13. THE FORAMINIFERA AND SOME ASSOCIATED MICROFOSSILS OF SITES 135 TO 144

J. P. Beckmann, Federal School of Technology, Zurich, Switzerland

INTRODUCTION AND ACKNOWLEDGMENTS

A total of 465 samples, all collected on shipboard, were available for examination of the foraminifera and associated microfossils. On the average, this amounts to one sample for slightly less than one meter of recovered core. Most of the washed residues were separated into two fractions (retained in the 80 mesh and 230 mesh sieves). Only a few samples were too hard for conventional washing methods and had to be studied in thin section (Site 139, Core 6; Site 144, Core 6). A set of charts showing the composition and preservation of the microfauna for each sample, with special emphasis on the foraminifera, has been prepared and is reproduced here on Tables 2 to 11. These tables also include the determinations of the zones and ages. The figures indicating the planktonic/benthonic ratios and the percentage of foraminifera (of the total fauna in the 80-mesh fraction) are in most cases estimates rather than counts. For some samples, the record of the foraminiferal species has been left incomplete or omitted altogether. Such samples are marked in the last columns ("Remarks") by the letters "P"-partially examined or "n"-not examined. Omissions of this kind will be found in monotonous sequences of rich faunas, or where an occasional sample was poorly preserved. Their purpose was to save time without losing essential data.

Apart from these tables, this volume contains summaries of the foraminifera and some associated microfossils for each core recovered. These summaries, which are both descriptive and interpretative, are incorporated in the appropriate Site Reports (Chapters 2 to 10).

The ages of the foraminiferal faunas recovered on Leg 14 range from the Aptian/Albian to the Quaternary, but the majority of the good assemblages represent the Neogene and the Cretaceous. The best sections for detailed biostratigraphic study are in the Cenomanian-Upper Albian of Site 137, the Upper Cretaceous of Site 144, and the Pliocene-Pleistocene of Site 141. The most completely cored stratigraphic section, with good calcareous microfaunas throughout, is that of Site 144, but since several unconformities were penetrated, the stratigraphic record is not continuous.

The preservation of the faunas is variable. In the majority of the samples, the calcareous shells appear to be more or less affected by solution. In the Pliocene of Site 141, an excellent example of gradual loss of the calcareous component, involving progressive etching, breaking up, and final disappearance of the foraminifera, can be observed.

Apart from the common planktonic deep-water faunas, a fair number of predominantly benthonic assemblages were encountered. Some of these appear to have been moved downslope from a shallower environment (examples in Sites 135, 140 and 142). Other benthonic faunas are entirely

noncalcareous and consist essentially of agglutinated deepwater foraminifera (Sites 137, 140 and 141). In the Aptian/Albian faunas (Sites 136, 144), the benthonic element is generally more conspicuous than elsewhere. These may at least in part be autochthonous deposits of the neritic to upper bathyal realm.

In addition to the Leg 14 cores, about thirty samples from piston cores collected by the research vessel Vema were kindly supplied by the Lamont-Doherty Geological Observatory (Palisades, New York). I wish to thank this institution for making available this most useful comparison material. I am also indebted to G.F. Elliott (British Museum, London), A. J. Keij, R. Lagaaji (both Shell-BIPM, Den Haag), and H. J. Oertli (SNPA, Pau, France) for their help in determining the calcareous algal fragments and bryozoans of Site 142, as well as some Cretaceous ostracods of Site 144. Helpful information was received in discussions with M. B. Cita (University of Milano) and F. Roegl (ETH, Zurich). E. A. Pessagno (University of Texas, Dallas) made available his shore lab determinations of samples from Sites 137 and 144. In particular, I wish to thank H. M. Bolli (ETH, Zurich) for his advice on many problems including taxonomy, biostratigraphy and the stratigraphy of the Caribbean area.

BIOSTRATIGRAPHY

The biostratigraphic subdivision of the Cretaceous, Tertiary and Quaternary, as used in this report, is shown on Table 1. This table also includes references to the definitions of the zones, as well as the age boundaries agreed upon by the shipboard party.

The sequences of foraminiferal zones adopted for the Tertiary is essentially that proposed by Bolli (1957b, c, d, 1966, 1970). It appears that Bolli's scheme can readily be applied to calcareous planktonic faunas from the warm temperate to tropical regions of the Atlantic Ocean. As can be seen on the last column of Table 1, the distribution of the Leg 14 cores among the zones is quite uneven. The maximum is in the *Globorotalia margaritae* Zone; this could well be an indication that this particular zone represents a longer time interval than most of the others. It may be justified to attempt a further subdivision of this zone.

For the Late Cretaceous, a number of the zones and subzones established by Pessagno (1967) are used. The Early Cretaceous was left unzoned except in Site 137 where the *Rotalipora ticinensis* Zone could be recognized.

SUMMARY REVIEW OF THE FORAMINIFERAL ASSEMBLAGES

Eastern Atlantic Sites (135 to 141)

The tight schedule for drilling these sites left little time for detailed stratigraphic sampling. Nevertheless, on a few

 TABLE 1

 Planktonic Foraminiferal Zones to be Used in Leg 14 Initial Report
 Age

TABLE 1 – Continued

					_
Age	Zone	Definition Used in This Report	Leg 14 Cores	_	Age
QUAT- ERNARY	<i>Globorotalia truncatulinoides</i> Zone	Bolli, 1970, Leg 4 Initial Report	135-1, 141-1, 142-1, 142-2, 142-3		Early
ite	<i>Globorotalia</i> cf. <i>tosaensis</i> Zone	Bolli, 1970, Leg 4 Initial Report	141-2		ate.
La	Globorotalia exilis/ G. miocenica Zone	Bolli, 1970, Leg 4 Initial Report	139-1, 140-1, 141-2, 141-3		T
Early	Globorotalia margaritae Zone	Bolli & Bermudez, 1965	135-2, 136-1 139-2, 140-1, 141-3, 141-4, 141-5, 141-6, 142-4, 142-5	EOCENE	y Middle
e	Globorotalia "dutertrei" Zone	Bolli & Bermudez, 1965	142-6?	B	Earl
Lat	Globorotalia acostaensis Zone	Bolli & Bermudez, 1965	135-3, 142-7	EOCEN	ly . Late
	Globorotalia menardii Zone	Bolli, 1966		PAI	Ear
	<i>Globorotalia</i> <i>mayeri</i> Zone	Bolli, 1966	142-8		Aae- chtian
	Globigerinoides ''ruber'' Zone	Bolli, 1966			
Idle	Globorotalia fohsi robusta Zone	Bolli, 1966	139-3, 139-4		Cam-
Mic	Globorotalia fohsi lobata Zone	Bolli, 1966			nian
	Globorotalia fohsi praefohsi Zone	Banner & Blow, 1965		S	Santo
	Globorotalia fohsi peripheroacuta Zone	Banner & Blow, 1965		CEOU	cian
	Globorotalia fohsi peripheroronda Zone	Banner & Blow, 1965	135-4, 136-2	CRETA	Coni
	Praeorbulina glomerosa Zone	Bolli, 1966		E	tronian
	Globigerinatella insueta Zone	Bolli, 1966	142-9	LAT	Ţ
Early	Catapsydrax stainforthi Zone	Bolli, 1957c	140-2		an
	Catapsydrax dissimilis Zone	Bolli, 1957c	139-7		omani
	<i>Globorotalia kugleri</i> Zone	Bolli, 1957c			Cen
ate	Globigerina ciperoensis ciperoensis Zone	Bolli, 1957c			
Τ	Globorotalia opima opima Zone	Bolli, 1957c		LY	Albian
Middle	<i>Globigerina ampliapertura</i> Zone	Bolli, 1966	144B-1	EAR	Aptian

_	Age	Zone	Definition Used in This Report	Leg 14 Cores
	Early	Cassigerinella chipolensis/Hastigerina ''micra'' Zone	Bolli, 1966	144A-1, 144A-2, 144B-2, 144B-3
	Late.	(Not represented)		
Æ	le	Truncorotaloides rohri Zone	Bolli, 1957d	144A-2
EOCEN	Midd	Orbulinoides beckmanni Zone	Bolli, 1957d (as Porticulasphaera mexicana Z.)	144-1
	Early	(Not represented)		
DCENE	, Late	Globorotalia pseudo- menardii Zone	Bolli, 1957b	144-2, 144A-3
PALE(Early	(Not represented)		
	Mae- strichtian	Globotruncana contusa-stuartiformis Zone	Pessagno, 1967	135-7?
	Cam- panian	Globotruncana fornicata–stuartiformis Zone	Pessagno, 1967	144-3, 144A-3, 144A-4
	nian	Globotruncana fornicata Subzone	Pessagno, 1967	
SU	Santo	Marginotruncana concavata Subzone	Pessagno, 1967	136-5, 136-6,
RETACEO	Conician	<i>Marginotruncana renzi</i> Zone	Pessagno, 1967	136-7?, 144A-5 144A-6
CF	nian	Whiteinella archaeo- cretacea Subzone	Pessagno, 1967	
LATE	Turoi	Marginotruncana sigali Subzone	Pessagno, 1967	137-7, 144-4
	anian	Rotalipora cushmani – greenhornensis Subzone	Pessagno, 1967	137-8, 137-9, 137-10, 137-11, 137-12
	Cenom	Rotalipora evoluta Subzone	Pessagno, 1967	137-12, 137-13, 137-14, 137-15
			}	143A-1, 144-5
TY	Albian	Rotalipora ticinensis ticinensis Zone	Bolli, 1957a	137-16, 137-SW1
EAR	CRETA(Aptian	(Undifferentiated)		136-8, 144-6, 144-7, 144-8

MIOCENE

PLIOCENE _

OLIGOCENE

occasions where efforts were made not to miss important geophysical horizons or the acoustic basement, good sequences of continuous or nearly continuous cores were recovered (Sites 136, 137, 141). In Site 137 (Cores 7 to 16, SW. Core 1), we found a series of excellently preserved Globotruncanidae through the Cenomanian-Late Albian, and from Site 141 (Cores 1 to 7) we have an equally good record of the Pleistocene and Pliocene in calcareous planktonic facies. The wide average core spacing of about 100 meters in some sites (135, 138, 139) makes it difficult to summarize the geological history of the area but nevertheless a few general trends appear to be indicated by the available data:

- a. Moderately calcareous faunas, sometimes with a conspicuous benthonic element, are found in late Early Cretaceous time (example: Site 136, Core 8).
- b. Rich planktonic faunas in the Cenomanian (Site 137) are followed by impoverished (partially dissolved?) planktonic faunas of the Turonian and lower Senonian (Sites 136, 137).
- c. From the latest Cretaceous through the Paleocene-Eocene-Oligocene, we have essentially noncalcareous (deep-sea?) clay deposition (Sites 138, 140) or even nondeposition (Site 136).
- d. In the Miocene, calcareous faunas reappear at some sites (at least Sites 135, 136, 139, 140). Usually, the plankton is partially dissolved. Displaced faunas derived from shallower water are found at Sites 139 and 140.
- e. In the Pliocene and Quaternary, planktonic foraminifera are in most cases common and fairly well preserved, similar to those of the present day.

