases 1, 2, and 5, this prescribed set coincides with Ai; in Phase 4, it is either Ai or the
singleton aMi (in which case we say that Si prescribes aMi ); in Phase 3, this prescribed set always
coincides with an element of the partition of the set of player i’s actions, as described in Phase
1.
Given some (small) ρ > 0, define Sρ

i as the set of strategies si ∈ Si that, after every history
hti, and for all actions ai ∈ Ai (h

t
i) assign probability at least ρ to action ai, i.e.

Sρ
i =

n
si ∈ Si : ∀hti ∀ai∈Ai(hti)

si
£
hti
¤
(ai) ≥ ρ

o
.

We shall show now that if T is large enough, then there are strategies sgi , s
b
i ∈ Si such that

player i + 1’s average payoff from any strategy si+1 ∈ Si+1 against sgi and sj ∈ {sgj , sbj} for
j 6= i, i + 1 is higher than vi+1; and player i + 1’s average payoff from any strategy si+1 ∈ ST

i

(including strategies from the complement of Si+1) against sbi and sj ∈ {sgj , sbj} for j 6= i, i+ 1 is
lower than vi+1.
The strategies sgi and sbi only differ in the actions taken in Phase 1 and the first period of

Phase 5; sgi sends message G and sbi sends message B. In Phase 2 (respectively, Phase 3), both
strategies specify that player i reports what he observed in Phase 1 (respectively, repeats what
he observed in Phase 2), as described above; in Phase 4, given the message profile he observed in
Phase 1, both strategies specify aMi , where fM = (Mn,M1,M2, . . . ,Mn−1), until the first deviation
from aM , if this first deviation is unilateral. [In particular, both strategies specify aMi in case of
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a simultaneous deviation.] If a player j 6= i unilaterally deviates from aMj , then both strategies
specify i’s action in action profile α∗j , minmaxing player j. If player i unilaterally deviates from

aMi , then he plays in all remaining periods the best-response to the minmaxing profile α
∗
i (if there

is more than one such best-response, pick one of them). Finally in Phase 5, players first repeat
their messages from Phase 1, and they next honestly communicate what they are supposed to
communicate in Phase 5.
To determine average payoffs of player i + 1 against sgi and sbi , observe that, for sufficiently

large T , these average payoffs are approximately equal to the average payoffs in Phase 4. If player
i plays sbi , then player i+1 can obtain a (per-period) payoff above vi+1 in at most one period of
Phase 4 (the period in which he unilaterally deviates). If player i plays sgi and player i+1 plays
a strategy si+1 ∈ Si+1, then player i+ 1 cannot obtain (in Phase 4) a payoff below vi+1.
Perturb slightly strategies sgi and sbi so that, after any history hti, player i plays each action

ai ∈ Ai (h
t
i) with probability at least ρ; if ρ > 0 is small enough, we obtain strategies s

G
i , s

B
i ∈ Sρ

i

such that the average payoff of player i + 1 to playing any strategy si+1 ∈ Si+1 against sGi and
sj ∈ {sGj , sBj } for j 6= i, i+1 is higher than vi+1, and the average payoff of player i+1 to playing
any strategy si+1 (including strategies from the complement of Si+1) against sBi and sj ∈ {sGj , sBj }
for j 6= i, i+ 1 is lower than vi+1.
We denote, for sj ∈ {sGj , sBj } for j 6= i, i+ 1, by rGi+1(sj, j 6= i, i+ 1) the strategy si+1 ∈ Si+1

such that, for every history hti+1, the strategy si+1|hti+1 yields the lowest payoff against sGi and
sj for j 6= i, i + 1 among all strategies si+1 ∈ Si+1. Similarly, we denote by rBi+1(sj, j 6= i, i + 1)
a strategy si+1 ∈ ST

i+1 such that for every history hti+1 the strategy si+1|hti+1 yields the highest
payoff against sBi and sj for j 6= i, i+ 1 among all strategies si+1 ∈ ST

i+1.

We now generalize the proof of the folk theorem under perfect monitoring given in section 3.1 to
n ≥ 2.

Proof of Theorem 1 (perfect monitoring): For each i, construct a strategy for player i
as follows. At the beginning of each block, player i’s continuation strategy only depends on its
state u ∈ [vi+1, vi+1]. Thus, the state space is [vi+1, vi+1], the set of possible continuation payoffs
of player i+ 1. The initial state is vi+1.
At the beginning of each block, in state u ∈ [vi+1, vi+1], player i performs an initial random-

ization: for q ∈ [0, 1] such that u = qvi+1 + (1− q)vi+1, he picks strategy sGi with probability q
and strategy sBi with probability 1− q. Thus, player i uses one or the other strategy throughout
the block as a function of the randomization. For later purposes, we refer to the outcome of this
randomization as the intention of player i. Thus, player i intends to play sBi if s

B
i is the outcome

of this randomization.
To define transition probabilities, suppose first that player i intends to play sBi . Then he

records the periods in which player i + 1 departs from rBi+1(sj, j 6= i, i + 1), where sj = s
Mj

j ,
Mj ∈ {G,B} stands for the message that has been sent in the first period of Phase 5, for
j 6= i+ 1. Let θBt denote the difference between player i+ 1’s unnormalized continuation payoff

