
The foraging benefits of information and the penalty of ignorance

Olsson, Ola; Brown, JS

Published in:
Oikos

DOI:
10.1111/j.0030-1299.2006.13548.x

2006

Link to publication

Citation for published version (APA):
Olsson, O., & Brown, JS. (2006). The foraging benefits of information and the penalty of ignorance. Oikos,
112(2), 260-273. https://doi.org/10.1111/j.0030-1299.2006.13548.x

Total number of authors:
2

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://doi.org/10.1111/j.0030-1299.2006.13548.x
https://portal.research.lu.se/en/publications/4c6dc08d-7692-4209-8ab9-5f2fef3c5c55
https://doi.org/10.1111/j.0030-1299.2006.13548.x


The foraging benefits of information and the penalty of ignorance

Ola Olsson and Joel S. Brown

Olsson, O. and Brown, J. S. 2006. The foraging benefits of information and the penalty
of ignorance. �/ Oikos 112: 260�/273.

Patch use theory and the marginal value theorem predict that a foraging patch should
be abandoned when the costs and benefits of foraging in the patch are equal. This has
generally been interpreted as all patches being abandoned when their instantaneous
intake rate equals the foraging costs. Bayesian foraging �/ patch departure is based on a
prior estimate of patch qualities and sampling information from the current patch �/

predicts that instantaneous quitting harvest rates sometimes are not constant across
patches but increase with search time in the patch. That is, correct Bayesian foraging
theory has appeared incompatible with the widely accepted cost�/benefit theories of
foraging. In this paper we reconcile Bayesian foraging with cost�/benefit theories. The
general solution is that a patch should be left not when instantaneous quitting harvest
rate reaches a constant level, but when potential quitting harvest rate does. That is, the
forager should base its decision on the value now and in the future until the patch is
left. We define the difference between potential and instantaneous quitting harvest rates
as the foraging benefit of information, FBI. For clumped prey the FBI is positive, and
by including this additional benefit of patch harvest the forager is able to reduce its
penalty of ignorance.

O. Olsson and J. S. Brown, Dept of Biological Sciences, Univ. of Illinois at Chicago, 845
W. Taylor St, 60607 IL, USA. Present address for OO: Dept of Animal Ecology, Lund
Univ., Ecology Building, SE-223 62 Lund, Sweden (ola.olsson@zooekol.lu.se).

A forager’s food may be distributed patchily. Spatial

variability in food availability poses opportunities and

challenges to the forager. As opportunity, variability

allows the forager to bias its searching efforts towards

rich patches and away from poor patches (Stephens

1989). Most models of patch use (Charnov 1976, Oaten

1977, Brown 1988) and habitat selection (Fretwell and

Lucas 1970, Rosenzweig 1981) assume that foragers

assess spatial heterogeneity in feeding or fitness oppor-

tunities and respond accordingly. As challenge, though,

the forager must be able to assess this heterogeneity

before it can benefit from a more efficient allocation of

effort. Furthermore, variability in food availability can

lead to variability in the individual’s food intake rate.

Depending on the relationship between food consump-

tion and fitness (often an increasing and decelerating

curve) a forager’s fitness may be influenced by temporal

variability in feeding rates (for instance, risk sensitive

foraging, Caraco 1980, Real 1980). Here we are inter-

ested in the assessment challenge posed by patchily

distributed foods.

Forager’s may obtain information from a variety of

sources. Prior to selecting a food patch, a forager may

gain knowledge on the whereabouts of rich and poor

patches from visual, auditory or chemical cues that can

be detected at a distance. Such long distance cues include

patch appearance (e.g. floral color or abundance,

Sandlin 2000; the fruit scent or burdens of trees,

Sallabanks 1993) or observations on the foraging

successes of other individuals (Valone and Giraldeau

1993). This allows a forager to be ‘‘periscopic’’ (sensu

Mitchell 1989) by selectively visiting higher quality

patches and/or by optimizing the order within which

patches are visited (variations on the ‘‘traveling salesman

problem’’, Gross et al. 1995). Upon encountering a

patch, a forager may gain information on its quality,
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usually represented as the abundance of resources. A

forager may be prescient (sensu Valone and Brown

1989). Upon entering the patch, such a forager uses

cues from the patch to make the most accurate assess-

ment of quality. Alternatively, the forager uses informa-

tion gained while exploiting the patch to make and

continuously update an estimate of patch quality (Oaten

1977, Green 1980, Iwasa et al. 1981, McNamara 1982,

Olsson and Holmgren 1998). Here we are interested in

this last information challenge. Specifically, how should

a forager use knowledge of cumulative search time and

cumulative harvest within a patch to effect an optimal

patch use decision?

Bayesian foraging has provided the conceptual frame-

work for how a forager should estimate patch quality

from three sources of information: 1) an a priori

knowledge of the distribution of patch qualities through-

out the environment, 2) time spent thus far in searching

for food items within the current patch, and 3) number

of food items thus far encountered and harvested. When

search within a patch is random (equal and constant

encounter probability on all food items within the

patch), authors agree on how a Bayesian forager can

estimate current patch quality.

However, authors disagree on how a fitness maximiz-

ing forager should use this information to decide how

thoroughly to use each food patch. Cost�/benefit models

of patch use suggest that a forager should remain in the

patch until the expected instantaneous harvest rate no

longer exceeds foraging costs (Charnov 1976, Iwasa et al.

1981, Valone and Brown 1989). If foraging costs do not

vary among patches, then the forager should strive to

equalize quitting harvest rates among patches (Brown

and Mitchell 1989) and leave each patch when its

estimated quality falls to a threshold giving-up density

(GUD, Brown 1988).

While seductively straightforward, the balancing of

expected instantaneous harvest rate with foraging costs

can be wrong for a Bayesian forager (Green 1980, 1984).