On the whole, the sequence of events is comparable to that inferred by Cita (1970) for the North Atlantic sites of Leg 2. In general, the faunas of Leg 14 appear to reflect a distinctly deeper water environment than the contemporaneous faunas known from the West African coast (Reyre, 1966). There are a few intervals, however, where the onshore and offshore faunas seem to have much in common (see Lehmann, 1966, for the Cretaceous; Colom, 1965, for the Miocene Globorotalia fohsi robusta Zone). The Eastern Atlantic along the African coast should certainly be an excellent area for studying the effects of climatic changes on the microfaunas, particularly during the Pliocene and Pleistocene. The available samples are too scattered to obtain a reliable pattern. Still, the Leg 14 cores seem to confirm that Globorotalia miozea (Site 135 only) is typical of temperate waters. The more tropical species Globorotalia exilis and G. miocenica were found only as far north as Site 139. The northward extension of Globorotalia multicamerata and Sphaeroidinella dehiscens goes as far as Site 140. Pulleniatina is confined to Site 141.

Western Atlantic Sites (142 to 144)

For the biostratigrapher, Site 142 (Quaternary to Miocene) and the combined Sites 143-144 (Oligocene to Cretaceous) turned out to be a most rewarding source of data. The microfaunas of Site 142 are the reflection of a highly complex sedimentary history (see Table 9). The influx of terrestrial and near-shore material in the early Quaternary, the common redeposited shallow-water fossils

in the Pliocene-Late Miocene, and the frequent association of strongly etched and perfectly preserved planktonic foraminifera indicate intensive mixing of material from different sources. Most of these irregularities can be explained by the location of this site off the Amazon Delta and near a submarine ridge (Cearà Rise). In addition, the occurrence of Bryozoans and of many calcareous algal fragments suggests the presence of reef flats or islands at certain times.

After abandonment of the unsuccessful Site 143, extensive coring was carried out at Site 144 from the Oligocene to the Middle Eocene and again from the Paleocene to the Aptian/Albian. Although the section is calcareous and predominantly pelagic, several distinct unconformities were penetrated (Eocene/Oligocene and Cretaceous/Tertiary boundaries). The stratigraphic section and the sequence of microfaunas are similar to those of the Eastern Venezuela basin (Jenks, 1956; Lexico Estratigrafico de Venezuela, 1970; Metz, 1968) and of South Trinidad (Kugler and Bolli, 1967).

Preservation of the Microfaunas and Calcium Carbonate Solution

The preservation of the microfaunas of Leg 14 varies from excellent to very poor. The best preserved faunas are found not only in Quaternary but also in some relatively old sediments (Cenomanian pelagic marls of Site 137; benthonic faunas in the Aptian/Albian of Sites 136 and 144). Excellent preservation is also a characteristic of some displaced microfossils; these were most probably transported in suspension and rapidly buried, and thus escaped both abrasion and solution. Typical examples can be seen in Site 135 (Core 7), Site 140 (Cores A-1 and 2), and Site 142 (Cores 1-3, 5, 6).

The most universal factor which influences the preservation of the calcareous microfossils is certainly the solution of calcite in the deep sea. On Tables 2 to 11, the visible solution effects are recorded for each sample in qualitative terms (very strong, strong, moderate, weak). A more quantitative approach (see, for instance, the solution index in Berger and Parker, 1970) would certainly be desirable, but criteria other than faunal diversity should probably be sought as a measure of solution in fossil material.

A complete sequence of gradual destruction of calcareous shells through progressive solution can be seen in the Pliocene of Site 141 (Cores 4 to 7, particularly). An almost identical process has already been observed in the nearby DSDP Site 12 (Leg 2); it is described in detail by Cita (in press). There can be no doubt that a similar process also acted on older faunas. In the Cenomanian of Site 137, there are a few almost noncalcareous levels interbedded with marls containing perfectly preserved pelagic foraminifera. Yet it is apparently unusual in pre-Neogene sediments to see such good sequences of progressive etching and breaking up of shells as in Site 141. The writer has observed similar differences in the solution pattern between the Paleogene and Neogene faunas of the Central Pacific (DSDP Leg 8).

Very poorly preserved shells of foraminifera and radiolarians (mostly internal casts) are typical of some Upper Cretaceous rocks, particularly at Site 136. In this this case, factors other than great water depth may be responsible, since the samples are rich in volcanogenic components.

Displaced Faunas

Microfossil assemblages which appear to be partially or even totally allochthonous are fairly common at some of the Leg 14 sites. For descriptions of the lithology and fossil content of such heterogeneous intervals, the reader is referred to the Site Reports of Sites 135, 139, 140 and 142, and also to Tables 2, 6, 7 and 9 in this chapter. Plant fragments and abundant quartz sand are often associated with the displaced microfaunas. In some cases, such faunas may be found interbedded in a noncalcareous red clay sequence (Site 135, Core 7, Center Bit sample). More commonly, however, the allochthonous character is indicated by the coexistence of two or more preservations or colors in one sample, or by the presence of typical shallow water fossils. A typical case is Core 5 of Site 142 with its association of strongly etched planktonic foraminifera (presumably the only autochthonous component) with perfectly preserved, thin-walled globigerinids, calcareous algae, bryozoans and plant remains. Examples of redeposited shallow-water fossils are the Upper Cretaceous orbitoids of Site 135, or the barnacle plates and associated benthonic foraminifera (Ammonia, Pararotalia, Amphistegina) in the Miocene of Site 140. Displaced planktonic assemblages are usually recognized by their perfect preservation (Site 142, Cores 1-3, 5, 6) or the predominance of one size grade (Site 135, Core 7).

A combined sedimentological and micropaleontological study of these heterogeneous rocks by members of the shipboard party is planned for later publication.

Samples of Vema Piston Cores Located Near Leg 14 Sites

Samples from the following *Vema* piston core stations were also made available for study:

V-27-162 (near Site 136)

V-27-167 (between Sites 137 and 138)

V-23-98 (near Site 139)

V-23-99 (near Site 140)

V-26-41 (near Site 141)

V-24-258, V-25-49, V-25-62, V-25-63, V-25-64 (all near Site 142)

V-25-73, V-25-74, V-25-75, V-25-76, V-25-77 (all near Sites 143, 144)

These samples are a most valuable addition to the Leg 14 cores, since coring operations from the *Challenger* normally started some distance below the sea floor. They made it possible to compare the fossil faunas recovered by the *Glomar Challenger* with recent to Late Pleistocene faunas deposited in the same area and at a similar water depth. All available piston core samples (except V-25-62) are of Quaternary age. In most cases the composition and preservation of their faunas are as expected at their respective locations, but there are a few interesting exceptions:

a. V-27-167, collected in the area between Sites 137 and 138 at a water depth of 5099 meters, contains a fairly rich calcareous planktonic assemblage at the sea floor (sample at 2 to 4 centimeters), and in some deeper

zones as well (280, 292.5, and 300 centimeters). The foraminiferal shells in the sea-floor sample, and particularly in the foraminiferal marl at 292.5 centimeters, are much better preserved than one would expect at such a water depth. In the remaining two samples (280 and 300 centimeters) solution effects are much stronger. The fauna at 292.5 centimeters may well be redeposited (the core description mentions some slight grading). The highest cores of Sites 137 and 138 are practically noncalcareous, but a few planktonic foraminifera derived from the Quaternary were found as contamination in Core 1 of Site 138.

- b. V-23-99, near Site 140, contains abundant pelecypod shells at 77 to 79 centimeters. These are mostly etched or abraded, but at the same time are associated with abundant well-preserved planktonic foraminifera. Similar mixed assemblages were found in the Miocene of the nearby Site 140.
- c. The cores recovered from the abyssal plain near Site 141 (V-24-258, V-25-49, V-25-64) are remarkably different from the Pleistocene cores of Site 142. The latter contain quartz sand, plant fragments, and some shallow water fossils, whereas the piston core samples are practically free of terrigeneous detritus.

The faunas of Piston Core V-25-62, located near the crest of the Ceara Rise, are of Miocene age (*Globorotalia fohsi peripheroacuta* Zone near the top, *Praeorbulina glomerosa* Zone near the bottom at 340 to 343 centimeters).

SPECIES REFERENCE LIST

The majority of the species mentioned in this report are well known in the recent literature. For descriptions, illustrations and synonymies, the reader is referred to the following papers and monographs:

Planktonic foraminifera: Blow (1969)

	Bolli (1957b, c, d; 1959)
	Pessagno (1967)
Benthonic foraminifera:	Beckmann (1954)
	Frizzell (1954)
	Simon et al. (1962)
20 10 10 10	

References to the species not included in these six publications are given below, together with some additional comments.

Planktonic Species

Chiloguembelina cubensis (Palmer).

Gümbelina cubensis Palmer, 1934, Mem. Soc. Cubana Hist. Nat., Vol. 8, p. 74, textfigs. 1 -6.

Chiloguembelina martini (Pijpers).

Textularia martini Pijpers, 1933, Geogr. Geol. Med., Univ. Utrecht, Phys. Geol. Reeks, no. 8, p. 57, figs. 6-10.

Globigerinelloides breggiensis (Gandolfi).

Anomalina breggiensis Gandolfi, 1942, Riv. Ital. Paleontol. Strat., mem. 4, p. 102, textfig. 34 (1-4); pl. 3, fig. 6; pl. 5, fig. 3; pl. 9, fig. 1; pl. 13, figs. 7, 8. Holotype refigured by Caron and Luterbacher (1969).

Globorotalia crassaformis A.

Globorotalia crassaformis A, Bolli, 1970, DSDP Initial Reports, vol. IV, p. 580, pl. 4, figs. 17-20. This is probably a good marker for the base Pleistocene- top Pliocene.

Globorotalia crassata (Cushman).

Pulvinulina crassata Cushman, 1925, Bull. Am. Assoc. Petrol. Geol., vol. 9, p. 300, pl. 7, fig. 4. Lectotype designated by Bandy, 1964, Contrib. Cushman Foun. Foram. Res. vol. 15, p. 34.

Globorotalia margaritae Bolli and Bermudez.

A small and large variety have been distinguished in the present report. The former appears to be characteristic of the lower part of the *G. margaritae* Zone, the latter is confined to the upper part (see also Bolli, 1970, p. 581). A taxonomic revision and biostratigraphic reevaluation of this species is now under way (H. M. Bolli, M. B. Cita; personal communication) and may lead to a more refined subdivision of the Early Pliocene.

Globorotalia pertenuis Beard.

G. pertenuis Beard, 1969, Trans. Gulf Coast Assoc. Geol. Soc., vol. 19, p. 552, pl. 1. figs. 1-6; pl. 2, figs. 5, 6; pl. 3, fig. 4. This species may correspond to the informal category G. exilis A of Bolli (1970). It differs from G. exilis Blow in having more chambers, which are also more radially elongated, in the final whorl.

Globorotalia pomeroli Tourmarkine and Bolli.

G. cerroazulensis pomeroli Tourmarkine and Bolli, 1970, Rev. Micropaleontol., vol. 13, p. 140, pl. 1, figs. 10-18.

Globorotalia pseudomiocenica Bolli and Bermudez.

G. pseudomiocenica Bolli and Bermudez 1965, p. 140, pl. 1, figs. 13-15.

Globorotalia cf. tosaensis Takayanagi and Saito.

