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In the Posner cueing paradigm, observers’ performance in detecting a target is typically better in trials in which the target 
is present at the cued location than in trials in which the target appears at the uncued location.  This effect can be 
explained in terms of a Bayesian observer where visual attention simply weights the information differently at the cued 
(attended) and uncued (unattended) locations without a change in the quality of processing at each location. Alternatively, 
it could also be explained in terms of visual attention changing the shape of the perceptual filter at the cued location.  In 
this study, we use the classification image technique to compare the human perceptual filters at the cued and uncued 
locations in a contrast discrimination task. We did not find statistically significant differences between the shapes of the 
inferred perceptual filters across the two locations, nor did the observed differences account for the measured cueing 
effects in human observers. Instead, we found a difference in the magnitude of the classification images, supporting the 
idea that visual attention changes the weighting of information at the cued and uncued location, but does not change the 
quality of processing at each individual location. 
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 Introduction 

An important paradigm for studying visual attention 
in the last two decades has been the Posner cueing 
paradigm (Posner, 1980).  In this paradigm, a target can 
appear in one of two locations, and the observer reports 
whether the target is present (yes/no).  Prior to the 
presentation of the stimulus, a cue (precue) indicates the 
probable location of the target (given that the target is 
present) with some validity (e.g., 80% of the trials).  Those 
trials in which the cue correctly indicates the location of 
the target are known as the valid cue trials, whereas the 
trials in which the cue incorrectly indicates the location of 
the target are called the invalid cue trials. A classical result 
is that performance (measured with response times or 
target detection accuracy) is better in the valid cue trials 
versus the invalid cue trials.  This result led Posner 
(Posner, 1980; Posner & Peterson,1990) and many 
researchers in subsequent studies to conclude that the cue 
orients visual attention, which enhances processing at 
that cued (attended) location.  An analogous 
interpretation of the result is that visual attention has 
limited resources that can be allocated at one of the 
locations. When the resources are allocated at the cued 
location, a performance benefit at the attended location 
arises.  

The Bayesian Observer: Cueing 
Effects Without Capacity 
Limitations/Attentional Enhancement 

Recently, an alternative approach has been proposed 
for the cueing paradigm in terms of a Bayesian observer.  
This model predicts a cueing effect without a change in 
the quality of processing at the attended and unattended 
locations (i.e., changes in the perceptual filters, internal 
noise, etc.).  In this model, the observer monitors the 
responses of two equivalent perceptual filters1 at the cued 
and uncued locations.  Each of the perceptual filters 
linearly weights the luminance at the cued and uncued 
locations resulting in one scalar response for each of the 
locations.  The scalar responses to the two locations are 
stochastic variables that vary from trial to trial due to 
internal noise in the observer (e.g., neural firing) and/or 
to luminance variability in the image (external noise). 

The Bayesian observer calculates a likelihood of the 
scalar filter responses given target presence for each 
location.  The model then optimally combines the two 
likelihoods across the cued and uncued locations.  The 
likelihood from the cued location is weighted (wc) by the 
prior probability of the target being present in that 
location (precue validity). The likelihood from the 
uncued location is weighted (wu) by its corresponding 
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prior probability of target presence (1 minus precue 
validity).  The result is an overall likelihood of the filter 
responses given target presence across the two locations.  
The Bayesian observer then calculates an overall 
likelihood of the data given target absence.  Finally, the 
model computes a ratio of the likelihoods and makes a 
decision by comparing the likelihood ratio to a decision 
criterion or threshold.  Figure 1 shows a schematic of the 
Bayesian observer for a task in which the signal is a 
Gaussian “contrast increment” embedded in white 
Gaussian noise.  Appendix A summarizes the 
mathematical expressions describing the Bayesian 
observer for the Posner paradigm.  

The optimal weighting of the likelihoods from the 
cued and uncued locations maximizes the overall hit rate 
given a false alarm rate across both types of signal trials: 
valid and invalid cue trials. The concept is easiest to 
understand for the extreme case of a cue that is 100% 
valid.  In this case, the observer knows a priori that high 
evidence (likelihood) of target presence arising from the 
uncued location is due only to noise, and not to target 
presence (given that the uncued location never contains 
the target).  Therefore, evidence of target presence arising 
from the uncued locations only contributes to generate 
errors (false alarm trials). As a result, for the particular 
case of a 100% valid cue, the optimal strategy is to 
completely ignore the information from the uncued 
location (wu = 0 in Figure 1).   For the more general case 
where the cue is valid a certain percent of the time (cue 
validity = 80%), the Bayesian observer simply gives more 
weight to evidence (or information) arising from the cued 
location.   

A consequence of the higher weighting of 
information at the cued location is that the Bayesian 
observer will produce better performance (hit rate given a 
constant false alarm rate) for valid cue trials versus invalid 
cue without any difference in the quality of processing 
(e.g., difference in perceptual filters, internal noise, etc.) 
at the cued and uncued locations.  Recently, Shimozaki, 
Eckstein, and Abbey (2001) have shown how a Bayesian 
observer can predict cue validity effects of the same or 
larger magnitude than human observers for a Gaussian 
blob detection task in one of two locations.  

In this study, the Bayesian model can also 
quantitatively predict the cueing effect in a task where the 
target is a contrast increment in one of two Gaussian 
blobs. The probability of target presence is 50% and the 
cue validity is 80%.  Figure 2 shows hit rate in this task 
for a Bayesian observer degraded with Gaussian internal 
noise in order to match approximately the false alarm 
rates of the human observers.  The difference between the 
hit rate for the valid and invalid cue for the Bayesian 
observer is close to that of four human observers. 
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Figure 1. Schematic of a Bayesian observer in the Posner 

cueing paradigm. Stimuli are a simple schematic (actual 

experimental images contained added visual noise). The task 

of the observer is to determine whether a contrast increment is 

present at one of the two locations (yes/no task).  In this study, 

the precue is valid 80% of the time. 
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Figure 2. Upper graph: Hit rate for valid cue and invalid cue 

trials for four human observers (K.F., A.H., O.C., K.C.).  Also 

plotted are a Bayesian observer (triangles) that simply 

optimally weights the likelihood from the cued and uncued 

locations and a Tuning model (circles) in which visual attention 

changes the tuning of the perceptual filter.  Lower graph: False 

alarm rate for valid and invalid trials for the same four human 

observers and the two models. 
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Cueing Effects With Attentional 
Tuning of Perceptual Filters  

Although the Bayesian observer can successfully 
predict human observers’ cueing effects, there are other 
possible models that include attentional changes in the 
perceptual quality of the information at each location 
that could also predict the human cueing effects.   For 
example, some previous studies have suggested that visual 
attention changes the tuning or shape of the perceptual 
filters.  In another example, physiological studies have 
suggested that attention narrows the orientation tuning 
and color tuning of cells in V4 (Haenny and Schiller, 
1988; Spitzer, Desimone, & Moran, 1988).   Also, 
psychophysical studies using texture segmentation 
(Yeshurun and Carrasco, 1998, 1999) suggest that 
attention changes the spatial resolution of processing, 
which might translate to a change in the spatial frequency 
tuning of the perceptual filters. Lu and Dosher have used 
an extension of the linear amplifier model (the perceptual 
template model) and external noise with a cueing 
paradigm to show that in a number of tasks, attention 
increases the optimality of the perceptual filter (Lu & 
Dosher, 2000; Dosher & Lu, 2000)2.   

Figure 2 shows one example of a hypothetical model 
where visual attention at the cued location improves the 
tuning of the perceptual filter producing a cueing effect of 
the same size as observed in humans.  The particular 
shapes of the filters used in this model are shown in 
Figure 6 (left column).  The perceptual filter at the 
uncued location is a Difference of Gaussians (DOG) 
filter, and the perceptual filter at the cued (attended) 
location is a Gaussian that matches the signal.  The 
likelihoods are equally weighted from each location to 
reach a decision.  Independent Gaussian internal noise 
following the perceptual filters was used to degrade the 
model to match human performance levels.  For this 
model, the cueing effect arises solely because visual 
attention changes the perceptual filter at the cued 
location to make it optimal.  The lower performance in 
the invalid trials is due to the suboptimal nature of the 
perceptual filter at the uncued location. This example 
illustrates that a model with an attentional change of 
perceptual filters at the attended and unattended 
locations also can exhibit cueing effects similar to those 
measured in humans. 

