
~~

(.

(9

t,

NASA Contractor Report 178161

leASE REPORT NO. 86-54

ICASE

/Y/lsr? t;(-17%; I~

NASA-CR-178161
19860020908

THE FORCE ON THE FLEX: GLOBAL PARALLELISM AND PORTABILITY

Harry F. Jordan

Contract No. NASl-17070

August 1986

INSTITUTE FOR COMPUTER APPLICATIONS IN SCIENCE AND ENGINEERING
NASA Langley Research Center, Hampton, Virginia 23665

Operated by the Universities Space Research Association

NI\SI\
National Aeronautics and
·Space Administration

Langley Research Center
Hampton, Virginia 23665

\ \U\\\\\ \\U \\\\ U\\\ U\\\ \\\\\ \\\\\ \\\\ \U\
NF00191

llBftfiRV C@I~V
SE P i3 1~tj6

lL\NGL£V RESEARCH CENTER
UERARY,. NASA

a\! !P1OU, YillG!Wll

"

q

"

,.,

THE FORCE ON THE FLEX:
GLOBAL PARALLELISM AND PORTABILITY,

HARRY F. JORDAN+

ABSTRACT
.-\ parallel programming methodology, called the force, supports the con

strlldioll of programs to be exeeuted in parallel by an unspecified, but poten
t.ially I.1rgp, number of processes. The methodology was originally develop~d
on a pipl'lined, shared memory multiprocessor, the Denelcor HEP, and embo
dit·s t.he primit.ive operations of the force in a set of macros which expand into
Illlllt.ipwe('ssor Fortran eode. A small set of primitives is sufficient to write
large parallel programs, and the system has been used to produce 10,000 line
programs in C"omputational fluid dynamics. The level of complexity of the
foree primitives is intermediate. It is high enough to mask detailed architec
tural diff(>renees between mult.iprocessors but low enough to give the user
con trol over performance.

The system. is being ported to a medium scale multiprocessor, the
Flex/:32, which is a 20 processor system with a mixture of shared and local
nH'mory. Memory organization and the type of processor synchronization
support('d by the hardware on the two machines lead to some differences in
eme-ient. implementat.ions of the force primitives, but the user interface
remains the same. An initial implementation wns done by retargeting the
macros t.o Flexible Computer Corporat.ion's ConCurrent C language. Subse
qlll'ntly, the macros were eaused to directly produce the system calls which
form the basis for ConCurrent C. The implementation of the Fort.ran based
system is in step with Flexible Computer Corporations's implementation of a
Fortran system in the parallel environ men t.

+University of Colorado, Bouldt'r, CO 8030!l-O·I~5.

Research was supported in part by NASA Contract No. NASl-17070 and by
.the Air Force Office of Scientific Research under Grant No. AFOSR 85-
'0189 while the author was in residence at the Institute for Computer
Applications in Science and Engineering, NASA Langley Research Center,
Hampton, VA 23665.

i

'#=
;if6-3M9tJ

"

, .

.'

. ,

The Global Parallelism Concept

The unifying idea behind the programming environment discussed in this
paper is that of "global" parallelism. In contrast to the dataflow point of view
we retain the idea of multiple instruction streams but insulate the user from
the detailed management of the streams on an individual basis. One view of
this unifying idea is as a way of incorporating parallelism into the structural
hierarchy of a program. It is in contrast to the encapsulation of parallelism
into one or more program modules and can be viewed as parallelism with the
largest possible "grain" size.

The view of a computation as an hierarchically structured set of func
tions is well established and maps into the subroutine calling hierarchy in
most programming languages. The level of the (usually tree structured) func
tional hierar("hy at which parallelism enters into the description of an algo
rit.hm is an important issue. The leaf level, where SIMD parallelism ·is
appropriate ("an be denoted as fine grained parallelism. As rvn~lD parallelism
is applied at higher levels, we can speak of algorithms with coarser grained
parallelism. \Vith fine grained parallelism, the major issue in expressing the
compu t.at-ion is to specify exactly what is to be done in parallel in each of the
smnll grains. Very tight synchronization must be the rule (as in SHdD) for
fine grained parallelism to make sense. In a program with coarse grained
parallelism the amoun t. of code devoted to expressing the parallelism may be
vcry small a.nd localized in a high level module. In exchange, the specification
of synchroniza.t.ion becomes the major issue and may appear explicitly at any
le\'el of strueture, all the way down to the leaf.

One possible way to fi t. MIl\lD parallelism in to the calling hierarchy is to
try t.o encapsulate parallelism below a certain level, or grain size. This has
the advantage that the upper levels of the program can be written without
knowing anything about parallel computation. Using the Fork/Join mechan
ism [II t.o man nge parallel processes, a. single instruction stream would fork
within some subroutine into multiple st.reams which would perform a parallel
comput.at.ion and then join int.o a' single stream before returning from the
su brou tine. The drawbacks in this scheme lie in the area of performance. It
is well known that even a small amount of sequential code in an otherwise
parallel program can decrease effieiency significan tly on a system with a large
degree of parallelism. The encapsulat.ion idea forces all code above a certain
leYel of st.ructure to be sequentia.l. Furthermore, there is overhead associated
wit·h managing processes and execution environments in fork and join which
is invoked whenever the program passes into or out of the parallel level of
structure .