The distribution of this species in the Atlantic Ocean is much more erratic than in the Pacific. Also it appears to be rather rare and is certainly not a good species for defining a zone. There are a few specimens in Site 141 which resemble the figures given by Bolli (1970; pl. 3, figs. 16-21).

Globorotalia cf. tumida/plesiotumida.

Here are included specimens which are usually slightly smaller and more delicately built than *G. tumida*. Normally, they are found together with *G. margaritae*. Some of the specimens are very close to the holotype of *G. plesiotumida* Blow, but the variability and distribution of this species are not adequately known.

Globorotalia wilsoni (Cole).

Globigerina wilsoni Cole, 1927, Bull. Am. Paleontol., vol. 14, no. 51, p. 34, pl. 4, figs. 8, 9.

Globotruncana caliciformis Vogler. G. linnei d'Orbigny calciformis Vogler, 1941, Palaeontogr., Suppl. Bd, 4, Abt. 4, p. 288, pl. 24, fig. 23.

Globotruncana tricarinata (Quereau).

Pulvinulina tricarinata Quereau, 1893, Beitr. Geol. Karte Schweiz, N.F. 33, p. 89, pl. 5, fig. 3.

Globotruncana ventricosa primitiva Dalbiez.

G. (Globotruncana) ventricosa primitiva Dalbiez, 1955, Micropaleontol., vol. 1, p. 171, textfig. 6.

Hantkenina longispina Cushman.

H. longispina Cushman, 1924, Proc. U.S. Nat. Museum, vol. 66, Art. 30, p. 2, pl. 2, fig. 4.

Hedbergella trocoidea (Gandolfi).

Anomalina lorneiana (d'Orbigny) var. trocoidea Gandolfi, 1942, Riv. Ital. Paleontol., Strat., mem. 4, p. 99, pl. 2, fig. 2; pl. 4, figs. 2, 3; pl. 13, figs. 2, 5. Lectotype described and figured by Caron and Luterbacher (1969).

Heterohelix cf. frizzelli (Kavary).

"Pseudogumbelina" frizelli Kavary, 1963, Bull. Univ. Missouri School Mines etc., Tech. Ser., no. 102, p. 66, pl. 13, figs. 19, 20. This name refers here to short specimens which consist essentially of two relatively large chambers with only a very small, more or less pointed initial stage. Kavary's description does not go into much detail and seems to overlap with that of another new species, Pseudotextularia (?) reissi.

Rotalipora balernaensis Gandolfi.

R. appenninica balernaensis Gandolfi, 1957, Contr. Cushman Found. Foram. Res., vol. 8, p. 60, pl. 8, fig. 3.

Rotalipora brotzeni (Sigal).

Thalmanninella brotzeni Sigal, 1948, Rev. Inst. Fr. Pe'tr., vol. 3, p. 101, pl. 1, fig. 5; pl. 2, figs. 6, 7.

Rotalipora reicheli (Mornod).

Globotruncana (Rotalipora) reicheli Mornod, 1950, Ecology. Geol. Helv., vol. 42, p. 583, textfig. 5 (4), textfig. 6 (1-6); pl. 25, figs. 3, 4.

Rotalipora ticinensis (Gandolfi).

Globotruncana ticinensis Gandolfi, 1942, Riv. Ital. Paleontol. Strat., mem. 4, p. 113, textfig. 39; pl. 2, fig. 3; pl. 4, figs. 10, 11, 23; pl. 5, figs. 2, 4; pl. 8, figs. 4-7; pl. 12, fig. 1; pl. 13, figs. 11, 12, 14. Holotype redrawn by Caron and Luterbacher (1969).

Ticinella raynaudi digitalis Sigal.

T. raynaudi var. digitalis Sigal, 1966, Ecolog. Geol. Helv., vol. 59, p. 202, pl. 6, figs. 6-8.

Benthonic Species

Ammonia beccarii (Linné) s.1.

Nautilus beccarii Linné, 1758, Syst. Nat., ed. 10, p. 710. See also Loeblich and Tappan (1964, p. 607).

Amphistegina cubensis Palmer.

A. cubensis Palmer, 1934, Mem. Soc. Cubana Hist. Nat., vol. 8, p. 256, pl. 15, fig. 2; textfigs. 16, 17.

Aragonia velascoensis (Cushman).

Textularia velascoensis Cushman, 1925, Contr. Cushman Lab. Foram. Res., vol. 1, p. 18, pl. 3, fig. 1.

Bandvella greatvallevensis (Trujillo).

Pleurostomella greatvalleyensis Trujillo, 1960, J. Paleontol., vol. 34, p. 345, pl. 50, figs. 5, 6.

Bolivinoides delicatulus Cushman.

B. decorata (Jones) var. delicatula Cushman, 1927, Contr. Cushman Lab. Foram. Res., vol. 2, p. 90, pl. 12, fig. 8.

Bulimina arkadelphiana Cushman and Parker.

B. arkadelphiana Cushman and Parker, 1935, Contr. Cushman Lab. Foram. Res., vol. 11, p. 96, pl. 15, figs. 1, 2.

Clavulina arenata Cushman.

C. arenata Cushman, 1933, Contr. Cushman Lab. Foram. Res., vol. 9, p. 54, pl. 6, fig. 5.

Clavulina gaultina Morozova.

C. gaultina Morozova, 1948, Bull. Soc. Nat. Moscow, N.S. 53, Sect. Geol., 23, p. 36, pl. 1, fig. 4. Reference in Noth (1951).

Elphidium macellum (Fichtel and Moll).

Nautilus macellus Fichtel and Moll, 1798, Test. Micr., p. 66, pl. 10, figs. e-k.

Gavelinella schloenbachi (Reuss).

Rotalia schloenbachi Reuss, 1863, Sitzber. K. Akad. Wiss. Wien, Math. Naturw. Cl., vol. 46, pl. 84, pl. 10, fig. 5.

Glomospira gordialis (Jones and Parker).

Trochammina squamata Jones and Parker var. gordialis Jones and Parker, 1860, Quart. J. Geol. Soc. London, vol. 16, p. 304. Parker and Jones, 1865, Phil. Trans., vol. 155, p. 408, pl. 15, fig. 32.

Gyroidina tenera (Brady).

Truncatulina tenera Brady, 1884, Rept. Voy. Challenger, Zool., vol. 9, p. 665, pl. 95, fig. 11.

Haplophragmoides foliaceus (Brady).

Haplophragmium foliaceum Brady, 1881, Quart. J. Micr. Soc., vol. 21, p. 50. Brady. 1883, Rept. Voy. Challenger, Zool. vol. 9, p. 304, pl. 33, figs. 20-25.

Lenticulina dubiensis (Berthelin).

Cristellaria dubiensis Berthelin, 1880, Mém. Soc. Géol. France, ser. 3, Vol. 1, no. 5, p. 52, pl. 3, fig. 24.

Lenticulina saxocretacea Bartenstein.

L. saxocretacea Bartenstein, 1954, Senckenb, Lethea, vol. 35, p. 45. For Cristellaria subalata Reuss, 1863 (non Reuss, 1854).

Lenticulina secans (Reuss).

Cristellaria secans Reuss, 1860, Sitzber. K. Akad. Wiss. Wien, Math. Naturw. Cl., vol. 40, p. 214, pl. 9, fig. 7.

Lenticulina subangulata (Reuss).

Cristellaria subangulata Reuss, 1863, Sitzber. K. Akad. Wiss. Wien, Math. Naturw. Cl., vol. 46, p. 74, pl. 8, fig. 7.

Lingulina loryi (Berthelin).

Frondicularia loryi Berthelin, 1880, Mém. Soc. Géol. France, ser. 3, vol. 1, no. 5, p. 80, pl. 4, fig. 5.

Marssonella kummi Zedler.

M. kummi Zedler, 1961, Palaeontol. Zeitschr., vol. 35, p. 31, pl. 7, fig. 1.

Pyramidina szajnochae (Grzybowski).

Verneuilina szajnochae Grzybowski, 1896, Akad. Um. Krakow, Wydz. Mat.-Przyr., Rozpravy, ser. 2, vol. 10, p. 287, pl. 9, fig. 19.

Spiroplectammina anceps (Reuss).

Textularia anceps Reuss, 1845, Verst. Boehm. Kreide, pt. 1, p. 39, pl. 8, fig. 79; pl. 13, fig. 78.

Spiroplectammina carinata (d'Orbigny). Textularia carinata d'Orbigny, 1846, Foram. Foss. Bass. Tert. Vienne, p. 247, pl. 14, figs. 32-34. Spiroplectammina mexiaensis Lalicker.

S. mexiaensis Lalicker, 1935, Contr. Cushman Lab. Foram. Res., vol. 11, p. 43, pl. 6, figs. 5, 6.

Tritaxia tricarinata (Reuss).

Textularia tricarinata Reuss, 1845, Verst. Boehm. Kreide, pt. 1, p. 39, pl. 8, fig. 60.

Trochamminoides coronatus (Brady).

Trochammina coronata Brady, 1879, Quart. J. Micr. Sci., vol. 19, p. 58, pl. 5, fig. 15. Brady, 1884, Rept. Voy. Challenger, Zool., vol. 9, p. 340, pl. 40. figs. 10-12.

Uvigerina asperula Czjzek.

U. asperula Czjzek, 1848, Haidingers Naturw. Abhandl., Bd. 11, p. 146, pl. 13, figs. 14, 15.

Problematica

Coptocampylodon lineolatus Elliott.

C. lineolatus Elliott, 1963, Palaeontology, vol. 6, p. 297, pl. 46, fig. 4, 5, 6, 8; pl. 48, fig. 2.

REFERENCES

- Banner, F. T. and Blow, W. H., 1960. Some primary types of species belonging to the Superfamily Globigerinaceae. *Contrib. Cushman Found. Foram. Res.* 11, 1.
- , 1965. Progress in the planktonic foraminiferal biostratigraphy of the Neogene. *Nature*. **208** (5016), 1164.
- Beckmann, J. P., 1954. Die Foraminiferen der Oceanic Formation (Eocaen-Oligocaen) von Barbados, Kl. Antillen. Ecolog. Geol. Helv. 45 (1953), 301.
- Berger, W. H. and Parker, F. L., 1970. Diversity of planktonic foraminifera in deep-sea sediments. Science. 168, 1345.
- Blow, W. H., 1969. Late Middle Eocene to Recent planktonic foraminiferal biostratigraphy. Proc. First Intern. Conf. Plank. Microfossils, Geneva 1967. 1, 199.
- Bolli, H. M., 1957a. The genera *Praeglobotruncana*, *Rotalipora*, *Globotruncana*, and *Abthomphalus* in the Upper Cretaceous of Trinidad, B.W.I. U.S. Nat. Museum Bull, 215, 51.

, 1957b. The genera *Globigerina* and *Globorotalia* in the Paleocene-Lower Eocene Lizard Springs Formation of Trinidad, B.W.I. U.S. Nat. Museum Bull. 215, 61.

_____, 1957c. Planktonic foraminifera from the Oligocene-Miocene Cipero and Lengua Formations of

Trinidad, B.W.I. U.S. Nat. Museum Bull. 215, 97. , 1957d. Planktonic foraminifera from the Eocene

Navet and San Fernando Formations of Trinidad, B.W.I. U.S. Nat. Museum Bull. 215, 155.

