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Abstract. Every classical or virtual knot is equivalent to the unknot via a sequence of extended Reidemeister moves
and the so-called forbidden moves. The minimum number of forbidden moves necessary to unknot a given knot is an
invariant we call the forbidden number. We relate the forbidden number to several known invariants, and calculate
bounds for some classes of virtual knots.

1. Introduction

The theory of virtual knots was introduced by Kauffman [12] as a generalization of classical knot theory, motivated
in part by the desire to provide a bijective correspondence between knots and Gauss diagrams. Like the classical
theory, virtual knot theory has a useful diagrammatic approach since virtual diagrams can be thought of as 4-valent
graphs with extra structure at the vertices. In the classical theory, this extra structure is indicated by overcrossings
and undercrossings, whereas in the virtual theory, a third kind of crossing is allowed, namely virtual crossings, which
are indicated in the diagrams with a small circle around the vertex.

Equivalence of virtual knots may be defined by means of a set of local moves (the extended Reidemeister moves)
on their diagrams.1 Figure 1 illustrates the extended Reidemeister moves: the classical Reidemeister moves R1, R2,
R3, the virtual moves V 1, V 2, V 3, and the semivirtual move SV . We may then define a virtual knot to be an
equivalence class of virtual diagrams modulo these moves.

Figure 1. The extended Reidemeister moves.

We remind the reader that it is important to restrict ourselves to these moves, and not consider physical movements
in space, as our intuition can sometimes lead us astray with diagrams that contain virtual crossings. For example,

Figure 2. Distinct virtual knots.

the virtual knots in Fig. 2 are distinct, even though they appear to differ only by a physical twist. These knots are
distinguished by the arrow polynomial defined by Dye and Kauffman [4].

Given an oriented (virtual) knot, we recall that its Gauss diagram is defined as follows: First label all the classical
crossings of the knot. Next, traverse the knot, writing down the sequence of crossing labels (so each label appears
twice); write this sequence around a circle. Then add a chord to the circle for each crossing; each chord is drawn as

1Equivalence may also be viewed as isotopy in thickened surfaces; see, for example, [14], [1] or [17].
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an arrow directed from the label corresponding to going over a crossing to the label corresponding to going under
the same crossing. Finally, each arrow is also labeled with the sign of the crossing. For example, Fig. 3 shows the

Figure 3. Gauss diagram of a virtual trefoil.

left-handed virtual trefoil knot and its corresponding Gauss diagram.
The Reidemeister moves can be reinterpreted as moves on Gauss diagrams; the virtual moves V 1, V 2, V 3 and SV

have no effect on the Gauss diagram. While not every Gauss diagram can be realized as the diagram of a classical
knot (the diagram in Fig. 3 is an example), every Gauss diagram can be realized as the diagram of a virtual knot
[12]. It is often useful to think of virtual knots in terms of Gauss diagrams, since it avoids the pitfalls created by
misinterpreting virtual knots as physical objects.

Since every classical or virtual knot is equivalent to the unknot via a sequence of the extended Reidmeister moves
together with the forbidden moves, illustrated in Section 2, we can consider the minimum number of forbidden moves
necessary to unknot a given knot. We define this invariant, the forbidden number, in Section 2 and provide an upper
bound for the forbidden number of a knot in terms of its crossing number. We continue in Section 4 by computing
upper bounds on the forbidden number for the Kishino knots with n full twists, as well as for twist knots and torus
knots. In Section 5 we relate the forbidden number to the odd writhe [13] and odd writhe polynomial [2], which
enables us to establish lower bounds on the forbidden number, and compute several more examples. Finally, in
Section 6 we apply our results to update Sakurai’s table [20] of forbidden numbers for knots with crossing number
less than or equal to four.