 Tuning versus task performance-based tuning 
of perceptual filters 

Although vision scientists commonly refer to the 
concept of perceptual tuning, the term is interpreted in 
different ways.  Many investigators use the term to refer to 
the narrowing of the sensitivity (in orientation, space, 
color, etc.) of an inferred filter, a measured cell, or a 
population of cells.  Another common use is to define the 
perceptual tuning in terms of how well the filter matches 
the signal to be detected.  Our view is that changes in the 

perceptual filters should also be judged in terms of the 
impact they have on performance in the task being 
studied.  For example, there are tasks in which attention 
might narrow the tuning characteristics of the perceptual 
filter but might not enhance or might even degrade 
performance in the cued attended location. If so, those 
changes in the perceptual filter would not be able to 
account for a standard cueing effect in human 
performance.  In this context, one can define the tuning 
of the perceptual filter in terms of performance in the 
relevant task.   

For simple tasks in external noise, the optimal filters 
are known or computable.  In these cases, one can define 
the perceptual tuning of a filter in terms of the ratio of 
signal energy (to achieve a given performance level, e.g., 
80%) for the optimal filter and that of the human 
perceptual filter (Eideal filter/Ehuman filter).  This measure is 
known as the efficiency of the perceptual filter.  For 
simple linear tasks in white Gaussian noise, the efficiency 
can be directly calculated by computing the squared 
correlation (match) between the perceptual filter and the 
optimal filter (which is the signal). However, when the 
external noise does not have equal power in all the 
frequencies (nonwhite noise), then the degree of match 
between the perceptual filter and the signal is not the sole 
factor determining the performance of the filter. In these 
cases, the optimal filter does not match the signal.  For 
tasks such as the Posner paradigm where the decision is a 
nonlinear function of the data, no simple calculations are 
available and Monte Carlo simulations and/or numerical 
approximations are required to compute the task 
performance associated to a perceptual filter (Nolte & 
Jaarsma, 1967).   

Classification Images as a Tool to 
Estimate Perceptual Filters 

Given that two different models of visual attention 
(weighting of information with identical perceptual filters 
vs. change in perceptual filters) can predict cueing effects 
of the size observed in humans, there is a rationale to use 
more elaborate psychophysical techniques (beyond 
comparing model and human performance) to be able to 
distinguish different possible attentional modulations 
that mediate human visual performance in the Posner 
cueing paradigm.  In this study, we use the technique 
known as classification images to distinguish the two 
different models of visual attention.   

What is a classification image? 

The classification image technique allows the 
investigator to directly estimate how the observer weights 
the information in the image to reach a decision.  A 
related technique based on multiple linear regression was 
first applied by Ahumada and Lovell (1971) to audition. 
Ahumada (1996) and Beard and Ahumada (1998) used 
the classification image technique to study how observers 
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used visual information in a vernier acuity task.  Ringach, 
Hawken, and Shapley (1997) used a related method to 
study the orientation tuning in the monkey primary visual 
cortex.  Others have used the technique to look at illusory 
contours (Gold, Murray, Bennett, & Sekuler, 2000), 
stereo (Neri, Parker, & Blakemore, 1999), and off-
frequency looking in nonwhite noise (Abbey & Eckstein, 
2000) 

For signals varying only in luminance, the main 
methodological requirement is to add random spatially 
uncorrelated luminance noise to the image. The 
investigator then keeps track of the noisy stimuli 
presented in the trials corresponding to the different 
human observer decisions: signal present trials in which 
the observer correctly responded  “signal present” (hit 
trials), signal present trials in which the observer 
incorrectly responded “signal absent”(incorrect rejection 
or miss trials), signal absent trials in which the observer 
correctly responded “signal absent” (correct rejection 
trials), and signal absent trials in which the observer 
incorrectly responded “signal present” (false alarm trials).  

The intuition behind classification images is best 
illustrated with the false alarm trials.  In these trials, the 
investigator collects noise samples that did not contain 
the signal yet resulted in the observer responding that the 
signal was present.  It follows that the random luminance 
perturbations in that trial must have contained some 
luminance pattern that corresponded to what the 
observer took as evidence of signal presence.  Thus, the 
sample mean of all the noise images from the false alarm 
trials will reveal deviations in luminance that led the 
observer to respond that the target was present when it 
was not.  For simple tasks, one can derive closed form 
expressions to show that the sample mean of the noisy 
images will accurately estimate a linear filter or template 
used to weight the information in the image to reach the 
decision. In statistics, one would refer to the classification 
image obtained by computing the sample mean of the 
noise images from false alarm trials as an unbiased 
estimator of the linear template or perceptual filter.  Of 
course, for a yes/no task, there are four groups of noise 
samples that arise, one for each of the four types of 
decisions (correct detection or hit, correct rejection, 
incorrect detection or false alarm, and incorrect rejection 
or miss).  For simple tasks, one can derive optimal 
methods to combine the noise samples arising from these 
four types of trials to optimally estimate classification 
images (Beard & Ahumada, 1998; Abbey & Eckstein, 
2002, in this special issue).  Two alternative forced choice 
tasks require taking the difference between the two noise 
images presented in each trial to compute the 
classification image (see Abbey & Eckstein in this issue 
for details on 2AFC classification image technique).  If 
the added noise does not have a uniform power 
spectrum, then a more involved intermediate step is 
required to obtain an unbiased estimation of the linear 
filter (Abbey, Eckstein, & Bochud, 1999).  For more 

complex tasks in which decision rules are a nonlinear 
function of the image pixels, a derivation that shows that 
the classification image is an unbiased estimator of the 
perceptual linear filter does not yet exist (A. Ahumada, 
personal communication, 1999).  However, Monte Carlo 
simulations can be used to determine whether the 
classification image arising from the signal absent trials is 
an unbiased estimator.  

Assumptions of the classification image 
technique 

An underlying assumption in the classification image 
technique is that the observer is monitoring a single 
perceptual filter to reach a decision.  It is under these 
circumstances that the obtained classification image can 
be interpreted in terms of a single perceptual filter. When 
the observer is monitoring a number of perceptual filters 
and uses a nonlinear combination to reach a decision, 
caution is needed in the interpretation. A. Ahumada 
(personal communication, 1999) first noted that the 
classification images arising from the target present trials 
in tasks in which the observer is monitoring a number of 
filters per location (e.g., positional intrinsic uncertainty) 
may not accurately represent the linear perceptual filter or 
filters in the task. For these tasks, classification images 
from signal present trials can be misleading.  In addition, 
the classification image obtained from signal absent trials 
cannot be interpreted in terms of single perceptual filter 
but a composite of many perceptual filters influencing the 
decision in some nonlinear fashion.  One instance in 
which human observers monitor more than one 
perceptual filter per location is when they are uncertain 
about some parameter about the signal, such as position, 
spatial frequency, phase, etc. (Pelli, 1985).  The presence 
of effects of intrinsic uncertainty can be diagnosed by 
measuring psychometric functions (accuracy vs. signal 
contrast) and/or by comparing classification images 
arising from the signal present and signal absent trials (A. 
Ahumada, personal communication, 1999).  A difference 
in the classification images from signal present and signal 
absent trials points to a diagnosis of nonlinearity in some 
cases (Abbey and Eckstein, 2002, in this special issue).  A 
good approach is to choose tasks that are known to show 
small effects of intrinsic uncertainty, such as contrast and 
size discrimination tasks where a linear observer is a good 
approximation to human performance (Burgess & 
Ghandeharian, 1984; Ahumada, 1987). It is under 
conditions in which intrinsic uncertainty has no effect 
that the classification image technique is most powerful 
in terms of information content (expressed as the signal 
to noise ratio of the classification image) and 
interpretation.  On the other hand, tasks such as the 
detection of spatial and temporal periodic signals in noise 
typically show nonlinear psychometric function reflecting 
intrinsic uncertainty about phase and will not 
approximate the assumptions of the classification image 
technique. 
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Classification images for the Posner paradigm 

For the Posner paradigm, the Bayesian observer 
nonlinearly combines the response of two perceptual 
filters to reach a decision.  For this reason, we used only 
the false alarm trials arising from signal absent trials to 
derive classification images.  To verify that the obtained 
classification images are unbiased estimators of perceptual 
filters, we implemented extensive Monte Carlo 
simulations with different versions of optimal and 
suboptimal Bayesian observers.  The following section 
shows the results for these simulations and verifies the 
validity of the use of classification images to estimate 
perceptual filters for the cued and uncued locations of the 
Posner paradigm.  The simulations also allow us to 
establish how the different models of visual attention in 
the Posner paradigm give rise to distinct classification 
image signatures.  These signatures will be used to infer 
properties about visual attention from the human 
classification images described later.   