, 1959. Planktonic foraminifera from the Cretaceous of Trinidad, B.W.I. Bull. Am. Paleontol. **39** (179), 258.

, 1966. Zonation of Cretaceous to Pliocene marine sediments based on planktonic foraminifera. Bol. Inform. Asoc. Venez. Geol. Min. Petr. 9, 3.

, 1970. The foraminifera of Sites 23-31, Leg 4. In Bader, R. G. et. al., 1970, Initial Reports of the Deep Sea Drilling Project, Volume IV. Washington (U.S. Government Printing Office), 577.

Bolli, H. M. and Bermudez, P. J., 1965. Zonation based on planktonic foraminifera of Middle Miocene to Pliocene

warm-water sediments. Bol. Inform. Asoc. Venez. Geol. Min. Petr. 8, 121.

- Caron, M. and Luterbacher, H. P., 1969. On some type specimens of Cretaceous planktonic foraminifera. *Contrib. Cushman Found. Foram. Res.* 20, 23.
- Cita, M. B., 1970. Observations sur quelques aspects paléoécologiques de sondages subocéaniques effectués dans l'Atlantique Nord. *Rev. Micropaleontol.* 12, 187.
- Cita, M. B. (in press). Biostratigraphy, chronostratigraphy and paleoenvironment of the Pliocene of Cap Verde (North Atlantic). *Rev. Micropaleontol.* 14 (5).
- Colom, G., 1965. Micropaleontologia del Sahara español. Estudios Geol. 21, 167.
- Frizzell, D. L., 1954. Handbook of Cretaceous foraminifera of Texas. Bur. Econ. Geol., Univ. Texas, Rept. Invest. 22, 232 pp.
- Jenks, W. F. (ed.), 1956. Handbook of South American geology. Geol. Soc. Am., Mem. 65, 378 pp.
- Kugler, H. G. and Bolli, H. M., 1967. Cretaceous biostratigraphy in Trinidad, W. I. Bol. Inform. Asoc. Venez. Geol. Min. Petr. 10, 209.
- Lehmann, R., 1962. Etude des Globotruncanidés du Cretacé supérieur de la Province de Tarfaya (Maroc occidental). Notes Serv. géol. Maroc. 21, 133.

, 1966. Les foraminiféres pélagiques du Crétacé du bassin côtier de Tarfaya. Notes Mém. Serv. géol. Maroc. 175, 153.

- Lexico Estratigrafico de Venezuela (Segunda Ed.), 1970. Bol. Geol., Publ. Especial. 4, 756 p.
- Loeblich, A. R. and Tappan, H., 1964. Protista 2: Sarcodina, chiefly "Thecamoebians" and Foraminiferida. Treatise Invert. Paleont., C, 900 pp.
- Metz, H. L., 1968. Biostratigraphic and geologic history of extreme northeastern Serrania del Interior, State of Sucre, Venezuela. Trans. Fourth Caribbean Geol. Conf., Trinidad, 1965. 275.
- Noth, R., 1951. Foraminiferen aus Unter- und Oberkreide des oesterreichischen Anteils an Flysch, Helvetikum and Vorlandvorkommen. Jahrb. Geol. Bundesanst, Sonderband. 3, 91 pp.
- Pessagno, E. A., 1967. Upper Cretaceous planktonic foraminifera from the western Gulf Coastal plain. *Paleontogr. Am.* 5 (37), 245.
- Reyre, D. (ed.), 1966. Sedimentary basins of the African coasts. *IUGS*, Assoc. African Geol. Surveys, Paris. 1, 304 pp.
- Simon, W. et al., 1962. Leitfossilien der Mikropalaeontologie. Berlin (Borntraeger), 432 pp.

Zone or Subzone G. fohsi *G*. G. G. ? peripheroronda acostaensis margaritae truncatulinoides Early Maestrichtian? ?Eocene Middle Late Early Age ?Eocene Miocene or Quaternary ? ? (?Eocene) Miocene Pliocene ?Maestrichtian Miocene Oligocene? 35° 20.80' N, 10° 25.46' W Water depth: 4152 m Depth Below Sea Floor (in meters) DSDP Site 135 564 435 315 689 685 431 341 350 335 341 268 259 182 173 ... 68 08 0 4 center bit Core -Section SW. 1 SW. 2 6 00 5-1 5 CC 4-1 4-2 4-00 3-1 3-2 3 CC 9-1 9-2 9-2 8-1 8-1 7-2 7-3 74 7 CC 2-1 2-2 2-3 2-4 2-5 2-5 2-6 2 CC 1-1 1-2 1-3 1 CC E 120-122 32-34 120-122 90-92 137-139 5-7 87-89 117-119 120-122 Sample Interval (in cm) 120-122 120-122 (below core 9) 120-122 40-42 37-39 140-142 120-122 120-1 120-1 120-1 120-1 120-1 120-1 70-72 122 122 122 122 ... Planktonic foraminifera Benthonic foraminifera 3 . Larger foraminifera . Ostracoda Echinoid spines Mollusk fragments ٠ . . Radiolaria Diatoms Sponge spicules Fish debris . . .0 Plant fragments Quartz sand 1000 1000 100 200 100 $100 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200$ Planktonic/benthonic ratio 10 10 50 33 10 0100 100 100 100 100 100 99 99 00,000 ? 95? ... ? 99 0 .20 95 95 66 66 °/o foraminifera, > 80 mesh **•**•• Solution effects Globigerina nepenthes . . . G. cip. angustiumbilicata ... G. venezuelana . .

 TABLE 2

 Site 135. Foraminiferal Biostratigraphy, Nature of Residue, and Important Foraminifera

						• •	• •			Globoquadrina dehiscens
							•		2.00	Globorotalia acostaensis
										G. archaeomenardii
										G. crassaformis s.s.
										G. crassaformis ronda
							•	• •		G. cultrata s.l.
										G. fohsi peripheroronda
						• •				G. fohsi peripheroacuta
										G. inflata
										G. margaritae (small)
						•				G. mayeri
								• •		G. miozea
					•					G. opima nana
						- C				G. truncatulinoides
					*			•		G. cf. tumida/plesiotumida
								• • •		Globigerinoides obl. extremus
							·••			G. obl. obliquus
								·• •		G. ruber
					• • •					Catapsydrax dissimilis
							• • •			Sphaeroidinellopsis seminulina
										Globotruncana aegyptiaca
										G. arca
			• •							G. contusa
		1	•							G. stuarti
			•							G. stuartiformis
			•							Heterohelix ultimatumida
		٠								Pseudoguembelina excolata
		•								P. striata
										Racemiguembelina fructicosa
										Amphistegina cf. cubensis
										Gyroidina florealis
										Lepidorbitoides sp.
			•							Neoflabellina sp. aff. numismalis
										Operculina sp.
0.00										Orbitoides spp.
•	< - 2						s 1)			Siderolites sp.
٠			\odot	•						Nummulites sp.
c,r?		13	г? р		0 0	н		ס ס		Remarks ^a

^ac: strong downhole contamination, n: foraminifera not determined, p: foraminifera partially determined, r: reworking. Symbols: abundant, (very strong) (strong) few (moderate) (weak)

397

THE FORAMINIFERA AND SOME ASSOCIATED MICROFOSSILS OF SITES 135 TO 144

И.

								-2,7-			_					020	es 								
	-	DSDP Site 136 4° 10.13' N, 16° 18. Water depth: 4169	19′ W ∂ m		foraminifera foraminifera	pines agments	cules s nents	p	/benthonic ratio	nifera, > 80 mesh fraction	ffects	a nepenthes clana Irina altispira	ns oides obliquus s.l.	lia acostaensis	ormus r s.L.	heroronda	tae (small)	ana	uttrotaes inellopsis seminulina	niscens ax dissimilis	on sp. p.	umbonatus		ella nuttatti sp.	
Zone or Subzone	Age	Depth Below Sea Level (in meters)	Core – Section	Sample Interval (in cm)	Planktonic Benthonic	Ostracoda Echinoid s Mollusk fri Radiolaria	Diatoms Sponge spi Fish debris Plant fragn	Quartz san	Planktonic	°/° forami	Solution e	Globigerin G. venezue Globoquad	G. dehisce Globigerin	Globorota	G. cultrata	G. f. perip. G. hirsuta	G. inflata G. margari	G. opima 1	G. truncat Sphaeroid	5. paenede Catapsydri	Bathysiphe Cibicides s	Eponides 1	Melonis sp	Vulvulina	Remarksa
Gr. trunc.	Quat.		bit		. .	•••			1000	99	•		8	•	•	•	•	•	•						
G. margaritae	Early Pliocene	130	1-1 1-2 1-3 1-4 1-5 1-6 1 CC	120-122 120-122 120-122 120-122 120-122 95-97	 • •<	• . • •	•		100 100 100 100 10 100 100	99 99 99 99 95 98 99	A 0 0 0 0 0 0 0	•	•	•			:		•						
G. fohsi peripheroronda ?	Mid-Miocene (trans. Early Miocene)	216 225	2-1 2-2 2-3 2-5 2-6 2 CC	120-122 120-122 bottom 120-122 120-122	• • • • • • • • • • • • • •	•	:		10 2 2 1/2 1/3 1/4	90 95 95 100 90 95	• • • • • • • • • • • • • • • • • • • •	:	•			:			:		:	 	•	• •	
	Early Miocene ?	235 244	3-2 3-3 3-4 3 CC	120-122 120-122 92-94	· • · • · •		:		¹ /100 ¹ /500 ¹ /500 0	90 90 80 (20)		•				•		·		?					c
	?	244 253	4-1 4-2 4-3 4 CC	86-88 88-90 110-112	?		•	•••••••••••••••••••••••••••••••••••••••	0	(0) 0 10 0															
	Late Cretaceous	253 262	5-1 5-1 5-5 5 CC	37-39 75-77 50-52	j	on Table	• 3B		0	(2)	(•)										•				

^ac: strong downhole contamination Symbols: • abundant, (very strong) • (str ▲ common, (strong) • few, (moderate) very scarce, (weak) .

TABLE 3A Site 136, Cores 1 to 5. Foraminiferal Biostratigraphy, Nature of Residue, and Important Foraminifera

°/° foraminifera, >80 mesh fraction Lingulina loryi Marssonella cf. kummi Pseudonodosaria manifesta Stensioeina cf. exsculpta gracilis Globigerinelloides tururensis Globotruncana canaliculata G. cf. fornicata DSDP Site 136 Planktonic/benthonic ratio Ammodiscus gaultinus Bandyella greatvalleyensis Planktonic foraminifera 34° 10.13' N, 16° 18.19' W Benthonic foraminifera Dorothia cf. gradata Gavelinella intermedia Heterohelix globulosa Haplophragmoides sp Lenticulina dubiensis Water depth: 4169 m G. renzi Hedbergella amabilis Mollusk fragments Radiolaria Diatoms Sponge spicules Fish debris cf. schloenbachi pseudolinneiana cf. bosquensis Echinoid spines Plant fragments Solution effects Bathysiphon sp. saxocretacea subangulata planispira linneiana Quartz sand pulchra Remarks^a Ostracoda indica secans Sample Depth Zone or Core -Interval Below Sea Level 55 5 5 H. H. 5 Section (in cm) H. Subzone Age (in meters) 253 37-39 (See preceding chart) ? 5-1 (2) (10) (20) 5-1 75-77 0 9 ? . (5) 10 5-5 50-52 . . . ? 262 5 CC . Coniacian -Santonian ? . . (10) 262 6-1 60-62 0 ? . 6-1 120-122 0 M. renzi? 6-2 90-92 · · ? · ? · . (00) 20 . 10 6-2 128-130 (∞) (A) • • 20 271 6 CC . . . 10 7-1 139-141 ? Turonian to Santonian ? 271 0 7-4 144-146 0 7 CC 280 20 . . (∞) . . 20 8-1 8-10 (∞) 9 280 . . ? 20 109-111 8-1 . (∞) • 8-2 118-120 0 Albian ? 8-2 144-146 50 10 ٠ . . 2 8-5 42-44 . ? 10 20 ٠ 50 50 8-6 116-118 289 8 CC 50 5 ٠ . . C

 TABLE 3B

 Site 136, Cores 5 to 8. Foraminiferal Biostratigraphy, Nature of Residue, and Important Foraminifera

^ac: strong downhole contamination.