Since encapsuintion overheads tend to make larger grained parallelism
more efficient regardless of the grnill size, there is a good reason to locate
parallelism at the highest level of program structure in the MIMD environ
ment. Experience shows that it is quite feasible to write applications pro
grams with "global" parallelism. In this environment one begins a program
under the assumption that it may be executed by an arbitrary number P of
processes. There is no explicit code for process management. The processes
are managed by entry level, system dependent code which chooses the

-2-

number of processes on the basis of hardware structure and availab"le
knowledge of algorithm needs. The explicitly appearing code to deal with
parallplism is all related to process synchronization and data sharing. The
idea of global parallelism applies to the decomposition of algorithms on the
basis of data rather than function. With a high degree of parallelism some
data deeomposit.ion of an algorithm is surely necessary since the number of
independen t. functions is limit.ed. Thus this idea is probably most appropri-
at.e to systems supporting many processes. .

The above concept of global parallelism has been incorporated into a pro
gramming met hodology called the "force". The force [2J methodology for
parallel programming arose in trying to produce high performance parallel
programs in a shared-memory multiprocessor running up to 200 processes on
the same user program [3J. Multiprogramming was not an issue, and all
emphasis was on single problem solution speed. Partly for performance meas
urement purposes and partly for program manageability, a programming
style emerged in whieh a single piece of code was written which could be exe
cut.ed by a force of proeesses in parallel. The number of processes constitut
ing the force is const.ant. during execution but is bound as lat.e as the begin
ning of ex('eution, and may be one. Similar t.echniques have been developed
for progr:1mming some more recent multiprocessors, notably the Bolt Beranek
and Newman BlItterfly [elJ and the IBM research processor RP3[5J.

SeY(')'al advantages arise out of independence from the number of
processes. It is not neeessary to design algorithms with a detailed depen
dE-nee on the', potent.ially ypry large, number of processes executing them.
The choice of the optimal number of procpsses can be made at run time on
the basis of system hardware configuration and load. Since complete
independ(,llee from t.he number of processes implies correct execution wit.h
only one process, the issuE'S of a.rithmetic correctness and multi-process syn
chronizat.ion can be separat.ed ill the testing of a program.

St.atements written in a force program are implicitly executed by all
proeesses in parallel. Variables appearing in statements are divided into local
variable'S, having separate inst.ances for each process, and global variables,
shared among all processes of the force. An assignment statement, for exam
ple, may combine the values of global and local variables to produce a local or
global rpstIlt.. If the result is local, no assignment conflict is possible. If it is
global, then assignment. conflict must be prevented, either hy allocation of
disjoin t. seet.iolls of a globa.l data structure to multiple proc.esses or by syn
chronizing the assignment across processes, say by enclosing it in a critical
section or by using producer/consumer synchronization on the variable
assigned. Library or user subroutines which are either free of side effects or
carefully synchronized can be invoked in parallel, one copy for each process.

Realization of the Concept

The programming language associated with the force consists of some"
simple ext.ensions t.o the Fortran language, which are currently implemented
as macros expanded by a language independent preprocessor. The target

"

\ ,

,"

I,

-3-

Fortran system must, of course, include ways of creating multiple processes
and of supporting synchronized access to global variables. The macros
interact through the variables of a parallel environment, which contains some
general informa.tion such as the number of processes and some machine
dependen t items.

The macros currently constituting the force can be divided into several
classes, as shown in Fig. 1. The first class deals with parallel program struc
ture. The macros Force and Forcesub respectively begin parallel main pro
grams and parallel subroutines. They make the parallel environment vari
ables available to the macros within that program module as well as making
the number of processes and a unique identifier for the current process avail
able to the user at run time. An End Declarations macro marks the beginning
of exec-utable code and provides target locations for declarations and start up
code which may be generated by the macros. A Join macro terminates the
parallel main program. It is the last statement executed by all processes of
the foree.

Macros of the second class deal with variable declaration. This class
eurren t.ly includes only Global and Local macros. Globa.l variables are associ
ated wit.h Fortran common while local variables are ordinary Fortran vari
ables local to a separately compiled program module. Sharing of local vari
ables among several program modules, but local to one process, can only be
accomplished by parameter passing. The static allocation flavor of Fortran
makes it diffic:ult to build a structure of common variables with one instance
for each process when the number of processes is not known until execution
time.

Macros of another class distribu te work across processes. The most fami
liar construet is the DOALL, which is employed when instances of a loop
body for different index values are independent and can thus be executed in
any order. Two versions are provided. The Presched DO divides index values
among proc:esses in a fixed manner which depends only on the index range
and the number of proeesses. The SelJsched DO allows processes to schedule
themselyes over index values by ohtaining the next available yalue of a
shared index as they become free to do work. For situations in which it is
desirable to parallelize over both indices of a doubly nested loop, both
prescheduled, PregDO, and self scheduled, Sel/gDO, macros are available.
Independence of the loop body instances over both indices is, of course,
required for correct operation. A similar construct is the parallel case, Pease,
which distributes different single stream code blocks over the processes of the
force. Execution conditions can be associated with each block, and any
number of these conditions may be true simultaneously. No order of evalua
tion of the conditions is specified, and each will be evaluated by one arbi
trarily selected process. Thus conditions depending only on global variables
are most meaningful.