That is, such a forager does not necessarily maximize its

fitness by leaving all patches at the same instantaneous

intake rate (Olsson and Holmgren 1998, 2000). Here

we are interested in reconciling the attractiveness of

cost�/benefit models of patch use with the following

conceptual facts about Bayesian foraging and patch

use.

The peculiarities of Bayesian patch use and its

incompatibility with traditional patch use models such

as the marginal value theorem (Charnov 1976), or H�/

C�/P�/MOC (Brown 1988) go back to Oaten (1977),

Green (1980) and McNamara (1982). But, it is a

technical report by Green (1988) that fully illuminates

the potential incompatibilities of a fixed quitting harvest

rate patch use rule with optimal foraging under Bayesian

patch use. Iwasa et al. (1981, and Valone and Brown

1989, Rodrı́guez-Gironés and Vásquez 1997) merely

assume a fixed quitting harvest rate strategy as optimal.

Green shows beautifully how this is true only when

resources are not clumped (e.g. binomial or Poisson

distributions).

When the distribution of resources among patches is

clumped (e.g. negative binomial �/ most patches have

few items and a few patches have many items), a

forager should use a potential value rule and only leave

the patch when the expected average harvest rate

within the patch for the remainder of the visit no

longer exceeds foraging costs. Olsson and Holmgren

(1998) showed how this subtle yet crucial distinction

leads to an interesting pattern of patch use. Instead of

a constant relationship between quitting harvest rate

and time spent within a patch, quitting harvest rate

actually rises with patch residence time. They show

how a forager may be willing to persevere in a

seemingly unsatisfactory patch in the knowledge that

finding a food item may provide the good news that

this patch is not so bad after all. Here, we show how

incorporating this ‘‘good news’’ into patch use models

can reconcile potential value rule of Green (1988)

and Olsson and Holmgren (1998) with the instanta-

neous rate rule of the patch use model of Brown (1988,

1992) and with the marginal value theorem (Charnov

1976).

Our specific goals include:

1) Highlight the salient differences and consequences

of a Bayesian forager using a fixed quitting harvest

rate strategy versus a potential value rule. Under

clumped distributions of food, the fixed quitting

harvest rate strategy that seems so compatible with

cost�/benefit models of patch use is wrong. The

potential value rule, which is optimal, does not

seem compatible with traditional cost�/benefit

models.

2) Introduce the concept of a foraging benefit of

information (FBI). With this concept we suggest

that the optimal patch use strategy of a Bayesian

forager should be: H�/FBI�/C�/P�/MOC where

H is the expected instantaneous harvest rate,

and C, P, and MOC are the metabolic, predation

and missed opportunity costs of foraging,

respectively.

3) By using a prescient forager as a benchmark we

clarify several aspects of patch use under imperfect

information. First, there is always a penalty of

ignorance when a forager is not prescient. Next,

from all available information, useful information

is that which can be used to reduce the penalty of

ignorance. Finally, the useful information from

patch exploitation that can lead to good news and

raise the forager’s estimate of current patch quality

leads to a positive FBI.
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Models and concepts

We illustrate the results by considering two ecological

scenarios that differ in their foraging costs. The first

scenario conforms to the assumptions of the marginal

value theorem. The environment is infinitely repeating

meaning that while there is depletion of harvested food

patches, the environment itself is not depleting. The

forager’s objective is to maximize its long-term net

energy gain in the absence of predation or metabolic

costs of foraging. The only foraging cost while harvest-

ing a patch is the missed opportunity from not leaving

the patch and exploiting another. This missed opportu-

nity cost of the marginal value theorem is just the

forager’s long-term average intake rate, G. This is the

scenario discussed above where each patch use strategy

involves leaving a patch when the rule’s value function

falls to the threshold of G.

In the second scenario we relax the assumptions of the

marginal value theorem by assuming that there are both

metabolic and missed opportunity costs that determine

the threshold at which the forager should leave the food

patch. We assume that these costs are exogenous to the

distribution of food items among patches and to the

forager’s patch use strategy. In this scenario, the forager’s

goal is to remain in each patch until the value function

equals its exogenous cost. Unlike the first scenario, each

rule under this second scenario can have the same

exogenous cost. And, each rule may strive to harvest

the same amount of food from each patch. A rule

outperforms another rule by more successfully biasing

search effort towards rich patches and away from poor

patches.

For each scenario, we will consider the performance of

each patch use rule for a range of distributions of food

items among patches. Using a binomial distribution we

will consider the range from completely uniform to

Poisson, and using the negative binomial we can

continue the range from Poisson to clumped.

The analyses will reveal the penalty of ignorance, and

show the failure of the Bayesian instantaneous rule

relative to the Bayesian potential value rule. The

analyses will allow us to formalize a benefit from

spending time searching a patch. We will term this

benefit the foraging benefit of information (FBI). We

will see how the Bayesian instantaneous rate rule fails

because it either ignores or fails to properly incorporate

FBI, and how the Bayesian potential value rule succeeds

by correctly incorporating the FBI into the costs and

benefits of foraging.

Scenario 1: intake rate maximization

We will compare the results of four different patch-

leaving rules. To begin our analyses, we assume that the

forager has no metabolic or predation costs (or these

costs are the same for all activities). Hence, the foragers

strive to maximize the long-term rate of energy gain:

G�
n̄

t̄� t
(1)

where n̄ is the average number of prey caught per patch, t̄

is the average search time spent per patch, and t is the

average travel time between patches.

Within patches we consider foragers whose patch

harvest rate, f, conforms to a random search model

such as Holling’s disc equation:

f�
AX

1�AhX
(2)

where A is the forager’s encounter probability on food

items in the patch (or searching efficiency), h is the

handling time per harvested food item, and X is the

current food density within the patch. Now, let patches

vary in their initial prey abundance, Ni, where i�/

1, . . . , m represents m different initial abundances

among patches. How does information regarding the

initial abundance of patches enhance the forager’s

performance?