2. The forbidden number

As mentioned in the Introduction, there are two additional Reidemeister-like moves for virtual knots, known as the
forbidden moves, illustrated in Fig. 4. Move FO moves a strand of the diagram “over” a virtual crossing, while move
FU moves a strand “under” a virtual crossing. Neither of these moves can be obtained as a sequence of extended

Figure 4. Forbidden moves.

Reidemeister moves.
Unlike the other virtual Reidemeister moves, the forbidden moves do change the Gauss diagram of a virtual knot.

The move FO has the effect of switching the tails of two arrows in a Gauss diagram, while the move FU switches
the heads, as shown in Fig. 5. Nelson [19] observed that using two forbidden moves (one of each), we can perform

Figure 5. Forbidden moves on Gauss diagrams.

the forbidden detour move shown in Fig. 6, which has the effect on Gauss diagrams of switching the head of one
arrow with the tail of an adjacent arrow.

If we allow one forbidden move but not the other, we obtain what are known as welded knots, developed by Satoh
[21] and Kamada [10]. If we allow both forbidden moves, then any virtual knot can be transformed into any other
virtual knot ([6], [11], [19]; see also Thm. 3 of this paper), hence the designation of these moves as forbidden.
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Figure 6. Forbidden detour.

In particular, every classical or virtual knot can be transformed into the unknot by a sequence of extended
Reidemeister moves and forbidden moves. It is, therefore, natural to ask how many forbidden moves are necessary
to unknot a given knot.

Definition 1. Let K be a classical or virtual knot. The forbidden number of K, F (K), is the minimum number of
forbidden moves necessary to transform K into the unknot.

It is understood that Defn. 1 is to be taken over all diagrams for K, and that unlimited extended Reidemeister
moves are permitted during the transformation. Thus the forbidden number is an invariant of K, similar in spirit to
the unknotting number (the minimum number of crossing changes needed to transform K into the unknot) and the
virtual unknotting number (the minimum number of classical crossings that need to be turned into virtual crossings
to transform K into the unknot).

It follows immediately that only the unknot has forbidden number zero, since a sequence of extended Reidemeister
moves (without forbidden moves) that transforms K into the unknot would place K (by definition) in the same
equivalence class as the unknot.

Recall that if K is an oriented virtual knot, the inverse of K, denoted by K∗, is obtained by reversing the
orientation of K; the mirror image of K, denoted by K̄, is the result of switching all the classical crossings of K.

Theorem 2. F (K∗) = F (K) = F
(

K̄
)

Proof. A knot and its inverse have identical Gauss diagrams, except the circle is traversed in the opposite direction.
This has no bearing on either the extended Reidemeister moves or the forbidden moves. Thus F (K∗) = F (K). To
see that F (K) = F (K̄), observe that taking a mirror image has the effect of reversing all the arrows in the Gauss
diagram. Thus an unknotting sequence of extended Reidemeister moves and forbidden moves can be replaced by an
identical sequence of moves, but replacing FO moves with FU and vice versa. �

3. The forbidden number and the crossing number

We recall that the crossing number, c(K), of a knot is the minimum number of crossings of any diagram of K. To
extend this definition to virtual knots, we simply ignore all virtual crossings. Thus the crossing number of a virtual
knot K is the minimum number of classical (i.e., non-virtual) crossings in any diagram of K. In this section, we will
use the crossing number to derive upper bounds for the forbidden number. We find these bounds using the forbidden
moves and forbidden detours, along with the first Reidemeister move; the following lemma illustrates our method.

Lemma 3. For any virtual knot K, F (K) ≤ c(c−1)
2 +

⌊

(c−1)2

4

⌋

, where c is the crossing number of K.

Proof. From the point of view of Gauss diagrams, we can unknot any virtual knot by moving ends of chords past
each other to isolate each chord, and then eliminating chords using the first Reidemeister move. In a diagram with c

crossings, isolating a chord requires moving its head or tail past at most c− 1 ends of other chords, of which at most
⌊

c−1
2

⌋

are of the opposite type (i.e., require moving a head past a tail or vice versa). Moving a head/tail past an end
of the same type requires one forbidden move; moving past an end of the opposite type is a forbidden detour which

uses two forbidden moves. So isolating and removing the first arrow requires at most
⌊

3(c−1)
2

⌋

forbidden moves.