27



from rBi+1(sj, j 6= i, i + 1) from period t on, and player i + 1’s unnormalized continuation payoff
from playing the action chosen by player i+1, followed by switching to rBi+1(sj, j 6= i, i+1) from
period t+ 1 on. By definition of rBi+1(sj, j 6= i, i+ 1), θBt ≥ 0 for every action of player i+ 1. At
the end of the block, player i then transits to the state:

vi+1 +
1− δ

δT

Ã
xBi+1(sj , j 6= i, i+ 1) +

TX
t=1

δt−1θBt

!
, (7)

where xBi+1(sj, j 6= i, i+1) is the difference between getting vi+1 in every of T periods and player
(i + 1)’s payoff from playing rBi+1(sj, j 6= i, i + 1), which is less than vi+1 if δ is large enough.
Observe that, if player i + 1 knew that player i was playing sBi , every strategy si+1 of player i
would be a best-response.
Suppose now that player i intends to play sGi . We consider three cases. In the first two cases,

the strategy of player i is defined similarly to the case in which player i intends to play sBi .
Case i: The message vector sent by player i + 1 in Phase 3 differs from the message vector

reported by player i in Phase 2.
Case ii: The message vector sent by player i+1 in Phase 3 coincides with the message vector

reported by player i in Phase 2, but the message vector reported by player i in Phase 2 differs
from the message vector sent in Phase 5.
Case iii: The message vector reported by player i in Phase 2 coincides with the message

vector sent in Phase 5, and the message vector sent by player i+1 in Phase 3 coincides with the
message vector reported by player i in Phase 2.
In Cases i and ii, player i picks first a “target” transition state vi+1−ζ ∈ (vi+1, vi+1), and then

he picks the “actual” transition states as when he intends to play sBi , in order to make player
i+ 1 indifferent across all strategies si+1 ∈ ST

i+1. As the payoff of player i+ 1 from any strategy
in St

i+1 is vi+1 when player i intends to play sBi , now player i + 1’s payoff from any strategy is
vi+1 − ζ.
In Case iii, player i records the periods in which player i+1 departs from rGi+1(sj, j 6= i, i+1),

where again sj = s
Mj

j , Mj ∈ {G,B} stands for the message that has been sent in Phase 5, for
j 6= i+ 1. Let θt denote the difference between the unnormalized continuation payoff to playing
the action chosen by player i+ 1, followed by switching to rGi+1(sj, j 6= i, i+ 1) from period t+1
on, and the unnormalized continuation payoff of playing rGi+1(sj, j 6= i, i + 1) from period t on.
Let θGt = max{0, θt}. At the end of the block, player i transits to the state:

vi+1 −
1− δ

δT

Ã
xGi+1(sj, j 6= i, i+ 1) +

TX
t=1

δt−1θGt

!
, (8)

where xGi+1(sj, j 6= i, i+1) is the difference between player (i+1)’s payoff from playing rGi+1(sj, j 6=
i, i+1) and getting vi+1 in every of T periods, which falls below vi+1 if δ is large enough. Observe
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that, if player i + 1 knew that player i was playing sGi , every strategy si+1 ∈ Si+1 would be a
best-response.
By construction and the one-stage deviation property, given the strategy of player (i + 1)’s

opponents, any strategy for player i+ 1 which belongs to Si+1 in every block is a best-response.
The payoff of player i+1 in block-state u is equal to the weighted average qvi+1+(1−q)vi+1 = u.
Q.E.D.

Note that neither Phase 2 and 3 nor Phase 5 played any role in our construction of block-
strategy equilibria under perfect monitoring. Under imperfect private monitoring, the informa-
tion transmitted in Phase 5 (except the first period) will allow player i to pick the transition
probabilities that make player i+ 1 indifferent across all strategies when he intends to play sBi .
Note the difference with the two-player case. To make player i + 1 indifferent across all actions
conditional on some history hti+1, player i must know the (possibly mixed) actions of players
other than i + 1 in period t as well as their continuation strategies; more precisely, player i + 1
must believe that player i will know when he determines the transition probabilities. It will be
(approximately) achieved (for ε→ 0) through the information transmitted in Phase 5.
Making player i+1 indifferent across all strategies when player i intends to play sBi will allow

player i + 1 with an erroneous history to play as if he knew that player i’s intention is to play
sGi . Then Phases 2 − 3 and the first period of Phase 5 will further allow player i + 1 with an
erroneous history to play as if he knew the intentions of all other players. The details will only
become clear in the following subsection.

4.2 Imperfect Private Monitoring

We call a history hti erroneous if, under perfect monitoring, it is a history off the path for every
strategy profile from S; otherwise the history is called non-erroneous. As in the case of two
players, let HN,t

i denote the set of all non-erroneous t-length histories, and let HE,t
i = Ht

i\HN,t
i

denote the complement of HN,t
i . Let

HN
i =

[
t≤T

HN,t
i , HE

i =
[
t≤T

HE,t
i .