Here, we will consider three general distributions that

may be applicable to patches containing a discrete

number of prey items: the binomial distribution, the

Poisson distribution and the negative binomial distribu-

tion. These distributions form a continuum from regular

to clumped. For simplicity, we will describe all three

distributions with their common parameters N and s2,

i.e. the mean number and variance of prey items in

patches.

For ease of presentation, we will assume that h�/0.

This means that rates and prey density match perfectly

and can be compared on the same scales. That is, Eq. 1

becomes f�/AX.

The models of patch assessment that we consider are:

1) Prescient (PS). Upon arrival in the patch the

forager immediately has an accurate ‘‘knowledge’’

of patch quality. The forager’s value function for a

given patch is its current expected harvest rate:

f�A(N�n) (3)

where N is the initial number of food items in the

patch and n is the number of food items harvested

thus far. The challenge for the prescient forager is

to select k, the threshold remaining food density

that maximizes long-term harvest G. If the patch

contains less than k prey at arrival the patch should

be left without spending any time there. Otherwise,

the patch should be harvested until only k prey are

left. The leaving rule that accomplishes this is to

choose k* such that the value function equals the

long term average: Ak*�/G which can be rear-

ranged as
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k�
�

G

A
(4)

Because the forager leaves the patch when its

quitting harvest rate equals its long-term average,

this model represents the discrete version of the

marginal value theorem (Charnov 1976) presented

by Olsson and Holmgren (1999).

2) Fixed time (FT). The forager makes no assessment

of the quality of a given patch. Because it cannot

discriminate among patches, its optimal behavior is

to leave all patches at the same t�(� t̄): The fixed

amount of search time should be selected so that

the forager leaves each patch at an expected

quitting harvest rate that equals its long-term

average. The value function of a patch is its current

expected harvest rate. Recall that under random

search the number of prey caught is

n�N(1�e�At) (5)

(Olsson and Holmgren 1999), and hence the prey

density remaining is

X�Ne�At
(6)

The value function is then

ANe�At (7)

where N is the average initial value of a resource

patch. The optimal fixed search time, t*, satisfies

ANe�At� �G: By substituting Eq. 1 for G and Eq. 5

for n, this expression for t* can be rearranged and

given as:

eAt�
�1�A(t��t) (8)

Notice how the optimal amount of time to spend

searching each patch is independent of the average

quality of patches and the distribution of resource

among patches. It is fully determined by travel time

and the forager’s encounter probability on re-

sources. Increasing travel time increases t* while

increasing the encounter probability decreases t*.

Spending t* per patch is the very best that an

ignorant forager can do, and such a forager need

only know its encounter probability on resources

and its travel time among patches.

3) Bayesian instantaneous rate rule (BI). This forager

knows the amount of time that it has spent

searching the patch, t, the number of prey items

encountered thus far, n, and the distribution and

abundance of prey items among patches. Such a

forager can use this information to estimate the

current prey density of the patch. Equivalently, it is

capable of determining its expected instantaneous

harvest rate. Under this patch departure rule a

patch is abandoned when the expected instanta-

neous intake rate, r, falls to some constant value, Q.

Iwasa et al. (1981) showed that

rn;t�
l� n

eAt
a� 1

a
� 1

(9)

This is the forager’s value function and gives the

expected instantaneous harvest rate from remain-

ing in the patch. In Eq. 9, l and a are parameters

from the negative binomial distribution, such that

la is the mean, and la (1�/a) is the variance. By

substituting this into Eq. 9 we get:

rn;t�
n(s2 �N) �N

2

s2(eAt � 1) �N
(10)

Equation 10 is valid for all three distributions

considered here (binomial, Poisson and negative

binomial). As can be seen from this expression, the

behavior of r varies with prey distribution (Iwasa et

al. 1981). In a binomial distribution s2BN and

hence r decreases with n. In a Poisson distribution,

s2�N which means that r becomes independent of

n. In a negative binomial distribution, s2�N and r

increases with n. In all three distributions, r declines

with t. However, in a completely uniform distribu-

tion, where s2�/0, r becomes independent of t but

declines with n.Iwasa et al. (1981) proposed that

the forager should leave all patches when r drops to

some constant level Q*. They will then achieve

some long-term intake rate, G.

4) Bayesian potential value rule (BP). This rule

considers a forager with the same information state

as the previous rule. From the information on n

and t the forager can, in addition to estimating the

expected instantaneous intake rate, look ahead and

anticipate its prospects from harvesting the patch

for an additional finite amount of time. By

anticipating the future of harvesting the patch,

the forager can estimate the expected number of

prey that will be caught during the remainder of the

patch visit, E(n), and the expected amount of time

that will be spent searching for those prey E(t). The

ratio of these provides the forager’s value function.

This value function estimates the forager’s average

return from the patch during the remainder of its

patch visit, P. This ratio

P�
E(n)

E(t)
(11)

can be called the ‘‘potential intake rate’’ of the

patch (Olsson and Holmgren 1998). Under the

potential value assessment rule it is optimal to leave

all patches when P reaches some constant value,

P* (Green 1988, Olsson and Holmgren 1998). For

a rate maximizer this value should be P*�/G

(Green 1988).
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The long-term energy intake rates that can be achieved

using the four different models will be called GPS, GFT,

GBI, and GBP respectively (PS�/prescient, FT�/fixed

search time, BI�/Bayesian instantaneous rate rule, and

BP�/Bayesian potential value rule).

Scenario 2: fixed exogenous cost

For generality, we will also consider foragers that have

metabolic costs of foraging, deplete their environment,

and have the option of saving energy by remaining

inactive. We will let c be the metabolic cost of foraging

and c0 be the cost of resting in a refuge or burrow. For

simplicity we will not consider any predation risk in this

model.

In this model, the forager has to pay c0 for each time

unit whenever it rests and does not forage. Hence, this

forager’s missed opportunity cost is �/c0, and its quitting

harvest rate should therefore be H�/c�/c0 (Brown 1992).

