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ABSTRACT

The Folk Theorem obtains in repeated games with imperfect public

information if for each pair of agents there is at least one action profile

where the information revealed by the publicly observed outcome permits

deviations by one of the agents to be statistically distinguished from

deviations by the other, and the dimension of the set of feasible payoffs

equals the number of players. Under somewhat stronger conditions, we obtain

a Folk Theorem for strict equilibria. Without pairwise full rank, a

"Nash- threats" Folk Theorem obtains if the observed outcomes statistically

give independent information about each player's actions. We give

applications of our results to repeated agency models, the Green-Porter

oligopoly model and repeated mechanism design.





Introduction

The Folk Theorem for infinitely repeated games with discounting

asserts that any feasible payoff vector that Pareto dominates the minmax

point of a stage game can arise as the average discounted payoffs in a Nash

(or perfect) equilibrium of the repeated game if the discount factor is

sufficiently close to one. This means that patient players can obtain a

large set of payoffs without using formal, contractually enforced agreement

by playing an equilibrium with the same payoffs. The proof of the Folk

Theorem exhibits strategies that yield the desired payoffs and that punish

deviations sufficiently strongly that all players wish to conform. An

important hypothesis of the theorem is that the players' actions are

observed at the end of each period, so that deviations outside the support

of the equilibrium strategies are sure to be detected.

This paper provides conditions under which the conclusion of the Folk

Theorem holds when players do not directly observe their opponents' actions,

but receive imperfect statistical information about them. In keeping with

previous work, we assume this information takes the form of publicly

observed "outcomes" at the end of each period, so that all players receive

the same information about their opponents' play. Obviously, the Folk

Theorem fails if the outcomes are completely uninformative about players'

actions; the relevant question is how much information the outcomes must

convey. ^

In each period t of a repeated game equilibrium, each player's action

maximizes a weighted sum of his payoff at period t and his continuation

payoff from period t+1 on. If the continuation payoffs are independent of

the realized period t outcome, each player will choose an action that

maximizes his period t payoff, so the action profile will correspond to a



Nash equilibrium of the stage game. The key to the Folk Theorem is

constructing strategies in which the continuation payoffs vary with the

outcomes in such a way as to induce players to choose sequences of actions

that have any desired payoff. It is easy to determine which actions can be

enforced with arbitrary continuation payoffs, but such considerations leave

open the question of how these continuation payoffs are themselves to be

enforced. This is why we look for a "perfect Folk Theorem", meaning that we

require the continuation payoffs themselves to be sustainable by a perfect

equilibrium.

To induce the players to choose a specified profile of actions, there

must exist continuation payoffs that make each player's action a best

response. In that case, we say that the profile is enforceable.

Enforceability is ensured by the "individual full rank" condition introduced

by Fudenberg-Maskin [1986b], which requires that the probability

distributions over outcomes corresponding to different choices of action by

a single player be linearly independent. When this condition fails for a

given player, different probability mixtures over the player's actions can

yield the same distributions over outcomes, and so the mixtures cannot be

distinguished. As we will see, individual full rank is essentially

sufficient for the Folk Theorem in principal-agent games (see Section 8) ; it

is not, however, sufficient in general.

Rather, we require the stronger condition of pairwise full rank: For*

every pair of players i and j , there must exist a strategy profile for which

the probability distributions over outcomes corresponding to deviations by i

and j are linearly independent. Individual full rank ensures that the

actions of a single player can be (statistically) distinguished from each

other; pairwise full rank extends this condition to the actions of any pair



of players. Pairwise full rank is important because it

implies "enforceability on hyperplanes" : Any profile of pure actions can be

enforced by continuation payoffs lying on (almost) any hyperplane. The Folk

Theorem follows from enforceability on hyperplanes and
,

the

"full-dimensionality" condition introduced by Fudenberg-Maskin [1986a].

To develop intuition for the significance of enforceability on

hyperplanes, consider a two-player partnership game where each player can

either "work" or "shirk" and there are two observed outcomes, "good" and

"bad". Assume that the payoffs v - (v^ ,v^) when both work are on the

efficient frontier, but that shirking is a dominant strategy in the stage

game. Now ask whether v can be approximated in a repeated- game equilibrium

where both players work in the first period.

Fix such an equilibrium, and let v(G) - (v^ (G) , v„(G)) and v(B) -

(v^ (B) , V (B)) be the continuation payoffs after good and bad outcomes

respectively. If we let v denote the average payoffs in this equilibrium,

then

(1.1) V - (l-£)v* + 5[pgV(G) + PgV(B)],

where p and p are the probabilities of the good and bad outcome when both

player works and S is the discount factor.

Since each player has a short-run incentive not to work, the*

differences v. (G) - v (B) and v„(G) - v_(B) must be positive and

sufficiently large to induce the players to work in the first period. When

S is close to 1, even a slight difference between the continuation payoffs

has large incentive effects, and we can take v(G) and v(B) to be close

together. However, the distance between the efficient first-period payoff



V and the equilibrium payoff v cannot converge to zero or 6 tends to 1.

The reason is that in order to maintain incentives, the value of the

difference in continuation payoffs in units of stage -game utility,

[5/(1-5) ]
(v(G) - v(B)), must be of the same order of magnitude as the

one-shot gains the players could obtain by deviating, and so the "cost" of

*
the difference -- the wedge between v and v -- remains constant as 6->l.

(This is essentially the Radner-Myerson-Maskin [1986] counterexample; see

their paper for the complete argument that equilibria are uniformly

inefficient for all discount factors.)

The example above does not satisfy pairwise full rank, and it fails

enforceability on hyperplanes, as both players must be "punished" when the

bad outcome occurs, and rewarded after the good outcome, so that only

hyperplanes with positive slope can be used (see Figure 1.1).

The idea behind enforceability on hyperplanes is that to construct

approximately efficient equilibria the continuation payoffs must be arranged

to avoid punishing all players at once: If one player's payoff fails, some

other's payoff should increase. Such discrimination requires that the

outcome "provide statistical information about which player deviated":

Otherwise everyone must be punished, which will lead to inefficiency. The

pairwise full rank condition ensures that deviations by player i can be

(statistically) distinguished from deviations by player j , and thus permits

enforceability on hyperplanes, ^

To illustrate this idea modify the partnership game above so that

there are two "bad" outcomes, Bl and B2. The analog of equation (1.1) is

(1-2) V - (l-5)v* .+ 5(PqV(G) + Pg^v(Bl) + Pg2v(B2)
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For i - 1,2, suppose that, if player i deviates from the action profile that

sustains v , there is a higher probability of outcome B than of Bj
,

j'^i.

The modified game satisfies enforceability on hyperplanes, and so we can

arrange the continuation payoffs to provide the necessary incentives while

lying in a line that is parallel to the Pareto frontier (see Figure 1.2). The

earlier argument that the equilibrium payoffs are bounded away from v now

loses its force, and, as we will show, the Folk Theorem obtains in the

modified game.

So far we have stressed the role of full rank condition in ensuring

enforceability on hyperplanes. However, we will show that any Pareto

efficient vector of actions is enforceable regardless of whether or not

individual full rank holds. We use this observation to show that, in the

class of games where enforceability implies enforceability on hyperplanes,

all payoffs that Pareto dominate a Nash equilibrium of the stage game can

arise in an equilibrium of the repeated game.

A case of particular importance is when the distribution over outcomes

has a "product structure", with different components of the outcome

identified with the actions of different players, and each component's

distribution depending only on the action of the associated player. For

these games, enforceability implies enforceability on hyperplanes. We

exploit this observation to explain how "full insurance" can be provided in

Green [1987] 's model of repeated insurance contracts for privately observed^

risks.

Another class of games where enforceability implies enforceability in

hyperplanes is games where the actions of all but one player are observable,

including the familiar principal-agent model. Indeed, as we show in

Fudenberg-Levine-Maskin [1989], it often applies to games with several
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"agents" (whose actions are not observable)
,

provided there exists a

"principal" who can make observable transfers.

There has been considerable previous work related to the Folk Theorem,

including Aumann-Shapley [1976], Friedman [1971], Porter [1983], Green-Porter

[1984], Fudenbcrg-Maskin [1986a], Rubinstein [1979], Radner [1981], [1985],

[1986], Rubinstein-Yaari [1983], and Radner-Myerson-Maskin [1986].

In the observable action case, Aumann-Shapley [1976] and Rubinstein

[1979] considered the Folk Theorem in games with no discounting at all.

Friedman [1971] proved a "Nash threat" version of the result for the

discounting case, and Fudenberg-Maskin [1986a] established the general Folk

Theorem for discounted games with observable actions under the condition

that the dimension of the feasible set be equal to the number of players.

They showed by example that with more than two players, some such

non-degeneracy condition is required. (They also introduced one special

case of unobservability to the Folk Theorem literature by considering

mixed-strategy punishments.)

Porter [1983] and Green-Porter [1984] considered repeated oligopoly

games with unobservable outputs and a stochastic price. They showed that

there are equilibria that Pareto-dominate the static equilibrium.

Radner [1981], Rubinstein-Yaari [1983], and Radner [1985] established

results similar to the Folk Theorem in a class of principal-agent games

where only one player's (the agent's) action is not observable; the first^

two of these papers treated the case of no discounting. We generalize

Radner [1985], who assumed discounting, in Section 8. Radner [1986] showed

that a Folk Theorem obtains in a class of repeated partnership games with

time-averaging (i.e. no discounting) payoffs that does not satisfy our

informational conditions. The no-discounting assumption is essential:



Radner-Myerson-Maskin [1986] construct an example to show the result fails

with discounting.

The papers by Radner and Rubinstein-Yaari used techniques based on

statistical inference and "review strategies." These strategies avoid the

need to provide period-by-period incentives not to deviate. Instead, at the

end of each "review phase" a test is conducted to determine whether it is

likely that some player has deviated a non-negligible fraction of the time.