At the heart of the force methodology are the synchronization macros.
They cha.racterize the approach to parallel programming and provide t~e
means for can trolling the force so that coherent and deterministic computa
tion can be performed. Two subclasses of synchronization are control flow

-4-

~hcros associated with program structure:
Force <name> of <# procs> ident <proc #>

< declarations>
End declarations

< force program>
Join

Forc('sub <name> of <#procs> ident <proc #>
< dcelarations >

End header
<subroutine body>

RETURN

Foreeeall <name>(<parameters»

Dt'eiarat.ion maC'ros:
Global <variable names>
LoC'al <Fortran declaration>

~laC'ros specifying parallel execution:
Pcase on <variable>

< code block>
Used

< code block>

End pease

[Prl'jSelf]sehcd DO <n> <var>= <il>, <i2>, <i3>
<loop body>

< n > End [prefelf]sched DO

Synchronizing macros:
B:.urier

<code block>
End bnrrier

CritiC'nl S<yariable>
<eode block>

End critical

Produce < variable> = < expression> (producer)
= ... Use(<variable» ... (consumer)

Figure 1: Specific l'vlacros for a Force Program

. oriented ·synchroniza.tions and data oriented synchronizations. The key con
trol oriented synchronization is the barrier since it provides control of the

..

"

.j

,.

"

-5-

entire force. Its semantics are that all processes must execute a Barrier
macro before one arbitrarily chosen process executes the code block between
Barrier and End Barrier. \Vhen the code block is complete, the entire force
begins execution at the statement following the End Barrier. Although all
but one process are temporarily suspended by a barrier, no process termina
tion or ereat.ion takes place and all local process states are preserved across
the barrier. Opprations which depend on the past computation, or determine
the future progress, of the entire force are typically enclosed in a barrier.

Another control based synchronization is the critical section, familiar
from the operating systems literature. Statements between
Critical <rariable> and End Critical may only be executed by one process of
the force at a time. This mutual exclusion extends to any other critical sec
tion wit.h the same associated variable. Data orien ted synchronization is pro
yicl('(\ by the element.ary producer-consumer mechanism, in which global vari
abl('s hayp a binary state, full or empty, as well as a value. Execution by
some proeess of the macro, Produce <'variable> = < expression>, waits for
thl' varinbll' to be in the empty state, sets its value to that of the expression
and make'S it full, all in a manner which is atomic with respect to the progress
of any ot h('1' proeess. Similarly, the macro, User <variable> j, appearing in an
expression returns the value of the variable when it becomes full and sets it
empty. Variables in the wrong state may cause these macros to block the
progress of a process. Auxiliary macros for full/empty variables are
Purge <variable>, which sets a variable empty regardless of its previous
state, and Copy(<variable> j, which waits for the variable to be full and
returns its yalue but does not empty it.

A major weakness in the current set of force macros is that it does not
smoothly support decomposition of a program in to parallel componen ts on
the basis of functionality. The Pcase macro offers the rudiments of this, but
only allows one process to execute each of the parallel functions. 'What is
desired is a macro, Reso/-ve, which will resolve the force into components exe
cu ting different parallel code sections. The section of code for each co~
ponent would start with Compon enl <name> strength <number>, which
would name the component and specify the fraction of the force to be
devoted to this component. The component strengths would be estimated by
the programmer on the basis of any knowledge available about the computa
tional complexity of each component. A macro, Unify, would reunite the
com))Qnl'nts int.o a single force. The implementation of Resq/ve is compli
cat.ed by t.he confliding demands of generality and efficiency. If the number
of components is larger than the number of processes in the force, then
inter-component synchronization may deadlock unless the components are
co-scheduled over the available processes. An implement.ation which pro
duces process rescheduling at every possible deadlock point and is still
efficient when the number of processes exceeds the number of components is
under deHlopmen t.

Incorporation of a Resolve macro will make it useful to extend the barrier
. idea. A barrier should be able to specify whether only the processes in the

current component. are to be blocked or whether all processes in the parent

-6-

foree are to part.icipate. In the case of recursively nested Resolve constructs,
the barrier migh t specify a nesting level relative to the one in which it
appears.

The Resolve idea promises a mechanism for functional decomposition of
programs into parallel components, but there is one more capability of paral
lel programming environments wit.h explicit process management which is not
addressed by the foree. This is the ability to give away work to ,"available"
proel'sses in a dynamic manner during execution. This ability is most called
for by t.ree algorithms and dynamic divide-anel-conquer methods. It would be
ciE'sirable for the foree to contain a mechanism for efficiently hanelling such
algorithms wit.hout. making the user responsible for explicit process manage
ment or losing the benefit.s of independence of the number of processes. A
meehanism related to resolve might be applied at. each tree node but could
lead to much process management overheael in cases where the correct thing
t.o do is merely to t.raverse a su btree with the one remaining process.