Classification Image Signatures  

Each of the models shown was generated by using 
implementation of the general model framework shown 
in Figure 1. The simulations were based on 13,000 trials, 
which is approximately the same number of trials 
performed by the human observers. The task used for the 
model simulations was identical to that one used for the 

psychophysical experiments including the noise level, 
Gaussian pedestals, contrast increment of the Gaussian 
signal, and the cue validity. More details about the task 
and simulations are discussed in “Methods” and 
Appendix A. 

1. Attention Changes the Weighting 
at Cued and Uncued Locations 

These models assume that attention does not change 
the shape of the perceptual filter, but simply changes the 
weighting of information at the cued and uncued 
locations.  We investigated three types of weighting of 
information at the cued and uncued locations 
corresponding to different attentional signatures: the 
optimal attentional weighting; attend both locations 
equally (equivalent weighting of each location); and, 
attend cued location only. These models are obtained by 
changing the weights of the likelihoods (wc and wu) in our 
Bayesian model (see Figure 1 and Appendix A).  

Figure 3 shows the perceptual filters used in the 
simulations (optimal Gaussian filters for all conditions), 
the weights for the likelihoods for the cued and uncued 
locations, and the corresponding classification images 
obtained.  The simulations show that the shape of the 
classification images match the shape of the model input 
perceptual linear filter scaled by a constant.

Ideal Bayesian weighting

(wc = 0.8, wu =0.2)

Attend both locations equally

(wc = 0.5, wu =0.5)

Attend cued location only

(wc = 1.0, wu =0)

  Cued                   Uncued   Cued                   Uncued   Cued                   Uncued

 

Figure 3. (a) Top row: Two equivalent perceptual filters (Gaussian filters that match the signal) at the cued and uncued locations for all 

three simulations. (b) Bottom row: The classification images from simulations associated to different weightings of the likelihood at the 

cued and uncued location. In all of these models, visual attention changes the weightings of the likelihood from the cued and uncued 

locations. The images shown here have been reduced (by a factor of 2 using bilinear interpolation) from the actual images.
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Figure 4. Radial averages of classification images from 

simulations for three different attentional weightings of the 

likelihood from the cued (blue) and uncued (red) locations.  

Solid curves are scaled versions of the perceptual filter used in 

the simulations. Top: Optimal weighting. Middle: Attend both 

locations equally. Bottom: Attend only cued location. Error bars 

are omitted when they are smaller than the symbol. 

This point becomes more apparent if radial averages 
across angles are plotted for each classification image 
(Figure 4). The radial averages of the classification images 
are scaled versions of the perceptual filter used in the 
model simulation (a Gaussian).  In addition, the input 
weighting of the cued and uncued location used in the 
model is reflected by the magnitude (or amplitude) of the 
classification images. For example, when the weightings of 
the two locations in the model are equal (attend both 

locations equally), then the magnitudes of the 
classification images are the same (middle column in 
Figure 3; middle graph in Figure 4).  When the model 
weights the cued location more heavily (and optimally) 
than the uncued location, the magnitude of the 
associated classification image for the cued location is also 
larger than that of the uncued location (Figure 3 left 
column; top graph in Figure 4).  Finally, when the model 
solely weights the information from the cued location and 
ignores that from the uncued location, then no 
classification image is obtained at the uncued location 
(right column in Figure 3; bottom graph in Figure 4).  In 
this way, if we obtain human observer classification 
images, we can potentially infer the observers’ attentional 
weighting strategy. 

Inferring the weighting across cued and uncued 
locations from the ratio of classification images 

Although the previous section shows that the 
relationship between the magnitude of the classification 
images for the cued and uncued locations reflects the 
attentional weightings assigned to each of the two 
locations, it would be desirable to be able to directly relate 
the ratio of the magnitude of the classification images to 
the input model weights (wc and wu in Figure 1).  Because 
of the nonlinear stage in the Bayesian observer in the 
Posner paradigm, the mathematical relationship between 
the weights used in the model for the likelihood for each 
location and the ratio of magnitudes of the obtained 
classification images is not easily derived analytically.  We 
therefore performed extensive Monte Carlo simulations 
with the Bayesian observer with two Gaussian perceptual 
filters to empirically measure the relationship between 
these two.  Figure 5 shows the ratio of magnitudes of the 
classification images and input weights used in the model 
(see “Methods” for technical details about fitting routine 
used)3.  This relationship can potentially be used to infer 
the underlying weights used by the human observers for 
the cued and uncued locations from the obtained human 
classification images. 
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Figure 5. Relationship between the ratio of magnitudes of 

classification images and the input weight of the model for the 

cued location. 
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2. Attention Changes the Shape of 
the Perceptual Filter 

The second type of attentional signatures we consider 
are those in which visual attention changes the tuning of 
the perceptual filter.  Within the framework of the 
Bayesian model, one can hypothesize that attending to 
the cued location changes the tuning of the perceptual 
filter.  For example, Figure 6 shows a suboptimal DOG 
filter used at the unattended location and an optimal 
perceptual filter used at the attended location.  Included 
in Figure 6 are the perceptual filters for another scenario 
where the suboptimal perceptual filter at the uncued 
(unattended) location is wider than the optimal 
perceptual filter.  The correspondence between the 

original filters and their resulting classification images can 
be seen in Figure 6.  Figure 7 shows the Fourier transform 
of the perceptual filters and the classification images.  The 
results show that the obtained classification images for 
the cued and uncued locations match the shape of the 
underlying perceptual filters used in the model 
simulations.  For example, the DOG filter gives rise to a 
noisy DOG filter in its associated classification image.  
The correspondence between the model’s perceptual filter 
and the obtained classification image can be seen more 
easily in the plots of the radial averages (Figure 8).  The 
simulations demonstrate that one can potentially infer 
the shape of the observers’ perceptual filters from their 
classification images.

Perceptual filters

  Cued                   Uncued   Cued                   Uncued

Classification images

Attentional change of the 

tuning of perceptual filters

 

Figure 6. Top row: Perceptual filters for the cued and uncued locations. Bottom row: Classification images obtained through 

simulations. Left:  Perceptual filter at the uncued location is a suboptimal Difference of Gaussians, whereas that for the cued location is 

an optimal Gaussian.  Right: Perceptual filter at the uncued location is a suboptimal wide Gaussian, whereas that for the cued location 

is an optimal Gaussian. 