This approach may give the impression that the key to obtaining the Folk

Theorem is the improvement in information over time. We feel that this

intuition is misleading, as increasing the number of periods during reviews

also increases the number of profitable opportunities for the players to

deviate.

In contrast to this statistical approach, we use dynamic programming

arguments and geometry, and focus on the relationship between the

information revealed by outcomes and the enforceability conditions. This

permits us to provide more general theorems. It also provides an

alternative understanding of when and why the theorems obtain.

Several authors have exploited the link between discounted repeated

games and dynamic programming, including Abreu [1988] ,
Fudenberg-Maskin

[1986a], and Radner-Myerson-Maskin [1986], Our methods are closest to those

of Abreu-Pearce-Stacchetti [1988], who develop the technique of

"self-generation," which extends the optimality principle of stochastic"*

dynamic programming to pure strategy equilibria of games with unobservable

actions. We apply their technique to a class of mixed-strategy sequential

equilibria that we call "perfect public equilibria," where the players'

strategies depend only on the publicly observable information, and not on

private information about their own past actions. The set of perfect public



equilibrium payoffs is stationary, which greatly simplifies the analysis.

After a draft of this paper was completed, we became aware of the

prior contribution of Matsushima [1988] that anticipated some of our key

ideas . In particular, the idea of enforceability on hyperplanes is used,

and differentiability of the boundary of a set of equilibrium payoffs plays

a key role in the proof. Our work differs from that of Matsushima in

several important ways. First, where Matsushima makes assumptions about the

endogenous limit set of equilibrium payoffs, we instead impose conditions

directly on the structure of the stage game, which enables us to develop the

link between enforceability on tangent hyperplanes and the information

revealed by the outcomes. Second, Matsushima assumes that there is a

continuum of actions, and defines an equilibrium by means of first-order

conditions for an optimum, ignoring the second-order conditions. We

consider games with finitely many actions, and study the full set of

incentive compatibility constraints. Finally, we consider a "full" Folk

Theorem, whereas Matsushima shows that a limit of points efficient relative

to the set of equilibria is efficient relative to the set of feasible

payoffs leaving open the question of the "width" of the equilibrium set.

This paper uses enforceability on hyperplanes to give sufficient

conditions for the Folk Theorem. By modifying the techniques developed

here, and considering enforceability on half-spaces rather than hyperplanes,

one can obtain an exact characterization of the limit set of perfect public*

equilibrium payoffs for any information structure. Fudenberg-Levine [1989b]

use this approach to analyze repeated games with long-run and short- run

players, where the Folk Theorem fails.



Section 2 introduces our model and defines perfect public equilibria.

Section 3 reviews the way that self-generation extends one-player dynamic

programming, and establishes several useful lemmas. Section 4 introduces

enforceability on hyperplanes and shows how it can be used to prove a Folk

Theorem. Section 5 investigates the conditions on a player's information

that imply that enforceability on hyperplanes is satisfied. Section 6

treats games where the outcomes have a product structure. Section 7 applies

the results of 6 to adverse selection models, such as that of Green [1987].

Section 8 considers principal-agent games. We conclude with some more

general remarks in Section 9.

2. The Model

In the stage game , each player i - l,...,n simultaneously chooses an

action a. from a finite set A. with m. elements. We let a e A ™ X A, . A
1 1 i i

profile of action a e A = xA. induces probability distributions on a public

outcome y e Y and on n private outcomes z. G Z. , where Y has m elements and

Z, has m. elements. We let Z = X Z. . Each player i's realized payoff

r.(z ,y) depends on his private outcome z and the public outcome y, but not

on z
, js^i. Until Section 7 below, the private outcome z. can be identified

with player i's action a.; we require the extra generality only to deal wi th

repeated games of adverse selection. Let tt (a) be the distribution over yyz -

and z induced by a. We let tt (a) -
J n (a) be the marginal distribution'

zeZ

of y. Player i's expected payoff from an action profile a is

Si(-> -[ I Ty,(a)r,(z..y).

yeY zgZ



We will wish to consider mixed actions a for each player i. For each

profile a - (a^ , . . .
.
,a ) of mixed actions, we can compute the induced

distribution over outcomes,

'r,,^(a) - y\,^(a)a(a); t (q) -) tt (a)a(a)
,yz ^ yz y aeA y

aeA

and the expected payoffs

^i^"^ "III V^'^^i^'i'^^ "^"^

yeY zeZ aeA.

We denote the profile where player i plays a and all other players

follow profile a by (a,, a .); n (a., a ,) and p., (a,, a .) are defined
^ i -1 y 1 -i '^i i -i

analogously.

Our formulation embraces several models considered in the repeated

games literature. All but the last example identify z. with the action a .

First, if the public outcome is simply the profile of actions, we have

the conventional framework of perfect observability ex post . as in

Fudenberg-Maskin [1986a]. Second, with a judicious interpretation of the

variables, we can obtain the standard principal-agent model. In this model;

one player, the principal, moves first and selects one of a finite number of

monetary transfer rules, where the transfer to the other player, the agent,

depends on output. Next, the agent selects an effort level (unobservable to

the principal), which stochastically determines output. This is a model of*

one-sided moral hazard. If we designate player 2 as the principal, then we

can identify his action a„ with a transfer rule. Because we have modeled

the players as moving simultaneously- -whereas actually the agent moves after

the principal-- we must interpret a^ as a contingent effort level, that is,

a function dependent on the principal's move. A public outcome is then a

10



realized output level together with the principal's monetary transfer

rule. (By including the principal's action as part of the outcome, we make it

observable to the agent)

.

Third, we can think of the players as a partnership in which each

player provides an unobservable input a to a production process (see Radner

[1986]). Output y depends stochastically on the quantities of all inputs

and is divided among the partners in a predetermined way. This is a model

of multi-sided moral hazard.

Fourth, we can imagine that the players are Cournot oligopolists whose

outputs a are not publicly observable. Demand is stochastic, and so the

market price, y, is a stochastic function of output (see Green-Porter

[1984]).

Finally, if a. is no longer identified with z., we can imagine that,

each period, "agents" receive private information about their endowments that

their actions are "reports" (possibly untruthful) of their information, and

Although this interpretation of our model has the same normal form as

the standard principal-agent model, it has more subgame-perfect equilibria
because of the simultaneity of moves. For example, one subgame-perfect
equilibrium of our model (but not of the standard model) entails the agent
playing the weakly dominated strategy of refusing all transfer rules. To
ensure that the equilibrium sets in the two models are the same, we could
either (a) invoke solution concepts such as trembling hand-perfection (Selten

[1975]) or sequential equilibrium (Kreps-Wilson [1982]) (once we repeat the
game, however, we would then have to modify these concepts to deal with the

infinity of strategies) or (b) perturb the game slightly so that the

principal literally makes small "mistakes", in which case no strategy for the
agent that is ruled out by backward induction in the sequential (standard)
principal- agent game can be a weak best response in our simultaneous
formulation. We should note that many of our results guarantee strict
equilibrium, so that the issue of refinements does not arise.

11



that a mechanism chooses transfers between players as a function of the

reports. Here a. is a report, z. is the true endowment level, and ther
1

'^ 1

public outcome y is a profile of reports.

In the above examples each player's payoff depends on other players'

actions only through the public outcome y, and not through his private

outcome z.. Formally, for y with n (a)>0, we can define the conditional

expected utility

r,(y.a) -I
r^(z^.y) n^^(a)

n (a)

zeZ ^

One case of particular interest is when the following condition is

satisfied.

Definition 2.1 : Player i's payoff satisfies the factorization condition if

for all (a,y) with 7ry(a) > 0,

that is, it depends on the play of other players only through the public

outcome y. When the factorization condition holds, we can write r, (y,a.) -

r^(y,Q). Naturally, g^(a) - 2 tt (Q)r^(y ,q:^) , where r^(y,a^) is undefined

only for values of y for which tt (a) - 0.

Note that when factorization is not satisfied, a player's stage-game

payoff provides information about his opponents' actions that is not*

provided by the public outcome. We will not impose the factorization

condition for the time being. We will assume factorization in Section 5

through 8, to obtain results for games that do not satisfy the informational

conditions we develop in Section 5.

12



Turning now to the repeated game, in each period t -0 , 1 , . .
.

, the stage

game is played and the corresponding outcome is then revealed. The public

history at the end of period t is h(t) -=(y(0) , . . . ,y(t) ) . The private

history for player i at the end of period t is h (t) -

(a,(0),z.(0) a. (t) ,z. (t)) . A strategy for player i is a sequence of

maps cr (t) mapping public and private histories (h(t-l), h (t-1)) to

probability distributions over A .

Each strategy profile generates probability distributions over

histories in the obvious way, and thus also generates a distribution over

histories of the players' per-period payoffs. Player i's objective is to

maximize the average discounted expected value of per-period payoffs using

the common discount factor 5. Thus, if {g.(t)) is a sequence of stage

payoffs for player i, player i's overall average payoff is

CO

(1-5)5^ 5^g^(t).

t=0

(We use average payoffs, obtained by multiplying total discounted payoffs by

1-5, in order to measure the repeated game payoffs in the same units as

payoffs in the stage game.)

Let V be the convex hull of the set of vectors g(a) for a e A. Sorin

[1986] shows that all payoffs in V are feasible in the repeated game if 5 >

1-1/d, where d is the number of pure strategy profiles of the stage game.

The extremal points of V are those which are not convex combinations of

other points in V; extremal actions are those which generate extremal

payoffs. Note that all extremal strategies are pure. Let

13



*
V. - rain raax g.(a., a . ) be player i's mininax value . and let

in , be strategies for i's opponents that attain this miniinuin, and ma

best response by i to m . . We call m the minmax profile against player 1.

The payoff vector v is individually rational if v > v for all

players i; it is strictly individually rational if this inequality is

•k -k

Strict. Let V -=(v e V| v > v for all i) be the set of feasible,

individually rational payoffs. The Folk Theorem for games with observable

actions asserts that any strictly individually rational payoff in V can be

supported by an equilibrium of the repeated game if the discount factor is

sufficiently close to one.