Status and Applications

Thl' force macros described above represent a parallel programming
environment in which process management is suppressed, and programs are
inc\€'jH'llClpnt. of the number of processes executing them, except for perfor
mance. The system makes parallel execution the normal mode; sequential
operation mllst be explicitly invoked. Two features combine to ensure that
there is no topological struct.ure to the parallel environment. First, processes
are identical in capability, and, second, all variables are either strictly local
to one process or uniformly shared among all of them. This eliminates much
of the complexity of the "mapping problem" encountered in construct.ing
parallel versions of algorithms for machines with visible processor topology.

Primitive operations of the force are available to support both fine
grained and coarse-grained parallelism. Many of the primitives, especially
those supporting fine grained interaction, require only local analysis to deter
mine eorrect.ness of the synchronization. This locality strengthens the case
for being able t.o au tomate this analysis. The ability to recursively su bdivide
thl' forel', coupled with the support for parallelization on the basis of data
partit.ioning, orient.s the system towards "massive" parallelism in that the
activity of huge numbers of processes can be compactly specifie·d.

The system is curren tIy tied fairly tightly to shared memory with
undifferentiated processes and, for that reason, does not support message
passin g. One could view t.he Produce and Consume primitives as a weak form
of send and receive operations with the associated variable playing t.he role of
an unhuffered, one word, message channel.

The' force system has been used to produce a parallel Gaussian elimina
tion subrolltine[2] identical in int.erface and operation to the SGEFA routine
of LINPACK[G]. As well as being efTective in this library subroutine type of
applicati'oll, it has been used to write large parallel fluid dynamics programs,

. including SOR algorithms for incompressible flow[7]' [8] and MacCormack's
method for a shock tube model[9J. It has also been used to implement a new

I.

,""

'\

-7-

parallel pi\'oting algorithm for solving sparse systems of linear equations[lO].

The Machines

The issues which arise in implementing the force on a shared memory
multiprocessor will be addressed by considering implementations on two,
fairly differ{'nt., such machines: the Denelcor HEP[3] and the Flexible Com
put{'r Systems Flex/32[ll]. Not only are the two systems fairly different in
architect.ure, the lIEP being a pipelined multiprocessor while the Flex/32 is
built. from mult.iple microprocessors, but the primitive operations for estab
lishing and cout.rolling parallel processes which are supported by the systems
are quite differen t. These parallel primitive operations are a combined result
of hardware, compiler support, operating system and run-time libraries. A
summary of the hardware, parallelism model and primitive operations for
eaeh of t.he mac-hines follows.

The HEP

The lIEP eomputer is a multiple instruction stream computer categor
ized as ~n~lD by Flynn[12]. Se\'eral processing units, called Process Execu
t.ion Modules (PEr..'1s), may be connected to a shared memory consisting of
one or more memory modules as shown in Fig. 2. Even within a single PEM,
however, HEP is still an ~IIMD computer. Only the number of instructions
aetually execut.ing simultaneously, about 12 per PEM, changes when more
PEMs are added to a system. Separate memories store program and data
with smaller memories devoted to registers and frequently used constants.
Only data memory is shared between PEMs. \Ve will concentrate on the

Process Execu tion Mod ule

Program Memory
32K words by 64 b/w

eglster
Memory

2Kw by 6·1b
Const.an t.
~lelllory

,tKw by 6·tb

MIr..ID
Processing

Unit

Pipelined
Switch

PEM

Figure 2:" Archit.ecture of the IIEP Compu ter

PEM I/O

-8-

architecture of a single PEl\1 which implements multiprocessing by using the
technique of pipelining.

There are several separate, interacting pipelines in a PEM but the major
flan)r of the architecture can be given by considering only one of them, the
main ex('("u tion pipeline. Heavy use has been made of pipelines in vector pro
cessors (SI~ID computers). In such machines the operating units are broken
into small st.ages with data storage in each stage. Complete processing of a
pair of operands involves the data passing sequentially through all stages of
the "pipeline." Parallelism is achieved by having different pairs of operands
occupying d ifferen t stages of the pipeline simultaneously. The main execu
tion pipeline of lIEP can be viewed as a unified structure which processes
most. instructions using a pipeline with eight steps. Independent instructions
(along with their operands) flow through the pipeline with an instruction
being completely executed in eight steps. Independence of the activities in
successive stages of the pipeline is achieved not by processing independent
components of vee-tors but by alternately issuing instructions from indepen
dent instruction streams. Multiple copies of process state, including program
count.er, are kept for a variable number of processes. A PEM is an MIMD
processor in exactly the same sense in which a pipelined vector processor is an
SI~ID machine. In both, independent data items are processed simultane
ously in different stages of the pipeline while in the I-IEP, independent
instrnet.ions occupy pipeline stages along with their data.