Doing this for each successive arrow (reducing the number of crossings each time) requires a total of at most:

c−1
∑

k=1

⌊

3k

2

⌋

=
c(c− 1)

2
+

⌊

(c− 1)2

4

⌋

forbidden moves, which completes the proof. �

We will improve this bound by examining a particular family of virtual knots we call complete knots. A complete
knot has a Gauss diagram in which every arrow crosses every other arrow (so the intersection graph of the Gauss
diagram is a complete graph, hence the name). For example, Fig. 7 shows all the possible Gauss diagrams for
complete knots with 5 crossings (ignoring the signs of the crossings). Note that the only classical knots which are
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complete knots are the (p, 2)-torus knots (for p odd). In these cases, the heads and tails of the arrows alternate
around the circle of the Gauss diagram (so the diagram on the left of Fig. 7 is the Gauss diagram for the (5, 2)-torus
knot).

Figure 7. Gauss diagrams for complete knots with 5 crossings.

Lemma 4. If K is a complete knot with crossing number c, and if h is the length of the longest sequence of consecutive

undercrossings in a minimal diagram for K, then F (K) ≤ c(c−1)
2 +

⌊

(c−h)2

4

⌋

.

Proof. As in the proof of Lem. 3, we will use forbidden moves and forbidden detours to move ends of arrows past
each other, and then remove arrows using the first Reidemeister move. The sequence of consecutive undercrossings
corresponds to a sequence of consecutive heads in the Gauss diagram for K. Observe that h 6= c− 1, since if there is
a sequence of c− 1 consecutive heads, the last arrow will extend this to a sequence of length c. So suppose h ≤ c− 2.
Let A and B be the arrows whose tails bound the sequence of h heads. One of A or B will have at least h+

⌈

c−h−2
2

⌉

heads on one side, and at most 1+
⌊

c−h−2
2

⌋

tails (the additional 1 comes from the other of chords A and B). So the
total number of forbidden moves required to remove that arrow will be:

h+

⌈

c− h− 2

2

⌉

+ 2 + 2

⌊

c− h− 2

2

⌋

= h+ 2 +

⌊

3

2
(c− h− 2)

⌋

= (h− 1) +

⌊

3

2
(c− h)

⌋

.

Since removing either A or B does not decrease the length of the sequence of heads, the resulting knot will still
be a complete knot with a maximal sequence of length at least h. So we can continue this process until there are
only h + 1 arrows left, at which point all the heads will be consecutive. After that, no more forbidden detours are
needed. So the total number of forbidden moves required is:

c−h
∑

k=2

(

h− 1 +

⌊

3k

2

⌋)

+
h
∑

k=1

k =
c(c− 1)

2
+

⌊

(c− h)2

4

⌋

.

�

Table 1 lists the upper bound given by Lem. 4 for small values of c and h. Note that when h = 1, the bounds are
those given by Lem. 3.

crossing number c
1 2 3 4 5 6 7 8 9 10

h

1 0 1 4 8 14 21 30 40 52 65
2 1 3 7 12 19 27 37 48 61
3 3 6 11 17 25 34 45 57
4 6 10 16 23 32 42 54
5 10 15 22 30 40 51
6 15 21 29 38 39
7 21 28 37 47
8 28 36 46
9 36 45
10 45

Table 1. Upper bounds on F (K) for complete knots with c crossings, and at least h consecutive undercrossings.

Theorem 5. For any virtual knot K with crossing number c, F (K) ≤
⌊

3c2−6c+7
4

⌋

.
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Proof. We first consider the case when K is a complete knot. If c is even, then there must be two consecutive under-
crossings in the diagram for K. Otherwise, the diagram would alternate between overcrossings and undercrossings.
If we begin at a crossing A, this means that we need to go over an even number of crossings before returning to A

(otherwise we would try to go over or under A twice). But since the knot is complete and c is even, the diagram
passes through an odd number of crossings before returning to A, which is impossible.