Our focus is on a special class of the Nash equilibria that we call

perfect public equilibria . A strategy [a(t)) for player i is public if, at

each time t, i7(t) depends only on the public information h(t-l) and not on

the private history h.(t-l). A perfect public equilibrium is a profile of

public strategies such that beginning at any date t and for every history

h(t-l) the strategies are a Nash equilibrium from that date on. This

definition allows the players to contemplate deviating to a non-public

strategy, but such deviations are irrelevant: If player i's opponents use

public strategies, it follows that player i cannot profit from a non-public

strategy. Note also that in a public equilibrium the players' beliefs about

each others' past actions are irrelevant: No matter how player i plays, all*

nodes in the same information set for 1 at the beginning of period t lead to

the same probability distribution over i's payoffs. This is why we can

speak of "Nash equilibrium" as though each period began a new subgame.

14



Every perfect public equilibrium is clearly a perfect Bayesian

2
equilibrium. It is easy to see that the set of perfect public equilibrium

payoffs is stationary, meaning that the set of perfect public equilibrium

continuation payoffs in any period t and for any public history h(t-l) is

independent of t and h(t-l). Note also that every perfect Bayesian

equilibrium payoff must lie in V . Consequently when the Folk Theorem

obtains it exactly characterizes the perfect public equilibrium payoffs as

«->l.

However, there can be perfect Bayesian equilibria whose payoffs are

not in V . The reason is that the players may be able to correlate their

play without using an external "correlating device" by combining their

public and private information. (This was pointed out to us by A. Neyman.)

Since the minmax value for player i can be strictly lower when his opponents

are allowed to use correlated strategies, this endogenous correlation can

lead to equilibria where some players have lower payoffs than v , We

provide an example of this possibility in the Appendix.

3. Dynamic Programming and Local Generation

Let E(5) C V be the set of average payoffs that can arise in perfect

public equilibria when the discount factor is S, and let V(5) denote the set

of average payoffs that are feasible when the discount factor is S, that is,

the values that can be generated by some sequence of repeated- game strategies

that depend only on public information.

2
Here we use the weakest notion of perfect Bayesian equilibrium: actions

are required to be sequentially rational given beliefs, and beliefs after
any history that the equilibrium assigns positive probability are obtained
using Bayes rule.

15



* *
Lemma 3.1 : E(6), V(5) , V and V are compact sets, and V and V are convex.

Proof : The compactness of E(5) is well known, see for example Fudenberg and

Levine [1983]. The sets V(6), V and V are obviously compact; V is convex by

*
definition, and V is the intersection of two convex sets.

Definition 3.1 : Let S , VI Q R and v e K be given. Profile a is enforceable

with respect to v^ W and S if there exist vectors w(y)G R , for each y e Y,

such that for all i and a.e A.,
1 1

v^ - (l-fi)g^(a^,Q_^) +fij^ TT (a^,a_^)Wj^(y), for all a^ with a^i^^) >0

_ v^ > (l-5)g^(a^,a_^) +5^ ;r (a^ ,a_^)w^(y) , for all a^ with a^(a^) -0

,

(3.1)

and

(3.2) w(y) e W.

We say that the w(y)'s enforce a with respect to v,W and S. If for given a,

there exists v satisfying (3.1), we say that a is enforceable with respect

to 5 and W,

V Formula 3.1 requires that if the players other than i play a , and
" -»

player i's continuation payoff contingent on outcome y is w.(y), then player

i obtains the same average payoff from all actions in the support of a , and

no action yields a higher average payoff.

16



Definition 3.2 : If, for given v, W, and 6, there exists an a enforceable

with respect to v,W and 5, we say that v is generated by 6 and W. B(5,W) is

the set of all points generated by S and W.

The following lemma exploits the stationary nature of the set of perfect

public equilibria.

Lemma 3.2 : (Self-Generation) If W C B(^,W) and W is bounded then W C E(6).

Sketch of Proof : The idea behind this observation and its proof are due to

Abreu, Pearce , and Stacchetti [1987], who considered pure-strategy

equilibria of games with a continuum of outcomes; our finite-outcome model

avoids questions of measurability. The proof mimics that of the sufficiency

of the Principle of Optimality in dynamic programming: First, decompose w e

W as in (3.1). The decomposition defines the players' first period actions.

Next decompose each continuation payoff w(y) , thereby defining the second

period actions, etc. By construction and the boundedness of W, the sequence

of actions thus defined has average payoff w, so w is feasible. Next we

verify that no player can gain by deviating. As in the dynamic programming

case, this is a consequence of condition (3.1), which implies that no

one-period deviation is profitable, and the fact that payoffs are uniformly

bounded. ^

We can now prove a simple consequence of (3.1) and (3.2).

Lemma 3.3 : (Monotonicity on convex sets) If W is convex and S < S' , then

[B(5,W) n w] c [B((5' ,W) n W].

17



Remark : A related result is proved by Abreu, Pearce, and Stacchetti [1987];

in their model the set of equilibria is itself convex.

Proof : If V e [B(5,W) n W] , then since v can be enforced by continuation

payoffs in W there exist a and w(y) G W satisfying (3.1) and (3.2). We will

construct a w' (y) G W that enforces a when the discount factor is 6' and

such that the corresponding average payoff is still v.

Set

w'(y) - [(5'- fi)/6'(l-5)]v + [fi(l-5')/5'(l-5)]w(y).

Since 8' > S, w' (y) is a convex combination of v and w(y) , so w' (y) G W.

For each player i and profile a' , i' s average payoff from (q'. , a . ) is

(1 - 6')g^(a^' ,a.) + 5' I n^(a'^,a_^) w'^(y) -

y

[(5-. - 5)/(1 - 5)]v^ +

(1 - 5')/(l - 5)[(1 - 5)g^("'.,a ^) + SIt: (a'^.a ^)w' (y) ] .

In particular, if player i plays a., he obtains

[[(5' -5)/(l-5)] + (1-5' )/(l-5)]v. - v^. It then follows that since (3.1) was'

satisfied for a, 6 and w(y) , it is satisfied for a, S' , and w' (y) as well.

It will be convenient for the analysis below to rewrite (3.1) by

subtracting out the expected values. Thus define
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g^(a^,Q) - g^(a^,a_^)-gj^(Q),

(3.3) w^-
5^

T^(a)w^(y),

yeY

and w^(y) - w^(y)-w^.

Formula (3.1) can be rewritten as

- g^(a^,a)(l-fi)/5 - ^ TT (a^,a_^)w^(y) for a^ with «^(a^) >

(3.1') yeY
A A

- g^(a^.a)(l-fi)/5 >
J^

,r^(a^,a_^)w^(y) for a^ with a^(a^) - 0,

yeY

and the requirement that w(y) e W is

A

(3.2'

)

w + w(y) e W.

To establish that a set W is self-generating for a fixed discount

factor, one must show that every point in W can be generated using

continuation payoffs lying in W. We will find it convenient to work instead

with the weaker property of local generation.

Definition 3.3 : A subset W of R is locally generated if for each v G W there

exists 5 < 1 and an open set U containing v such that UoW C B(5,W).
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Note that local generation allows a different 6' s to correspond to

different points v G W. However, if the set W is compact, we can replace

this multiplicity of 5' s with a single discount factor. More precisely, we

have i

Lemma 3 .4 If W £ R is compact, convex and locally generated, then there

exists a 5' < 1 such that W C B(5, W) for all S > 6' .

Proof : The open neighborhoods U of the definition of local generation form a

cover of the compact set W, and thus there is a finite collection (U ) that

k k k k
cover W. Let 5 be a discount factor such that Z - W n U C B(6 ,W) , and

let S' be the largest of the S . From monotonicity, (lemma 3.3), if 5 S: 5'
,

[B(5 ,W) n W] C [B(5,W) n W]. Thus Z^ C B(5,W), Since the union of the Z

equals W, we conclude that W C B(5,W)

Lemma 3 .

5

(Enforcement with Small Variation): Suppose H is a linear

subspace of R . If a is enforceable with respect to H for some S' > , then

there exists a constant k. such that for all v e R and 5 > 0, there are

continuation payoffs w(y) that enforce a with respect to v + H and 5 , such

that

"l
^r («)w(y) - v, and |w(y) -v| < /c(l-6)/«.

yeY

Remark : If H - R , we say simply that a is enforceable . The lemma

shows that by taking 5 sufficiently close to one, an enforceable profile can

be enforced with continuation payoffs that are arbitrarily close together,

and that if a profile is enforceable in a hyperplane , it is enforceable in

20



any translate of that hyperplane. As we will see, the reason that many

payoffs can be supported by equilibria when S is near one is precisely that

the variation in continuation payoffs can be made small. Conversely, it is

clear that if the required variation is large, there may be no way to

enforce certain actions with continuation payoffs that lie in the feasible

set.

A

Proof : Let w' (y) and w' satisfy (3.1') and (3.2') for H+v' and 6' . Since

A A

y TT (a)w' (y) - 0, w' (y) e H for each y, and w'-O. One can check that

yGY
A A A

w(y) -[5' (l-5)/5(l-5')] w' (y) satisfies (3.1') for S, and clearly w e H.

A

Take w(y) - v+w(y) e v+H. Then ||w(y)-v|| < [5' (l-fi)/5 (1-5' ) ] max |w'(y)-v'||.

y

So the conclusion of the lemma holds for k — 6' /(l-S' ) max |w' (y) - v'
||

. I

y

4. Enforceability and Local Generation

This section introduces a condition that is sufficient for a set of

payoffs to be locally generated. Section 5 proves a version of the Folk

Theorem by providing assumptions on the information structure that imply the

sufficient condition is satisfied by sets that are arbitrarily good

St

approximations to the set V , the set of feasible, individually rational

payoffs. We offer a counter example in Section 5 to illustrate the need for^

the informational assumptions.