The rate maximizers’ missed opportunity cost, and

hence quitting harvest rate, varies widely with profi-

ciency between the different patch use rules. In this case

quitting harvest rate is fixed and the same for all patch

use rules, as they are dictated by c and c0 which are the

same regardless of strategy. This case therefore illumi-

nates several important properties of the patch use rules,

which will be evident below.

We assume that this forager has a time horizon that is

T time units, and its environment (e.g. territory) consists

of K patches. It has three possible activities: foraging in

patches, traveling between patches or resting. On average

it will gain n̄ food items (each containing one unit of

energy), and spend t̄ time units per patch foraging and

spend t time units traveling between each patch. As

mentioned above, when foraging or traveling it will

spend c energy units per time unit, and when resting it

will spend c0.

The net energy intake rate of a forager like this is

hence:

G�
Kn̄� cK(t̄� t) � c

0
(T�K(t̄� t))

T
(12)

and this is the fitness function it strives to maximize.

Equation 12 is subject to the constraint that there has to

be sufficient time within T such that it can deplete all the

K patches down to its desired level. That is K(t̄�t)BT

must be satisfied.

For each of the patch use rules we choose the policy

that maximizes G. In the case of the fixed-time strategy,

the optimal solution can be found analytically. As we

assume random search, we may substitute Eq. 5 for n

into Eq. 12, and differentiate with respect to t. By setting

the derivate to zero and solving for t we then find that

t���

ln
c� c

0

AN

A
(13)

For the other patch use rules, the optima must be found

numerically.

Penalty of ignorance

The prescient forager’s performance provides a ceiling on

performance for comparing the performance of the other

three patch use rules. For comparison, the fixed time rule

of the ignorant forager provides a floor on performance.

Between the upper and lower benchmarks of the

prescient rule and the fixed time rule, respectively, lie

the performances of Bayesian assessment strategies.

We will define the penalty of ignorance, I, as the

difference in performance between the prescient rule and

the fixed time rule (Fig. 1):

I�GPS�GFT (14)

This difference may be regarded as the selection

gradient for improving the information processing

capacity of the forager over evolutionary time. A

Bayesian forager can only recoup some but not all of

the penalty of ignorance by using sampling information.

We will define the value of sample information as the

improvement in performance of the Bayesian forager

Γ

Γ

Γ

Γ Γ

Fig. 1. The long-term energy intake rates returned by the four
different models of scenario 1. Open circles indicate the
respective maxima. The highest dashed curve is the one
produced by a prescient forager, and is shown as a function of
k, the quitting harvest rate chosen. The solid curve is for the
Bayesian potential value assessment rule, shown as a function of
P, the estimated potential value of the patch at which it is
abandoned. The lower dashed curve is the Bayesian instanta-
neous value assessment rule, shown as a function of Q, the
estimated instantaneous value of the patch. Finally, the dotted
curve is for a fixed time forager. It is shown as a function of the
GUD produced by the strategy t chosen.
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over that of the ignorant forager: GBP�/GFT. We will

define the penalty of sampling information as that

portion of the penalty of ignorance that cannot be

recouped through the use of sampling information

alone: GPS�/GBP. By definition the value of sampling

information and the penalty of sampling information

sum to the penalty of ignorance. The penalty of sampling

information represents selection for the evolution of

other sensory modalities for assessing patch quality over

and above the Bayesian use of sampling information.

Results

Rate maximizing performance of patch use rules:

scenario 1

For illustration, consider an environment where the prey

density among patches fits a negative binomial distribu-

tion with a mean prey density of N�6 and an over-

dispersion coefficient of l�/0.5 (yielding a variance of

78). Now, consider a patch within this environment with

an initial prey density of N�/24. In Fig. 2 we show the

four patch use rules in the state space of instantaneous

intake rate versus time spent searching for food in the

patch. The solid stepped line is the actual current prey

density. Prey items were found at the times when this line

jumps down.

A prescient forager leaves the patch at point A, when

the number of prey left reaches k*�/21 and it has caught

just three prey items. As can be seen from Fig. 1, the

optimum for the prescient forager occurs where k*�/GPS,

i.e. when the current value of the patch has reached the

best possible long-term rate achievable in the environ-

ment. In this example, a prescient forager rejects all

those patches with N5/21 and forages all other patches

to N�/21.

A fixed time forager leaves the patch at point B after

time t* where the expected instantaneous intake rate, or

equivalently average GUD, produced by that t, equals

GḞT (Fig. 1). Note that this decision is independent of

the intake rate at that point. In fact this forager, spends

this amount of time in each patch irrespective of initial

prey abundance and in general harvests ca 1/8th of the

food from each patch. In this very example, it takes three

items before it leaves, just like the prescient. However,

the strategy contrasts sharply with the prescient forager

that harvests nothing from patches below N�/21 and

harvests an increasing fraction of a patch’s food as N

increases above this threshold.

A Bayesian forager’s estimate of current prey density,

or equivalently instantaneous intake rate (the solid,

jagged curve, in Fig. 2) uses information on the

cumulative search time in the patch and the cumulative

number of food items encountered. Upon arriving at a

new patch a Bayesian forager estimates that the patch

Π

Π

Π

Fig. 2. Actual current prey density (thick step shaped solid
curve), estimated current prey density (thinner solid curve), and
patch departure rules for four foraging models, exploiting prey of
three different distributions. The dashed straight line, at level k*,
is the prey density at which a prescient forager should leave. The
vertical dotted line, at t*, is the fixed time that a forager unaware
of, and incapable of estimating, patch quality should spend. The
horizontal solid line, atP*, is the potential patch quality at which
a Bayesian potential value assessment forager should leave. The
solid circles are the estimated current prey density at the leaving
points corresponding to having found 0, 1, 2 . . . and so on prey
items, for this strategy. The dashed horizontal line, at Q*, is the
estimated quitting harvest rate of a Bayesian instantaneous value
assessment forager in the negative binomial distribution. The
open circles are the stopping points for this forager. The letters
A�/Dindicate the optimal stoppingpoints for the prescient, fixed-
time, Bayesian potential value, and Bayesian instantaneous value
foragers respectively.
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contains the average prey density of N�/6. This estimate

deteriorates as search time is spent without finding prey.