So, if K is a complete knot and c is even, then by Lem. 4 we have

F (K) ≤
c(c− 1)

2
+

⌊

(c− 2)2

4

⌋

=
c(c− 1)

2
+

(c− 2)2

4
=

3c2 − 6c+ 4

4
=

⌊

3c2 − 6c+ 7

4

⌋

.

On the other hand, if c is odd, then removing the first arrow from the Gauss diagram requires at most 3
2 (c − 1)

forbidden moves, as in Lem. 3 (since c− 1 is even, the floor function is unnecessary). The result is a complete knot
with c− 1 crossings, which must then have two consecutive undercrossings as above. So in this case we have

F (K) ≤
3

2
(c− 1) +

(c− 1)(c− 2)

2
+

⌊

(c− 3)2

4

⌋

=
3

2
(c− 1) +

(c− 1)(c− 2)

2
+

(c− 3)2

4
=

3c2 − 6c+ 7

4
.

If K is not complete, then there are two arrows in the Gauss diagram which do not intersect. Then at least
one of them has at most c − 2 heads and tails on one side, so can be removed with at most

⌊

3
2 (c− 2)

⌋

forbidden
moves. On the other hand, from the proof of Lem. 4, removing an arrow from a complete knot with two consecutive
undercrossings requires at most 1+

⌊

3
2 (c− 2)

⌋

forbidden moves. So the bound computed for the complete knots also
bounds the forbidden number for any non-complete knots. �

Below is a table listing the upper bound provided by Thm. 5 for crossing numbers up to 12.

Crossing number 2 3 4 5 6 7 8 9 10 11 12
Upper bound for F (K) 1 4 7 13 19 28 37 49 61 76 91

Example 6. The bounds in Lem. 4 and Thm. 5 are far from sharp. In particular, as arrows are removed from a
complete knot, the sequence of consecutive undercrossings is likely to increase in length. To illustrate this, we will
consider the (p, 2)-torus knots Tp,2 (where p is odd), which are the only classical complete knots. The Gauss diagrams
for these knots consist of p arrows, all with positive sign, with heads and tails alternating around the diagram. If
we follow the procedure in the proof of Lem. 4, then each time we remove an arrow we increase the length of the
longest sequence of undercrossings by 1, as shown for the (5, 2)-torus knot in Fig. 8.

Figure 8. Removing arrows from the (5, 2)-torus knot.

When there are p+1
2 arrows left, all the remaining heads are consecutive. So:

F (Tp,2) ≤

p−1

2
∑

k=1

(

k − 1 +
3

2
(p− 2k + 1)

)

+

p−1

2
∑

k=1

k =
5p2 − 4n− 1

8

For example, F (T11,2) ≤ 70, compared to the bound of 76 from Thm. 5.

4. Examples

In this section we will examine several common families of knots: the Kishino knot with twists added, twist knots
and torus knots. For the Kishino knots, we prove the forbidden number for all such knots is 1; for the other families,
we will provide upper bounds for the forbidden number. In these examples, the upper bounds are found through
direct analysis of the Gauss diagrams, though in the first example, the corresponding moves in the knot diagram are
easy to see.
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Figure 9. Kishino Knot with n full twists.

Kishino knot with n full twists. Fig. 9 shows the Kishino knot with n full twists, denoted Kn (the original
Kishino knot is the case when n = 0). For all n ≥ 0, we have F (Kn) = 1. The knots Kn are distinguished from each
other (and from the unknot) by the arrow polynomial [9]. Thus F (Kn) ≥ 1.