Recall that V is the convex hull of socially feasible payoffs in the

A

one-shot game. Let V be an arbitrary closed convex subset of V. Such a set

satisfies enforceability on tangent hyperplanes if for every extremal point
A A A A

V 6 V and every n-1 -dimensional subspace H such that v + H is tangent to V
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at V there exist v' weakly separated from V by v + H, a mixed strategy a with

g(Q) - v' and continuation payoffs w(y)eH for each yeY that enforce a. A

somewhat weaker condition is

A

Condition 4.1 : A closed convex subset V c V satisfies weak enforceability on

A A

tanpent hyperplanes if for every extremal point v e V and every n-1
A A A

-dimensional subspace H such that v + H is tangent to V at v, there is a

k
sequence of mixed profiles [a ) and a point v' weakly separated from V by

k kV + H, with lim g(a ) - v' and for each a , continuation payoffs with

^k kassociated w (y) e H that enforce a .

Note that Lemma 3.5 (enforcement with small variation) implies that,

under Condition 4.1, each extremal point can be enforced with continuation

payoffs that vary little across actions if S is near 1. Note also that the

A

a hypothesized in Condition 4.1 need not have payoffs that are weakly
A

separated from V,

Theorem 4.1 : If V is a closed convex subset of V that satisfies conditiort

A

4.1, then for every closed set W in the interior of V there is a 5 <1 such

that for all S > 5 , \J Q E{S) .

To prove Theorem 4.1, we will show that each closed W in the interior oi
A

V is contained in a smooth set W that is locally generated.

Definition 4.1 : A subset W C R is smooth if it is closed and has non-empty

interior with respect to k", and if its boundary is a C submanifold of K .
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Lemma 4.1 : If W is a closed convex subset of the interior of V, there exists

A

a smooth convex set W such that W C W C interior V.

Proof: Standard.

Theorem 4.1 now follows once we show that each smooth convex W in the

A

interior of V is locally generated.

A A

Lemma 4.2 : If V satisfies condition (4.1), and W C interior (V) is a smooth

convex set, then W is locally generated.

Outline of Proof

Fix V on the boundary of W, and consider how it might be generated by

A A

W, We know that there must be some extremal payoff v of V, which is

strictly separated from W by the tangent plane v+H to W at v. Moreover, we

can clearly pick the extremal point v so that a translate of v+H is also

A

tangent to v there. Consequently, from condition 4.1, there exist a v'

"
k k

weakly separated from V by T and a sequence {a ) such that g(a ) -> v' and;

for any translate of H, a can be enforced with continuation payoffs that

A

lie on that translate. Since W C interior (V), v' is strictly separated

from W by T , and. we may pick k so that g(a ) is also strictly separated

from W by v+H. (See Figure 4.fe)

If a is enforceable with respect to v, then

v - (l-5)g(a) + 5[v - (V -
J^

T (a)w(y))]

V + (l-5)(g(a) - V) - fi(v - £),
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Figure 4.1: Selection of Extreme Points
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where

I - w - Y TT (Q)w(y).
L. y

is the average distance of the continuation payoffs from the boundary at W.

Because W is smooth, the distance from w to the boundary of W along the

hyperplane w+H is on the order of /1|£|| (see figure tf) . From Lemma 3.5,

we can make do with continuation payoffs whose variation is proportional to

(l-6)/5. But ||£|| is also proportional to (l-fi)/5 and so, because

||£|| < -/llfll for 5 near 1, we conclude that the continuation payoffs belong

to W for such discount factors. The role of Condition 4.1 in obtaining

local generation is to ensure that we can find continuation payoffs lying on

a translate of H. If, instead, the continuation payoffs were constrained to

lie on a hyperplane orthogonal to the boundary of W at v (as in the first

example of the introduction) , then the distance ||£| would be of the same

order as the variation in the continuation payoffs, so that the continuation

payoffs could lie outside W even for S near 1.

Proof of Lemma 4.2 :

Step 1: Suppose v e interior (W) . Let U' C W be an open ball of radius r

that contains v, and let U be an open ball of radius r/5 . By condition 4.1,

there exists a profile a that is enforceable by some continuation payoffs
_

{w(y)). By lemma 3.5, we may assume |v-w(y) |
< k.(1-S)/S. Choose 5 so that*

[(l-5)/5] ||v-g(Q)| < r/5, and k(1-S)/S < r/5. For given v' e U, Lemma 3.5

implies that there exist continuation payoffs (w' (y) ) satisfying w' -

[v' -(l-5)g(Q)]/5. This implies that v' - (l-5)g(a) + 5w(y) . Moreover,

||w'(y)-v|| - ||w' (y)-w'+w' -v'+v' -v||< | r. Hence w' (y) S U' , and so U £

B(5,W).
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Step 2: Consider v e boundary (W) . Since W is smooth, there is a unique

hyperplane v+H tangent to W at v. We argued above that, from condition 4.1,

there is an action profile a such that gCo) is strictly separated from W by

v+H, and such that a can be enforced with continuation payoffs that lie on

v+H. Lemma 3.5 then implies that there exists a k such that for any w e K
,

g(a) is enforceable with respect to w +H using continuation payoffs w(y)

that differ from w by at most k(1-S)/S .

Step 3.: It is now convenient to choose a new coordinate system. As shown

in Figure 4, we take v to be the origin, choose the vertical (1st) axis to

be the line connecting v and g(a) , and the remaining axes to lie in v+H.

Since g(a) C v+H this transformation is possible. In the new coordinates, W

is still smooth and convex, and, while the norm is changed by this

transformation of coordinates, /c may be replaced by a new constant k' since

all norms on 0? are equivalent. Note that w - (-|W|,0), where, as in the

outline of the proof, t - v-w.

For X G K we now write x — (x , x ) , where x is the component on the

vertical axis and x the component in v+H. Since W is smooth and convex

n H
there is a c>0 such that, within the set X - {x

|
||x ||<c, ||x |<c ), the

2 OHboundary of W can be represented by a C concave function x -f (x )

.

7 H H
Step 4: Let s - max {D f(x ) |

||x ||<c) . By Taylor's Theorem,

f(x") >-i||x"||^. Thus if ||x"|| < K'{l-S)/S. f(x") > -s[/c'(l-6)/5]^ -

-/c" [il-5)/S]^. Set w - (-/c"[(l-5)/5]^,0) to be a point that lies along
S

the first coordinate axis; w e W if 5 is sufficiently close to 1. Fr
5

om

lemma 3.5 g(a) , is enforceable with continuation payoffs w(y) such that
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|[w(y)-w
II

< k'(1-S)/S, w(y)e w+H, and W (a)w(y)- w. By construction, this

implies that w(y)e W. The corresponding average payoffs are:

v^ - (l-5)g(Q) + S [ ^y(a)w(y) - (l-6)g(a) + 5w^

yeY

[(l-5)(g(«))°-/c"[(l-6)/5]^ 0] - (v°, 0),

where v is defined by the final equality. Since (g(a)) , the first
o

component of g(a) in the new coordinate system, is positive, there is a

5 < 1 such that <v < c/4. Choose a 5 > 1/2 satisfying that condition and

also w > -c/4. We conclude that (w(y) -v /5) G interior(W) for all y. Thus
o

there is an e >0 such that for any v' e K
,

||v -v'||< £ implies that

(w(y)-v')e interior(W). Let U be a ball about the origin of radius c. For

v' e U, set v' - V -v' . Then w' (y) = w(y) -v'/5 e W. Since a is enforced

by continuation payoffs w(y) for discount factor 5 , a is also enforced by

w' (y) : subtracting off a constant from all of the continuation payoffs does

not change the incentive to deviate. And by construction, the average

payoff from playing a followed by w' (y) is

(l-5)g(a) + S^ TT (a)w'(y) - (l-5)g(a) +6^ tt (Q)w(y) -v^ + v' - V

from the definition of v Thus U C B(5,W)
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5. Informational Conditions

In this section we develop sufficient conditions for a "full" Folk

Theorem to hold, that is, conditions under which we may take V - V in

Condition 4.1. Recall that ra. is the number of actions in A., and that m

denotes the number of outcomes in Y.

Definition 5.1 : Given a pair of players i H j , tt (•) satisfies pairwise

full rank at a for ( i . i

)

. if the (m + m ) vectors

^ a.GA. ^ -^ '^ a,GA,

considered as rows of a matrix, (where the columns correspond to outcomes y)

have rank (m. + m. -1) .

1- J

This is a full rank condition because the vectors must always admit

one linear dependency ) a,(a.)7r (a., a . ) — tt (a) — ) a.(a.)7r (a.,ot ,). The
^ -^ L, 1^ i' y^ i' -i' y^ ' ^ J j y J -j

pairwise full rank condition obviously requires that the number of outcomes

m be at least (m. + m. -1).
1 J

Condition 5.1 : The game satisfies the pairwise full rank condition if, for

all pairs i,j, i > j, there exists a profile a such that n satisfies

pairwise full rank at a.

*
Lemmas 5.1 and 5.4 show that condition 5.1 is sufficient for V to

satisfy weak enforceability on tangent hyperplanes. Note that the condition

is much weaker than the requirement that tt should satisfy pairwise full rank

at all profiles or. Indeed, in a "strongly symmetric" game, where permuting
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the actions of the players does not change the distribution of outcomes, the

outcome function n cannot satisfy pairwise full rank at any profile where

all players use the same action. Nevertheless, in such games, pairwise full

rank may be satisfied at certain asymmetric profiles (see Example 5.2

below) . This explains why there are many strongly symmetric games in which

the Folk Theorem applies, but in which the set of payoffs to symmetric

equilibria are bounded away from efficiency.

Lemma 5,1 : Under condition 5.1, every profile a can be approximated by a

k k
sequence a -> a such that tt satisfies pairwise full rank at each a .

Proof : We defer the proof until later in this section.