Symbole:	abundant,	common,	few,	very scarce,
Symbols.	(very strong)	(strong)	(moderate)	(weak)

THE FORAMINIFERA AND SOME ASSOCIATED MICROFOSSILS OF SITES 135 TO 144

Remarks

	-2	DSDP Site 137 5° 55.53' N, 27° 03. Water depth: 536	.64' W 1 m		foraminifera oraminifera oines	gments	cules tents	benthonic ratio	ifera, in > 80 mesh fraction	fects	illoides caseyi ana cf. difformis icata	cata amabilio	arreans a	ira .	igerina sp. n sp.	a cf. deformis 1 charoides	moides sp.	i oxycona	ulariella? sp.	5. SD	inoides coronatus
Zone or Subzone	Age	Depth Below Sea Level (in meters)	Core – Section	Sample Interval (in cm)	Planktonic Bethonic fo Ostracoda Echinoid s	Mollusk fra Radiolaria Diatoms	Sponge spic Fish debris Plant fragm	Planktonic/	°/° foramin	Solution ef	Globigerine Globotrunc G cf imbr	G. cf. sigali Hedhevaell	H. planispin Heteroholiy	H. cf. pulch	Ammogiob Bathysipho	Cyclammin Glomospira	Haplophrag	Marssonella	Pseudotext	Reophax si Textularia	Trochamm
		52 61	1-1 1-3 1-5 1 CC	118-120 120-120 120-122	?			0	(10) ? 0 0	(=) ?					?	•	?				
		99 101	2-1 2 CC	134-136			:		0 0												
	?	135	3-1 3-2 3-3 3-4 3-5 3-6 3 CC	122-124 120-122 120-122 120-122 120-122 120-122 139-141	•		•••••	0 0 0 0 0 0 0	100 90 90 ? 80 90						•				•		•••••••••••••••••••••••••••••••••••••••
		165 173	4-1 4-2 4 CC	120-122 120-122		•		0 0	(100)	(▲)					•						
		209 218	5 CC					0	5	?											
	n to ian	218 225	6-1 6-1 6 CC	22-24 119-121	?	•		?	(5) 0 5	? (•)						?	?				
M. sigali ?	Turoniar Campan	256 265	7-1 7-1 7 CC	83-85 143-144	•			0 1/5 0	(100) 5 30	????	• •	•••	•	• •							

 TABLE 4A

 Site 137, Cores 1 to 7. Foraminiferal Biostratigraphy, Nature of Residue, and Important Foraminifera

Symbols: abundant, (very strong) common, (strong) • few, (moderate) very scarce, (weak) .

	-2	DSDP Site 137 5° 55.53' N, 27° 03 Water depth: 536	.64' W 1 m		mic foraminifera nic foraminifera	da id remains	t fragments uria	s spicules bris sand	nic/benthonic ratio	minifera, in >80 mesh fraction	n effects	rinelloides caseyi	gella amabilis	onensis	ispira	ielix moremani	alina buxtorfi botumona stanhani	oensis	ora appeninica	rnaensts zeni	mani	uta ubornousie	nnor nensus teli	oina cenomana	na gaunna ella cf. schloenbachi	laria sp.	естаттени: эр. естаттіпа апсерs	68
Zone or Subzone	Age	Depth Below Sea Level (in meters)	Core – Section	Sample Interval (in cm)	Plankto Bentho	Ostraco Echinoi	Mollusk Radiola	Diatom Sponge Fish del Quartz	Plankto	°/₀ fora	Solutio	Globige G heat	Hedber	H. britt	H. plan	Heterol	Planom	P. delri	Rotalip	R. brot	R. cush	R. evoli P area	R. reich	Schack	Gavelin	Osangu	Spiropl	Remark
		265	8-1 8-1 8-2 8-2 8 CC	19-21 44-46 31-33 102-104			•	:	∞ 1 100 ∞	0 95 (95) 98 80	(•)	•	•	• •		•		•	•		•	•		,				
greenhornensis	anian	274	9-1 9-1 9-3 9-5 9-6 9 CC	27-29 36-38 120-122 120-122 120-122	· • · · · • · ·	•		•	$ \begin{array}{c} 1/_{100} \\ 1/_{5} \\ 0 \\ 100 \\ 1/_{2} \\ 50 \end{array} $	50 25 60 95 95 100	•••	•	•		•	•	• •	• •	•		•	?	?	• •		•	•	
ora cushmani -	Late Cenom:	283 292	10-1 10-1 10-2 10-2 10-3 10 CC	107-109 122-124 42-44 120-122 124-126	• • • • • • • • • • • • • •	5 .)		•••••••••••••••••••••••••••••••••••••••	5 2 1000 5 1000 100	80 80 99 80 100 100	•	•	•		•	•	÷	•	•	•						•	•	
Rotalij		292 301	11-1 11-2 11-3 11-4 11-5 11-6 11 CC	116-118 121-123 120-122 119-121 119-121 120-122			•	:	500 50 200 200 500 200	100 90 30 100 100 100 100		•••••	•			: :		• • • • •	•	· · : .	•	?	?	•	• ?	•••••		
R. evoluta	Early Cenomanian	301 310	12-1 12-1 12-2 12-2 12-3 12-4 12-5 12-5 12-5 12-6 12 CC	95-97 122-124 11-13 50-52 86-88 90-92 10-12 120-122 9-11		• •	•	•	200 100 20 500 100 200 5 100 (100)	99 100 100 80 100 100 90 90 100 100	•	••••••	• • • • •			:	•	• • • • • • •	•	•	•	•		•	: .	•	•	

THE FORAMINIFERA AND SOME ASSOCIATED MICROFOSSILS OF SITES 135 TO 144

TABLE 4B Site 137, Cores 8-12. Foraminiferal Biostratigraphy, Nature of Residue, and Important Foraminifera

401

Symbols: abundant, (very strong)

• few, (moderate)

very scarce, (weak)

▲ common, (strong)

Remarks

R. ticir.	Late Albian	382	16 CC SW. 1		• ·	•	•	•	100	99			•		•	•••			•		•••	••••	
tensis	Vra- conian	375	16-1 16-2 16-2 16-3 16-3 16-4	118-120 26-28 120-122 15-17 125-127 120-122	· • • • • • • • • • • • • • • • • • • •		•	•	$ \begin{array}{c} 0 \\ {}^{1}/_{2} \\ {}^{1}/_{2} \\ {}^{1}/_{5} \\ 200 \\ 1000 \\ 50 \end{array} $	5 30 90 (50) 100 99		•	. •		1		?	?	•		a.(.)		•
		348 357	15-1 15-1 15-2 15-2 15 CC	114-116 122-124 37-39 119-121	A · • · • · A ·			:	1000 100 20 10 100	100 100 90 90 100		•	•	•	• •	:	• ·	•	•		•	•	•
Rotalipora evoluta	Early Cenomanian	339 348	14-1 14-1 14-2 14-3 14-3 14-4 14-5 14-6 14 CC	101-103 122-124 120-122 18-20 110-112 141-143 120-122 88-90	· · · · · · · · · · · · · · · ·		•	•	¹ / _s 200 500 500 200 ~~~~~~~~~~~~~~~~~~~~~~~	5 100 98 90 100 0 100 95 100		•	•				•	•		,		•	
		320 329	13-1 13-2 13-2 13-3 13-4 13 CC	128-130 8-10 85-87 120-122 104-106	• · • · • · • · • · • ·	:		•	200 100 ∞ 20 100 200	100 100 95 98 99 90			•	• • • • • •		1	· · ·	· : · :	•••	:	•	•	•
Zone or Subzone	Age	Depth Below Sea Floor (in meters)	Core – Section	Sample Interval (in cm)	Planktonic forar Benthonic foran	Ostracoda Echinoid spines Molluck framer	Radiolaria Diatoms	Sponge spicules Fish debris Plant fragments Quartz sand	Planktonic/bent	°/。 foraminifera	Solution effects	Globigerinelloid	G. breggiensis Hedbergella amu	H. gautierensis H nlanisnira	H. trocoidea	Praeglobotrunca	r. ueirioensis Rotalipora appe	R. brotzeni R. evoluta	R. ticinensis Schackoina cen	Ticinella raynau Clavulina omulti	Gavelinella cf. s	Osangularia sp. Pleurostomella	Pseudotex tulari
	-2	DSDP Site 137 5° 55.53' N, 27° 03 Water depth: 536	.64′ W 1 m		ninifera ninifera	ate	2		thonic ratio	, in >80 mesh fractio		les caseyi	abilis		itati	ana bronnimanni	enninica		omana	udi digitalis	chloenbachi	subnodosa	iella? sp.

 TABLE 4C

 Site 137, Cores 13 to 16, SW. Core 1. Foraminiferal Biostratigraphy, Nature of Residue, and Important Foraminifera.