We will show that, if player i’s intention is to play sBi (more precisely, player i intends to
play sBi on HN

i and a given strategy on HE
i ), then he can pick the transition probabilities so

that for any intentions sMj , where j 6= i, i+ 1 and M ∈ {G,B}, player i+ 1 is indifferent across
all strategies si+1 ∈ ST

i+1 in the T -period repeated game. Simultaneously, assuming now that
player i’s intention is to play sGi (it again means that player i intends to play sGi on HN

i and a
given strategy on HE

i ), player i can pick the transition probabilities so that after histories from
HN

i+1, player i+1 is indifferent across all strategies from Si+1 (for any intentions of other players)
and he weakly prefers any of them to any other strategy; moreover, he can pick the transition
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probabilities so that player i+ 1 is indifferent across all strategies in Phase 4 conditional on the
following two events:

1. the message profile reported by player i in Phase 2 does not coincide with the intention
profile revealed by players other than i+ 1 in the first period of Phase 5,

2. the message profile reported by player i in Phase 2 does coincide with the intention profile
revealed by players other than i+ 1 in the first period of Phase 5, but the message profile
sent by player i+1 in Phase 3 does not coincide with the message profile reported by player
i in Phase 2.

Notice that our construction will guarantee that player (i+1)’s set of best replies on erroneous
histories contains the strategies that would be best-responses if he knew that player i intended
to play sGi and the intentions of all players j 6= i, i + 1 coincided with the message profile sent
by himself in Phase 3.
As in the case of two players, we consider the auxiliary scenario, where players play the T -

period repeated game and then each of them obtains a transfer that is a function of player i’s
private history. Recall that Bi+1(s−(i+1), πi+1) denotes the set of auxiliary scenario best-responses
of player i+1 to the T -period strategy profile s−(i+1) of his opponents and the transfer function
πi+1; given a T -period strategy s−(i+1), a transfer function πi+1 and a strategy si+1 ∈ ST

i+1, let
Bi+1(s−(i+1), πi+1 | si+1) denote the set of strategies that maximize player (i + 1)’s auxiliary-
scenario payoff against s−(i+1), πi+1 among all strategies si+1 ∈ ST

i+1 such that si+1 | HE
i+1 =

si+1 | HE
i+1. Recall finally that U

A
i+1(si+1, s−(i+1), πi+1) denotes the average payoff of player i+ 1

from si+1 against s−(i+1), πi+1, while UT
i+1(s) stands for the payoff in T -period repeated game

under perfect monitoring given strategy profile s. The following Lemma is the counterpart, for
n ≥ 2, of Lemmata 1, 2 and 3.

Lemma 4 For every strategy s | HE, there exists ε > 0 such that for ε < ε:
(a) There exist non-negative transfers πBi+1 : HT

i → R+ such that for everyM = (M1, ...,Mn) ∈
{G,B}n with Mi = B

ST
i+1 = Bi+1(s

M
−(i+1), π

B
i+1), (9)

where sMj | HN
j = s

Mj

j | HN
j and sMj | HE

j = sj | HE
j , and for every si+1 ∈ Bi+1(s

M
−(i+1), π

B
i+1)

lim
ε→0,T→∞

UA
i+1(si+1, s

M
−(i+1), π

B
i+1) = lim

T→∞
max

si+1∈STi+1
UT
i+1(esi+1, sM−(i+1)). (10)

(b) There exist non-positive transfers πGi+1 : HT
i → R− such that such that for every M =

(M1, ...,Mn) ∈ {G,B}n with Mi = G

{si+1 ∈ ST
i+1 : si+1 | HN

i+1 = esi+1 | HN
i+1 for some esi+1 ∈ Si+1 and (11)

si+1 | HE
i+1 = si+1 | HE

i+1} ⊂ Bi+1(s
M
−(i+1), π

G
i+1 | si+1) ,
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where sMj | HN
j = s

Mj

j | HN
j and sMj | HE

j = sj | HE
j , and for every si+1 ∈ Bi+1(s

M
−(i+1), π

G
i+1 |

si+1)

lim
ε→0,T→∞

UA
i+1(si+1, s

M
−(i+1), π

G
i+1) = lim

T→∞
min

M∈{G,B}n with Mi=G
si+1∈Si+1

UT
i+1(esi+1, sM−(i+1)); (12)

πGi+1 is bounded away from −∞, i.e. there exists π (independent of s) such that πGi+1 ≥ π, and
πGi+1 depends continuously on s.

(c) Moreover, every strategy in Phase 4 yields player i + 1 the same payoff conditional on
each of the following two events:
1. The message profile reported by player i in Phase 2 does not coincide with the intention

profile of players other than i+ 1 revealed in the first period of Phase 5;
2. The message profile reported by player i in Phase 2 does coincide with the intention profile

of players other than i+1 revealed in the first period of Phase 5, but the message profile sent by
player i + 1 in Phase 3 does not coincide with the message profile reported by player i in Phase
2.

Proof : in Appendix.

Increasing πBi+1 by a constant that depends only on the message profile sent in the first period
of Phase 5 if necessary, we can assume, instead of equation (10), that

UA
i+1(si+1, s

M
−(i+1), π

B
i+1) = vi+1

for every M = (M1,M2, ...,Mn) ∈ {G,B}n such that Mi = B. Similarly, decreasing πGi+1 by a
constant that depends only on the message profile sent in first period of Phase 5, we may assume,
instead of (12), that

UA
i+1(si+1, s

M
−(i+1), π

G
i+1) = vi+1

for every M = (M1,M2, ...,Mn) ∈ {G,B}n such that Mi = G. We may now prove Theorem 1 in
full generality.