However, when a prey item is found the estimate jumps

up; very much so when prey is found soon, and less so

when prey are found after longer search times. Hence, we

make the mildly paradoxical observation that finding an

item leads to an increase in the estimate of current prey

density even as the actual prey density has declined.

Following the Bayesian potential value assessment

rule, the forager leaves the patch having caught three

items at point C. The decision to leave is based on the

potential value of the patch, P, that has reached P*�/

GBP at this point (Fig. 1). It is worth noting that the

instantaneous intake rate (or current prey density),

indicated by the filled circles, does not have a constant

value at a constantP-value (Fig. 2). Rather, current prey

density, or equivalently GUD, on the average across all

patches increases with search time (Olsson and Holmg-

ren 1998, 1999, 2000). After long search times, the

instantaneous intake rate at departure (H) converges

with P*.

Finally, a forager following the Bayesian instanta-

neous value assessment rule leaves the patch when the

instantaneous intake rate has reached Q*, at point D. At

this point, the long-term intake rate is maximized, but

here Q*B/GBIm (the index refers to Bayesian instanta-

neous maximizing; Fig. 1)! An alternative would be to

leave at a slightly higher instantaneous intake rate,

indicated by GBIe (Bayesian instantaneous equalizing)

in Fig. 1, where instantaneous and long-term intake

rates are equalized. However, at this point long-term

intake rate is lower! That is, following the Bayesian

instantaneous value assessment rule, it does not seem

possible to follow the marginal value rule!

The former case corresponds to a naı̈ve MVT in

which the forager sets its quitting harvest rate equal to

its long-term average. This is what Iwasa et al. (1981)

and Valone and Brown (1989) had in mind in their

applications of Bayesian foraging. Curiously, this is not

always the value of Q that maximizes G. When resources

are clumped, the optimal value for Q under this patch

use rule is to leave patches at a lower quitting harvest

rate than the long-term average: Q*B/G. That means

that, given the information state of the forager, an

instantaneous assessment rule is not optimal when the

distribution of prey items among patches is clumped

(negative binomial)!

For comparison, consider the cases with Poisson and

binomial distributions in Fig. 2. In the Poisson case, the

patch initially contains 10 prey items. As a Bayesian

forager gains no information from finding prey, its value

function is independent of prey captures and it leaves

after a fixed time (C), at the same point as the fixed time

forager (B). In the binomial case (here with s2�/2) the

patch initially contains eigth prey items. The value

function declines with time, but also stepwise as prey

are found.

The foraging benefit of information

The Bayesian instantaneous value forager does not

achieve the same intake rate as the Bayesian potential

value forager (Fig. 1). As mentioned above, this depends

on the fact that this strategy fails to incorporate the FBI.

The prescient forager bases its patch departure on the

number of prey items left, k, and Ak is the instantaneous

quitting harvest rate. Obviously, k also contains all the

information there is about the future expectations for the

patch �/ it is the remaining number of prey items, and

therefore also the potential value of the patch, and Ak is

the potential quitting harvest rate P.

For prey distributions where s25N the expected

instantaneous intake rate, rn,t, can never increase during

a patch visit. This means that the expectations for the

future during the patch visit are sufficiently described by

rn,t and hence FBI�/0. Therefore, P�/H in these cases,

just like in the case of the prescient forager.

However, as soon as s2�Nrn;t increases with n, and

may in the next instant have a higher value than it has

now. Thus, rn,t is not a sufficient estimate of the future

expectations in the patch. In clumped prey distributions

there may be a benefit to remaining even when rn,tB/P.

The benefit from lingering in the patch is the possibility

of obtaining positive information about patch quality.

The ‘‘good news’’ increases future expectations of prey

capture. This benefit of exploiting the patch for informa-

tion can be measured in units of energy. We define the

foraging benefit of information as FBI�/P�/H, i.e. the

difference between the potential and instantaneous

harvest rates at which a patch is left.

For the Bayesian potential value forager, FBI declines

throughout the patch visit. This means that upon arrival

the forager accepts a reduced instantaneous intake rate

in order to be able to separate rich patches from poor.

That is, it gives itself time to make sure that the patch is

not much better than it presently thinks �/ the forager

waits for good news (Olsson and Holmgren 1998). When

it has spent a long time in the patch FBI is much smaller,

as then the estimate is becoming reliable, and even good

news change the expectations little.

For a given prey density distribution, FBI is not fixed,

as it depends on P, the quitting harvest rate (Fig. 3A).

For a rate maximizing forager only one value ofP can be

optimal (Green 1988), but for foragers with other fitness

functions other P-values will be optimal (below, Olsson

and Holmgren 1999, 2000). For state dependent foragers

a range of different P-values may be optimal under

different conditions (Olsson and Holmgren 1998).

In Fig. 3B we have shown how FBI varies with P over

a large range of values. For comparison the long-term

intake rate is also shown in the same graph, but this does

not imply that the data are only valid for rate maximiz-
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ing foragers. The FBI-value shown is that for the first

stopping point (Fig. 3A), when no prey has been found.

We may call this FBI0. It is clear that FBI0 increases

almost linearly with P, for a given prey density, and can

be rather large in comparison to the longterm gain rate.

That is, a large sacrifice in terms of instantaneous intake

rate is made to gain information. This information is

used to exploit the environment in an optimal manner.

The information available differs much between prey

distributions. Information is obviously more valuable in

a distribution with high mean density (Fig. 3C). How-

ever, it is important to realize that the information

available depends very much on the aggregation of food

items among patches. In a highly aggregated distribu-

tion, with a high variance in relation to the mean, FBI0
is very large (Fig. 3C). In a less aggregated distribution it

is less, and in a Poisson or binomial distribution it is

absent! That is, for these two distributions, P�/H�/0.