The previous paragraph describes the register to register instructions.
Those dealing wit.h main memory (data memory) behave differently. Data
memory is shared between PEMs and words are moved between register and
data memories by means of a class of Storage Function Unit (SFU) instruc
tions. The relationship between the main execution pipeline and the SFU is
shown in Fig. 3. A process is characterized by a Process Status \Yord (PS\Y)
cOilta.ining a program counter and index offsets into both register memory
and constant memory to support the writing of reentrant code. Under the
assumpt.ion that. multiple processes will cooperat.e on a given job or task and
thus share memory, memory is allocated and protected on the basis of a
st.ruct.ure taIled a task. There are a maximum of 16 tasks, eight supervisor
tasks anel eigh t user tasks. The 128 possible processes are divieled in to a
maximllm of 6·1 users and 6,1 supervisor processes which must belong to tasks
of COITPS pond in g types. Asid e from this restriction a task may h ave any
number of processes, from zero to G·!,

An active process is represented in the hardware by a Process Tag (PT)
which points to one of the 128 possible PS\Vs. The instruction issuing opera
tion maintains a fair allocation of resources bet.ween tasks first and between
processes within a task second by means of 16 task queues, each containing
up to G,l PTs and a secondary queue called the snapshot queue. PTs coming
one at. a time from the snapshot queue cause the issuing of an instruction
from t.he corresponding process into the execution pipeline.

\Yhen an SFU instruction (data memory access) is issued, the PT leaves
. the qneues of the main scheduler and enters a second set of identical queues

in the SFU. \Yhen a PT comes to the head of the SFU snapshot queue a

"

'\

"

')

16 Task Queues of
up to 6-1 Process Tags

Rl:'link

-9-

Store
Result 1<- --

Inst.ruct.ion
& opera.nd

fet.ch

SFU
Instruction

Routing

Figure 3: IIEP Pipeline Archit.ect.ure

Execu tion Pipeline
i i j

Relink

memory t.ransaetion is built and sent, along with the PT, into the attached
node of a pipolined, message-switched switching network. The tra.nsaction
propagates through the switch to the appropriate memory bank and returns
to the SFU with status and perhaps data.' An SFU instruction behaves as if
it were issued int.o a pipeline 19nger than the eight step execution pipeline
but. wit.h t.he same step rate.

Hardware support for process synchronization is based on
procilIC'Pr/consumpr synchronization. Each cell in register and data memories
has a full/empty st.ate and synchronization is performed by having an

. instruct.ion wa.it for its operands to be full and its result empty before
proceeding. The synchronizing conditions are optionally checked by the

-10-

instruction issuing mechanism and, if not fulfilled, cause the PT to be
immediately relinked into its task queue with the program counter of the
PS'" unaltered.

Compiler level support consists of minimal language extensions to give
the user access to the parallelism of the hardware. The extensions can be
represented as subroutine calls or incorporated into the language definition.
Since the force is based on Fortran, the extensions to that language are
described. To allow for the fact that an independent process usually requires
some local variables, the process concept is tied to the Fortran subroutine.
The Fort.r3li extension is merely a second version of the CALL statmen't,
CR.EATE. Control returns immediately from a CREATE statement, but the
created subrout.ine, with a unique copy of its local variables, is also executing
simult.aneously. The RETUR.N in a created subroutine has the effect of ter
minat.ing the process executing the subroutine. Parameters are passed by
address in bot.h CALL and CREATE.

ThE' only ot.her major conceptual modification to Fortran allows access to
t.he sYllehronizing propert.ies of t.he full/empty state of memory cells. Any
Fortran variable may be declared to be an "asynchronous" variable. Asyn
chronous v.uiables are dist.inguished by names beginning with a S symbol and
may have any Fortran type. They may appear in Fortran declarative st.ate
ments and adhere to implicit typing rules based on the initial letter. If such
a variable appears on the righ t. side of an assignment, wait for full, read and
set empty semant.ics apply. 'Vhen one appears on the left of an assignment.,
the seman tics are wait for empty, write and set full. To initialize the state
(not t.he value) of asynchronous variables, a new statement, PURGE, sets the
states of asynchronous variables to empty regardless of their previous states.

The HEP Fortran extensions of CREATE and asynchronous variables are
t.he simplest way to incorporate the parallel features of the hardware in to the
Fortran language. Since process creation is directly support.ed by the HEP
inst.ruct.ion set and any memory reference may test and set the full/empty
st.at.e t.hat is associated with each memory cell, the Fortran extensions are
direct. repr('sen tatiolls of hardware mechanisms. The parallel computation
model support.ed by the Fortran compiler and run time system can thus be
view('d as shc)\vn in Fig. 4. A process wit.h its own program counter and regis
ters may spawn ot.hers like it using CREATE, and the processes interact by
way of full/empt.y shared memory cells.

The parall('l programming primitive operations can be characterized as
in Table 1. Not.e that all the parallel primitives are user level operations
requiring no operating system intervention. Interrupts are not present in the
HEP. Conditions which would 'normally lead to an interrupt, including
supervisor calls, result in the creation of a supervisor process to handle the
condit.ion and mayor may not suspend the process giving rise t.o the condi
tion.

'"

I,

,.

'\

-11-

rogram
Count.er
I I Instruction

Set General
Registers Processor

8

Figure ·1: HEP Run Time System IVlodel

Create
Quit and save state

set. loeation empt.y
Produce
Consume

- \Vait for empty, writ,e and fill
- \Vait for full, read and empty

Shared·
Memory

B
6

full/empty
bits

Table 1: lIEP Parallel Primitives

The Flex/32~

The architect.ure of the Flex/32 is conceptually simpler than that of the
lIEP, but the system support for parallelism is more complex. The machine

. consists of a set of single board microcomputers connected by several buses to
eaeh other and to some common memory and synchronization hardware. As

-12-

shown in Fig. 5, t.here are a set of local buses, ten of them, each of which can
connect two boards, which are either single board computers consisting of
processor and memory or mass memory boards. Two common buses connect
the local buses together and to the common memory ane synchronization
hardware. The memory on the common bus is faster for a processor to access
than that on the mass memory boards, but both are shared by all processors.
The memory on a processor board is accessible only to that process.or.