Proof of Theorem 1: Define si | HE
i for i = 1, 2, ..., n as the first n coordinates of a fixed

point of a correspondence F from the set of all strategies si | HE
i and non-positive transfers

πi+1, i = 1, 2, ..., n, into itself. Note that the set of all strategies si | HE
i can be identified with

a convex subset of a finite-dimensional Euclidean space; similarly (non-positive) transfers πi+1
can be identified with a point of a finite-dimensional cube assuming they are bounded away from
−∞ by π.
Consider the correspondence F defined by

F
¡
si | HE

i , πi+1, i = 1, 2, ..., n
¢
=
©¡
s0i | HE

i , π
0
i+1, i = 1, 2, ..., n

¢ª
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as the set of (restricted) strategies and transfers such that: s0i+1 | HE
i+1 is a strategy of player

i + 1 that is a best-response to his opponents’ strategy
³
sM−(i+1) | HN

−i, s−(i+1) | HE
−(i+1)

´
in the

auxiliary scenario, where M is the sequence of signals about player i’s report obtained by player
i+1 in Phase 2, and to transfers πi+1. The definition of s0i+1 | HE

i+1 is correct, because no history
in Phases 1 and 2 is erroneous, and therefore player i+1 knowsM at every history hti+1 ∈ HE

i+1.
The transfer π0i+1 is defined as the (non-positive) transfer π

G
i+1 whose existence is established in

Lemma 4(b) for s | HE = (si | HE
i , i = 1, 2, ..., n).

The set F
¡
si | HE

i , πi+1, i = 1, 2, ..., n
¢
is non-empty and convex, and F is upper hemi-

continuous by the same argument as in the case of two players.
Let

¡
si | HE

i , π
G
i+1, i = 1, 2, ..., n

¢
∈ F

¡
si | HE

i , π
G
i+1, i = 1, 2, ..., n

¢
be any fixed point. Notice

that any strategy of player i + 1 is his best-response conditional on sBi being the intention of
player i (by Lemma 4(a)), as well as conditional on sGi being the intention of player i but s

M
−(i+1),

whereM is the sequence of signals about player i’s report obtained by player i+1 in Phase 2, not
being the intention of player i+1’s opponents (by Lemma 4(c)). This yields, by the definition of
s0i+1 | HE

i+1, that playing any strategy si+1 such that si+1 | HN
i+1 = esi+1 | HN

i+1 for some esi+1 ∈ Si+1
and si+1 | HE

i+1 = si+1 | HE
i+1 is a best-response against s

M
−(i+1), π

B
i+1 and s

M
−(i+1), π

G
i+1 for every set

of intentions M . It yields the payoffs no higher than vi+1 and no lower than vi+1, respectively,
if ε is sufficiently close to 0.
We show that the payoff set

Qn
i=1[vi, vi] can be achieved under almost perfect private mon-

itoring. Divide the horizon of the infinitely repeated game into large enough T -period blocks.
Construct a strategy for player i as follows. The state of player i’s strategy at the beginning
of a block is player i + 1’s continuation payoff. Player i’s initial block-state is vi+1. At the
beginning of each block, in state u ∈ [vi+1, vi+1], player i performs an initial randomization: for
q ∈ [0, 1] such that u = qvi+1 + (1− q)vi+1, he picks strategy s

G
i with probability q and strategy

sBi with probability 1− q. Thus, player i uses one or the other strategy throughout the block as
a function of the randomization. Pick δ̄ close enough to one such that vi+1+(1− δ̄

T
)πGi+1 > vi+1

and vi+1 + (1 − δ̄
T
)πBi+1 < vi+1 for all histories. If he plays sGi , then at the end of the block he

transits to the state vi+1+(1− δT )πGi+1 ∈ [vi+1, vi+1]; if he plays sBi , then at the end of the block
he transits to the state vi+1 + (1− δT )πBi+1 ∈ [vi+1, vi+1].
It follows from the one-stage deviation property that, given the strategy of player i, any

strategy for player i+ 1 such that, in every block, si+1 | HN
i+1 = esi+1 | HN

i+1 for some esi+1 ∈ Si+1
and si+1 | HE

i+1 = si+1 | HE
i+1 is a best-response. The payoff of player i + 1 is equal to the

weighted average qvi+1 + (1− q)vi+1 = u. Q.E.D.

5 Extensions and concluding comments

Throughout, attention has been restricted to the case in which Σi = A−i. As our focus is on
almost-perfect monitoring, it makes little sense to consider signal spaces for which, for some i,
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#Σi < #A−i. However, convergence to perfect monitoring can be defined for signal spaces that
have more signals than opponents’ action profiles.
Following Ely and Välimäki (2002), given {m (· | a) : a ∈ A} (and its finite domain Σ), we

say that a monitoring structure is ε-perfect if, for each player i, there exists a partition of Σi into
{Σa−i

i : a−i ∈ A−i} such that, for all ai ∈ Ai,X
σi∈Σ

a−i
i

mi (σi | (ai, a−i)) ≥ 1− ε.