Perceptual filters

(Fourier domain)

  Cued                   Uncued   Cued                   Uncued

Classification images

(Fourier domain)

Attentional change of the 

tuning of perceptual filters

 

Figure 7. Top row: Fourier transform of the perceptual filters for the cued and uncued locations. Bottom row: Classification images 

obtained through Monte Carlo simulations.  Radial distance from the center represents spatial frequency with the zero frequency at the 

center.  Left:  Perceptual filter at the uncued location is the Fourier transform of a suboptimal Difference of Gaussians, whereas that for 

the cued location is an optimal Gaussian.  Right: Perceptual filter at the uncued location is the Fourier transform of suboptimal spatially 

wide Gaussian (and therefore narrower than the optimal filter in the Fourier domain), whereas that for the cued location is an optimal 

Gaussian. 
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Figure 8. Radial averages of classification images (Figures 6 and 7) for simulations for two different examples of models where visual 

attention changes the shape of the perceptual filter at the cued locations.  Blue symbols correspond to radial averages of classification 

images at the cued location, whereas the red symbols correspond to those from the uncued location.  Solid lines correspond to the 

scaled radial averages of the perceptual filters used in the model simulations. Left column: Optimal Gaussian filter for the cued location 

and a Difference of Gaussians filter for the uncued location. Right column: Optimal Gaussian filter for the cued location and a spatially 

wider suboptimal Gaussian for the uncued location.  Top row: Spatial domain. Bottom row: Fourier domain.

Methods 

Psychophysical Task 
The observers’ task was to decide whether a contrast 

increment (4.69%) was present (yes/no) in one of two 
Gaussian pedestals (percentage root mean square [RMS] 
contrast = 6.25%).  The two Gaussian pedestals were 
located to the right and left of a fixation point at an 
eccentricity of 2.5 degrees. White Gaussian luminance 
noise with a contrast of 0.117 was added to each image.  
Every image in every trial of the study had independent 
samples of noise.  The viewing distance was 50 cm.  The 
signal was present on 50% of the trials.  The validity of 
the precue was 80% (i.e., the target was present in the 
precue location in 80% of the target present trials).  Four 
naïve yet trained observers participated in the study.  The 
observers participated in 50 sessions of 250 trials resulting 
in 12,500 trials.  Stimuli were presented on an Image 
Systems monochrome monitor (Image Systems Corp., 

Minnetonka, MN).  Each pixel subtended a visual angle 
of 0.03 degrees.  The relationship between digital gray 
level and luminance was linearized using a Dome Md2 
board (Imaging Systems, Waltham, MA) and a luminance 
calibration system. 

Procedure 

Observers started the trial with a key press.  A 
fixation image was presented for 1 s. Observers were 
instructed to fixate a central cross at all times.  Following 
a square precue (length of side = 2.5 degrees) appeared for 
150 ms around one of the two possible target locations.  
The stimulus was then displayed for 50 ms. The short 
presentation of precue plus stimulus (200 ms) was chosen 
to preclude observers from executing a saccadic eye 
movement to fixate the cued location.  A white noise 
mask with higher RMS contrast was then presented for 
100 ms (same mean background luminance 24.8 cd/m2).  
The observers then pressed one of two keys on a 
computer keyboard to select their decision (signal present 
or signal absent).  Feedback about the correct decision 
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was provided, but no feedback about the signal location 
was given.   

Human and Model Performance  
Performance for human observers was measured in 

terms of the proportion of signal present trials in which 
the observer correctly responded (hit rate).  Hit rate was 
measured separately for the valid cue trials and the invalid 
cue trials. In addition, we determined the proportion of 
signal absent trials in which the observer incorrectly 
responded “signal present” (false alarm rate).  
Performance for the models was quantified using the 
same measures. 

Classification Images 
Classification images were obtained by computing the 

sample mean of the noise images presented in the signal 
absent trials in which the human and/or model observer 
incorrectly responded “signal present” (false alarm trials).  
The number of images used to compute the classification 
images was given by the number of signal absent trials × 
false alarm rate. The actual number of images depended 
on the false alarm rate of each individual observer but was 
approximately 1,625 (6,250 ×   0.26).  Radial averages 
across all angles were computed for each of the noise 
images. A sample mean, a standard deviation for each 
element of the radial averages, was computed, as well as 
the sample covariance between each element.  

Statistical Inference for Classification 
Images 

Although classification images can show the shape of 
the underlying perceptual filter, the images and radial 
averages contain a large amount of noise (statistical 
uncertainty).  To make meaningful interpretations, 
statistical techniques are needed to test the different 
hypotheses.  The Hotelling T2 statistic is a generalization 
of the univariate t statistic to multivariate vectors, and can 
be used to test for differences between a sample 
multivariate vector and a population vector or between 
two-sample multivariate vectors.  We used one-sample and 
two-sample Hotelling T2 statistics (Harris, 1985) to do 
hypothesis testing of the radial averages of the 
classification images. The Hotelling T2 statistic is  

T
2 = N[x − x

0
]

t
K

−1
[x − x

0
]  

where x is a vector containing the observed radial average 
of the classification image, and x0  is either a population 
or a hypothesized radial average classification image. K-1 is 
the inverse of the covariance matrix that contains the 
sample variance of each of the elements of the radial 
average classification images, and the sample covariance 
between them.  To test for significance, the T2 statistic 

can be transformed to an F statistic using the following 
relationship: 

F = N − p

p(N −1)
T

2
 

where p is the number of dependent variables (number of 
vector elements in the radial average of the classification 
images), and N is the number of observations (number of 
false alarm trials for our case).  The obtained F statistic 
can be compared to an Fcritical with p degrees of freedom 
for the numerator and N-p degrees of freedom for the 
denominator.  

To compare two-sample classification images, one can 
use the independent two-sample T2, which is given by the 
following expression:  

 T
2 = N1N2

(N1
+ N2 )

[x
2 − x

1]
t
K

−1
[x2 − x

1]  

where x1 and x2 are vectors containing the observed radial 
averages of the two classification images; N1 and N2 refer 
to the number of observations for the two classification 
images. For the two-sample test, a pooled covariance K is 
computed combining the sum of square deviations and 
sum of squared products from both samples. To test for 
significance, the two-sample T2 statistic can be 
transformed to an F statistic using the following 
relationship: 

F = N1 + N2 − p −1

p(N1
+ N2

− 2)
T

2
 

where p, N1, and N2 are defined before.  The obtained F 
statistic can be compared to an Fcritical with p degrees of 
freedom for the numerator and N1+ N2- p –1  degrees of 
freedom for the denominator. 

Results 

Human Performance for Valid Cue 
and Invalid Cue Conditions 

Table 1 shows the hit rates for valid cue and invalid 
cue trials, as well as the false alarm rate for the four 
human observers. The last column shows the size of the 
cueing effect computed as the difference of hit rates for 
the two types of cue trials. For all observers, we found a 
statistically significant cueing effect (p < .001), although 
the magnitude of the cueing effect varied from 0.108 to 
0.23.  Figure 2 presented in the “Introduction” plots the 
obtained performance results for the four observers. 
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Human Classification Images 

Table 1. Hit rate for valid and invalid cue trials and false alarm 

rates for human observers in the contrast discrimination 

Posner task. 

Observer Hit rate  
(valid trials) 

Hit rate  
(invalid trials) 

False alarm rate 
(all trials) 

Cueing effect  
(HRv –HRiv) 

O.C. 0.824 0.716 0.235 0.108 
K.F. 0.845 0.655 0.194 0.190 
K.C. 0.890 0.729 0.270 0.160 
A.H. 0.880 0.649 0.227 0.231 

 

Figure 9 shows the classification images for four 
human observers obtained from the false alarm trials for 
the cued and uncued locations. Figure 10 shows the 
Fourier transform of the classification images.  Overall, 
the classification images show a general similarity across 
observers, with a higher magnitude classification image 
for the cued locations with respect to the uncued 
location.  Most classification images also show an 
inhibitory surround (Figure 9) that can be seen as a black 
hole at the center of the Fourier transform (Figure 10)

 

Observer OC

  Cued                   Uncued   Cued                   Uncued

Observer AHObserver KF

Observer KC

 
Figure 9.  Human observer classification images for the cued and uncued locations. 