Hardware support for synchronization is supplied by an 8H)2 bit lock
memory. This structure is mea.nt to remove the requirement for repeat.ed
tests by a processor trying to obtain a lock. There is an interrupt system
connected wit h each processor, which provides underlying hardware support
for an event signaling mechanism between processors a.s well as for exception
handling within a single processor.

The processor/memory boards are based on the National Semiconductor
3:W:32 microprocessor chip. There may be one or four megabytes of memory
on a board and a Vl\JE bus interface is provided to connect an individual pro:
cessor to I/0 devices. A self-test system, connected t"o all processors, pro
vides a mcC"hanism for testing, bootstrapping and initializing the multiproces
sor.

The process model in the Flex/32 is somewha.t different from that of the
HEP and is shown pietorially in Fig. 6. Since not all of the address space is

Shared
memory

.512K bytes

Shared
memory

5121(bytes

I --I
I Dual ('ommon bus ~ S S ---..,-

I I
Local bus Loc~bus

I Processor I· ~
S -memory S -i -memory

board I I board

Processor
S ~ -memory

board
S

Mass
nemor
board

S -- bus switching

Figure 5: Flex/32 Architecture

Synchronization
lock memory

8H)2 bits

--S

I..

1\

,;

1\

-13-

Program Local Process
Coun ter Memory State

I I 0
General

Regist.ers

8
Tag

0

Figure 6: Flex/32 Run Time System - Process Model

Received
Message
Queue

shared, a process has a certain amount of strictly local memory. The syst.em
also manages a unique identifying tag for each process and maintains a pro
eess stat.e which may be one of: running, non-exist.ent, dormant, ready or
suspended. There is also a received message queue for each process which is
managed by the system.

In addit.ion to a slightly more complicated process model, the Flex/32
system supports a more complex model of synchronization facilit.ies linking
processes. The total syst.ems model is shown in Fig. 7. At the outset,
processes are bound to individual processors. The processors may be mul
tiprogrammed, so more than one process may be bound to a processor. The
processes share communication and synchronization support supplied by the
opera.ting system. The Signaling Channels implement the Event mechanism
and may be atta.ched to a process as a. receiver of the even t, an originator, or
both. Lock bits may also be connected to several processors for mutual exclu
sion enforcement. The message passing facility is represented by the received
messa.ge queue in each process and is thus not shown separately in the system
model.

The Flex/32 syst.em provides numerous parallel processing primitives.
They ma.y be divided into classes dealing with four different. parts of the sys
tem model: Processes, Messages, Events and Locks. The structures associ
ated with each of these parts and the primitives which act on the structures
are summarized in Table 2. The primitives are implemen ted through system
calls. Sinee most of t.hem interact with the multiprogramming of single pro
cessors, operating system intervention is usually required. Only a small part
of this fairly extensive parallel programming model is needed to support the
implemc.ntat.ion of the force constructs.

Processors Processes

-14-

Signaling
Channels

LJ pO

~O

Figure 7: Flex/:32 Run Time System - Overall Structure

. \

,~

I,

Process
St.ructure

Primitives:

~Iessages
Structure:

Primit.ives:

Events
St.fueture:

Prim i tives:

Loeks

State:

get tag
start up
kill

ot.ype
.length
opointer

send

-15-

.running Tag: unIque,
system-wide
identifier

osuspended
oready,
odormant
ononexistent

create
wait for termination
gIve up processor

Osource id
odestination id

receive-wait
receive-fail

list of sources and destinations

con figure
remove

activate
wait
passive test.

on even t call
set timer

St.ructure: 8192 single bits
Operat.ing mode: polling or interrupt

Primitives: allocate

Table 2: Flex/32 Parallel Primitives

lock
unlock

Implementation of Force Primitives

BasiC' hardware support. for synchronizat.ion on t.he HEP is through the
produee and consume operat.ions on full/empt.y memory cells. The basic
hardware support. for synchronization on the Flex/32 is supplied by the com
mon lock memory and the interrupt hardware. Table 3 compares the imple
mentation of critical sections on the two machines. The implement.ations are
\"Cry similar, but a det.ailed look at the differences will introduce t.he issues to
arise in more disjoint implementat.ions of other primitives to follow.

The basic HEP synchronization is somewhat more powerful than is
needed for critical sections. A single full/empt.y variable suffices to control
ent.ry to the section, but only its state is significant; the value of the variable

-16-

lIEP
Stst.em st ate and init.ialization:

Single full/empty variable

Critical section code:
Consume critical section variable
Execute code body
Produc-e critical section variable

Performnnee:

- full

Consume and produce are single user-mode instructions,
hu t may result in some resource usage by waiting processes.

System state and initialization:
Single bit. loek

Criti('al seet.ion eode:
Set c-ritieal section lock
Exe('ute eod e body
Clear ("rit.ical section lock

Performance:

Flex/32

- clear

Set and clear loc-ks are done by system calls.
Processor rescheduling is possible, and wakeup of
a delayed process may be by interrupt. or polling.