Penalty of ignorance

Long-term intake rate increases with the average prey

density for all strategies (Fig. 4), but at different rates for

the different strategies. This translates into the penalty of

ignorance and the value of sample information. The

penalty of ignorance declines, but only very slowly with

increasing prey density. That is, the richer the environ-

ment, the less costly it is to be uninformed. In the

example given, the over dispersion parameter l�/0.5,

and therefore the variance is s2�N�N
2

=l: That is, the
distributions are rather clumped, but the degree of

‘‘clumpedness’’ remains constant.

As opposed to the other strategies the long-term

intake rate of the Bayesian potential forager is not

linear, but accelerates slightly with prey density. As a

consequence, the value of sample information increases

with prey density. That is, the relative value of correctly

using sampling information increases with environmen-

tal quality.

In Fig. 5, we show the results of changing the

variance, or the type, of the prey distribution rather

than its mean value. Variance ranges from 0 to approxi-

mately 300, but the mean value is kept constant at 6 prey

items per patch. When s2�/0 the forager faces a

completely regular prey distribution, with 6 prey items

in each patch. When 0B/s2B/6 the distribution is

binomial, with a symmetrical or left skewed distribution

of patch qualities around the mean value. When s2�/6 it

is a Poisson distribution, and when s2�/6 the forager

faces negative binomial distributions, where prey are few

or absent in most patches, but some patches are very

rich, i.e. a right skewed distribution.

As was shown in Fig. 3 the information content varies

considerably with the parameter l of the negative

binomial distribution, and hence with variance (a low

l means a high variance, for a given average prey

density). In the range where variance is greater than

the mean, the Bayesian potential value forager exploits

FBI to increase long-term intake rate (Fig. 5). The

outcome is that the value of sample information

Fig. 3. (A) The potential (P, dashed curve) and instantaneous
(H, circles) quitting harvest rates for two Bayesian potential
value foragers that aim to leave the patches atP�/4 andP�/12,
respectively. Both foragers are exploiting the same negative
binomial prey density distribution with N�7 and l�/0.5. The
distance between the curves and the first point for each is FBI0.
(B) FBI0 (solid curve) and long-term intake rate (dashed curve),
for the same prey density distribution, for the full range
of possible potential quitting harvest rates, P. (C) FBI0,
for rate maximizing Bayesian foragers, as a function of
average prey density. The different curves are for different

l-values, and s2�N�N
2

=l:

OIKOS 112:2 (2006) 267



increases with variance, as long as s2�N: Also the

penalty of ignorance increases dramatically with var-

iance. Both increases have the same reason: the more

extremely clumped a distribution is, the more readily can

bad patches be discarded and foraging effort be allocated

to the richest patches.

The fixed time forager has no capability of exploiting

the variance of the prey distribution, only its mean.

Therefore, its long-term intake rate is independent of

variance.

When the variance is not greater than the mean the

two Bayesian strategies give identical payoffs. This is

because in the binomial and Poisson distributions FBI�/

0, and there is no good news to be had from finding a

prey item. What may at first seem a paradox is that the

intake rate of the Bayesian foragers, and hence the value

of sample information, decreases with variance as long

as it is less than the mean. However, this results from the

skew of the binomial distribution. When the variance is

very low the parameter p of the binomial distribution is

close to 1. That means that most patches are close to the

mean value, and few are poor, this fact benefits the

Bayesian foragers capable of estimating instantaneous

intake rate. As variance increases the distribution

approaches the Poisson. In a Poisson the occurrence of

one item gives no information whatsoever about the

Fig. 4. (A) Long-term intake rate for the four different patch
use strategies when mean prey density varies. The upper dashed
curve is GPS, the solid curve is GBP, the lower dashed curve is
GBI, and the dotted curve is GFT. (B) The relative penalty of
ignorance, (GPS�/GFT)/GPS (dotted curve) and value of sample
information, (GBP�/GFT)/GPS (solid curve). In all cases l�/0.5.

Γ

Fig. 5. As in Fig. 4, but variance differs and N�6 in all cases.
The middle panel is a magnification of the range of low
variance-levels. The vertical line indicates the Poisson distribu-
tion, as N�s2:
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occurrence of other items. Therefore, in this case the

optimal strategy for a Bayesian forager is to follow a

fixed time rule, and the payoff of these two strategies are

the same.

Performance of patch use rules under a fixed

exogenous cost: scenario 2

In the following we will discuss the second scenario,

when the environment has a finite size, a finite time, and

the opportunity to save metabolic costs of foraging by

resting instead of foraging. The results are quantitatively

quite different from the first case (Fig. 6, cf. Fig. 1). The

prescient, the Bayesian potential value, and the fixed

time foragers all gain their maximum fitness when

patches are left when the quitting harvest rate equalizes

the foraging costs, c�/c0. That is, all three types of

foragers leave the patches when they estimate the same

patch value, i.e. P�/c�/c0, despite the fact that their

long-term gains are quite different (GPS�/GBP�/GFT in

Fig. 6). In contrast, the instantaneous value Bayesian

forager gains its maximum fitness if it uses a quitting

harvest rate lower than this, i.e. PB/c�/c0 (GBPm in Fig.

6). If this forager is forced to quit harvesting when P�/

c�/c0 it will gain much less than its maximum (GBPe in

Fig. 6). This is a direct demonstration that a forager that

ignores the FBI when exploiting a clumped distribution

is unable to maximize fitness by equalizing the costs and

benefits of foraging.