A close look at the proof should convince the reader that for n = 2 our folk theorem (Theorem
1) remains valid if we use the property given above in the definition of convergence. In fact, this
partition could further depend on ai. If Σi is infinite (but Ai is finite), Theorem 1 still holds for
n = 2 with this more general definition.
For n > 2, our proof requires, however, an additional assumption on monitoring structure;

namely, for any player i + 1, any action profile (ai+1, α−(i+1)), where ai+1 is a pure action and
α−(i+1) a (fixed) totally mixed action profile of other players, and for every signal σi+1 ∈ Σi+1

observed with positive probability, player i+ 1 assigns a probability that tends to 1 as ε→ 0 to
σi ∈ Σ

a−i
i for some a−i whose i-th coordinate is ai+1 (conditional on (ai+1, α−(i+1)) being played

and σi+1 being the signal of player i + 1). In words, player i + 1 must be sure that player i
received a signal that is evidence of the action he actually took, independently of his own signal.
We need this additional requirement to give player i+ 1 an incentive to repeat truthfully in

Phase 3 the observed report of player i from Phase 2 (see the proof of Lemma 4 for details). The
requirement is always satisfied for canonical signal spaces. When it is satisfied Theorem 1 holds
even for infinite signal spaces Σi, although the requirement itself seems much stronger when Σi

is infinite. We do not know whether Theorem 1 holds under the weaker notion of convergence.
We do not know either of any tractable modification of our proof that would apply to the case
in which the action sets Ai themselves are infinite.9

It may seem feasible to combine Theorem 1 with the result of Matsushima (2004), to establish
the folk theorem for all games, not only for almost-perfect monitoring, but also for monitoring
structures that are not almost perfect, but satisfy conditional independence. The obvious route
would consist in considering rounds of blocks, with the same strategy being used in each block
of a given round, and players switching or retaining that strategy at the end of the round by
using some summary statistics obtained from the round. While this may be possible, we must
point out a serious difficult in this endeavor. In Matsushima (2004), conditional independence is
useful because it ensures that, within a round, a player’s signal does not affect his belief about
his probability of failing or passing the statistical test, as this probability depends on his rival’s
signals. If each period within the round is replaced by a block, this property is not preserved:

9The difference between the two cases is somewhat similar to the distinction in Mailath and Morris (2004)
between ε-close and strongly ε-close monitoring structures, the benchmark in our case being perfect monitoring,
rather than public monitoring.
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in the second period of a block, the signal observed by a player affects his belief over the signal
received by his opponent in the previous period, since his opponent’s continuation strategy did
depend on that signal. Hence, within a round, the signals of a player affect his probability of
failing or passing the statistical test, even when signals are conditionally independent. This
suggests that it may preferable to first generalize the folk theorem for the two-player prisoner’s
dilemma, to monitoring structures that satisfy weaker requirements, before considering more
general stage games.
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Appendix:

Proof of Lemma 4: (a) Let J−(i+1) denote the information revealed by all players other than
player i + 1 in Phase 5 (except the first period of Phase 5, information revealed in that period
will be irrelevant for part (a)). That is, (i) the intentions of players other than i + 1 revealed
in the first period of Phase 5; (ii) the signals about the message profile M sent in Phase 1; (iii)
the announcements whether the observed action profile has been aM in every period of Phase
4; (iv) the announcements whether the first deviation from action profile aM was unilateral, (v)
the announcements who was first deviated from aM and in which period this occurred. Note
that J−(i+1) reveals all mixed actions of all players other than player i + 1 in Phase 4; that is,
if one knows the part of J−(i+1) revealed by player j, then one also knows (for every period t of
Phase 4) the (mixed) action taken by player j in period t. Let I−(i+1) denote the information
contained in player i’s signals from Phase 5. [Under perfect monitoring, I−(i+1) would coincide
with J−(i+1).]
The transfer we define have the form:

πBi+1(h
T
i ) =

1

δT

"
TX
t=1

δt−1θ(hti, a
t, I−(i+1))

#
,

for some function θ to be defined, where hti, a
t denote the truncation of hTi to ht+1i = (hti, a

t).
The values of θ are defined by backward induction with respect to t.
Begin with the periods of Phase 5. For those periods, θ depends neither on hti, nor on I−(i+1),

but only on at. Assume that the values θ(at), all et > t, make player i + 1 indifferent across all
sequences of action profiles at, et > t, and pick as θ(at) the values that make player i+1 indifferent
over all action profiles of the stage game in period t. Those indifference conditions impose
a system of linear equations on the values θ(at), which satisfies the necessary rank condition
because monitoring is almost perfect. Moreover, these values θ(at) may be chosen to be positive,
and, as the noise level tends to zero, they may be chosen to be bounded by any number larger
than maxa∈A ui+1(a) − mina∈A ui+1(a). By construction, these values θ(at), et ≥ t, make player
i + 1 indifferent across all sequences of action profiles at, et ≥ t. Thus, player i + 1 is indifferent
over all strategies in Phase 5. The values of θ assigned in Phase 5 will have a small affect on the
auxiliary-scenario average payoff of player i+ 1 provided T is sufficiently large.
By the same argument, we may pick the values θ(hti, a

t, I−(i+1)) for all the periods of Phases
2 and 3 such that player i+1 is indifferent over all sequences of action profiles in the two phases
when he disregards the stage-game payoffs in the periods of Phases 4 and 5 and the values of
θ assigned in the two phases (i.e. the values θ(hti, a