Table 3: ImplE'ment.ation of Cdtical Sections

iSlIll us('(1. The Flex/32 locks are well suited in complexity to what is needed
for c-ritieal sec-tion con t.rol. The process delay which may be required on criti
cal sect.ioB entry is supported by the hardware of the HEP, making crit.ical
section entry a user level operat.ion wit.h no operat.ing system intervention.
On the other hand, a small amount of system resources is consumed by wait
ing proc-esses, which may calIse congestion if many pr;oocesses wait simultane
ously. The Flex/32 implements locking and unlocking t.hrough system calls.
This is costly in terms of performance but allows processor rescheduling.
Wakeup of blocked processes may either be by polling or by in terrupt. '

There is considerably more structure to the implementation of the Bllr
rier macro on both machines .. Table -4 summarizes the implementations,
including two implementations for the HEP having quite different perfor
mallce charaeteristics. The two HEP implementations emphasize the
difference bet.ween suspended and partially active waiting, which was men
tioned in con nection with the critical section code. This issue was not impor
tant in connection with critical sections because the control is very simple

1"

I,

I',

"

I,

-17-

HEP - Active Waiting HEP - Process Suspending
Syst.em State Initialization System state Initialization

En t.ry lock clear Process state empty
Exi t loC' k set
Counter zero

Barrier Code
\Vait for ent.ry lock clear
Count. arriying process
If last process then

save area
Counter

Barrier Code
Count arriving process
If not last one then

save state and quit
else

zero

execu te code body
set ent.ry lock
clear exit lock

recreate other processes
clear COUll ter

\Vait for exit lock clear
Count exiting process
If last process then

set. exit 10C'k
clear en t.ry lock

Flex/32
Syst.em State Initialization

Barrier event connected to all processes
as source/destination

Coun ter zero
Barrier Code

Lock count.er
Count arriving process
Clear counter if last

Unlock coun ter
If last process then

Execu te code body
Activate barrier even t

else
\Vait for barrier event

Table 4: Implementation of Barriers

and because the probability that many processes will simultaneously wait on
entry to critical sections with the same lock is low. In the Barrier, it is
guaranteed that all processes simultaneously access the same blocking condi
tion. There is only one implementation for the Flex/32 since all synchroniza
tion support is through operating system calls and involves process suspen
sion rat.her than active waiting.

The critical section and the Barrier implementations serve to give an
idea of the range of differences in the imple'mentation of Force primitives on
the two archit.ectures. Many of the primitives, such as prescheduled DOALL,
did not change a.t all between the machines, while others, such as self
scheduled DOALL, build on the same techniques used in the critical sect.ion

-18-

and Barrier. One other implementation issue which deserves mention is the
implementation of a data oriented synchronization on a machine which has
hardware support. only for control orient.ed synchronization.

The Force includes primitive operations for the simplest data oriented
synehronizat.ion, produce and consume. The HEP hardware supports these
operations direetly, using the full/empty state bit for each memory cell. In
the Flex/:32, locks are separate items, not associated with dat.a. To imple
ment. produe-er/consumer synchronization, a boolean dat.a it.em must he allo
cated t.o the full/empty state and a lock must be allocated to bind the dat.a
transfer to the state change as an atomic unit. The lock itself cannot be used
to model the full/empty state because there is no way t.o bind it to t.he data
transmission. Furthermore, since the full/empty state is a data item, the sys
tem supported proe-ess waiting mechanism cannot be used to wait for its
ehange. Crit ie-al section code must be repeatedly executed to monitor a
change in t.he state variable. In contrast, it is very easy to model the
loek/unlock synehronization using produce/consume. The full/empty state
of a memory cell is used for the lock and the value of the cell is simply
ignored.

Conclusions

The impl(·men t at ion of a parallel programming environment on two
shared memory multiprocessors with quite diITerent architectures has been
described. The primit.ive operations of the system make fairly efficient imple
mentations possible on both machines. One major diITerence has to do with
whether parallelism is supported directly by hardware accessible to the user
or is support.ed only through the operating system. In the latter case, the
implementer must work in terms of the software run-time model presented
hy the system rather than in terms of a. model related more directly to the
hardware, which makes the prediction and optimization of performance
some"'hat more difficult. The mechanism by which processes wait at a syn
chronization is a key issue. If the waiting mechanism is tied to multipro
gramming through the operat.ing system call, throughput will he optimized,
but a large overhead will be incurred for potent.ially .short synchronizatiqn
delays.

The use of interrupts in t.he systcm architecture leads to natural support
for the Event concept.. The implementation of Barrier type synchronizat.ions
can be t.ied to the event concept fairly naturally. On machines which do not
support events, attention must be paid to minimizing the utilization of
resources by waiting processes. The Barrier diITers from the critical section in
this regard because it is guaranteed that many processes will simultaneously
wait at the Barrier while critical section conflict is probabilistic, and t.he likli
hood of many processes waiting at the cntry to a critical section is low in a
normally const.ructed program.

,..

l

.'"