To show that F (Kn) = 1 we perform the following moves: We begin by using forbidden move FU to slide the
head of arrow 1 past the head of arrow 2. Next we remove crossings 1 and 2 with R1 moves. Then the 2n crossings
in the middle can be eliminated with R1 moves. Finally we use an R2 move to eliminate crossings 3 and 4. Note
that the collection {Kn} provides an infinite family of distinct knots with forbidden number one.

Twist Knots. The twist knot Tn with n half-twists is shown in Fig. 10, along with the Gauss diagram for the
two cases: when n is even and when n is odd. All twist knots have unknotting number one and virtual unknotting
number two [5], but their forbidden number most likely depends on n. If n is odd then F (Tn) ≤ 3n + 1. This is
achieved by using three forbidden moves to move one end of each of the horizontal chords past the vertical chords,
and then removing the horizontal chord by an R1 move; a final forbidden move is then used to uncross the two
vertical chords.

If n is even, then F (Tn) ≤ 5
2n − 1. In this case, we move the tail of the right-hand vertical chord past all the

horizontal chords except the top one (requiring (n − 1) + n
2 = 3

2n − 1 forbidden moves), move the head of the
right-hand vertical chord past the tail of the other vertical chord (requiring two forbidden moves), and then remove
the (originally) right-hand vertical chord and the top horizontal chord by an R2 move. Now we can remove all but
one of the remaining horizontal chords, one at a time, by combining a forbidden move and an R1 move; the last
two chords are removed by another R2 move. This is a total of 3

2n − 1 + 2 + (n − 2) = 5
2n − 1 forbidden moves.

In particular, the figure-eight knot is T2, so this gives us an upper bound of four for the forbidden number of the
figure-eight knot.

Figure 10. Twist knot Tn.

Torus Knots. In Ex. 6, we found an upper bound for the forbidden number of the (p, 2)-torus knot (p odd).
That bound was created from a diagram with a minimal number of crossings. But a better bound can be obtained
using a diagram with more crossings. The (p, 2)-torus knot is a 2-bridge knot, meaning it has a diagram with only
two overpasses (segments without undercrossings) and two underpasses (segments without overcrossings) appearing
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alternately along the diagram. Figure 11 is a 2-bridge presentation for the (5, 2)-torus knot with the corresponding
Gauss diagram.

Figure 11. (5, 2)-torus knot and Gauss diagram.

Recall that forbidden moves move heads past adjacent heads or tails past adjacent tails. Thus crossing 2 can be
eliminated from the diagram with two forbidden moves (one FO and one FU) followed by an R1 move, and similarly
for crossing 6. Crossings 4 and 8 can then be eliminated with four forbidden moves each (two FO and two FU) and
R1 moves. The remaining crossings (1, 3, 5, 7) are eliminated with R1 moves. The total number of forbidden moves
is 2(2 + 4) = 12. Thus F (T5,2) ≤ 12. In contrast, the formula in Ex. 6 gives an upper bound of 13.

The situation is similar for Tp,2. The 2-bridge presentation will have 2(p−1) crossings, with one overpass numbered
from 1 to p− 1, and the other from p to 2(p− 1). The Gauss diagram will have the even chords horizontal and the
odd chords vertical. The even chords from 2 to p− 1 can be eliminated sequentially with 2 to p− 1 forbidden moves
respectively, followed by R1 moves. Symmetrically, the remaining chords can be eliminated with the same number

of forbidden moves. The total number of forbidden moves used is 2
(

2 + 4 + · · · + (p − 1)
)

= p2
−1
2 . Thus we have

proven the following:

Theorem 7. F (Tp,2) ≤
p2

−1
2 .

Note that the better bound for the forbidden number is obtained from a diagram that does not have a minimal
number of crossings: 2(p − 1) crossings in the 2-bridge presentation as compared to p crossings in the minimal
presentation.