Remark : This lemma is an extension of a result of Legros [1988], who

studies a static partnership problem with a balanced-budget constraint. He

shows that while there is no balanced-budget sharing rule that induces both

partners to work with probability one, if one player randomizes between

working and shirking while the other works with probability one, then the

distributions over outcomes will be different if one player shirks than if

the other does, and so work incentives can be provided while satisfying the

balanced budget-constraint.

In addition to condition 5.1, which requires that pairwise full rank

be satisfied by some profile, we will require that the weaker property of

individual full rank hold at all pure strategy profiles.

28



Definition 5.2 : tt (•) has individual full rank at a if for all players i,

the m. vectors [n (a., a .)) . are linearly independent.
1 yi-ia.eA. '

Note that in order for tz (•) to have individual full rank, the number of
y

observable outcomes m must be at least max m .

Lemma 5.2: If tt (•) has individual full rank at a, then a is enforceable.

Proof: This follows immediately from inspection of the linear system of

inequalities (3.1' ).

Condition 5.2 : The game satisfies the individual full rank condition if tt

has individual full rank for all pure action profiles.

Condition 5.3 : The dimension of V is equal to n, the number of players.

•k

Obviously the dimension of V is no greater than that of V; it may

however be less. Fudenberg-Maskin [1986a] give an example of a three -player

"k

game with observable actions and dim V - 1 where the Folk Theorem does not

obtain. Fudenberg-Maskin [1986b] construct a similar counter example in a

•k

two player game with dim V - 1 where one player's actions are unobservable.

Note that Theorem 5.1 holds vacuously for sets V of dimension less than n,

for such sets have an empty interior.

Theorem 5.1 . (Folk Theorem) Under conditions 5.1, 5.2 and 5.3 for every

'k

closed set W in the relative interior of V there is a 5 < 1 such that for

all 5 > 5, W £ E(5).
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Proof: The proof invokes a series of lemmas developed below to verify that

*
V satisfies weak enforceability on tangent hyperplanes (condition 4.1).

Thus, any closed set in the interior of V consists of equilibrium payoffs

for sufficiently large 5 by theorem 4.1. Condition 5.3 implies that the

interior and relative interior of V coincide.

It will be convenient to distinguish hyperplanes that are orthogonal to

a coordinate axis, the "coordinate" hyperplanes, from the "non-coordinate"

hyperplanes. Any non-coordinate hyperplane that is tangent to V weakly

separates an extremal point g(a) from V . From lemma 5.1, under condition

k
5.1 any profile can be approximated by a sequence a that satisfies pairwise

full rank, and lemma 5.5 shows that profiles satisfying pairwise full rank

can be enforced on non- coordinate hyperplanes, hence, weak enforceability is

satisfied for the non-coordinate hyperplanes.

Next consider the hyperplane H orthogonal to the ith coordinate axis

and tangent to V at a point where player i's payoff is maximal in V . This

hyperplane weakly separates V from a point that is best for player i among

all points in V. The corresponding profile a has the property that a is a

best response to a , in the stage game, and so a is enforceable on H by

lemma 5.3 below.

Finally, consider the tangent hyperplane H that is orthogonal to the

ith coordinate axis and tangent to V where i's payoff is minimized over V .*

k k
From lemma 5.4, there is a sequence (a ) of enforceable profiles with g. (a )

* k k
-> V. and a. a best response to a . in the stage game. This implies that

k i i
[a ) has a subsequence whose payoffs converge to g(m ,m ,), which weakly

* i kseparated from V by H , and lemma 5.2 implies that the a are enforceable

on H .
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Remark: An important step in the proof above is the inference that if

profile a maximizes player i's payoff over the feasible set, then a is a

static best response to a . (that is, a best response in the stage game).

This property fails in repeated games where some players are short-run (that

is, play for only one period), as in Fudenberg-Kreps-Maskin [1989], because

there the definition of the feasible set must incorporate the restriction

that the short-run players play static best responses. Thus, in order to

induce the short- run players to play the profile a that maximizes player

i's payoff, player i may need to play an action a that is not a best

response to a . . Not only does our proof fail in this case, but the Folk

Theorem fails as well, unless the players' choices of randomizing

probabilities are publicly observed, and not simply their choices of

actions. Fudenberg-Kreps-Maskin characterize the equilibrium payoffs as 5 ->

1 with observed probabilities, and with unobserved probabilities and a

single long-run player, Fudenberg-Levine [1989b] extend the techniques of

this paper to obtain a characterization for the remaining case of

unobserved probabilities and several long-run players.

Proof of Lemma 5.1 :

For any profile a and each pair of players ir^j , let tt
'' be the matrix

whose rows are the m.+m, -1 vectors,
1 1

'

,
n- (a. , a . ) , TT (a. , a ,

)

y ^ -^ a.eA. y y -J a.EA.11 J J-

Fix a profile a' and a pair of players inj , and let a '-' be a profile such

that TT (a ) satisfies pairwise full rank for i and j. Then for each e e
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[0,1], define q(£) by a(e) ~ (l-£)a' + ta^'^' for all k. Thus q(£) is a

polynomial in e, and the rows of tt '^(a(£)) are polynomials in e as well.

Thus the determinant of any m. + m.-l square submatrix of tt '^(a(£)) is

itself a polynomial in e, and since tt '-^(q(1)) - w (a '-') has full rank,

3
its determinant is not zero for some such submatrix. Now every polynomial

is either identically zero or has a set of zeros of measure zero so the

determinant of n '^(a(€)) is nonzero for almost all e. Moreover, if

n '-'(q(£)) has full rank, tt (a) has full rank for all a in an open

neighborhood of Q;(f). By considering t near zero, we conclude that there is

an open neighborhood of the fixed profile q' that satisfies pairwise full

rank for player i,j, and since a was arbitrary we conclude there is an open,

dense set of profiles that satisfy pairwise full rank for i and j . As this

is true for each pair i,j, and the intersection of open dense sets is open

and dense, we conclude that there is an open dense set of profiles that

satisfies pairwise full rank for all pairs i,j.

Lemma 5.3 : If a, is a static best response to a and a is enforceable,

then a can be enforced with continuation payoffs such that w. (y) is equal to

any constant. That is, the w(y) can be chosen to lie on any (n-1)

dimensional hyperplane orthogonal to the ith coordinate axis.

Proof : Since a is enforceable it is enforceable by some continuation"*

payoffs w(y). Let w. -
) tt (a)w. (y) ,

and define w' (y) by w' (y) -w (y) ,
ji^i,

^ ^ y 1 J J

yeY

We thank Andreu Mas-Colell for suggesting this argument using
polynomials

.

32.



and w' (y)- w. . Clearly a is enforceable by the w' (y) , which lie on a

hyperplane orthogonal to the ith axis. Enforcement with small variation

(Leirana 3.4) then implies a can be enforced on any such hyperplane. H

We now show that each player i's minmax value can be weakly enforced on

a hyperplane orthogonal to the ith coordinate axis.

Lemma 5.4; (Weak Enforceability of the Minmax) Under Condition 5.2 for

each player i there is a sequence of enforceable mixed strategy profiles a

k * k k
such that g. (a ) -> v and a is a static best response to a , .

Proof: Let m . be the minmax actions against player i, and let m be a best

response for player i to m . that is not weakly dominated by an alternative

response. Define a - (m. , m .), and for each player j r* i , let tt-^ (a .) be

the matrix whose rows are the vectors tt (a,, a ,). Then tt (a ,) is a convex
y j -j -J

combination of the matrices whose rows are tt (a., a '. ) . for a', G
y J -J -j

support(a .),and each of these matrices has full rank from the individual

full rank assumption. As in the proof of Lemma 5.1, the fact that each

matrix has full rank implies that almost every convex combination of them

does. Moreover, there is an open dense neighborhood of U of a . such that

i . k
m. is a best response to all a' in U. Therefore, there is a sequence a ->

i k i
a such that tt-" (a .) has full rank for each player j i-" i, and m is a best*

k k k
response to each of the a . Therefore each a is enforceable, and g, (a )->

gj^Cm ).

The remaining case involves hyperplanes that are not orthogonal to a

coordinate axis, which we call non-coordinate hyperplanes

.
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Lemma 5.5 : If n satisfies the pairwise full rank condition at a, then a is

enforceable on non-coordinate hyperplanes.

Proof : Consider an n-1 dimensional linear subspace H that is not orthogonal

to a coordinate axis. Without loss of generality, we may assume this has

A - A

the form w (y) - S. ^3 .w. (y) . Moreover, since H is not orthogonal to a
n -^ 1=1 1 1.

•' °

coordinate axis, we may assume fi^ y*- 0. By lemma 3.4, it suffices to

A

consider the case 5 - 1/2. Because a is enforceable, solutions {w (3')) to

(3.1') and (3.2') exist for players 1-2 ,n-l. Let w - s"^^ ^^^^Cy)

•

A A

We must find w (y) and w (y) such that:

(i) Zy7r^(a)w^(y) -

(ii) 2 " (a^, a_^)w^(y) - -g^(a^, q) for a^^ e support(a^)

^y %^^1' "-l^^l^y^ - '^\^^V °^ ^°^ ^1 ^ support(a^)

^ A A ,

(iii)
^n(y)

- yS^w^Cy) + w (y)

(iv) Sy^^(a)w^(y) -

^^^
^y'^y^^n' "-n^^n^^^ " "^n^^n'"^ ^°^

^n ^ support(a^)

^y^y^^n' "-n^^^n^^^ " "Sn^^"'*^ ^°^
^n ^ support(a^)
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Constraints (i)
,
(ii)

,
(iii) and (iv) require that w. (y) satisfy

A

condition (3.1) for i-l,n, and constraint (iii) ensures w(y) e H.

Constraint (iv) is redundant given (i), (iii), and the fact 2 tt (q)w (y) -

0.