t, I−(i+1)), where t is a period of Phase 4 or
5). However, the stage-game payoffs of Phases 4 and 5 and the values of θ assigned in those
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phases can be disregarded because, by construction, the stage-game payoffs of Phases 4 and 5
are independent of the outcomes in Phases 2 and 3; in addition, the values θ(hti, a

t, I−(i+1)) have
already been defined for all periods in Phase 5 , and we shall define the values θ(hti, a

t, I−(i+1))
for all the periods of Phase 4 independently of the outcomes of Phases 2 and 3.
It therefore remains to define the values θ(hti, a

t, I−(i+1)) for the periods of Phases 1 and 4
independently of the outcomes in Phases 2 and 3, such that player i + 1 is indifferent over all
strategies, and such that (10) is satisfied, when we disregard the stage-game payoffs in the periods
of Phases 2, 3 and 5 and the values of θ assigned in these three phases.
We denote by J t

−(i+1) (respectively I
t
−(i+1)) the component of J−(i+1) (respectively I−(i+1)) that

reveals the information of all players other than i+ 1 that pertains to all periods up to t; more
precisely, it reveals their signals about the message profileM sent in Phase 1, if a deviation from
aM was observed in some period et < t, and, if so, it also reveals if the first observed deviation from
aM was unilateral, who deviated from aM first and in which period. We write J t

−(i+1) ∈ J t
−(i+1)

(respectively It−(i+1) ∈ It−(i+1)) when either all players played aM up to period t or player i + 1

was the first to unilaterally deviate in some period et < t (both according to the signals of all
players other than i+1; in particular, all players other than i+1 obtained the same signal about
the message profile M sent in Phase 1).
We will define the values θ(hti, a

t, I−(i+1)) such that:
3. Player i+ 1 is indifferent across all his strategies from period t on (until the end of Phase

4) conditional on every J t
−(i+1) (both from J t

−(i+1) and from the complement of J t
−(i+1));

4. His payoff from period t on, augmented by the transfers assigned from period t on (until the
end of Phase 4), conditional on every J t

−(i+1) ∈ J t
−(i+1), converges when ε→ 0 to the maximum

of his payoffs over all continuation strategies under perfect monitoring (until the end of Phase
4), conditional on the same J t

−(i+1).
Condition 3 will then guarantee that player i + 1 is indifferent over all his strategies and

condition 4 will guarantee that (10) is satisfied. Remember that we apply backward induction
with respect to t. Each J t

−(i+1) determines the actions in period t of players other than i + 1.
This implies that, given J t

−(i+1), both player i+ 1’s stage-game payoff and the distribution over
J t+1
−(i+1) in period t + 1 are determined by player (i + 1)’s action in period t. It suffices to pick

θ(hti, a
t, I−(i+1)) such that player i+1 is indifferent across all consequences (the stage-game payoff

and the induced distribution over all J t+1
−(i+1)) of all his actions in period t. Indeed, since player

i+1 is also indifferent over all his strategies from period t+1 on conditional on every J t+1
−(i+1), he

must be indifferent over all his strategies from period t+ 1 on conditional on every distribution
over all J t+1

−(i+1), in particular the distribution induced by his action in period t.
If the values θ depended directly on J t

−(i+1) (not only on I
t
−(i+1)) making player i+1 indifferent

between the consequences of all his actions in period t would be straightforward. For small enough
ε, it would be possible just to pick values of θ (that would depend on J t

−(i+1) and ati+1) to make
the continuation payoffs of player i+ 1 equal across all his actions.
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The values θ(hti, a
t, I−(i+1)) do not directly depend on J t

−(i+1); they depend only on I
t
−(i+1), an

imperfect signal of J t
−(i+1). However, there is a one-to-one correspondence between J t

−(i+1) and
It−(i+1), and each J t

−(i+1) induces a probability distribution over all I
t
−(i+1) with the probability

assigned to It−(i+1) corresponding to J t
−(i+1) converging to 1 as ε → 0. Thus, the matrix D

obtained by stacking these probability distributions as row vectors converges to the identity
matrix as ε → 0. This means that D is invertible and we can define the vector of values
θ(hti, a

t, I−(i+1)) as the vector of values θ when they depended directly on J t
−(i+1) multiplied by

D−1.
Again the values θ(hti, a

t, I−(i+1)) depend only on It−(i+1) and player (i + 1)’s own action in
period t, but they need not be non-negative even when their counterparts that depended directly
on J t

−(i+1) are. However, we can make them non-negative by adding a constant. As D tends to
the identity matrix as ε→ 0, we can assume that this constant converges to 0 as ε→ 0.
This yields condition 3. By construction, condition 4 is satisfied for all J t

−(i+1) such that

player i+1 is the first player who unilaterally deviated in some period et < t, since then all other
players minmax player i + 1 in t and in all following periods of the phase. Suppose therefore
that J t

−(i+1) is such that the players played aM until period t. Then, given any action by player
i + 1, the induced probability distribution assigns a probability that converges to 1 as ε → 0
to one specific J t+1