5. Forbidden number and Odd writhe

We recall that a crossing of a virtual knot is called odd if its crossing labels in the Gauss diagram have an odd
number of crossing labels between them. The odd writhe, then, is the sum of the signs of the odd crossings. Kauffman
showed that the odd writhe is invariant under the extended Reidemeister moves, and hence is an invariant of virtual
knots [13]. We note that in classical knots the odd writhe is always zero, since all crossings of classical knots are
even. For the virtual trefoil shown in Fig. 3, the odd writhe is two, proving that this knot is not equivalent to any
classical knot.

While the odd writhe is invariant under the extended Reidemeister moves, it is not invariant under the forbidden
moves.

Theorem 8. A forbidden move changes the odd writhe by 0, 2 or -2.

Proof. A forbidden move either crosses or uncrosses two arrows of the Gauss diagram, causing their parities to
change. If they have the same parity and the same sign or opposite parities and opposite signs, the odd writhe will
change by ±2; if they have the same parity and opposite signs or opposite parities and the same sign, the odd writhe
will be unchanged. �

This result immediately gives us the following lower bound on the forbidden number.

Theorem 9. For any virtual knot K, F (K) ≥
∣

∣

1
2wo(K)

∣

∣, where wo(K) is the odd writhe of K.
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We remark that this tells us nothing about the forbidden number of classical knots since they have odd writhe of
zero.

As an application, we can compute the forbidden number for a ring of virtual trefoil knots. In particular, the
forbidden number of the virtual trefoil is one.

Theorem 10. The forbidden number of a ring of n virtual trefoil knots is n.

Proof. The Gauss diagram for a ring of n virtual trefoil knots is shown in Fig. 12. Each pair of crossed arrows can be

+

+
+

+

+

++
+

Figure 12. A ring of n virtual trefoil knots.

uncrossed by a single forbidden move, and the crossings can then all be removed using the first Reidemeister move,
so the forbidden number is at most n.

On the other hand, each of the 2n crossings is odd, and they all have the same sign, so the odd writhe is 2n. So,
by Thm. 9, the forbidden number is at least n. Therefore, the forbidden number is exactly n. �

Example 11. Virtual twist knots. The virtual twist knots V Tn are the twist knots Tn with the top crossing made
virtual, as shown in Fig. 13. If n is odd, then the odd writhe is n+ 1 so F (V Tn) ≥

n+1
2 ; on the other hand, we can

remove each horizontal chord in turn with a single forbidden move and an R1 move, so F (V Tn) ≤ n.
If n is even then the odd writhe is n and F (V Tn) ≥

n
2 . We remove the horizontal chords as when n is odd, except

that the last horizontal chord and the vertical chord can be removed together by an R2 move. So when n is even
F (V Tn) ≤ n− 1.

Figure 13. Virtual twist knot V Tn.

Forbidden Number and the Odd Writhe Polynomial. Cheng [2] extended the idea of the odd writhe, creating
the odd writhe polynomial, denoted WK(t) ∈ Z[t, t−1]. This polynomial has been completely characterized and
generalizes the odd writhe invariant; the sum of the coefficients of WK(t) is precisely the odd writhe. We will briefly
review the definition of the odd writhe polynomial, and then describe how it changes under forbidden moves.
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Consider a virtual knot diagram K with real crossings c1, . . . , cn. The Gauss diagram for K contains n arrows
corresponding to these crossings, which divide the circle into 2n arcs. We assign each arc an integer as follows:
beginning at a point in the arc, we follow the orientation of the circle (traditionally counter-clockwise) around
the Gauss diagram. For each arrow in the diagram, we will first encounter either its head (corresponding to an
undercrossing) or its tail (corresponding to an overcrossing). The integer assigned to the arc is the sum of the signs
of the arrows whose heads are encountered first.