Observer OC

  Cued                   Uncued   Cued                   Uncued

Observer AHObserver KF

Observer KC

 

Figure 10. Human observer classification images in the Fourier domain (imaginary part discarded) computed separately for the cued 

and uncued locations. The Fourier origin is placed at the center of each image. 
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Radial Averages 
Radial averages across all angles for each noise image 

from each false alarm trial were computed. Sample mean 
radial averages were then calculated for cued and uncued 
locations, as well as sample variances and covariances 
among the elements of the radial average vectors. Figure 
11 shows the radial averages for the four observers.  
Figure 12 shows the radial averages in the Fourier 
domain.  For reference each graph in Figure 12 shows the 
Fourier transform of the optimal filter (dotted lines).  The 
one-sample Hotelling T2 statistic was used to test whether 
the radial averages of the classification images were 
significantly different from a hypothesized null 
classification image (vector of zeros).  All radial averages 
of the classification images were significantly different (p < 
.01) from the null classification image.  The two sample 

Hotelling T2 statistic showed that the differences between 
the classification images at the cued and uncued locations 
were statistically significant for all four observers (p < 
.001).   

Radial averages of classification images were fit with 
DOG functions with four fitting parameters: one 
amplitude for each of the two Gaussians (K1 and K2) and 
one standard deviation for each of the two Gaussians (σ1 

and σ2). DOG is given by  

DOG(x, y) = K1 exp(−x
2

/ 2σ1

2
) − K2 exp(−x

2
/ 2σ 2

2
)  

Table 2 shows the χ2
 best-fit parameters for the radial 

averages for the cued and uncued locations for all four human 

observers.  The table also includes a χ2
 goodness of fit for 

each of the fits. 
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Figure 11. Radial averages (spatial domain) of the classification images for the four human observers. Top left: O.C. Bottom left: K.F. 

Top right: K.C. Bottom right: A.H.  Blue symbols correspond to the cued locations and red symbols correspond to the uncued locations. 

Black solid lines are the best-fit Difference of Gaussians to the data. The dotted line corresponds to the radial profile of the optimal filter.  
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Table 2. Best-fit parameters for Difference of Gaussians to radial averages of  human classification images with four fitting parameters. 

Goodness of fit and estimated weights are also given.   

 
Observer 

 
Perceptual filter at the cued location Perceptual filter at the uncued location 

 K1 K2 σ1 σ2 χ2
 w1 K1 K2 σ1 σ2 χ2

 w2 

O.C. 1.56 0.57 4.9 7.3 21.09 0.76 0.60 0.11 4.3 9.3 7.598 0.24 

K.F. 2.14 0.79 5.1 8.2 19.07 0.84 0.46 0.08 5.3 14.0 25.07 0.16 

K.C. 1.2 0.16 4.3 11.8 39.25 0.80 0.65 0.11 4.3 8.9 18.8 0.20 

A.H. 1.7 0.51 4.9 8.4 33.83 0.88 0.76 0.5 7.3 6.4 20.71 0.12 
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Figure 12. Radial averages (Fourier domain) of the classification images for the four human observers. Top left: O.C. Bottom left: K.F. 

Top right: K.C. Bottom right: A.H. Blue symbols correspond to the cued locations and red symbols correspond to the uncued locations. 

The dotted line corresponds to the Fourier transform of the optimal profile.  

Scaled Perceptual Filters to Compare 
the Shape of the Filters 

To compare the shape of the perceptual filters (in 
isolation from magnitude differences), we scaled the 
classification image for the uncued location to give the 
best fit to the classification image for the cued location.   
The fit for the scaling was performed by minimizing the 
error weighted inversely by the pooled sample variance 
across both classification images. In addition, the sample 

covariance of the uncued classification image was scaled 
with the classification image.     

Figure 13 shows the scaled perceptual filter at the 
uncued location to give the best fit to the unscaled 
perceptual filter at the cued location for all four 
observers. Error bars for observers A.H. and K.F. are 
larger due to the fact that the magnitudes of the 
classification images from the uncued location were 
lower, and had to be scaled by a larger constant.  The 
larger scaling constant results in increased sample 
variance for A.H. and K.F. Results from two-sample 
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Hotelling T2 were calculated (see “Methods”) to 
statistically compare the shape of the radial average of the 
perceptual filters for the cued and uncued locations.  We 

found no statistically significant difference between radial 
averages for the cued and the scaled uncued locations (p > 
.01).4 
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Figure 13. Radial averages (spatial domain) of the uncued location scaled (minimizing the weighted error) to match the radial average 

of the classification image for the cued location.  Top left: O.C. Bottom left: K.F. Top right: K.C. Bottom right: A.H.  Blue symbols 

correspond to the cued locations and red symbols correspond to the uncued locations. 

Performance of the Human Classification 
Images  

Although we did not find statistically significant 
differences across the shapes of the inferred perceptual 
filters at the cued and uncued locations, we evaluated the 
cueing effect that would arise from the observed 
differences in shape of the human perceptual filters. To 
do so, we used the best-fit DOG for each observer for the 
cued and uncued locations and performed computer 
simulations in the framework of our Bayesian model 
framework (Figure 1).  To isolate cueing effects arising 
from the difference in shape of the filters from 
differential weighting of the cued and uncued locations, 
the simulations included equal weighting of the 
likelihood at each location.  Table 3 shows the obtained 
hit rates and false alarm rates for the best-fit DOG for 

each observer.  Table 4 shows simulation results for the 
best-fit DOG for each observer for the case where internal 
noise (independent additive Gaussian noise added to the 
output of each filter) was added to match performance of 
the human observers.  Both simulation results show that 
the cueing effects that arise from the observed differences 
in the shape of the perceptual filters are either too small 
(< 0.02 for K.C. and O.C.) or in the wrong direction 
(A.H. and K.F.) to explain the observed cueing effects in 
human observers (Table 1). Figure 14 plots the cueing 
effects ( hit rate for valid cue trials minus hit rate for 
invalid cue trials) measured for the human observers and 
those predicted from the differences between the inferred 
perceptual filters for the cued and uncued locations. 
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Table 3. Performance of the best-fit Difference of Gaussians with equal weighting of the likelihood of the cued and uncued locations. 

Observer Equal weighting 
 

 Hit rate  
(valid trials) 

Hit rate 
(invalid trials) 

False alarm rate 
(all trials) 

Cueing effect 
(HRv – HRiv) 

O.C. 0.939 0.919  0.053 0.02 
K.F. 0.923 0.943 0.059 –0.02 
K.C. 0.930 0.929 0.071 0.001 
A.H. 0.930 0.969 0.050 –0.039 

Table 4. Performance of the best-fit Difference of Gaussians with equal weighting of the cued and uncued locations. For these results, 

internal noise was injected to match the human performance levels.  

Observer Equal weighting 
 

 Hit Rate  
(valid trials) 

Hit Rate 
(invalid trials) 

False alarm rate 
(all trials) 

Cueing effect 
(HRv – HRiv) 

O.C. 0.819 0.799 0.231 0.02 
K.F. 0.821 0.824 0.233 –0.03 
K.C. 0.892 0.883 0.264 0.009 
A.H. 0.880 0.924 0.229 –0.043 
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Figure 14. Cueing effect (hit rate for valid trials minus hit rate for invalid trials) measured in human observers (red symbols).  Green 

symbols correspond to the cueing effect predicted by the differences in the inferred perceptual filters from the human classification 

images. 