−(i+1) ∈ J
t+1
−(i+1) (more precisely, it is J

t+1
−(i+1) such that all players played aM

until period t+ 1 if player i + 1 takes action aMi+1; and it is J
t+1
−(i+1) such that player i + 1 is the

first unilaterally deviator from aM in period t otherwise). It thus follow immediately from the
induction hypothesis that player (i+ 1)’s payoff from period t on, augmented by the transfers
assigned from period t on, induced by any of his actions in period t, converges (as ε→ 0) to the
maximum of his continuation payoffs under perfect monitoring over all continuation strategies
conditional on J t

−(i+1).
(b & c) Let J1−(i+1) denote the information revealed by all players other than player i+ 1 in

the first period of Phase 5. This simply means the intentions of players other than i + 1. Let
I1−(i+1) denote the information conveyed in player i’s signals from the first period of Phase 5. The
signals obtained by player i in other periods of Phase 5 will be irrelevant for parts (b & c).
The transfer will have the form:

πGi+1(h
T
i ) =

1

δT

"
TX
t=1

δt−1θ(hti, a
t, I1−(i+1))

#
,

where hti, a
t denote the truncation of hTi to h

t+1
i = (hti, a

t).
We define the values θ(·) by backward induction with respect to t. We make player i + 1

indifferent over all strategies in Phase 5 in the same manner as in (a). Therefore consider first
a period t in Phase 4. We will specify a system of linear equations such that if the values of θ
satisfy our system, then (11), (12) and 1 and 2 in (c) hold. Next, we will show that there exists
a solution to our system such that all values of θ are non-positive.
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Begin with condition 1 from (c). Here we impose #A equations on the values θ(hti, at, I1−(i+1))
for any hti and J1−(i+1), such that J

1
−(i+1) does not coincide with hti on the report of player i

from Phase 2. As in the proof of (a), if the values of θ depended directly on J1−(i+1) (write then
θ(hti, a

t, J1−(i+1)) instead of θ(h
t
i, a

t, I1−(i+1))) our equations would be simple and they would be
the same for all pairs hti and J

1
−(i+1) with the required property. Namely, assume that the values

θ(hti, a
t, J1−(i+1)), et > t, make player i+1 indifferent over all sequences of action profiles at, et > t,

when J1−(i+1) does not coincide with hti on the report of player i from Phase 2. Then impose the
equations that make player i + 1 indifferent over the stage-game payoffs of all action profiles in
period t. This yields a set of #A− 1 equations. Impose also an additional equation that one of
the values θ(hti, a

t, J1−(i+1)) is equal to a negative number

c < −[max
a∈A

ui+1(a)−min
a∈A

ui+1(a)]. (13)

Our system consists therefore of #A equations (for every pair hti and J1−(i+1) with the required
property). All except two coefficients of each of the first #A− 1 equations converge (as ε→ 0)
to 0, and the other two coefficients converge to 1. The last equation has one non-zero coefficient,
which is equal to 1. The system consists obviously of linearly independent equations, and there-
fore it has a solution. By (13) and the form of our equations, all values θ(hti, a

t, J1−(i+1)) of the
solution must be negative for small enough ε.
However, the values θ(hti, a

t, I1−(i+1)) do not depend directly on J1−(i+1) but only on I1−(i+1).
Let D1 be the matrix obtained by stacking the probability distributions over I1−(i+1) conditional
on J1−(i+1) as row vectors. Note that the matrix D1 tends to the identity matrix as ε → 0. For
any hti and J

1
−(i+1) such that J

1
−(i+1) does not coincide with h

t
i on the report of player i from Phase

2, impose the set of #A equations on the values θ(hti, a
t, I1−(i+1)) which obtains from that when

the values θ(·) depended directly on J1−(i+1) by replacing θ(h
t
i, a

t, J1−(i+1)) with D1 multiplied by
the vector of θ(hti, a

t, I1−(i+1)).
To summarize, for any hti and J1−(i+1) such that J

1
−(i+1) does not coincide with hti on the

report of player i from Phase 2, we impose #A equations. Each of our equations has non-zero
coefficients only at the values θ(hti, a

t, I1−(i+1)) for a given hti. The non-zero coefficients converge
to 1 when I1−(i+1) corresponds to J

1
−(i+1) and at is either one of two elements of A (for #A − 1

equations) or a distinguished element of A (for one of the equations); otherwise the non-zero
coefficients converge to 0. This implies that our system consists so far of linearly independent
equations.
When our system is satisfied, every continuation strategy in Phase 4 is a best-response of

player i+1 conditional on each history of hti of player i and on the event that the message profile
reported by player i in Phase 2 will not coincide with the intention profile of players other than
i + 1. This obviously implies that every strategy in Phases 4 is a best-response of player i + 1
conditional on the latter event.
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An analogous argument guarantees condition 2 in (c). First, we assume that the values of θ
depend directly on the message profile sent by player i+1 in Phase 3, and then we replace those
values by a matrix D2 multiplied by the vector of values that depend only on player i’s signals
about the message profile sent by player i + 1 in Phase 3, where the matrix D2 is obtained by
stacking the distributions over player i’s signals about message profile sent by player i + 1 in
Phase 3 induced by message profiles sent by player i+ 1 in Phase 3.
Summarizing, for any hti, a message profile sent by player i+1 in Phase 3 that differs from hti

on the part that corresponds to the report of player i from Phase 2, and J1−(i+1) such that J
1
−(i+1)

