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The Forces on a Body placed in a Curved or Converging
Stream of Fluid.

By G. I. TayLogr, F.R.S.
(Received June 14, 1928.)

Introduction.

The foree which a body experiences when placed in a converging stream of
fluid has a certain practical interest in aeronautics because the flow in the
centre of a parallel-walled wind tunnel is of this type. The convergence is
due to the retardation of a layer of air close to the walls. This retarded layer
increases in thickness as the air passes down the channel, thus causing a
corresponding increase in the velocity in the central part of the channel. This
increase in velocity is associated with a decrease in pressure in accordance with
Bernouilli’s equation, the pressure in a Pitot tube being very nearly constant
down the channel at all points outside the retarded layer.

In measuring the resistance of models of airships it has been customary to
correct the observed readings by subtracting what is called the * horizontal
buoyancy,” 7.e., the force which would act on the body if the air were a station-
ary fluid in which the existing pressure gradient down the channel was main-
tained by some external force like gravity. Expressed mathematically, if
dp/dr is the pressure gradient, i.e.,, the gradient of static pressure in the
dp
o
This correction to the measured resistance of an airship model is believed to
be approximately correct from the point of view of wind tunnel practice, and
the primary object of the present work was to find out how far it is justified
from the point of view of hydrodynamical theory.

channel, and V the volume of the body, the ** horizontal buoyancy ™ is —V

Previous Work.

An extremely simple treatment has already been given by Max M. Munk,*
but this is limited to a very special class of body, namely, the body which can
be represented as regards its external flow by a simple source and an equal
sink placed at a finite distance apart. When the distance apart is large so
that the flow due to the source at the position of the sink is small compared

*<Some New Aerodynamical Relations,” Report No. 114, National Advisory Com-
mittee for Aeronautics. Washington, 1921.
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with the general flow of the fluid, the body consists of two rounded ends con-
nected by a middle body which is parallel to the stream lines of the converging
or diverging stream, 4.e., the body is a long truncated cone, rounded off at the
ends. For such a body the force acting in a converging stream of a perfect

fluid is actually equal to the “ horizontal buoyancy,” — V gg z

4 In the other limiting case, when the source and sink are infinitely close
§ together, Munk pointed out that the force is — 3V dé—: , the body being in this
g case approximately a sphere ; and he deduced that for bodies of intermediate
é‘ length the factor by which the * horizontal buoyancy ” must be multiplied
2 in order to find the force acting on such a body when placed in a converging
£ stream is intermediate between 1-0 and 1-5. Munk indicates that the force
T acting on bodies derived from any known distributions of sources and sinks
S could also be treated in the same way.

The forces acting on a small sphere in a stream circulating in a multiply-
nnected space has been studied by Lord Kelvin* The limitation imposed
by the supposition that the space is multiply-connected does not affect the
result, however, because the force acting on the sphere must depend only on
the direction, curvature and convergence of the stream in the neighbourhood
of the sphere. Though he does not express it in this way, Kelvin’s result may
be reduced to the simple statement that the resultant force on the sphere is in
= the direction of the pressure gradient in the fluid, irrespective of the direction
of flow, and it is equal to the pressure gradient multiplied by 1-5 times the
volume of the sphere. This result may be regarded as a generalisation of
Munk’s result for a sphere in a straight converging flow, to the case when the
flow is also curved.

8
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Scope of the Present Work and Results.

In the present work these results are extended to bodies of any shape placed
in a enrved and converging or diverging stream, or even in a stream which
converges in one place and diverges in a plane af right angles to it. Tn the case
of a straight converging stream the actual value of the factor by which the
“ horizontal buoyancy ” must be multiplied is calculated and shown to be
equal to 1 4 o, where «pV is the virtual addition to the mass of the body
which must be added to its own mass to account for its resistance to
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* “ On the Motion of Rigid Solids in a Liquid circulating irrotationally through per-
forations in them or a Fixed Solid,” * Phil. Mag.’ (1873).
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accelerated motion in the direction of the stream lines and pV is the mags
of fluid displayed by the body. This is true whether the convergence is
symmetrical in all planes through the direction of the flow or not. It will be
recognised at once that Munk’s and Kelvin’s expressions for a sphere are
particular cases of this general resulf.