Inferring the Underlying Weights 
Used by the Observers From the 
Ratio of Magnitudes of the 
Classification Images 

The scalar used to best fit the uncued human 
classification image to the cued human classification 
image was taken as the ratio of the magnitudes of the 
classification images for the cued and uncued locations. 
We then used computer simulations with the Bayesian 
model varying the input weights of the model to generate 
a lookup table between weights (wc and wu in Figure 1) 
and the ratio of the magnitude of the classification images 
obtained for the model (e.g., Figure 5). From this lookup 

table we could then infer the weights used by the 
observers from the ratio of the magnitude of the human 
classification images.  The simulations for the Bayesian 
model were performed by injecting internal noise and 
adjusting the criterion in order to match the false alarm 
rates observed in humans. The procedure was done 
separately for each human observer. The weights inferred 
for the cued location were:  0.76 (O.C.), 0.84 (K.F.), 0.8 
(K.C.), and 0.88 (A.H.).  
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Discussion 

Human Versus Optimal Perceptual 
Filters 

For the special case in which the external noise is 
spatially uncorrelated (white) Gaussian noise, the 
perceptual filters of the ideal Bayesian observer match the 
signal. Comparison of the human classification images to 
the optimal perceptual filter (Figure 3 vs. Figure 9) shows 
that for all observers the human perceptual filters tend to 
be narrower in the spatial domain than the optimal 
Gaussian filter, and also have an inhibitory surround.  
The surround can be seen more clearly in the radial 
averages in Figure 11 and corresponds to a low spatial 
frequency suppression.  The lower sensitivity to low 
spatial frequencies can be seen as a dark “hole” in the 
Fourier transformations of the classification images 
(Figure 10).  The low-frequency suppression can also be 
seen as the decreased magnitude of the radial average of 
the Fourier transformations of the classification images 
(Figure 12). The Fourier transformation of the ideal 
perceptual filter corresponds to a Gaussian that is more 
compact than the human perceptual filter in the 
frequency domain (and more extensive in the spatial 
domain; see Figures 11 and 12). The inability of human 
observers to match the optimal profile when the signal is 
a Gaussian has been observed before by Abbey et al. 
(1999) for the detection of a Gaussian signal.  The low 
frequency suppression might be explained in part by the 
decreased contrast sensitivity of the human visual system 
to low frequencies (i.e., the contrast sensitivity function). 

Shape of Human Perceptual Filters at 
the Attended and Unattended 
Locations 

A common explanation for the cueing effect is that 
visual attention enhances the quality of processing at the 
attended location.  One possible mechanism suggested by 
previous studies is that attention changes the tuning of 
the perceptual filter at the attended location (e.g., 
Yeshurun & Carrasco, 1999; Dosher & Lu, 2000a, 
2000b) so that it matches the signal more optimally. If so, 
the classification image technique should reveal a 
difference in the shape of the perceptual filters at the 
cued and uncued locations (see Figures 6, 7, and 8 for 
examples of possible classification image signatures for 
this scenario).  Our results did not find statistical 
significance between the shape of the perceptual filters at 
the cued (attended) and uncued (unattended) locations 
for all four observers.  Yet statistical significance should 
not be the only criterion to judge the differences across 
perceptual filters.  It is plausible that if the number of 
trials were increased by a factor of 10, the differences in 

shapes across perceptual filters would become statistically 
significant.  Another important criterion is to determine 
how much of a cueing effect would be produced by the 
observed differences in the inferred shape of the 
perceptual filters.  Monte Carlo simulations using the 
best-fit DOG (Table 2) to the observers’ perceptual filters 
and equal weighting of information of both locations 
resulted in cueing effects ranging from –4% to +2%.  The 
perceptual filters for observer A.H. resulted in a higher 
performance at the uncued location (–4% negative cueing 
effect).  This result is consistent with her classification 
images (see Figures 9, 10, and 11) where the perceptual 
filter at the unattended location did not have the low-
frequency suppression, and, therefore, better matched the 
optimal filter than the perceptual filter at the attended 
location.  Overall, these findings suggest that even if the 
differences in shapes across the perceptual filters were 
assumed to be statistically significant, these differences by 
themselves would not be able to account for the large 
cueing effects measured on human observers, which are 
in the order of 10% to 23%.  We therefore conclude that 
for the present task, visual attention does not change the 
tuning of the perceptual filter at the cued location 
sufficiently to account for the human observer cueing 
effects.  

Visual Attention Changes the 
Weighting of Information at the Cued 
and Uncued Locations 

Another explanation of the cueing effect is in terms 
of a differential weighting of information at the attended 
and unattended locations without resorting to a different 
quality of processing at each location.  Kinchla, Chen, 
and Evert  (1995) used a model that linearly weights 
information across both locations to fit to human data. 
Shimozaki et al. (2001) and this study  used an optimal 
Bayesian observer with identical perceptual filters at both 
locations to predict the human cueing effect.  This model 
predicts that the classification images for the cued and 
uncued location should differ in magnitude but not 
shape (Figures 3 and 4). We found that the human 
classification followed this pattern (Figures 10 and 12). 
These results support the idea that visual attention does 
change the weighting of information at the cued and 
uncued location.  

In addition, we used simulations to infer the 
underlying weighting of information at each location 
(cued and uncued) used by the human observers from the 
ratio between the magnitudes of the human classification 
images.  We obtained a range of weights (0.88, 0.85, 0.8, 
and 0.76) that were scattered around the optimal 
weighting (0.8). Note that the rank order of the weights 
for the observers is in agreement with the size of their 
observed cueing effect, as we would expect from the 
model described in Figure 1. The higher the weight 
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assigned to the cued location, the larger the cueing effect.  
In summary, the classification images support the idea 
that visual attention acts to more heavily weight the 
information at the cued location.   

Attentional Weighting Versus 
Attentional Switching  

An alternative model that is consistent with a 
difference in magnitudes for the classification images is 
one in which the observer monitors (attends) one location 
per trial and switches across trials by attending either the 
cued location or the uncued location with some 
probability.  We refer to this model as the attentional 
switching model. A common assumption is that the 
attentional switching is determined by the prior 
probabilities of signal presence.  Therefore, for our task, 
the model attends the cued location on 80% of the trials 
and the uncued location on 20% of the trials.  This 
model will also yield classification images with a higher 
magnitude at the cued location than the uncued location.  
However, the model predicts (see Appendix B) cueing 
effects (of the order of 0.445), which are significantly 
larger than those measured for human observers and the 
attentional weighting model (Table 2).  Therefore, the 
attentional switching model (as many other limited 
capacity attentional models) can be rejected because it 
predicts larger cueing effects than those present in human 
observers.  Nevertheless, the fact that the attentional 
switching model generates classification image signatures 
that are similar to those of the attentional weighting 
model emphasizes the importance of considering both—
classification images and task performance—when 
evaluating models. 

Visual Attention:  Selection and 
Combination of Information 

Overall, our results support the idea that for the 
simple task studied, the cueing effect is due to the 
differential weighting of information at the cued and 
uncued location, and not due to a change in the shape of 
the perceptual filters at the attended and unattended 
locations. The concept that visual attention allows the 
observer to select and/or differentially weight 
information from different sources has been proposed 
before for the cueing paradigm (Kinchla et al., 1995).  
Shaw (1982), Palmer (1995), and others (Sperling & 
Dosher, 1986; Palmer, Verghese, & Pavel, 2000; Verghese 
& Stone, 1995; Eckstein, 1998; Eckstein, Thomas, 
Palmer, & Shimozaki, 2000; Verghese, 2001) have also 
shown that human performance in simple visual search 
tasks can be accounted for in terms of visual attention as 
a selection mechanism and without resorting to a change 
in the quality of processing.  These models have been 
successful in predicting many effects in visual search 
including set-size effects, distractor variability, search 

asymmetries, and the feature/conjunction search 
dichotomy (see Palmer et al., 2000, for a review)   

However, more complex tasks (Poder, 1999) or those 
involving memory studies have shown that attending to a 
location will not simply allow the observer to select 
relevant information and ignore irrelevant information, 
but instead will improve the quality of processing at the 
attended location due to capacity limitations. In addition, 
the present results cannot explain cueing effects obtained 
in paradigms in which a 100% valid postcue (which can 
be localized by the observer) was presented in addition to 
the pre- or simultaneous cue (Luck , Hillyard, Mouloua, 
& Hawkins, 1996; Dosher and Lu, 2000a, 2000b; Lu and 
Dosher, 2000) and in tasks in which a noninformative 
precue was presented (Henderson, 1991).   