In Fig. 7 we show that the long-term energy gain rate

increases, for all three strategies displayed, when the

metabolic cost of not foraging decreases, i.e. as P�/c�/

c0 increases. This is straightforward, as the foragers pay

less for the time they are inactive. In absolute terms, both

the penalty of ignorance and the value of sample

information increase with P, which corresponds with

the result that FBI increases with P (Fig. 3). However,

relative to the payoff for the prescient, both the penalty

of ignorance and the value of sample information

decrease over most of the range. There is a weak increase

only for the lowest quitting harvest rate, i.e. for the

highest fixed cost of alternative activities.

Γ

Γ
Γ

Γ

Γ

Fig. 6. The fitness for the four different patch use strategies
under the fixed exogenous cost model. In all cases c�/5.5 and
c0�/0.5 and thus P*�/c�/c0�/5. For the three strategies (PS,
BP and FT) the maximum fitness occurs at P*. For the
Bayesian instantaneous value forager this is not the case. Where
P�/c�/c0 fitness (GBIe) is far below the maximum (GBIm) for the
strategy.

Fig. 7. The top panel shows the fitness when c0 varies and c is
kept constant. P*�/c�/c0 varies as a consequence of this. The
upper (dashed) curve GPS, the middle (solid) curve is GBP and
the lower (dotted) curve is GFT. The middle panel is the penalty
of ignorance (GPS�/GFT, dotted curve), and value of sample
information (GBP�/GFT, solid curve). The lower panel show
these entities relative to GPS.
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Giving-up densities

In Fig. 8 we show the expected giving-up densities in

patches over a range of initial prey densities, N. For this

figure we use the second scenario, with c�/c0�/5 for all

patch use strategies, just as in Fig. 6.

There are two obvious results. First, a prescient

forager depletes all patches down to k�/(c�/c0)/A, if

initial prey density N�/k (horizontal line PS in Fig. 8).

Second, a fixed time forager depletes a constant propor-

tion from all patches, namely 1�/e�At* (FT in Fig. 8).

For the Bayesian strategies, the results are less

obvious. In all three cases (Bayesian potential, BP,

Bayesian instantaneous equalizing, BIe, and Bayesian

instantaneous maximizing, BIm) the expected GUD will

asymptotically reach their respective P (i.e. 5, 5 and 3.1

respectively) for high initial prey densities. For lower

values of N they will all produce GUDs higher than P.

In the case of BIe the GUDs will be much higher than P,

and GUD will only be close to P in extremely rich

patches. When H is high relative to N; the Bayesian

forager that ignores FBI leaves patches soon after arrival

if prey are not found quickly. This guarantees that the

forager only spends lots of time in very rich patches.

However, it does so at the cost of discarding most rich

and moderately rich patches together with the poor, as

can be inferred from Fig. 8.

The Bayesian potential forager, that aims for the same

P, but which recognizes a positive FBI, and hence has

P�/H, stays longer in all patches even without reward

(cf. Fig. 2 and 3). By doing so, it wastes a little time in all

poor patches, but the forager discards many fewer rich

patches, and this outweighs the cost of wasting time in

poor patches.

A Bayesian instantaneous forager that maximizes its

fitness, and is not forced to leave the patches when

P�/c�/c0, will exploit the patches almost in the manner

that the Bayesian potential value forager does, and will

also have a fitness not much lower than this strategy. The

way it achieves this, however, is by lowering H for all

patches. It gains by discarding fewer of the rich patches,

but it loses by depleting rich patches unnecessarily low.

The concept of overuse and underuse can apply to

these results if we use P/A as the template GUD that all

patches should have (Valone and Brown 1989). An

overuse is when the patch has been depleted too far, by

spending too much time in it, and underuse is the

reverse. It is then easy to see that the prescient is the only

strategy succeeding completely, and that the equalizing

Bayesian instantaneous value forager underuses practi-

cally all patches. The fixed time forager overuses poor

patches and underuses all other. The Bayesian potential

value forager may be said to overuse poor patches,

underuse moderately rich and more or less correctly use

very rich patches (Olsson and Holmgren 1998, 2000).

However, it is important to note that the Bayesian

foragers are not basing their patch departure on an

estimate of prey density per se, but on estimated future

prey capture rates. That is, the overuse and underuse by

Bayesian foragers does not imply that they commit

mistakes in relation to their own strategy �/ they leave the

patches when their P falls to the threshold level, as

stipulated by patch use theory. That is, when the GUDs

are viewed as a function of initial prey densities (Fig. 8,

Valone and Brown 1989) one may get the impression

that Bayesian foragers on average commit mistakes when

patches are left. However, when GUDs are viewed as a

function of search time (Olsson and Holmgren 1999),

which is the state-space relevant to the behavior of the

forager, it is clear that on average mistakes are not being

made.

Discussion

In this paper we have shown how a positive foraging

benefit of information, FBI, is available to Bayesian

foragers exploiting clumped prey. By accepting this

benefit the optimal Bayesian foragers (Green 1988,

Olsson and Holmgren 1998) reduce their penalty of

ignorance, and hence gain a fitness advantage. We have

suggested that the general patch use model should be

P�/C�/P�/MOC (Brown 1988), or in the case of a rate

maximizing forager P�/MOC (Charnov 1976). Here

P�/H�/FBI, i.e. it is the potential patch quality,

including the instantaneous value, H, and the future

promises, FBI. It is only when prey distribution is

clumped that FBI�/0. That is, foragers exploiting prey

with Poisson or less aggregated distributions should base

their patch departure on H�/C�/P�/MOC (Iwasa et al.

1981). In the case of prescient foragers, patch departure

should be based on known number of prey remaining,

Fig. 8. Giving-up densities (GUDs) as a function of initial prey
densities for the four different patch use strategies shown in
Fig. 6. The curves for PS, BP, FT, and BIe all use P�/c�/c0.
The curve BIm use P�/3.1, which yields the highest fitness for
this strategy.
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which at the same time is a measure of instantaneous

value and future promises. Hence, also in that case the

original model, H�/C�/P�/MOC is correct (Brown

1988).