▲ common, Symbols:
abundant,
(very strong) • few, (moderate) very scarce . (strong) (weak)

		DSDP Site 138 25° 55.37' N, 25° 33 Water depth: 528	.79′ W 8 m		c foraminifera	c foraminifera		spines	agments			icules	S	ains	pu	c/benthonic ratio	nifera in >80 mesh fraction	effects	1a sp.	ilia cf. acostaensis	tulinoides	na sp.	cus sp.	ion sp.	ohaera sp.	sp.	t sp.	
Zone or Subzone	Age	Depth Below Sea Floor (in meters)	Core – Section	Sample Interval (in cm)	Planktoni	Benthonic	Ostracoda	Echinoid	Mollusk fi	Radiolaria	Diatoms	Sponge sp	Fish debri	Plant rem	Quartz sai	Planktoni	°/₀ forami	Solution (Globigerii	Globoroti	G. trunca	Pulleniati	Ammodis	Bathysiph	Psammos	Reophax	Lituotubu	Remarks
	?	52	1-1 1-2 1-3 1-3 1-4 1-5 1-6 1 CC	120-122 120-122 75-77 120-122 120-122 120-122 120-122	(•) (•)	? (•)			?	•			••••••				? 0 ? ? 0 ? 0		(•)	(•)	(•)	(•)		?				
		110	2-1 2-2 2-3 2-4 2-5 2-6 2 CC	119-121 120-122 120-122 120-122 120-122 120-122								?	•		•		0 0 0 0 0 0 0											
		183 190	3-1 3 CC	122-124													0 0											
	?	255 264	4-1 4 CC	33-35						•							0 0											
		332 341	5-1 5 CC	118-120		•				^						0	2 0	(=)					•					
		425 431	6-1 6-2 6-3 6-3	121-122 44-46 10-12 120-122		?				•			•	? ?		0 0 0	(20) 0 (5) 1	• • (•)						• ? •	• *	?	•	

Symbols: abundant, (very strong) (strong) few, very scarce, (weak)

403

THE FORAMINIFERA AND SOME ASSOCIATED MICROFOSSILS OF SITES 135 TO 144

																											ŝ			Τ	
Zone or		DSDP Site 139 23° 31.14' N, 18° 42 Water depth: 304 Depth Below Sea Floor	2.26' W 7 m Core –	Sample Interval	anktonic foraminifera enthonic foraminifera straeoda	chinoid spines ollusk fragments adiolaria	iatoms ponge spicules ish debris ant fragments	uartz sand anktonic/benthonic ratio	\circ for aminifera in $>$ 80 mesh fraction	olution effects	atapsydrax dissimilis	topigerina venezuetana lobigerinoides obliquus s.l.	. primordius . ruber	. subquadratus	. truobus s.l. loboquadrina altispira	. dehiscens	. praeaeniscens astigerina siphonifera	ohaeroidinellopsis seminulina	. crassaformis	. crassula	. cutrata . exilis	. fohsi lobata	. fohsi robusta . hirsuta	. humerosa waraanina (laraa)	. marguriae harge) . mayeri	. miocenica . praemenardii	. tumida pistominella sp.	yroidina spp.	ectofrondicularia sp. vigerina asperula	vigerina spp.	emarks ^a
Subzone	Age o	(in meters)	Section	(in cm)	E Ø Ő	E Z Z	O SE E		0	Š	00	56	66	00	5 6	6	5 H	is c	00	60	50	60	5 6	66	500	50	5 1	62	D	2	R
G. exilis/ mioc.	Late	114	1-1 1-1 1 CC	120-122		•	• •	100 50	99 98	:					•			:			•••		:	• ?		•					
G. margaritae	Early Pliocene	225 234	2-1 2-2 2-3 2-4 2 CC	120-122 120-122 120-122 120-122		:		50 100 20 100 50	99 99 98 99 98	• • • •			:		• •			•						•	ĸ	?	?				
ohsi usta	ldle sene	345 354	3 CC		.		•	20	98					•	•	•					•	• •	•		•	•					
G. f robi	Mid	455 463	4 CC		. •	• •	.	50	99					•								?	•		•						c?
	?	530	SW. 1				۰ ۵	▲ ¹ /10	80	•					•												•	• •	N.	•	
		570 576	5-1 5 CC	136-138	(•)• • •	:		0? 1/100	50 80	•																	:		•	•	
r older	sne	607 612	6-1 6-1	17-19 30-32	:			▲ 0 ▲ 0	??	??																					s s
C. stainforthi o	Early Mioo	656	7-1 7-2 7-3 7-4 7-5 7-6 7-6 7-6 7 CC	52-54 121-123 122-124 128-130 122-124 114-116 145-147		•			0 0 0 0 50 25 50	•	•						•								•		•			•	

TABLE 6 Site 139. Foraminiferal Biostratigraphy, Nature of Residue, and Important Foraminifera

ac: strong downhole contamination, s: thin section only. Symbols: ■ abundant, (very strong) ▲ common, (strong) ● few, (moderate) . very scarce (weak)

12

							C. stainforthi or C. dissimilis		margaritae G. exilis/ miocenica	Zone or Subzone
Campanian to Paleocene					3		Early Miocene	?M - Late Miocene	Pliocene	Age
645 651	585 587	510 519	427 432	368 373	311 318	235 244	201 210	150 159	86 68	DSDP Site 140 11° 44.97' N, 21° 47 Water Depth: 448 Depth Below Sea Floor (in meters)
8-1 8-1 8-2 8 CC	7-1 7 CC	6-2 6 CC	5 CC	4-1 4-3 4-3	3-1 3-2 3-3 3 CC	A2-1 A2-3 A2-5 A2 CC	2-1 2-2 2-3 2-4 2-4 2-6 2-6	A1-1 AI CC	1-1 1-2 1-4 1-5 1-5	3 m Core - Section
42-44 104-106 106-108	147-149	120-122		59-61 93-95 143-146	105-107 140-142 98-100	116-118 120-122 120-122	114-116 120-122 120-122 120-122 120-122 120-122	78-80	53-55 120-122 116-118 120-122	Sample Interval (in cm)
						e e	•••••	·• ·• ·	• • • • • • • • • • • • • • • •	Planktonic foraminifera Benthonic foraminifera Ostracoda Echinoid spines Mollusk fragments Barnacle plates
•••	•				• • • • 	<pre>>>></pre>	• • • • • • • • • • • • • •			Radiolaria Diatoms Sponge spicules Fish debris
· • · •										Plant remains Quartz sand
0000	0 0						1/s 1/20 1/10 1/s 1/s 1/s 1/s	1/2 1/4	50 1000 1000 100 500	Planktonic/benthonic ratio
95 (90) (90) (100)	(20) 100	00	0	000	0000	0000	80 80 80 80	80 50	99 100 100 99 100	°/ $_{\circ}$ for aminifera in > 80 mesh fraction
•• •• •• ••	د.		-				• • • •	د. د.		Solution effects
								•	•	Catapsydrax dissimilis Globigerina praebulloides G. venezuelana

 TABLE 7

 Site 140. Foraminiferal Biostratigraphy, Nature of Residue, and Important Foraminifera

	-		 	 				
						•	• •	Globigerinoides obliquus s.l.
								G. ruber
					S			G. subquadratus
								G. trilobus s.l.
-					•		•	Globoguadrina altispira
		-						Ga. praedehiscens
								Globigerinatella insueta
								Orbulina universa
	5							Sphaeroidinella dehiscens
								Globorotalia acostaensis
								G. crassaformis s. str.
	1						•	G. crassaformis ronda
								G. cultrata s.l.
								G. exilis
								G. fohsi peripheroronda
								G. humerosa
							•	G. margaritae (large)
					• •			G. maveri
	1 3							G. miocenica
							0.00	G. multicamerata
								G. pertenuis
								G. pseudopima
								Ammonia beccarii
	•							Bathysiphon spp.
								Bolivina spp.
•								Clavulina cf. arenata
					•			Elphidium cf. macellum
								Epistominella sp.
*		-						Glomospira gordialis
	6							Gyroidina spp.
	•							Haplophragmoides sp.
	•							Lituotuba sp.
								Pararotalia spp.
• •	•							Pelosina complanata
	•							Rzehakina epigona lata
								Spiroplectammina carinata
	•							S. mexiaensis
								Trochamminoides irregularis
					• • • • •			Uvigerina spp.
								Verneuilinoides sp.
								Vulvuling sp.
	1		 		0			Pomorkal
				 				Neinarks"

^ac: strong downhole contamination. Symbols: **a**bundant, (very strong) (strong) • few, (moderate) . very scarce, (weak)

_									_	-	_													-	_
	Zone or Subzone	Age	DSDP Site 141 19° 25.16' N, 23° 59 Water depth: 4148 Depth (in meters) Below Sea Floor	.91' W 8 m Core – Section	Sample Interval (in cm)	Planktonic foraminifera Benthonic foraminifera Ostracoda Echinoid spines Mollusk fragments Radiolaria Diatoms Sponge spicules Fish remains Plant fragments Quartz sand	Planktonic/benthonic ratio	$^{\circ}/_{\circ}$ foraminifera in $>$ 80 mesh fractions	Solution effects	Globigerina dutertrei G. venezuelana	Globigernoides conglobatus G. cf. fistulosus	G. obliquus obliquus G. obliquus extremus	Globoquadrina altispira	Georgenatia acostaensis G. crassaformis s.s.	G. crassaformis ronda G. crassaformis ronda G. crassula viola	G. cultrata G. exilis	G, hirsuta G, humerosa	G, injtata G. margaritae (large) G. margaritae (small)	G. miocenica G. multicamerata	G. pertenuis G. pseudopima	G. cf. tosaensis G. tumida	G. truncatulinoides Orbulina universa	Pullentatina finatis P. obliquiloculata P. nvimalis	Sphaeroidinella dehiscens	Remarks ^a
	G. truncatulinoides	Pleistocene	5	1-1 1-1 1-2 1-3 1-4 1-5 106 1 CC	105-106 134-136 120-122 120-122 120-122 120-122 120-122		1000 1000 1000 1000 1000 1000 1000 500	° 100 100 100 100 100 100 100	•••••	• • • •	· · · · · · · · · · · · · · · · · · ·			· ·		: : ?	? • ? •				?	•••	•••	•	
	tiocenica tosaensis	Pliocene	23	2-1 2-1 2-2 2-3 2-3 2-4 2-4 2-4 2-5 2-5 2-5 2-6 2 CC	80-82 120-122 45-47 120-122 45-47 120-122 45-47 120-122 45-47 120-122 120-122		1000 1000 200 1000 1000 1000 1000 1000	100 93 100 100 100 100 100 100 100 100 100 10		•		?		· · ·	2	•	•	?		•	•	••••	•	• • • • • • • • •	
	G. exilis/G. m	Late 1	23	3-1 3-2 3-3 3-4 3-5 3-6 3 CC	123-125 120-122 120-122 120-122 120-122 120-122 120-122		1000 200 200 1000 1000 200 200	100 100 100 100 100 100 93	••••••		•			•••••••••••••••••••••••••••••••••••••••	:	••••	? • ? • ? • ? •		•	· · · · · · · · · · · · · · · · · · ·	: ,	:		•	
	G. margaritae	Early Pliocene	32	4-1 4-2 4-3 4-4 4-5 4-6 4 CC	top 120-122 120-122 top top top		1000 1000 1000 1000 1000 1000 1000	100 100 100 100 100 100 100	••••••	•••••	: 	•		•••		: .: •	:	:		• •	: · ·	:		:	P P

TABLE 8A Site 141, Cores 1 to 4. Foraminiferal Biostratigraphy, Nature of Residue, and Important Foraminifera

^ap: foraminifera partially determined. Symbols: • abundant, (very strong) • (strong ▲ common, (strong) • few, (moderate) • very scarce, (weak)

		S	Site 1	41	Cores	s 5 to 9	9, S'	w. (Core	1.	For	ami	nife	eral Bi	ostrat	igra	ph	y, 1	Nat	ure	of R	esid	ue, ai	nd I	mp	orta	int	Fora	nini	fera				
																					G. m	arga	ritae							Zone or Subsone				
	.,	5				د.			1	Ear I	ly F .ate	lioc Mic	cene ocei	e or ne						E	Carly	Pilo	cene							Age				
200	191	123			117	00	00						3	79	89						59		50					41		Depth Below Sea Floor (in meters)		19° 25.16' N, 23° 59 Water depth: 414	DSDF Site 141	
9-3 9-5 9 CC	9-1	8 CC	8-2 8-2	8-1 2	8-1	1.00	3-6	7-5	74	7-3	7-2	7-2	7-1	7-1	6 CC	6-6	6-6	6-5	64	6-3	6-1		5 CC	5-6	5-5	5-4	2-0	5-1		Core - Section		.91' W 8 m		
120-122 120-122 120-122 120-122 120-122	120-122		60-62 120-122	135-137	85-87		53-55	120-122	120-122	5-7	120-122	5-7	120-122	5-7		120-122	5-7	120-122	120-122	120-122	75			120-122	120-122	120-122	120-122	120-122	1	Sample Interval (in cm)				
••••			·			3	0	•	(·) (·)	•••	•	•	• 0	•	• •	•	•	•	• •		•		•	• • •	•	•		•		Plankton Benthon Ostracod Echinoid Mollusk Radiolar Diatoms	ic fora ic fora a remai fragme ia	aminifera minifera ins ents		
			• •					•	•	• •		•						•												Fish deb	ris	75.5		

100 50 200 200 200 100 50

100 98 98 98 98 98 98 98 98 98

.