Substituting (iii) into (v) , we have

(vi) ^i2y'fy(aj,.".n)wi(y) - -&J\'^) Vy^^n'"-n^'' ^y^ ^°''
^n^

support(a^)

A A^
fl.S n (a ,a )w^ (y) < -g (a ,q) - S tt (a ,a )w (y) for a C support(a )^1 y y n -n 1 -' "^n n y y ^ "" n n

A

Thus it suffices to find w (y) satisfying (i), (ii) , and (vi) . Moreover,

given any solution w (y) to constraints (ii) and (vi) , we can obtain a

A

solution that satisfies (i) as well by setting w (y) - w (y) - S tt (q)w^ (y) .

Finally, observe that a solution to (ii) that solves (vi) with equality for

all but one a' eA solves (vi) for a' as well, since
n n ^ ' n

A A

a(a') ;9j7r (a' ,a )w- (y) - -fiS ,"(a ) Y^ (a ,a )w- (y)n' ^IL y^ n' -n' l^-'' ^iLa Ha' ^ n' L y^ n' -n"^
1^-^'

n n '

a(a ) g (a ,a ) + ) tt (a ,a)w (y)
, , n ''n n -n L y n -'

a r^a'
n n

^^^'n>^nK-^^ -^K^l - (-;.")w*(y)

That is, one of the (ra^+ m ) constraints in (ii) and (vi) is redundant. The

assumption of pairwise full rank is precisely that for each pair of players

this system is has rank (m,+ m -1). Hence (ii) and (vi) can be solved withIn
exact equality.
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It may be helpful to compare examples where the hypotheses of Theorem

5.1 are and are not satisfied.

Example 5.1 : Players i -= 1 and 2 can either work (a. - 1) or not work

(a -0). The work decisions are unobservable and jointly result in output

2
(which is observable) y - or 12. The probability of output 12 is ^ of

both players work, -^ if only one does, and if neither does. Player i's

utility of output — y is -^y - 3a . Because this game has only two

observable outcomes, the pairwise full rank condition (condition 5.1) fails

(although the individual full rank condition -- condition 5.2 -- is

satisfied). Indeed, the Folk Theorem does not apply to this game: although

the payoffs (1,1) (corresponding to both players working) are feasible and

Pareto dominate the minmax point (0,0), any payoffs (v ,v ) belonging to

E(5) must satisfy v +v < 1 regardless of the value of 5. (This can be

shown using arguments similar to those in Radner-Myerson-Maskin [1986]).

By contrast, consider the following game:

Example 5.2 : Players have the same choices and payoffs as in Example 5.1.

Now, however, there are three output levels: 12, 6, and 0. If both players

work, the probabilities of these outcomes are w, 5-, and -p- respectively. If

only one works, the probabilities are -^, ^, and ^, and if neither works the

probability of is 1. Notice that at the profile where one player works,

and the other does not, the probability matrix corresponding to the

definition of pairwise full rank is
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Because this matrix has full rank, condition 5.1 is satisfied, and so

Theorem 5.1 applies. We conclude that any feasible payoffs (v ,v„) with v

> 0, belong to E(5) for 5 near enough 1 (despite the fact that the action

profile where both players work violates pair-wise full rank)

.

We can modify the proof of lemma 5.5 to obtain a sharper version of

theorem 5.1. Call an equilibrium strict if each player strictly prefers his

equilibrium strategy to any other.

Theorem 5.2: Suppose that every outcome has positive probability under

every action profile, that tt satisfies pairwise full rank for all (i,j) at

every pure action profile, that, for each player, there is a minmax profile

in pure actions, and that condition 5.3 holds. Then for every closed set W

in the interior of V there exists S < 1 such that for all 6 > S, W is

contained in the set of strict equilibria of E(5)

.

Remark

:

Even if some minmax profiles entail mixed actions, we can obtain as

strict equilibria all payoffs above the pure-action minmax levels as long as*

the other two hypotheses hold.
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Proof: When pairwise full rank holds, the inequalities of conditions (ii)

and (vi) in the proof of lemma 5.5 can be solved to hold strictly for any

pure action profile. When all outcomes have positive probability, any

deviation then induces a strict loss in payoff if the continuation payoffs

are as specified.

In finite games, strict Nash equilibria are stable as singleton sets in

the sense of Kohlberg-Mertens [1986]. Although there is not yet an

established definition of stability for infinite-horizon games, it seems

likely that strict equilibria would satisfy any such concept. Thus, theorem

5.2 casts doubt on conjectures that stability might restrict the force of

the Folk Theorem. Moreover, strict equilibria are robust to small changes

in the information structure of the game.

To obtain strict equilibria requires both that players do not randomize

and that, for each player, every information set that could be reached if

some opponent deviated is assigned positive probability by the equilibrium

strategies. These conditions cannot be met in repeated games with

observable actions. However, in such games we can solve (ii) and (vi) with

exact equality for all actions, and thus induce players to play all their

actions with positive probability in every period. We conclude that in such

games all feasible, individually rational payoffs can be approximated by the

payoff to a totally mixed equilibria. This observation is of interest?

because totally mixed equilibria, like strict ones, are stable in finite

games. (However, it is less clear that all extensions of stability to

infinite-horizon games stability will make the totally mixed equilibria

stable.

)
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*
Theorems 5.1 and 5.2 show that any point w in the interior of V can be

obtained as an equilibrium for large S, but the theorems do not cover points

on the efficient frontier. That is, under the hypotheses of the theorem

efficient payoffs can be approximated by equilibria but may not be exactly

attainable. This contrasts with the Folk Theorem for repeated games with

observable actions, where efficient payoffs can be exactly attained for

discount factors sufficiently close to one. The following theorem explains

why in general theorem 5.1 cannot be strengthened to exactly obtain

efficient payoffs.

Theorem 5.

3

Let v be an extremal payoff of V. If for each a with g(a) - v

there exists player i and action a' such that g. (a' , a ) > g, (a) and

support n (a'. , a .) Q support n (a), then for all 5 < 1 v 6 E(S) .

Remark : The inclusion of the supports hypothesized in theorem 5.2 is

clearly satisfied if the support of tt (•) is independent of a. When the

hypothesis fails, player i can be deterred from playing a' by continuation

payoffs that are very low outside the support % (a).

Proof: Because v is extremal, the only sequence of feasible payoffs with

average value v is the sequence where v is repeated each period. Consider

an equilibrium giving rise to this sequence. Then the first period*

strategies must specify a profile a with g(a) - v, and the continuation

payoff w(y) must satisfy w(y) - v for all y e support tt (a). Since g.(a'.
,

^.^) > gj^(a), and support n (a'., a ) C support n (a), player i will prefer

a', to a . .
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6 . Games with a Product Structure

So far we have focused on full rank hypotheses to ensure

enforceability of actions. Radner [1985], however, obtained positive

results in repeated principal-agent games without considering the kinds of

informational conditions developed in Section 5. These games have special

structure that can take the place of some of our informational

conditions .The distribution over outcomes has a "product structure", meaning

that the outcome y is a vector (y.. , . . . ,y ), where the y are statistically

independent and the distribution of each y does not depend on the actions

of other players than i. Theorem 6.1 below shows that this condition is

sufficient for a "Nash- threats" Folk Theorem, pertaining to payoffs that

Pareto-dominate a static Nash equilibrium.

We first show that profiles corresponding to Pareto-efficient payoffs

are enforceable regardless of the information structure under the standard

assumption that payoffs "factor" as in Definition 2.1. As we have

emphasized, enforceability alone is not sufficient for the Folk Theorem. In

games with a product structure, though, enforceability implies

enforceability on hyperplanes and so the Pareto-efficient payoffs are

enforceable on hyperplanes. Of course, the minmax profiles are not

necessarily Pareto optimal, and will not be enforceable without additional

assumptions. But any static equilibrium is trivially enforceable on any»

hyperplane, and so we can use theorem 4.1 to conclude that all payoffs

Pareto -dominating a static equilibrium can be attained for S close to 1.

Theorem 6.1 covers the principal-agent games considered by Radner,

where the principal's only action is a transfer to the agent. Section 7

applies theorem 6.1 to a class of repeated mechanism problems that also have
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a product structure. Section 8 extends the results to games with a weaker

kind of product structure when the actions of some players are observable.

We will now restrict attention to games that satisfy the factorization

condition given in definition 2.1, that each player's payoff is completely

determined by the public outcome y and his own action a .

Lemma 6.1: If payoffs satisfy the factorization condition, then all external

payoffs on the Pareto frontier of v are enforceable.

Proof : If V is external and Pareto efficient then there are positive weights

A such that v solves max A o v. Choose a profile a such that g(a) - v, and
V e V

for all i, set

w.(y) - [a-S)/S] I [A /A ] r (y, a )

j ^ i J ^ J J

Then

(6.1) (l-5)g^(a'^. a_^) + S I rt (a'^. a ^)w^(y) -

y

[(l-5)/A^]A îg(a'.,a_.) + [(l-5)/A.] I I A tt (a'., a_^)r (y, a.

js-!i y e Y -^ ^ -^

l-S)/X.] I A g (a'..a_^).

J-1 -^ -^

Because g(a) - v, a solves max A o g(a' ) , and thus for all players i, a.

a e A
^

solves max A o g(a'. , a .). Thus a. is maximized (6.1), implying a is
a'.eA.

1-1. 1
1 1

enforced by {w. (y) )

.
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Definition 6.1: The game has a product structure if we can write

y - (y y ), where, for all i and a - (a., a .) and a', the marginal

distributions of y. , n (a) , satisfies
-^1 y.

'i

(6.2) n (a., a .) -tt (a., a.) for all a ..a, eA ,, and
y. 1 -1 y. 1 -1 -1 -1 -1
'i -^1

ff (a) - n n (a.)

i-=l ^i "

The first condition says that the marginal distribution of y, depends on a

alone, and the second that the joint distribution over y is the product of

the marginals. When the game has a product structure, one might expect that

an enforceable profile can be enforced with continuation payoffs {w(y) ) such

that w. (y) depends only on y. , that is, that the incentive constraints for

the different players are not linked. The following lemma shows that this

expectation is justified.