Ignoring the FBI when exploiting clumped prey

(Iwasa et al. 1981, Valone and Brown 1989, Rodrı́guez-

Gironés and Vásquez 1997) leads to the remarkable

result that there is no truly optimal solution for Bayesian

foragers, as HB/C�/P�/MOC.

This means that, only in one of the cases we have

investigated does the correct inclusion of FBI matter.

However, we argue that it is a very important case. Very

many organisms have a contagious spatial distribution,

often because their environment itself is heterogeneous.

Among areas where they occur their numbers are often

well described by a negative binomial distribution

(Pielou 1977, Olsson et al. 1999, van Gils et al. 2003,

Vos and Hemerik 2003, Warren et al. 2003). That is, not

only is it common to find that organisms have a patchy

distribution, occurring in some areas and not in others,

but in most of the areas where they do occur they are

rare, and only in some are they very common (Warren et

al. 2003). Thus, foragers exploiting prey with a negative

binomial (or similar) distribution are probably very

common in nature.

Most importantly, the foraging benefit of information

bridges the gap between the correctness of Green’s

potential value rule and the incorrect, but appealing

cost benefit analyses of patch use. The possibility for

good news generates a benefit to sticking around over

and above instantaneous expectations of rewards. This

reward, FBI, can be measured and placed within the

same foraging currencies as any other cost or benefit.

The value of sampling information (multiplied by the

marginal rate of substitution of energy for fitness) is the

selection gradient acting on completely ignorant for-

agers, to adopt a Bayesian strategy. Likewise, the penalty

of ignorance is the selection gradient for the ignorant to

become prescient, and the penalty of sampling informa-

tion is the selection acting on the Bayesian to become

prescient. The step from ignorant to Bayesian may

involve mainly neural capacity, as most animals probably

already have some estimates of both time and food

intake/gut fullness. However, the neural capacity that is

needed by a Bayesian forager is not great (Holmgren and

Olsson 2000), the question may rather be if there is a cost

to it. The evolution of prescience may involve the

development of new sensory abilities, such as olfaction.

In many cases it may not be that the senses are lacking,

but rather that the information it conveys is ambiguous,

and hence not valuable.

It is easy to see that these selection pressures will be

very different in different environments (Fig. 4 and 5).

The penalty of ignorance is relatively insensitive to

variations in mean prey density. However, the selection

to evolve from ignorant to Bayesian is stronger the richer

the environment, and the selection to evolve to prescient

is weaker. The variance of the prey distribution drama-

tically increases the selection for an ignorant forager to

evolve prescience, particularly at low and intermediate

variances. Interestingly, the selection for evolving Baye-

sian capacity decreases with variance for dispersed

distributions, and is entirely absent for Poisson, but

then increases strongly for clumped distributions.

The above predicts that we should mostly find

Bayesian foragers among animals that prey on heavily

clumped food. As far as we know, the natural prey

distribution has only been estimated in two of the cases

when a Bayesian strategy has been found (Olsson et al.

1999, van Gils et al. 2003). In both of these cases the

distribution was clearly clumped, with the over disper-

sion coefficient close to 0.3, which conforms to the

prediction.

Empirical tests of patch use strategies

Bayesian foraging strategies have been reported in a

number of cases in natural or experimental settings

(Valone and Brown 1989, Valone 1991, Alonso et al.

1995, Olsson et al. 1999, Davidson and Morris 2001, van

Gils et al. 2003, reviewed by Valone 2006).

Whenever dealing with clumped prey distributions, we

would like to advocate the use of tests of the positive

relation between GUDs (or instantaneous quitting

harvest rates) and search time (Olsson et al. 1999, van

Gils et al. 2003). This correlation is only predicted for

the Bayesian potential value forager (Fig. 2 and 3), and

it is based on the same dimensions (harvest rate by

search time) as is the foragers’ own patch departure

decision.

Other predictions that have been tested are the

relation between GUDs and initial prey densities, and

the expectation that initially rich patches should be

underused and poor patches overused. These predictions

are in a sense secondary properties, as they do not

directly measure the variables that the foragers may have

based their decisions on. Also, they are more ambiguous

as all strategies are predicted to have an initially

increasing relation between GUD and initial prey

density. And both the Bayesian potential strategy and

the prescient should level off, and they may be difficult

to separate. In addition, this relation for the Bayesian is

non-linear, and cannot be described with a simple

analytic equation (Olsson and Holmgren 2000). A way

to partly overcome this is to use polynomial regression to

test for the expected non-linearities (Davidson and

Morris 2001). Still, the range of prey densities that

may need to be used in an experiment will make it

difficult to accomplish.

An additional point, worth making here, is that the

Bayesian potential and Bayesian instantaneous rate rules
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need never be separated in a test. The Bayesian

instantaneous rate rule should simply not be expected,

as it is not only sub-optimal �/ it is incorrect.

Perspectives beyond foraging

So far, explicit population or community level effects

have not been modeled for Bayesian foragers. Some

initial predictions on this theme have been presented by

Rodrı́guez-Gironés and Vásquez (1997) and Olsson and

Holmgren (2000). Their conclusions were that when

foragers use a Bayesian strategy, the distribution of prey

among patches will have profound effects on the stability

of the system. However, it was also predicted that the

currency of the predator might influence density depen-

dent mortality rate of the prey. The conclusion to be

made now is that the Bayesian foraging models have

reached the point where they are sufficiently theoreti-

cally and empirically founded, and practically manage-

able, to be included in population and community

models. Progress in this direction would certainly be

worthwhile.

Bayesian decision-making is likely important in many

behaviors other than foraging. For example, the assess-

ment a male is making of its rivals (Peake et al. 2002) or

a female is making of potential mates (Luttbeg 1996,

Mennill et al. 2002) may be Bayesian. This study hints

that such assessments and decisions will be particularly

intriguing when the two contestants have different

reward distributions. For example, it seems plausible,

that females could have a right-skewed distribution and

males a left-skewed, in a mate choice situation.
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