. . . .

. .

. .

.

 $(0) \\ (10) \\ ($

. .

.....

0

0 (20) 0

...

Plant remains Quartz sand

Solution effects Candeina nitida

G. nepenthes

Planktonic/benthonic ratio

Globigerina venezuelana

Globigerinoides conglobatus

°/o foraminifera in >80 mesh fraction

1000 500 200 500 500 500 200

100 99 99 100 99 99

.

. .

.

. .

TABLE 8B
Site 141, Cores 5 to 9, SW. Core 1. Foraminiferal Biostratigraphy, Nature of Residue, and Important Foraminifera

.0

00000

0

287

SW. 1

			•		G. cf. fistulosus
			•• • •		G. obliquus obliquus
					G. obliquus extremus
					G. ruber
			• • • • •	• • • •	Globoquadrina altispira
					G. dehiscens
		•			Globorotalia acostaensis
		Ũ			G. crassaformis s.s.
			92 OS		G crassaformis ronda
					G crassula viola
		·			G cultrata
					G avilie
					G humarosa
					G. manaritas (small)
					G. margaritae (smail)
			•••		G. miocenica
					G. muticamerata
			2012 B		G. pertenuts
			•••	(per per	G. pseudopima
					G. tumida
			• • •		Orbulina universa
				• • • • • • • •	Pulleniatina primalis
				•	Sphaeroidinella dehiscens
			• • • • • •	• • • • •	Sphaeroidinellopsis seminulina
			•• • •	•	S. paenedehiscens
•					Ammodiscus incertus
•					Ammoglobigerina sp.
· ••	•				Bathysiphon sp.
	•				Cyclammina cf. deformis
• • •					Gaudryina cf. bentonensis
 • • •					Glomospira charoides
•					G. gordialis
					Gyroidina spp.
• • •					Haplophragmoides eggeri
•					H. cf. foliaceus
-					Laticarinina sp.
¢. ¢.					Pelosina dubia
		• • • • •			Stilostomella spp.
•					Trochamminoides irregularis
			ק קק	q q	Remarks ^a

^ap: foraminifera partially determined. Symbols: • abundant, (very strong) (strong) ▲ common, (strong) • few, (moderate) . very scarce, (weak)

		DSDP Site 142 3° 22.15' N, 42° 23. Water depth: 437	49' W 2 m		foraminifera foraminifera emains emains s algae s algae s algae s algae	id c/benthonic ratio	nifera in > 80 mesh fraction	ffects	nitida a dutertrei elana sa obtiquus se extremus se extremus at extremus at a attispira drina acostaensis lia acostaensis lia acostaensis sorrais s.s. ormis A. ormis A. a na a s. a a final ta a genera a finalis fina sp. inello pis seminulina fina sp. ina
Zone or Subzone	Age	Depth Below Sea Floor (in meters)	Core - Section	Sample Interval (in cm)	Planktonic Benthonic Benthonid Echinoid r Mollusk re Bryozoa Calcareou Radiolaria Diatoms Fish debrii Plant rema	Quartz sar Planktonic	°/º forami	Solution e	Candeina Globigerin Globigerin G. venezu G. veliquu G. voliquu G. voliquu G. vassaf G. vassaf G. crassaf G. crassaf G. crassaf G. crassaf G. crassaf G. crassaf G. crassaf G. numerc G. numerc G. pertenul G. primali S. paereoid S. paere
noides	ry	98 106	1-1 1-2 1-3 1-4 1-5 1-6 1 CC	120-122 120-122 120-122 120-122 120-122 90-92	• • • • • • • • • • • • • • • • • • •	 20 100 1000 100 1000 1000 50 	90 95 95 95 100 95 80	(0) 0 A	
G. truncatuli	Quaterna	200	2-1 2-2 2-2 2-3 2-4 2 CC	135-137 60-62 120-122 60-62 137-139	A · · · · · · · · · · · · · · · · · · ·	 100 500 500 100 1000 200 	90 95 100 100 100 98	•	• · · · ? · ? · · · · • • • ? · · · · · · · · · · · · · · · · · ·
		293 301	3-1 3-1 3 CC	63-65 136-138	•?• •••••	1000 ? 20	100 (2) 90	• ?	· · · • · · · • • • • · · ·
largaritae	Pliocene	369 376	4-1 4-2 4-3 4-4 4-5 4 CC	120-122 120-122 120-122 120-122 120-122	· · · · · · · · · · · · · · · · · · ·	200 1000 1000 1000 500 500	100 100 100 100 100 100	· · · · ·	• · · • · · · · · · · · · · · · · · · ·
G, n	Early	423 429	5-1 5-1 5-1 5 CC	28-30 64-66 108-110		500 100 500 50	80 99 90 100	•	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

TABLE 9A Site 142, Cores 1 to 5. Foraminiferal Biostratigraphy, Nature of Residue, and Important Foraminifera

^an: foraminifera not determined; p: foraminifera partially determined.

Symbols:	abundant,	common,	few,	very scarce,
Symbols.	(very strong)	(strong)	(moderate)	(weak)

TABLE 9B Site 142, Core 6 to total depth. Foraminiferal Biostratigraphy, Nature of Residue, and Important Foraminifera

	0. Here	DSDP Site 142 3° 22.15' N, 42° 23. Water depth: 437	49' W 2 m		foraminifera foraminifera emains	algae	cules s nents d	/benthonic ratio	nifera in > 80 mesh fraction	ffects	iitida 1x dissimilis a nepenthes	oides conglobatus s obliquus s extremus	tratus Irina altispira s.s.	ns ns atella insueta ita sp.	ia ac.051ac.1315 e	ripheroronda aefolisi sa	ide (Shian) Sis	niocenica ida/plesio tumida niversa seminutina	hiscens ina sp.	n sp. .qr	sp. sp. ella sp.	
Zone or Subzone	Age	Depth Below Sea Floor (in meters)	Core – Section	Sample Interval (in cm)	Planktonic Benthonic Ostracoda Echinoid r Molluck fr	Bryozoa Calcareous Radiolaria Diatoms	Sponge spi Fish debris Plant fragr Quartz san	Planktonic	°/º forami	Solution e	Candeina 1 Catapsydro Globigerin G. venezue	Globigerin G. obliquu G. obliquu	G. ruber G. sicanus G. subquad Globoquad G altisniva	Globigerin Globigerin	G. birnaga G. cultrata	G. Johsi pe G. fohsi pr G. humero	G. mayeri G. lenguae	G. pseudon G. cf. tum Orbulina u Sphaeroidi	S. paenede Amphisteg	Bathysipho Bolivina sp	Elphidium Epistomin	Remarks ^a
	Late Miocene or Early Pliocene	451 457	6-1 6-2 6-2 6-2 6-2 6-2 6-2 6-2	36-38 120-122 8-10 90-92 128-130 143-145		•	• • • • •	1 5 10 10 5 1 2	60 80 100 95 95 100 98	4 4 .	• :.		·		•	: :	? ? ?	••?	•••• ?••		•	
G. acostaensis or G. "dutertrei"	Late Miocene	479 487	7-1 7-2 7-3 7-4 7-5 7-6 7 CC	108-110 80-83 53-55 120-122 120-122 120-122				1000 1000 200 1000 1000 1000 1000	100 100 100 100 100 100 100	• • • • • •	· · •	•••	 . •			1	•	· • • ••			1	p p p n
	Middle (to Late ?) Middle	529	8-1 8-1 8-1 8-2 8-2 8 CC	0-2 40-42 108-110 143-145 55-57 93-95	A - • · • · • · • · • ·		•	500 10 100 100 10 1/2 1/5	100 80 100 100 90 50 80		•••	• •	•	•		•	?	•••• ?•• ••		: .	, ,	r? r?
Globigerina- tella insueta	ırly Miocene	575	9-1 9-2 9-2 9-3 9 CC	62-64 8-10 92-94 80-82	A • • · • • A · ·		•	50 20 200 2 200	90 100 99 70 100	4 4 0 0 0	•			•••	• ?	•	•					p n
	Ea	?	c. bit bel	ow c.g.	(•)			?	?					?•			•					c

^ac: strong downhole contamination, n: foraminifera not determined, p: foraminifera partially determined, r: reworking. Symbols: abundant, (very strong)

413

▲ common, (strong)

• few, (moderate) • very scarce (weak)

		DSDP Site 143 9° 28.45' N, 54° 18. Water depth: 349	71' W 3 m		c foraminifera	c foraminifera		spines	ragments	8	7	picules	is	ments	pu	ic/benthonic ratio	inifera in > 80 mesh fraction	effects	na dutertrei	noides conglobatus	(red colored)	ifer	alia cultrata	tulinoides	nelloides earlefordensis		lla amabilis	oira		na lacunosa	<i>unina</i> sp.	IIIIII Burumu	а
Zone or Subzone	Age	Depth Below Sea Floor (in meters)	Core – Section	Sample Interval (in cm)	Plankton	Benthoni	Ostracod	Echinoid	Mollusk f	Coprolith	Diatoms	Sponge s	Fish debr	Plant frag	Quartz sa	Plankton	°/° foram	Solution	Globigeri	Globigeri	G. ruber	G. saccul	Globorol	G. trunce	Globiger	G. sp.	Hedberge	H. planis	H. sp.	Epistom	Flabellar	IVECUMAN	Remarks
	Albian- Cenomanian	25	A1-1 A1-1 A1-2 Al outsid Al CC Al CC	114-116 139-141 100-102 de liner (gray) (yellbrn.)	(▲) ? ▲ ▲ (▲)	• ? • •		•	•	÷				•	•	? ? (5) ?	?(0)??????	???????	(•) (•) (•) (•) (•) (•)	(·) (·) (·) (·)	(•) (•) (•) (•)	(•) (•) (•) (•)	(•) ((•) ((•) ((•) ((•) ((•) ((•) ((•) ((•) ((•)	•) •) •) •		•	•	•••••	•	?	•	с с с с с с

 TABLE 10

 Site 143. Foraminiferal Biostratigraphy, Nature of Residue, and Important Foraminifera

×.