Lemma 6.2 : If the game has a product structure, then any pure action that is

enforceable is enforceable on non-normal hyperplanes.

Proof of Lemma 6.2 : Fix a, and as in the proof of Lemma 5.5, pick an n-1

dimensional linear subspace H that is not orthogonal to a coordinate axis,

A

having the form I._-|/9.w. (y) - 0, with y3 S K , and where, without loss of

generality we can assume that fi^y^O r^P^. Also set 5-1/2. We must solve
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(a) l^ n^(a) w.(y) -

A

(6.3) (b) I ,r (a'., a_^) w^(y) < -g^ia'^, a_^) for all a'.

Since profile a is enforceable, for each player i there are continuation

payoffs w (y) satisfying (6.3) (a) and (b) . Moreover, since the game has a

product structure, we can write these formulae as

(a') y n (a .) y n (a.) w.(y,,y .) - 0.L y . -1 L,Y. y, 1 i -^i •'-I .

(6.3) ^-i
y

. y-i -^
^>^i ^i

(^'? Z % .(^-i)L. %W ^^^i-y-i)^ -^i^^'i- ^-i> ^'i'-^iy . -X L.y. y
y .

' -1 'i -'i

Thus if we set

*
(6.4) w^(y^) -

J^
TT (a_^) w^(y^,y_^),

y-,'-^

then the w.(y.) are continuation payoffs satisfying (6.3) (a) and (b)

Define

(6.5) w^(y) - w^(y^) - [ ^^^^.(y.)/^^.

^2(7) - w*(y2) - ^^/^2 w*(y^),

w (y) - w (y ) for j ^ 1,2
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The w. satisfy 6.3 (c) by construction:

1-1 j-=2 -J J J j=3

Moreover, for i >^ 1 , 2 the w. clearly satisfy (6.3) a and b. For players 1

*
and 2, w, differs from w. by the addition of terms whose expected value

under n (a) is zero, so 6.3 a is satisfied. Further, since y and y are

A

independent, for each a' the expected value of w (y) under n {&', , & j) i-^

the same as the expected value of w (y) , so that w satisfies (6.3) b.

Theorem 6 .

1

In a game with a product structure that satisfies the

factorization condition, let V be the convex hull of the payoffs of a static

Nash equilibrium and all Pareto-efficient payoffs that strictly

Pareto-dominate this equilibrium. For any v g interior (V) there is a

discount factor 6 such that for all 5 > 5 v e E(6)

.

Proof : From lemma 6.1 and 6.2, extremal efficient profiles are enforceable

on all non-coordinate hyperplanes . Both the static equilibrium and a

profile yielding the maximal payoff for player i are enforceable on

hyperplanes where i' s payoff is constant. Thus the set V satisfies

enforceability on tangent hyperplanes, and the conclusion follows from

theorem 4.1.

One class of games with a product structure is the principal-agent

games considered by Radner [1985] where the principal's only action is a

publicly observed transfer payment, and the distribution of each period's

output depends only on the agent's effort. Theorem 6.1 thus extends
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Radner' s results to general specifications of the payoff functions. In

particular, the principal can be allowed to be risk-averse, and the agent's

utility function need not be separable in effort and income. Section 8

extends the conclusion of theorem 6.1 to games where the principal can, in

addition to making transfers, also influence the distribution of output.

7 . Incomplete Information

We now apply theorem 6.1 to a class of games of incomplete information.

We then observe that this class includes mechanism design problems.

We first consider the following class of games. Each player first

receives private information determining his type z G Z , where Z. is

finite. The distribution of types is independent across players, and player

i' s type has distribution ;r.(z.), which is common knowledge. After learning

their types, players choose actions y e Y , which are publicly observed.

Player i' s payoff r.(z.,y) depends on the profile of actions and on his type

but not on the types of others.

A pure strategy for player i is a map a from Z to Y. The public

information is y G Y - Y.x. . .xY , and the distribution of outcomesIn
corresponding to strategy profile a is

T (a) -
yz

n'?
i_i 'fi(z) y - a(z)

y H a(z)

Because the marginal distribution of y satisfies

/ \ / ". (z. ) ,

^1 -
-1

z.e a (y.)
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it is clear that tt has a product structure in the sense of definition 6.1.

It is also clear that the payoffs satisfy factorization.

In the repeated version of the game, players' types in each period are

independent draws than the fixed distribution tt (z.). In each period,

players observe the outcome y but not their opponents' types.

Note that these games do not satisfy the individual full rank

condition, and a fortiori fail the stronger condition of pairwise full rank:

Let z'liZi' satisfy tt (z' ) > tt (z") , and fix a pure strategy a- with a^(z') -

y' a (z ') - y, "
. This strategy yields the same distribution over outcomes

A A A

as (mixed) strategy a , where o (z") - y'
, and a (z' ) takes on the value y

''

with probability tt (z ")/7r (z '
) , and y' with probability (tt (z'

)

TT^ (z '') )/7r (z '
) . Thus many strategy profiles cannot be enforced. However,

since the outcomes have a product structure, theorem 6.1 applies, and we

obtain the Nash threat version of the Folk Theorem.

An example of a repeated game in this class is mechanism design under

repeated adverse selection. To see this, imagine that the players' actions

y. are reports z. of their types. Let S be a finite set of social states*,

and fix a mechanism m: T -> S , Player i' s payoff is r (y, z ) - u (m(z)

,

z,). Each player's payoff depends on his own type and on the social state,

but not on the types of the other players.

One example of this kind of repeated adverse selection problem has*

been considered by Green [1987]. The types z, are the players' (privately

observed) endowments, and the mechanism m redistributes endowments to

provide insurance against fluctuations. Bewley [1983], and Levine [1988],

and Scheinkman-Weiss [1988] consider related models to study monetary

theory.
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Call a vector of payoffs efficient relative to m if it can be attained

by some reporting strategy a and no other strategy profile a yields payoffs

that are Pareto superior. Theorem 6.1 shows that some payoffs that are

efficient relative to m can be approximated by equilibria of the repeated

game for S close enough to 1. However, such payoffs might be

Pareto -dominated by payoffs that are attainable under a different mechanism

ra'

This motivates a "universal mechanism game" which we define as

A

follows. First, a status-quo state s e S is specified. Each period, player

i' s action y is a pair (z.,m) where z is a report of his type and m is a

mechanism, that is, a map from T to S . (Note that since S and T are finite,

so is the space of mechanisms.) If all players announce the same map m,

each player i' s payoff is r,(y,z.) - u. (m (z),z.); otherwise, the status-quo
A A

State s occurs, and player i' s payoff is r (y,z ) - u (s,z ).

In any perfect public equilibrium of this game, player i*s expected

continuation payoff, public history h and current type z , must be at least

what he would obtain under the status quo rule. Furthermore, the efficient

payoffs of the universal game are first-best payoffs: No choice of mechanism

and reporting rule, incentive compatible or not, yields Pareto-superior

payoffs. Consequently if these payoffs can be approximated by equilibria

when S is close to one, we can conclude that repeated adverse selection has

negligible efficiency costs when players are sufficiently patient. Since^

Theorem 6.1 applies to these games, this is indeed the case.

To help interpret this result, consider Green's [1987] repeated

insurance game discussed above. Imagine that there are two identical

agents, one good, that utility of consumption is u (c ) - ln(c ) , that c.

must equal 2, 3, or 4, and that each agent's endowment z takes on the
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values 2 and 4 with equal probability. The best symmetric allocation is for

each agent to consume his endowment when endowments are identical, and for

each to consume the average endowment of 3 when one endowment is high and

the other is low. Theorem 6.1 says that the corresponding expected utility

1/4 ln(2) + 1/2 ln(3) + 1/4 ln(4) can be approximated by an equilibrium when

S is close to 1. The conclusion is not that risk and/or risk aversion per

se become unimportant, or that the players can do as well as if they had

access to a productive storage technology: No mechanism can approximate the

utilities corresponding to each player consuming his average endowment.

Repeated play does not reduce the social risk corresponding to a random

total endowment. Rather, repeated play reduces, and for large 6 virtually

eliminates, the incentive costs of inducing truthful revelation.

8 . Principal -Agent Games

In this section we consider the class of games where the actions of at

least one player are observable. This class includes the standard

principal -agent model, where the agent is subject to moral hazard but the

principal's actions -- which take the form of transfers to the agent -- can

be observed.

As we noted in the introduction, the additional freedom provided by

the observability of one player' s actions often permits many (nearly)

efficient points to be sustained as equilibria in the repeated game evert*

when our full rank conditions are not satisfied. This is true, in

particular, in two-player games (with one player's actions observable),

where any payoff vector that Pareto dominates a static equilibrium can arise

in equilibrium provided that the part of the boundary lying above that

equilibrium is downward-sloping. Let the agent be player 1 and the principal
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be player 2. We say that player 2
' s actions are observable If for all a the

support (tt (a^,a„)) n support (n (a^,a')) - for all a r* a' so that any

observed outcome is consistent with exactly one action by player 2.

As in theorem 6.1, let V be the convex hull of payoffs from a static

equilibrium and the Pareto efficient points that Pareto-dominate it.

Theorem 8.1 : In a two-player game where player 2' s actions are observable.

For any payoff vector v e interior(V) , there exists 5 such that for all

S > §_, v € E(6).

Proof : Because the outcome reveals player 2' s actions, the continuation

payoffs corresponding to deviations by player 2 have probability zero so

long as player 2 never deviates. An inspection of the proof of theorem 4.1

shows that the condition of enforceability on tangent hyperplanes can be

weakened to the condition that all continuation payoffs that have positive

probability under the profile being enforced lie on the hyperplane, and that

all continuation payoffs either lie on the hyperplane or correspond to the

Static equilibrium. Now fix a static equilibrium, with payoffs v , and

consider a smooth set w in the interior of the convex hull of the payoffs v

of the static equilibrium and the Pareto frontier. We will show that for
A

all v e w there is a v' e V and an a with g(a)-v' such that v' is separated
^ A A

from w by the tangent line H(v) to w at v, and such that the continuation^
A

payoffs w(y)are in H(v) if y e u support (tt (a.,,a )) - support 7r(a„) and
a. y L Z i-

w(y)-v otherwise.
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Consider v e W that maximizes player 1' s payoff. Let (a a ) be the

"maximax" actions that sustain player 1' s maximal payoff and let

(v ,v )-=g(a a ) . Clearly H(v) separates w and (v v ) . Moreover, because

(a^,a.) is 1' s maximal payoff, ve can take w(y)-v for all ye(support 7r(a.)).