Next we use the integers on the arcs to assign an integer to each arrow ci. The endpoints of ci are incident to
four arcs of the Gauss circle; two arcs at the head and two arcs at the tail. We denote the labels of these arcs by h1

and h2 at the head and t1 and t2 at the tail. Then the integer assigned to ci is N(ci) = max{h1, h2} −min{t1, t2}.
Finally, we define the odd writhe polynomial of K to be:

WK(t) =
∑

ci odd

sign(ci)t
N(ci)

where the sum is over all odd crossings in the knot diagram. Note that classical knots, which have no odd crossings,
have WK(t) = 0.

Example 12. We compute the odd writhe polynomial for the virtual knot K in Fig. 14 (knot 4.47 from [7]).

Figure 14. Virtual knot 4.47.

The labels for the arcs of the Gauss diagram are shown in Fig. 15, along with the computation of N(ci). Since all
of the crossings are odd, the odd writhe polynomial is:

WK(t) = −t2 + t4 + t0 − t2 = t4 − 2t2 + 1

N(c1) = 0− (−2) = 2

N(c2) = 2− (−2) = 4

N(c3) = 0− 0 = 0

N(c4) = 2− 0 = 2

Figure 15. Labeling the arcs and arrows of the Gauss diagram.

We can use the odd writhe polynomial to establish lower bounds on the forbidden number of many virtual knots,
by seeing how it is changed by a forbidden move.

Theorem 13. Performing a forbidden move on a knot K changes WK(t) by ±tm ± tn for some m and n. (It is
possible that m = n.)

Proof. Figure 16 shows the result of performing an FU move on a Gauss diagram, and how it affects the labels on
the arcs of the diagram. The signs of the crossings, ±1, are represented by ε and δ. The only arc that changes its
label is the arc between the heads of the two arrows involved. It is also important to note that the parities of the
two crossings (odd or even) will change.

Let cε and cδ denote the crossings in knot K with signs ε and δ, respectively; let c′ε and c′δ denote the corresponding
crossings in K ′. Then in K, N(cε) = i− j+(1− ε) and N(cδ) = i− k+(1− ε− δ). In K ′, N(c′ε) = i− j+(1− ε− δ)
and N(c′δ) = i− k + (1− δ). The labels (and parities) of all other crossings in the knots are the same. Now we have
four cases, which are summarized in the table below:
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j

j+ε

k+δ

ε δ

k

i i−ε−δ
i−ε

K

ε δ

j

j+ε

k+δ

k

i
i−δ

i−ε−δ

K´

Figure 16. Performing a forbidden FU move.

WK −WK′ cε is odd cε is even

cδ is odd εtN(cε) + δtN(cδ)

= εti−j+1−ε + δti−k+1−ε−δ

−εtN(c′ε) + δtN(cδ)

= −εti−j+1−ε−δ + δti−k+1−ε−δ

cδ is even εtN(cε) − δtN(c′δ)

= εti−j+1−ε − δti−k+1−δ

−εtN(c′ε) − δtN(c′δ)

= −εti−j+1−ε−δ − δti−k+1−δ

We now perform a similar analysis for an FO move. Figure 17 shows the result of performing an FO move.

j

j-ε

k-δ

ε δ

k

i i+ε+δ
i+ε

K

ε δ

j

j-ε

k-δ

k

i
i+δ

i+ε+δ

K´

Figure 17. Performing a forbidden FO move.

As before, let cε and cδ denote the crossings in knot K with signs ε and δ, respectively; let c′ε and c′δ denote
the corresponding crossings in K ′. Then in K, N(cε) = j − i + (1 − ε) and N(cδ) = k − i + (1 − ε − δ). In K ′,
N(c′ε) = j − i+ (1− ε− δ) and N(c′δ) = k − i+ (1− δ). The labels (and parities) of all other crossings in the knots
are the same. Now we have four cases, which are summarized in the table below:

WK −WK′ cε is odd cε is even

cδ is odd εtN(cε) + δtN(cδ)

= εtj−i+1−ε + δtk−i+1−ε−δ

−εtN(c′ε) + δtN(cδ)

= −εtj−i+1−ε−δ + δtk−i+1−ε−δ

cδ is even εtN(cε) − δtN(c′δ)