I"

,~

'\

-19-

REFERENCES

[lJ J. B. Dennis a.nd E. C. Van Horn, "Programming semantics for multipro
grammed computations," Comm. A CAl Vol. 9, No.3, pp. 143-155 (1966).

[2J H. F. Jordan, "Structuring parallel algorithms in an MIMD, shared
memory environment," Proc. 18th Hawaii Int'nl Con/. on Systems Sci
ences, Vol. II, pp. 30-38 (1985); to appear in Parallel Computing, 1985.

[3J H. F. Jordan, nHEP archit.ecture, programming and performance," in
Parallel i\fIJ/D Computation: The HEP Supercomputer and its Applica
tions, J. S. Kowalik, Ed., MIT Press (1985).

[,lJ "The Uniform System Approach to Programming the Butterfly Parallel
Processor," Draft. of Oct. 23, H)85, Copyright BBN Laboratories Inc. (R.
H. Thomas, private communication).

[5J F. Darema-Rogers, D. A. George, V. A. Norton and G. F. Pfister, "A VM
Parallel Environment," Rept. RC11fJ!25 (#49161), IB~vI T. J. 'Vat.son Res.
Ct.r. (Jan. H)85).

[uJ J. J. Dongarra, J. R.. Bunch, C. B .. Moler and G. 'V. Stewart, LINPACf(
Users Guide, SIAM Publications, Phil., PA (H)79).

[7J N. R. Patel and H. F. Jordan, "A parallelized point rowwise successive
over-relaxation method on a multiprocessor," Parallel Computing, Vol. 1,
No. 3&4, December 1984.

[8J N. Patel, 'V. B. Sturek and H. F. Jordan, "A Parallelized Solutiun for
Incompressible Flow on a Multiprocessor," Proc. AIAA 7th Computational
Fluid Dynamics Con/., Cincinnati, Ohio, pp. 203-213, july H)85.

[9J N. Patel, private communication.

[10J G. Alaghband and H. F. Jordan, "l\iultiprocessor Sparse L/U Decomposi
tion with Controlled Fill-in," ICASE Rept. No. 85-48, NASA Langley Res.
Ctr., Hampton, VA, 1985.

[llJ The Flex/3!2® System Overview, Flexible Computer Corp., Dallas, Texas,
1986.

[12J Flynn, ~\'f. J., "Some Computer Organizations and Their Effectiveness,"
IEEE Trans. on Computers, pp. 0·18-060 (1072).

Standard Bibliographic Page

1. Report No. NASA CR-178161 12. Government Accession No. 3. Recipient's Catalog No.

lCASE Report No. 86-54
4. Title and Subtitle 5. Report Date

THE FORCE ON THE FLEX: GLOBAL PARALLELISM AND August 1986
PORTABILITY 6. Performing Organization Code

7. Author{s)
8. Performing Organization Report No.

Harry F. Jordan 86-54

9. Performing Organization Name and Address 10. Work Unit No.

Institute for Computer Applications in Science and
Engineering 11. Contract or Grant No.

Mail Stop 132C, NASA Langley Research Center NASl-17070
Hampton VA 23665 5225

12. Sponsoring Agency Name and Address
13. Type of Report and Period Covered

National Aeronautiics and Space Administration Contractor Report
Washington, DC 20546 14. Sponsoring Agency Code

505-31-83-01
15. Supplementary Notes

Langley Technical Monitor: Additional support provided by
J. C. South AFOSR Grant No. 85-0189.

Final Report

16. Abstract A parallel programming methodology, called the force, supports ;;ne con-
structhlD of prograins to be executed in parallel by an unspecified, but poten-

tially large, number of processes. The methodology was originally developed on a
pipelined, shared memory multiprocessor, the Denelcor HEP, and embodies the prim-
itive operations of the force in a set of macros which expend into multiprocessor
Fortran code. A small set of primitives is sufficient to write large parallel
programs, and the system has been used to produce 10,000 line programs in compu-
tational fluid dynamics. The level of complexity of the force primitives is in-
termediate. It is high enough to mask detailed architectural differences between
multiprocessors but low enough to give the user control over performance.

The system is being ported to a medium scale multiprocessor, the Flex/32, which
is a 20 processor system with a mixture of shared and local memory~ Memory
organization and the type of processor synchronization supported by the hardware
on the two machines lead to some differences in efficient implementations of the
force primitives, but the user interface remains the same. An initial implemen-
tation was done by retargeting the macros to Flexible Computer Corporation's
ConCurrent C language. Subsequently, the macros were caused to directly produce
the system calls which form the basis for ConCurrent C. The implementation of
the Fortran based system is in step with Flexible Computer Corporations's
implementation of a Fortran system in the parallel environment.

._--
17. Key Words (Suggested by Authors{s)) 18. Distribution Statement

multiprocessors, shared-memory, 61 - Computer Programming and Software
parallel programming 62 - Computer Systems

Unclassified - Unlimited

19. ~ecurity Classif.{of this report) 120. Security Classif.{of this page) 21. No. of Pages 122. Price

Unclassified Unclassified 21 A02

For sale by the National Technical Information Service, Springfield, Virginia 22161
NASA Langley Form 63 (June 1985)

,.'

.....
c
ClJ
E
::s
y
o
C
"o
"'C
C

LI.I