coincides with hti on the report of player i from Phase 2, we impose #A equations. Each of these
equations has non-zero coefficients only at the values θ(ehti, at, I1−(i+1)), where ehti may differ from
a given hti only in Phase 3. The non-zero coefficients converge to 1 when I1−(i+1) corresponds

to J1−(i+1), ehti is a history that differs from hti but only in Phase 3, and at is either one of two
elements of A (for #A− 1 equations) or a distinguished element of A (for one of the equations);
otherwise the non-zero coefficients converge to 0.
Obviously, this system of equations is linearly independent, even combined with the sys-

tem that guarantees condition 1 from (c); indeed, the coefficients of this system converge to 1
whenever I1−(i+1) corresponds to J1−(i+1) that coincides with hti on the report of player i from
Phase 2 whereas the coefficients of the system that guarantees condition 1 from (c) converge to 1
whenever I1−(i+1) corresponds to J

1
−(i+1) that differs from hti on the report of player i from Phase

2.
Finally, (11) for the periods of Phase 4, conditional on the event that the message profile

reported by player i+1 in Phase 3 coincides with the intention profile revealed in the first period
of Phase 5, can be guaranteed in a similar manner to the proof of Lemma 1; (12) can also be
guaranteed in a similar manner, if we disregard the stage-game payoffs and transfers assigned in
Phases 1− 3.
This requires a system of linearly independent equations with coefficients that tend either to

0 or to 1 as ε→ 0. At least one coefficient of each equation tends to 1, and the only coefficients
that may tend to 1 are for values θ(hti, a

t, I1−(i+1)) such that the part of h
t
i that corresponds to

player i’s signal about the message profile sent by player i + 1 in Phase 3 coincides with player
i’s report from Phase 2 and I1−(i+1) coincides with h

t
i on the report of player i from Phase 2. This

guarantees that our system combined with the system that guarantees (c) consists of linearly
independent equations.
It therefore remains to show that player i + 1 can be made indifferent in Phases 1 and

2, and that he can be made to strictly prefer repeating truthfully in Phase 3 player i’s ob-
served report from Phase 2. The latter requirement is easy to achieve, because it suffices to
set θ(hti, a

t, I1−(i+1)) = 0 for every period of Phase 3 where player i + 1 repeats correctly (ac-
cording to the signal of player i) the corresponding action of player i’s report from Phase 2, and
θ(hti, a

t, I1−(i+1)) = c, satisfying condition (13), otherwise. Indeed, player i+1 cannot then benefit
from incorrectly repeating due to a higher flow payoff (provided that ε is small enough). On the
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other hand, the continuation payoff of player i+ 1 at the beginning of Phase 4 is strictly higher
when the message profile sent by him in Phase 3 coincides with the message profile reported by
player i in Phase 2 (compared to when it does not). The way to make the probability that the
two message profiles coincide close to 1 (as ε → 0) is to repeated truthfully in Phase 3 player
i’s observed report from Phase 2; this is so because for every history hti+1, player i+ 1 assigns a
probability that converges to 1 as ε→ 0 to the intersection of the following two events:
(i) the signals received by player i+1 in Phase 2 reveal correctly the actions taken by player

i;
(ii) the signals received by player i in those periods et < t of Phase 3 where player i+1 repeats

the message profile of player i from Phase 2 coincide with the actions by player i+ 1.
Notice that it is essential for (i) and (ii) that player i reports (in Phase 2) each message vector

at least with probability ρ, where ε/ρ → 0 as ε → 0, as opposed to reporting with probability
1 the message vector that corresponds to the signals he observed in period 1. It should also be
emphasized here that this relies on two facts: First, it is essential that in Phase 2 − 3 players
send messages sequentially. More importantly, we use that signals coincide with action profiles of
other players. Suppose for a moment that the messages were not sequentially sent in Phase 3 (a
similar argument applies to Phase 2) and erroneous signals are strongly correlated. Then it could
happen that player i+1, upon receiving signals according to which another player did not repeat
correctly in Phase 3 his predecessor’s message profile from Phase 2, assigns high probability to
the event that player i received an incorrect signal about one of his previous action in Phase
3. Then player i + 1 could no longer have an incentive to repeat player i’s report from Phase
2. Suppose now that the signal set did not coincide with the set of action profiles. Then for
some monitoring structures, there could exist a signal of player i + 1 whose probability is very
low for any action profile, but contingent on this signal player i’s distribution over his signal is
independent of player i + 1’s action. In such a case, player i + 1 could again no longer have an
incentive to repeat in Phase 3 player i’s report from Phase 2.
It is slightly more difficult to ensure that player i+ 1 is indifferent over all actions in Phases

1 and 2. However, player (i + 1)’s actions in Phase 2 do not affect his payoff conditional on
non-erroneous histories, and they can alter the probability of reaching an erroneous history only
marginally, that is, with probability converging to 0 as ε → 0. Thus, player i + 1 can be made
indifferent over all actions in Phase 2 following the same method as in (a). Similarly, player
(i + 1)’s actions in Phase 1 (period 1) affects only slightly his total payoff. The key difference
compared to Phase 2 is that player (i+ 1)’s action in period 1 also affects the action profile aM

that will be played in Phase 4, but there is only a slight difference in player (i+1)’s total payoff
across the two different action profiles aM for any given M1, ...,Mi,Mi+2, ...,Mn. Q.E.D.
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