A Hypothetical Experiment Where 
Attention Would Change the Shape of 
the Perceptual Filters Without 
Reflecting Limited Resources 

It should be noted that, in theory, experiments could 
be designed so that attention has an effect on the shape of 
the perceptual filter used by the human observer. For 
example, one such task might be a detection task where 
the signal is a high-frequency windowed sine wave that 
might appear at one of two locations.  Let us suppose that 
the precue is a high-contrast copy of the signal, appears 
directly below the probable signal location, and is in 
phase with the signal (when the signal is present).  It is 
widely known that human observers have intrinsic 
uncertainty (Pelli, 1985) about the spatial phase of 
periodic signals (Burgess & Ghanderharian, 1984).  In 
this case, the precue would provide not only information 
about the probable signal location (right vs. left location), 
but also information about the exact phase and/or 
position of the signal. Therefore, for this example, one 
might obtain a classification image for the uncued 
location that is not phase-coherent because the observer 
has intrinsic uncertainty about the phase of the signal, 
and therefore monitors many locations. On the other 
hand, for the attended location, the high contrast cue 
would provide the observer with information about the 
exact phase or position of the signal.  In this case, the 
observer would monitor a single perceptual filter with the 
phase or position matching that of the reference.  As a 
result, one would obtain a phase-coherent classification 
image for the cued/attended location.  In fact, one could 
build a Bayesian model with intrinsic phase uncertainty 
that would predict the change in perceptual filters.   

This example simply illustrates that one might find 
tasks in which the attended location changes the shape of 
the perceptual filter at the attended location. However, it 
should be clear that in this example the cue not only gives 
information about which of the two locations (right 
image vs. left image) has a higher probability of 
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containing the target but also provides information about 
the specific phase or position of the target within the 
cued location.  Therefore, the cue also allows the observer 
to select one of many filters differing slightly in locations 
he/she is uncertain about within the right or left image.  
Therefore, the observed change in the perceptual filter 
would not be associated with a capacity limitation in 
visual attention, but instead the cue provides 
more/further information for the observer to select what 
is relevant and ignore what is irrelevant. 

Classification Images Versus Other 
Methods to Infer Properties About 
Perceptual Filters 

Variation of energy thresholds with external 
noise 

A commonly used method to infer the ability of a 
perceptual filter to match the optimal filter is to vary the 
external noise and measure the signal energy required by 
a human observer to detect the signal at a given 
performance level.  From the slope of the variation of 
energy with external noise (i.e., noise spectral density), 
one can infer what is known as the sampling efficiency of 
the perceptual filter (Burgess et al., 1981; Pelli, 1985).  
The sampling efficiency is a quantitative measure 
(squared correlation) of the match between the human 
perceptual filter and the optimal filter.  As with the 
classification image technique, typically there is an 
underlying assumption that the observer is effectively 
monitoring a single filter to reach the decision. If the 
observer is monitoring more than one filter (e.g., the 
same filter but at different positions; i.e., spatial 
uncertainty) and combining the responses of the filter 
nonlinearly or when the filter response goes through a 
transducer nonlinearity, then a more complex analysis is 
required to obtain the sampling efficiency (Eckstein, 
Ahumada, & Watson, 1997; Lu & Dosher, 1999).  
Although the sampling efficiency is a very useful measure, 
it has the limitation that it does not provide information 
about the shape of the perceptual filter.  In fact, 
perceptual filters with a variety of different shapes can 
have identical sampling efficiencies.  In this respect, the 
sampling efficiency estimation technique could be 
combined with the classification image technique to 
provide the investigator with information about the shape 
of the perceptual filter.  

Bandpass noise-masking experiments  

Another method that has been used to infer the 
underlying tuning of the spatial frequency or orientation 
of the perceptual filters has been the bandpass noise-
masking paradigm.  In this paradigm, the frequency 
content of the noise is systematically varied so that the 
noise contains power in different frequency bands in each 
particular condition.  The investigator then measures the 

energy threshold to detect the signal as a function for the 
different noise frequency bands. From the effect of the 
different noise frequency bands on human observers’ 
threshold elevation, the investigator infers the sensitivity 
to a given spatial frequency of the perceptual filter used to 
perform the task.  The basic idea is that noise frequencies 
that do not affect performance correspond to spatial 
frequencies to which the human perceptual filter is not 
sensitive. On the other hand, noise frequency bands that 
drastically elevate the threshold energy for detection 
correspond to spatial frequencies to which the human 
perceptual filter is highly sensitive.  Thus, one can derive 
mathematical methods to derive the frequency tuning of 
the perceptual filters (e.g., Solomon & Pelli, 1994). The 
main limitation of the bandpass noise-masking technique 
is that it assumes that the observer always monitors the 
same perceptual filter in the different bandpass noise 
conditions.  An optimal Bayesian observer would change 
the perceptual filter to avoid regions of high noise to 
optimize performance.  The ability of a model or human 
observer to modify the perceptual filter as a function of 
the frequency content of the noise is referred to as 
prewhitening and/or off-frequency looking.  It has been 
shown that in many instances human observers are able 
to do off-frequency looking and/or prewhitening 
(Burgess, Li, & Abbey, 1997; Burgess, 1999; Abbey and 
Eckstein, 2000; Solomon, 2000).  In these cases, use of 
the bandpass noise-masking technique to derive an 
underlying single fixed perceptual filter can result in 
misleading results.  Because the classification image 
technique does not change the frequency content of the 
noise, it does not present the problem of off-frequency 
looking. 

Conclusions 

We have applied the classification image technique to 
determine how attention affects the processing of 
information at the attended and unattended locations in 
the Posner cueing paradigm.  Our results show that, for 
the contrast discrimination task studied, changes in the 
shape of the perceptual filters were neither statistically 
significant nor were the small changes in the shapes of the 
perceptual filters able to account for the size of the cueing 
effect measured for human observers. On the other hand, 
the human classification image signatures corresponded 
to the concept that visual attention weights the 
information at the attended location more heavily. The 
Bayesian model explored here is analogous to the 
Bayesian or quasi-Bayesian (i.e., approximations to 
Bayesian models) models used previously to explain 
various results in visual search, such as set-size effects and 
the dichotomy between feature and conjunction searches.  
Thus in the greater context, our findings suggest that for 
simple tasks, the Posner cueing paradigm now joins 
another influential attentional paradigm, visual search, 
that can be explained in terms of a Bayesian observer. In 
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this framework, visual attention allows the observer to 
select or differentially weight information at different 
locations but does not change the perceptual quality of 
the processed information at each of the possible 
locations.   

Appendix A 

Ideal and Suboptimal Bayesian 
Observer 

The perceptual filters at the cued and uncued 
locations are given by Fc(x.y) and Fu(x,y) and are 
normalized to have unit length. The image at the cued 
and uncued locations is given by gc,i(x,y) and gu,i(x,y).  The 
first subscript refers to the locations (“c” for cued and “u” 
for uncued), whereas the second subscript refers to the ith 
trial. 

The images for signal-present valid cue trials are given 
by   

gc ,i
(x, y) =  s(x, y) +  p(x,y) + n c,i

(x,y)

and  

gu,i
(x, y) =  nu,i

(x,y) +  p(x,y)

 (A.1) 

where s(x,y) is the signal luminance profile, p(x,y) is the 
pedestal that has the same spatial profile as the signal,  
and nc,i(x,y) and nu,i(x,y) are the external image noise 
samples at the cued and uncued locations, which are 
independently sampled.   

For signal-present  invalid cue trials the images are 
given by 

g
c ,i

(x, y) =  n
c,i

(x,y) + p(x,y)

and  

g
u,i

(x, y) =  s(x, y) + n
u,i

(x, y) + p(x,y) .

 (A.2) 

Finally for signal absent trials the images are given by 

g
c ,i

(x, y) =  n
c,i

(x,y) +  p(x,y)

and  

g
u,i

(x, y) =  n
u,i

(x,y) +  p(x,y) .

 (A.3) 

The response of each of the perceptual filters (λc,i and 
λu,i) to the stimuli in the ith trial is given by 

λc ,i = Fc(x,y)gc,i(x, y)dxdy + εc ,i∫∫  (A.4) 

λu,i = Fu(x,y)gu,i(x, y)dxdy + εu,i∫∫  (A.5) 

where εc,i and εu,i is a random scalar corresponding to 
internal noise, which is independently sampled for each 
trial and location (cued and uncued) from a Gaussian 
distribution with standard deviation σint.  