A A

Next consider any other v e W. If H(v) separates w and the static

A

equilibrium payoffs v, then we can take w(y)-v for all y (support (a.). If

not, then because w lies in the interior of the convex hull v and the

Pareto frontier, there exists a Pareto optimum v' which is separated from W
A

by H(v). Let (a' a') be the actions associated with v' . From Lemma 6.1

there exist continuation payoffs {w (y) ) for player 1 that enforce a'

A

Because H(v) is not parallel to 2' s axis we can choose w (y) such that

(w^(y) .w^Cy)) e H(v) for all y e (support (a )). Q.E.D.

A boundary point of V is on the outer boundary with respect to v if it

belongs to a ray emanating from the equilibrium payoffs (v , . . .v ) with

positive slope in all directions. The outer boundary is downward- sloping if

it consists only of (strict) Pareto optima. An immediate implication of

Theorem 7.1 is the following "Folk Theorem-like" result.

Corollary 8.1 : If we add the hypothesis of a downward- sloping outer

boundary to Theorem 8.1, then for any vector v in the interior of V that

Pareto dominates a static Nash equilibrium there exists 6 such that, for all"*

5 > 5, v e E(5).
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The corollary applies, in particular, to games where the observed

player's action is a monetary transfer to the agent, as in Radner [1985].

Both theorem 8.1 and its corollary clearly extend to multiplayer games where

the actions of only one player are unobservable. In fact, we can extend them

to games with several players whose actions are unobservable, as long as the

observable outcomes have a product structure.

Theorem 8.2 : Consider an n-player game where the actions of players

l+l n are observable and those of l,...,l are not. Suppose that we can

write outcomes y and y -
(.V-, > • • • lYp) , where for all i-l,...,t, n

m
depend only on a. and (a. , a ) and tt (a) - IT tt a. Then the conclusion

i t+1 n y i 1 y^

of Theorem 8.1 obtains.

When the product structure hypothesis fails, not all efficient payoffs

Pareto dominating a static equilibrium can, in general, be approximated by

repeated game equilibria, even when one player's actions are observable and

the outer boundary is downward sloping. From Lemma 6.1, any Pareto optimal

actions are enforceable; indeed, from the proof of Theorem 8.1, they are

enforceable on any hyperplane that is not parallel to the observable

player's axis. The difficulty is enforcing them on the coordinate

hyperplanes. In the proof of theorem 8.1, we used the maximax action^

profile (for the unobservable player) for one of the two coordinate

hyperplanes. But such a profile may not be enforceable on a coordinate

hyperplane once there are several players subject to moral hazard.
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Nonetheless, as we show in Fudenberg, Levine , and Maskin [1989], the

efficient payoffs Pareto-dominating a static equilibrium are attainable as

separated game equilibria in a large subclass of games where the observable

player can make transfers of money or some other private good.
,

9 . Discussion

Our method of constructing equilibria is based on the dynamic-

programming decomposition of equilibrium payoffs into "payoffs today" g(a)

and "continuation payoffs" w(y) , the point being that if the continuation

payoffs are known to be equilibrium values, and profile a is enforceable by

the w(y) , then (l-5)g(of) + S } n (a)w(y) is an equilibrium' payoff as well.
L. y

This approach prompts the question of how the equilibrium set E(5) is

related to the payoffs that can be enforced by some continuation payoffs in

the feasible set V(5), whether or not these payoffs are themselves

equilibria. This latter set, which we denote C(5) , consists of the

first-period payoffs that the players could attain if they could commit

themselves (say, through binding contracts) to the continuation payoffs w(y)

e V(5) as a function of the outcome y. Let N(5) be the set of Nash

equilibrium payoffs; Nash equilibrium requires that each w(y) be a Nash

equilibrium payoff if y has positive probability under the first period

profile a. Since the definition of C(5) imposes fewer constraints on the

continuation payoffs than that of N(5), it is clear that E(5) C N((S) Q C(5) .^

From the study of repeated games with observable actions we know that for

fixed 5 less than one the first inclusion can be strict, and brief

reflection should convince the reader that the second inclusion can be

strict as well.
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Let us compare the behavior of these sets as 6 -> 1 . The first thing to

notice is that if 6 is too small, many payoffs in V may not even be

feasible, whereas V(6) = V if 5 > 1 - 1/d, where d is the number of vertices

of V (Sorin [1986]). This discrepancy reflects the fact that one effect of

repeated play with patient players is to allow "Intertemporally transferable

utility" in the interior of V, even if the stage game does not provide much

flexibility for utility tradeoffs. A second effect of sending 5 towards one

is to make the possible gain from a one-period deviation smaller relative to

a given change in the expected continuation payoff. This is the basis for

intuition that the Folk Theorem "should" obtain in repeated games with

observable actions.

Let E(l), N(l) and C(l) denote the limiting values of the

corresponding sets as 5 -^ 1. (A point is in E(l) if it is in E(5) for all

sufficiently large 6.) The perfect Folk Theorem asserts that E(l) 2

interior(V ); in the Nash version N(l) 2 interior(V ). Clearly, a necessary

condition for either Theorem is C(l) 2 interior (V ). This inclusion

obtains if every pure action profile is enforceable, and thus if n (a)

satisfies individual full rank at all pure strategies a; it fails if for

some individually rational vertex v of V the corresponding profile a is not

enforceable.

Even when all the pure action profiles are enforceable, the Folk

Theorems may still fail. For example, in repeated games with observable*

actions, the perfect Folk Theorem fails without the full-dimensionality

condition (5.3). Radner-Myerson-Maskin [1986] consider a game with two-sided

moral hazard where C(l) 2 interior (V ) and condition 5.3 is satisfied and

yet even the Nash Folk Theorem fails. Although individual full rank implies

that any Pareto-efficient profile can be enforced with nearly continuation
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payoffs when 5 is close to one, these continuation payoffs may not be

equilibria without the stronger condition of pairwise full rank (or some

alternative assumption such as a product structure or the existence of an

observable player)

.

^

To conclude, let us mention some limitations of our results. The Folk

Theorem shows that many payoffs are equilibria in the limiting case of

extreme patience. One consequence of looking at limit results is that even

a "small amount" of the right kind of information is sufficient. For

example, Condition 5.1 requires that at some profile a, the matrix n (a)

have full rank, but the matrix is allowed to be arbitrarily close to one

that is singular. For a fixed discount factor, S, the equilibrium set is

smaller when the outcomes reveal less information in the sense of garbling,

(Kandori [1988]). Intuitively, as the information deteriorates, the

required variation in the continuation payoffs grows, and for a fixed S the

necessary variation may not be feasible. When the outcomes are almost

uninformative , the S required to approximate efficient payoffs may be very

near to 1.

Furthermore, as Abreu, Pearce, and Milgrora [1988] have stressed, it is

misleading to interpret 5->l in our model as a consequence of the time

interval between periods growing shorter. Our results hinge on S being

large relative to a given information structure while quite plausibly, the

information revealed by the outcomes is a function of the period length. t.

Abreu, Pearce, and Milgrom give an example where the Folk Theorem does not

obtain in the limit of shorter time periods because the informativeness of

the outcomes decays too quickly.
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APPENDIX

We show that there can be sequential equilibria with payoffs, not in

V . Consider the following three person game. Players 1 and 2 choose pairs,

the first element being Up (U) or Down (D) , the second being Heads (H) or

Tails (T) . Player 3 chooses Right or Left. Players 1 and 2 receive zero

regardless of what happens, while player 3's payoff is -1 if 2 and 3 both

chose Up and he went Right, or if 2 and 3 both chose Down and he went Left;

otherwise he gets zero. Notice that the choice of H or T is payoff

irrelevant.

The payoffs to player 3 may be suinniarized as

lU, 2U

lU, 2D

ID, 2U

ID, 2D

L

-1

R

-1

3's payoff

The minmax for player 3 is -1/4, which is achieved by 1 and 2 randomizing

50-50 between Up and Down. If, however, players 1 and 2 could jointly

correlate so as to both play U 1/2 of the time both D 1/2 of the time,

player 3 would only get -1/2.
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Now suppose player 3's choices are observable, that whether 1 and 2

play Up or Down is observable, but that the comnion public information about

their choice of H or T is only the total number of H chosen by both players.

Formally, we have y(t) -
J^

I(a.(t)), where !(•) is the indicator function
i

1(H) - 1, I(T) - 0. Notice that if y(t) is 2 or 0, then the period-t

actions of players 1 and 2 are public information. If y(t) - 1, then the

period-t actions of players 1 and 2 are common knowledge for players 1 and 2

(since it is common knowledge that they each know their own action) , but

player 3 does not know which player played H.

Now consider the following strategies for players 1 and 2. "Randomize

1/2-1/2 between H and T in every period. If y(t-l) - 1 and player 2 played

H, play D, if y(t-l) - 1 and player 2 played T, then play U. If y(t-l) -

or 2, play U with randomize 1/2-1/2 between U and D." Since players 1 and 2

are indifferent between all their strategies, they are willing to, follow the

strategies just described. As these strategies are independent of player

3's play, player 3's best response is to play in each period to maximize

that period's expected payoff. Doing so yields an expected payoff of -1/2

when y(t-l) - 1. Thus player 3's expected normalized payoff facing these

strategies converges to -3/8 as 5 -> 1, which is less than v. - -1/4.
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