= εtj−i+1−ε − δtk−i+1−δ

−εtN(c′ε) − δtN(c′δ)

= −εtj−i+1−ε−δ − δtk−i+1−δ

In every case, we have WK(t)−WK′(t) = ±tm ± tn for some integers m and n.
�
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We remark that WK(t)−WK′(t) = 0 only in the following circumstances:

(1) ε = δ, the crossings have opposite parity, and j = k

(2) ε = −δ, the crossings have the same parity, and j = k + ε (for an FU move) or j = k − ε (for an FO move)

Corollary 14. If WK(t) =
∑

bit
i, then F (K) ≥ 1

2

∑

|bi|.

Proof. By Thm. 13, any forbidden move changes WK(t) by ±tm ± tn, and hence changes
∑

|bi| by at most 2. Thus,
F (K) ≥ 1

2

∑

|bi|. �

Example 15. Consider the virtual knot K in Fig. 14 (knot 4.47 from [7]). The odd writhe is zero, but WK(t) =
t4 − 2t2 + 1, so the forbidden number is at least two. We now show that the forbidden number is exactly two.
Referring to the Gauss diagram in Fig. 14 we use a forbidden move FU to move the head of 4 past the head of 2.
Then we use R1 to remove crossing 4. Next we move the head of 3 past the head of 2 using a second FU move.
Then, we remove crossing 3 with R1. Finally, we remove crossings 1 and 2 with R2.

6. Forbidden Numbers of Knots with Small Crossing Number

The forbidden numbers of many knots with crossing number ≤ 4 were computed by Sakurai [20] by analyzing the
effect of forbidden moves on a polynomial defined by Henrich [8]. In this section, we update and expand the table
given in [20], incorporating the findings from the present paper. The results are shown in Table 4. The table lists:

H : the lower bound derived by Sakurai from Henrich’s polynomial
OW : the lower bound given by Corollary 14 from the odd writhe polynomial

S : the value of F (K) given by Sakurai (when provided)
F (K) : the forbidden number of the knot. When the forbidden number has not yet been determined, the best known

bounds are listed in the format lower bound–upper bound.

There is considerable overlap between the bounds obtained using the two polynomials (Henrich vs. odd writhe).
In addition to analyzing all virtual knots with 4 or fewer crossings, we compared the lower bounds from Henrich’s
polynomial and the odd writhe polynomial for all virtual knots with 5 or 6 crossings (using a computer program and
the list of Gauss codes from [7]). The results are shown in Table 2.

Crossing number H > OW OW > H H = OW Total
2 0 0 1 1
3 3 0 4 7
4 29 2 77 108
5 3312 88 5830 9230
6 143,686 10,218 200,774 354,678

Table 2. Comparison of lower bounds from Henrich and odd writhe polynomials

Among virtual knots with four crossings, the odd writhe polynomial gives a better lower bound for knots 4.26 and
4.47, and we were able to determine the forbidden number. In several other cases, we were able to determine the
forbidden number by finding an unknotting sequence that realized the known lower bound, as in Ex. 15. An asterisk
(∗) indicates the forbidden number is determined by the methods of the present paper, i.e., these knots were not
listed in Sakurai’s table. Gauss diagrams for these knots are shown in Figure 18, and their unknotting sequences
are given in Table 3. When the forbidden number has not yet been determined, the best known bounds are listed in
the format lower bound–upper bound. Upper bounds are computed in a manner similar to Ex. 15. The numbering
corresponds to [7].

To interpret the notation in the unknotting sequences in Table 3, consider the first example: To unknot virtual
knot 4.26, switch the tails of arrows 1 and 2 with a forbidden over move. Then switch the heads of 2 and 4 with
a forbidden under move. Remove 1 with a Reidemeister move (R1). Then remove 4 (R1). Finally, remove 2 and 3
(R2).
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Figure 18. Gauss diagrams.
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