The Bayesian model calculates the likelihood of the 
responses (λc,i and λu,i)  given that the signal is present at 
the cued location, L(λc,λu| sc,nu), and a likelihood of the 
responses given that the signal is present at the uncued 
location L(λc,λu|nc,su).  The model then computes an 
overall likelihood of the responses given that the signal is 
present by weighting the individual likelihood from each 
location by a weight (wc  and wu): 

L(λ
c
,λ

u
| s) = w

c
L(λ

c
,λ

u
| s

c
,n

u
) + w

u
L(λ

c
,λ

u
| s

u
,n

c
) (A.6) 

The optimal weights are those that match the prior 
probability of the signal appearing at the locations given 
by the precue validity.  Next the model computes a 
likelihood of the responses given signal absence, L(λc,λu| 
nc,nu).  Finally, the Bayesian model computes the ratio of 
the likelihood for signal presence and signal absence:  

Lratio =
wcL(λ c,λu | sc,nu ) + wuL(λc,λu | n c,su)

L(λc ,λu | n c ,nu)
 (A.7) 

The model makes a decision by comparing the 
likelihood ratio (Lratio) to a decision threshold or criterion: 

If Lratio > threshold, then respond “signal present,”; 
otherwise respond “signal absent.” 

For the specific case where the filter responses at each 
location are Gaussian distributed, the individual 
likelihood of the filter responses given the signal presence 
and absence is given by 

L(λ c,λu | nc,nu ) = 1

2π
e

−λ
c
2

2
1

2π
e

−λ
u
2

2  (A.8) 

and, 

L(λ c
,λu

| s) = w
c

1

2π
e

− 1
2(λc − ′ d c )2 1

2π
e

−λ
u
2

2

+w
u

1

2π
e

− 1
2
(λ u

− ′ d u )2 1

2π
e

−λ
c
2

2

 (A.9) 

where d’u and d’c are defined as the mean response of 
the perceptual filter to the signal present location minus 
the response to the signal absent location divided by the 
standard deviation of the response (including the effects 
of external and internal noise):  

′ d c =
λc ,s − λc,n

σλ
c

2 + σ int

2
 (A.10) 

where, <λc,s> is the expected value of these responses 
of the perceptual filter at the cued location when the 
signal is present;  <λc,n> is the expected value of the 
response of the perceptual filter at the cued location 
when the signal is absent; σλc  is the standard deviation of 
the response due to external noise; and, σint is the 
standard deviation of the additive internal noise.  
Similarly, d’u is given by 
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′ d u =
λu,s − λu,n

σλ
u

2 + σ int

2
 (A.11) 

When the noise is white, one can calculate d’ c and 
d’u directly from the perceptual filter, F(x.y), the signal, 
s(x,y), and external image noise (pixel standard deviation 
given by σe): 

′ d c =
Fc(x,y)s(x, y)dxdy∫∫

σ e

2
Fc

2
(x, y)dxdy +∫∫ σ int

2[ ]
1

2
 (A.12) 

′ d u =
Fu (x, y)s(x,y)dxdy∫∫

σ e

2
Fu

2
(x, y)dxdy +σ int

2∫∫[ ]
1

2
 (A.13) 

This general framework of the Bayesian observer 
becomes the ideal observer for the case of white noise 
when the filters at the locations match the optimal filter 
(the signal for the case of white noise), the weighting of 
the cued and uncued likelihoods are determined by the 
precue validity (0.8 for the cued location and 0.2 for the 
uncued location in the present study), and there is no 
internal noise. 

Monte Carlo Simulations of Models 
The model outlined was implemented in Interactive 

Data Language (IDL).  In the computer implementation, 
continuous integrals in the above equations were replaced 
by summations.  The different models of attentional 
weightings were implemented by changing the weights in 
Equation A.7.  The different models that assumed that 
attention changes the shape of the perceptual filters at the 
cued location were implemented by changing the filters in 
Equations A.4 and A.5.  The decision threshold of the 
model was also adjusted to match the false alarm rate of 
the human observers.  The internal noise was adjusted to 
match human performance. 

Appendix B 

Single Perceptual Filter Model With 
Attentional Switching Determined by 
Prior Probabilities  

Here we derive the performance predictions for a 
model that monitors a single perceptual filter that is 
switched from the cued location to the uncued location 
from trial to trial (attentional switching).  The frequency 
with which the model monitors the perceptual filter at 
the cued location is matched to the prior probability of 
the signal being present (0.8 for the cued location and 0.2 

for the uncued location).  In this treatment, the 
attentional switching model is developed in the context of 
signal detection theory where the responses to each 
location are stochastic (due to the external and internal 
noise).  

The first stages of the model remain the same as 
those described for the Bayesian model. The observer is 
assumed to have two perceptual filters (Equations A.4 
and A.5), and their responses are perturbed by internal 
noise.  The difference between the Bayesian model and 
the attentional switching model is that the latter model 
monitors only one perceptual filter on each trial to reach 
a decision. The model computes the likelihood of the 
response of a single perceptual filter given that the signal 
is present, the likelihood given that the signal is absent, 
and computes a likelihood ratio.  This decision rule 
results in identical performance to comparing the 
response of the single perceptual filter to a decision 
criterion (the likelihood is a monotonic function of the 
filter response). 

The hit rate for the model in the valid cue trials 
is calculated by considering the 0.8 proportion of the 
valid cue trials in which the observer will correctly 
monitor the cued location and the 0.2 proportion of the 
valid cue trials in which the observer incorrectly monitors 
the uncued location (i.e., the signal is at the cued location 
but he/she is monitoring the response arising from the 
uncued location).   

The hit rate for the valid cue trials is therefore given 
by the probability that the filter response exceeds the 
decision criteria (th) in these two circumstances: 

H
v c = 0.8 ⋅ G(th − ′ d ) + 0.2 ⋅ G(th)  (B.1) 

where G is the cumulative Gaussian, d’ is the index of 
detectability, which is given by Equations A.11 and A.12 
and th is the decision criteria. 

Similarly, the hit rate for the invalid cue trials is given 
by  

H
i c = 0.2 ⋅G(th − ′ d ) + 0.8 ⋅G(th)  (B.2) 

The false alarm rate for both types of trials is simply 
given by the probability of the response exceeding the 
decision criteria in signal absent trials: 

F = 0.2 ⋅G(th) + 0.8 ⋅ G(th) = G(th)  (B.3) 

To obtain the predictions of the attentional switching 
model comparable to the levels of human performance 
obtained in this study, the decision criteria and the 
internal noise were adjusted to match the false alarm rate 
and hit rate in the valid cue condition of the human 
observers.  Performance was calculated from Equations 
B.1, B.2, and B.3 using the cumulative normal functions 
of IDL.  
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Footnotes 
1In this paper we use the term filter to refer to a 

template that is applied to individual locations of the 
image and not to a kernel that is convolved with the 
image. 

2In the perceptual template model (PTM) model, 
attention changes what is referred to as the external noise 
exclusion, which is identical to what traditionally is 
known as the sampling efficiency in the linear template 
model (Burgess, Wagner, Jennings, & Barlow, 1981). 

3Our simulations show that the relationship depends 
on the decision threshold  (or criterion) used by the 
model. It is therefore important when inferring the 
human weights to adjust the model threshold to match 
the measured false alarm rates in the individual human 
observers. 

4A potential problem is that the two sample Hotelling 
T2 assumes equal covariance. This is clearly not true, at 
least for observers A.H. and K.F., where the covariance 
for the uncued location was scaled by a constant, resulting 
in higher variance than for the cued location.  Ito and 
Schull (1964) have shown that the Hotelling T2 statistic is 
robust to violations of the equal covariance when N is 
large. We believe our case, N of approximately 1,625, to 
be sufficiently large. 
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