^ac: strong downhole contamination. Symbols: abundant, (very strong) (strong) • few, (moderate) • very scarce, (weak)

T. rohri		Cassigerinella chipole	ensis/Hastigerina "micra"		Globigerina ampliapertura	Zone or Subzone
Middle Eocene			Early to Middle Oligoco	ene		Age
47	38	27 36	20 29	10	9 0	DSDP Site 144 9° 27.23' N, 54° 20. Water depth: 295' Water Sea Floor (in meters)
A2-6 A2-6 A2 CC	A2-1 A2-2 A2-3 A2-4 A2-5 A2-6 A2-6	B3-1 B3-2 B3-3 B3-4 B3-5 B3-6 B3-6	A1-1 A1-1 A1-2 A1-3 A1-4 A1-5 A1 CC	B2-1 B2-2 B2-3 B2-4 B2-5 B2-5 B2-6 B2-6 B2 CC	B1-1 B1-2 B1-3 B1-4 B1-4 B1-5 B1-6 B1-6 B1CC	7 m 7 Core - Section
120-122 130-132	top top 120-122 120-122 120-122 40-42 110-112	120-122 120-122 120-122 120-122 120-122 120-122 top 68-70	5-7 32-33 116-118 118-120 117-119 132-134	120-122 130-132 125-127 top top top	top bottom top 120-122 top 120-122	Sample Interval (in cm)
	* * * * * * *	* * * * * * *	* * * * * * *	* * * * * * *	******	Planktonic foraminifera
						Benthonic foraminifera
	•		• •		• • • •	Ostracoda
	• • • •			• •	A	Echinoid spines
						Mollusk fragments
		• • •				Radiolaria
						Diatoms
	• • • •		• •			Sponge spicules
		• • •				Fish debris
						Plant remains
						Quartz sand
1000 500 500	1000 1000 1000 1000 500 500	1000 1000 1000 1000 1000	1000 1000 1000 1000 1000	1000 1000 1000 1000 1000 1000	1000 ? (1000) (500) 500 1000 1000	Planktonic/benthonic ratio
99 100 99	100 100 99 98 98 100	100 100 100 100 100 99	100 98 100 100 100	56 86 86 88 88 88 88 88 88 88 88 88 88 88	100 (100) (100) 100 99 100	°/ $_{\circ}$ foraminifera in > 80 mesh fraction
•						Solution effects

 TABLE 11A

 Site 144, Cores B1 to A2. Foraminiferal Biostratigraphy, Nature of Residue, and Important Foraminifera

*

• •	•			••••	Cassigerinella chipolensis
• • •				• •	Catapsydrax dissimilis
	•	• • •			Chiloguembelina cubensis
					C. martini
• •	•	•		• • • • •	Globigerina ampliapertura
		3			G. nepenthes
·· ·					G. senni
• • •	•	•	•	• • • • •	G. venezuelana
-				3	Globigerinoides conglobatus
) C	G. obliquus obliquus
		•			G. obliquus extremus
				3	G. ruber
				33	G. sacculifer
• •					Globigerinatheka barri
		•			Globoquadrina altispira
• •					Globorotalia crassata
		•		333	G. cultrata
		3		3	G. exilis
				. €	G. fohsi peripheroacuta
· ·		•	• •	•	G. gemma
				3	G. miocenica
• •					G. pomeroli
• •					Gr. renzi
) ÷		\odot \odot \odot \odot	G. truncatulinoides
				0 00	G. tumida
19					G. wilsoni
					Hantkenina longispina
•••••	•	• •	• • • • • • •		Pseudohastigerina barbadoensis
•••					P. micra
		• •		3 3	Orbulina universa
				33	Sphaeroidinella dehiscens
				(€ €	Sphaeroidinellopsis seminulina
••					Truncorotaloides rohri
•					T. topilensis
קתתק ק		or gen	סס סססס	,,,,,,,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Remarks ^a
		1			

THE FORAMINIFERA AND SOME ASSOCIATED MICROFOSSILS OF SITES 135 TO 144

^ac: strong downhole contamination; n: foraminifera not determined; p: foraminifera partially determined. Symbols: • abundant, (very strong) • few, (strong) • few, (weak)

G. for	micata-stuartiformis	G. pseudomenardii	Orbulinoides beckmanni	Zone or Subzone
Late Campani	an to Early Maestrichtian	Late Paleocene	Middle Eocene	Age
171 180	149	104 112 140	57 65	DSDP Site 144 9° 27.23'N, 54° 20. Water depth: 295 Depth Below Sea Floor (in meters)
A4-1 A4-1 A4-2 A4 CC	A3-5 A3-5 A3-5 A3-5 A3-6 A3-6 A3-6 A3-6 A3-6 A3-2 3-1 3-1 3-2	2-1 2-3 2-5 2 CC 2 CC A3-1 A3-2 A3-3 A3-5 A3-5 A3-5	1-1 1-2 1-3 1-3 1-4 1-5 1-6	5.52'W 7 m Core – Section
98-100 132-134 100-102	98-100 112-114 119-121 129-131 135-137 120-122 109-111 35-37	bottom bottom bottom 120-122 125-127 120-122 120-122 26-28 60-62 96-98	101-103 75 120-122 90-92 120-122 120-122	Sample Interval (in cm)
· • • • • • • • • • • • • • • • • • • •	> > <td>• •<td>> > ></td><td>Planktonic foraminifera Benthonic foraminifera Ostracoda Echinoid spines Mollusk fragments Radiolaria Diatoms Sponge spicules Fish debris Plant remains Quartz sand</td></td>	• • <td>> > ></td> <td>Planktonic foraminifera Benthonic foraminifera Ostracoda Echinoid spines Mollusk fragments Radiolaria Diatoms Sponge spicules Fish debris Plant remains Quartz sand</td>	> > > > > > > > > > > > > > > > > > >	Planktonic foraminifera Benthonic foraminifera Ostracoda Echinoid spines Mollusk fragments Radiolaria Diatoms Sponge spicules Fish debris Plant remains Quartz sand
100 1/5 1 1/100	100 200 500 500 500 500 100 20 100 5	500 500 500 500 500 500 500 500 500 500	500 500 200 200 200 200	Planktonic/benthonic ratio
100 90 95 95	98 98 98	100 99 100 100 100 100 100 100 98	95 80 90 90 40	$^{\circ}/_{\circ}$ for aminifera in > 80 mesh fraction
> • • •		× · · · •		Solution effects
			· · ·	Catapsydrax dissimilis s.1. Chiloguembelina martini Globigerina velascoensis G. senni

TABLE 11B Site 144, Cores 1 to A4. Foraminiferal Biostratigraphy, Nature of Residue, and Important Foraminifera

•		•				Globigerinelloides vaucoensis
		· •	.			Globorotalia aegua
		1045 N.		10 1274		G orașsata
			.		1 I.	G. ahranbargi
						G. nomeroli
						G. pomerou
			2.2			G. pusilla laguigata
						G. pasudomenardii
						G. pseudomenarali
						G. trinidadanaia
						G. uncinata
						G. uncinata
						G. velascoensis
				•		G. white
.5		•				Giobotruncana aegyptiaca
						G. calleljormis
· · · ·						G. Jornicata
		•••				G. havanensis
						G. linneiana
		•				G. plummerae
•	•••					G. stephensoni
	· ·					G. arca
		•••••				G. stuartiformis
		•				G. tricarinata
	•		-			Heterohelix globulosa
						H. punctulata
	1.10 C					H. ultimatumida
		12				Orbulinoides beckmanni
•		• •				Pseudoguembelina costulata
	•					Rugoglobigerina hexacamerata
••	•					R. rugosa
•	• • •	• •				Rugotruncana subpennyi
						Truncorotaloides rohri
						T. topilensis
• •	•		•			Aragonia velacoensis
						Bolivina incrassata
•		• •				Bolivinoides delicatulus
د.	•					Bulimina arkadelphiana
•						B. taylorensis
•	•					Neoflabellina sp. aff. numismalis
		•				Pyramidina szajnochae
	•					Rzehakina epigona lata
		с п р	q	n n	מק מת	Remarks ^a

ac: strong downhole contamination, n: foraminifera not determined, p: foraminifera partially determined, r: reworking.

 common, (strong)
 few, (moderate) very scarce, (weak)

Symbols: abundant, (very strong)

DSDP Site 144 9° 27.23' N, 54° 20.52' W Water Depth: 2957 m			nic foraminifera la foraminifera la Iremains	s ia pičules ris	nains and	nic/benthonic ratio	ninifera in > 80 mesh fraction	i effects	inelloides bentonensis i	uncana attformis rnicata a	icosa primitiva	litria harrisi ella amabilis	onensis oensis	erensis spira	itensis eliv of frizzelli	ulosa mani	ira	ampylodon lineolatus is minutissima	tina lacunosa lina say covetacen	ylorensis	ia noaosarta subgoodlandensis wina minima	1 subcretacea	etocutta sabetta sctammina alexanderi ria rioensis	itensis ieria plummerae	[fam. Orbitolinidae?) s a		
Zone or Subzone	Age	Depth Below Sea Floor (in meters)	Core - Section	Sample Interval (in cm)	Planktor Benthon Ostracod Echinoid	Mollusks Radiolar Diatoms Sponge s Fish deb	Plant rer Quartz s	Planktor	°/∘ forar	Solution	Globigen G. casey	G. cf. fo G. indici	G. renzi G. ventr	Guembe	H. britto H. delrio	H. gauti H. plani	H. wash	H. globu H. more	H. pulch	Coptoca	Epistom	L. cf. ta	Lituola	Patelline	Quinque Spirople Textula	T. wash Valvulin	n. gen. (Remark
enzi ?	cian – tonian	180 189	A5-1 A5-1 A5 CC	128-130 138-140	▲(•) ? ▲ ? ▲ · ?	? .		(∞) (∞) 200	95 30 50			•••		•	:	?• ?•		•	• •							•	p
M. re	Conia ? Sant	189 197	A6-1 A6-1 A6 CC	113-115 136-138	E - A - 0 -	•		1000 500 50	95 60 50			••	••• • ?	?	:	?•		•	•	e.							p
	Late Ceno- manian Early Turonian	213 219	4-1 4-2 4-3 4 CC	_ 120-122 120-122		• •		8888	100 20 100 60		• •				• • ?		•	•	???								
) tanian	264 270	5-1 5-1 5 CC	34-36 108-110	• • • •	: :	٠	3 10	50 0 50						?	••				•	•			,			
	Albian to Early Cenom	295 298	6-1 6-1 6-1 6-1 6-1 6 CC	10-12 20-22 27-28 30-32 134-137	· · · · · · · · · · · · · · · · · · ·	• • • •	* * * *	0 0 (0) 0	0 0 80 65								•						•	?		•	s s s s
	(or ian ?)	298 300	7-1 7-1 7-1	94-96 128-130 147-149	(•)••• ••• •••	•(•) • •	?••	(0) 0 0	(5) (5) (2)												2	?	• ?				
	Albian Late Apt	325 327	8-1 8-2 8-3 8 CC	90? 138-140 80-82	· · · · · · · · · · · · · · · · · · ·	• • • •	•	0 (0) ¹ /10	0 (5) (2) 50					•			?			• .		- 		1.652	• • •		c

TABLE 11C Site 144, Cores A5 to 8. Foraminiferal Biostratigraphy, Nature of Residue and Important Foraminifera

^ac: strong downhole contamination, p: foraminifera partially determined, s: thin section only. Symbols:
^a abundant, (very strong)
^b few, (strong)
^c (weak)

420

J. P. BECKMANN