This result is extended to find the direction and magnitude of the force which
acts on a small body of any shape placed in a curved or converging stream.
It is found that Kelvin’s result for a sphere (that the resultant force acts in
the direction of the pressure gradient) is true for bodies of any shape provided
that the body is placed so that one of its possible * directions of permanent
translation™ is parallel to the direction of the stream so that no couples act on
it. When the body is placed in any other position, however, Kelvin’s result
for a sphere is no longer applicable. Tt is curious that Kelvin first published
his result as a general one applicable to bodies of any shape, but on revising
his paper later he recognised that his analysis applied only to the case of a
sphere.

In general, a body placed in a straight uniform stream of fluid experiences
couples about axes at right angles to the stream. The additional couples due
to a small amount of convergence or curvature of the stream were caleculated.
These, however, appear of little interest because in a real fluid the observed
couples usually differ very widely from those calculated. On the other hand,
even in a real fluid there is a very large class of bodies which experience no
couple about an axis parallel to the direction of the stream. Accordingly, the
couples about the direction of the flow in a curved and converging stream were
caleulated and the results tested experimentally. The analysis shows that
certain types of asymmetry in the stream react on certain types of asymmetry
in the body and cause it to rotate about the stream direction into some definite
orientation. Thus, if a body with the type of asymmetry possessed by a rod
bent into a circular are is suspended at its centre of gravity in a curved stream
so that it can rotate about the direction of the stream which is parallel to the
chord of the arc, it will take up a position so that the plane of the are coincides
with the plane containing the curved stream lines ; but the direction of curva-
ture of the arc is opposite to that of the stream lines. This was verified
experimentally.

A body with the type of asymmetry possessed by a tetrahedron about the "
line joining the centres of opposite edges reacts with a stream in which the
centre stream line is straight but the convergence is asymmetrical, being
greatest in one plane through the direction of the stream and least in the plane
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~ at right angles to it. Such a stream was created by sucking air by means
" of a vacuum cleaner through a vertical channel two walls of which were
? parallel glass plates, the remaining two walls being made of bent metal sheet
so that the stream first converged and then afterwards diverged. Bodies
with the required type of symmetry were hung in this stream by fine silk
threads, .and it was found that in every case they set themselves in the
positions indicated by theory. They rotated through 90° on being lowered
Qhrough the point of maximum constriction from the converging to the
%Jvergmg part of the channel. This also was predicted by theory.

Components of Force on a Body in a Curved and Converging Stream.

9 Augus

The kinetic energy of a system consisting of a fluid circulating in a cyclic
ace and containing a small sphere moving with velocity components z, y, =
Shas been given by Lord Kelvin in the form

OT = (M + oV) (& + i + #) + 2K, 1)

here K is the energy of the eyclic motion when the sphere is held at rest, M
=8 the mass of the sphere and V its volume. If @, y, z are the co-ordinates of
he centre of the sphere, K may be regarded as a function of @, y, 2.
% The simplest method for finding K is to use an artifice due, I think, to
'g)r. Horace Lamb. If M is made equal to the mass of the fluid displaced and if
~he sphere is made to move with the fluid in its neighbourhood, then the energy
?1‘ is the same as what it would be if the sphere were absent, the space being
Eoccupied by fluid. This assumption implies that the sphere is so small that
Ethe changes in the velocity of the undisturbed stream in a distance equal to
the diameter of the sphere is small compared with the velocity of the stream.
£ Using this assumption, then

2K = constant — § pV (4® + v* + @?), (2)

/.
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where u, v, w are the components of velocity in the stream before the intro-
duction of the sphere, at the point afterwards occupied by its centre.

To find the motion Kelvin used some general dynamical equations, proving
that certain coefficients vanish in the case of a sphere. It is not necessary,
however, to use these equations to find the force which acts on the body when
held at rest in the circulating fluid. If the body be displaced slowly through
4 short distance whose components are 8z, 38y, 8z, the change in K must be

— (X8z -+ Yoy + Zd2),
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- Where X, Y, Z are the components of force acting on the body.
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Hence
X = —— =,ng (u + v 4 w?).

If p is the pressure in the undisturbed motion, i.e., before the introduction
of the sphere, p + 1p (u*+ v* - w?) is constant, since the motion is a steady
one, so that

- g v@ﬂ, |
o
and similarly
‘ 817 (7 Qﬂ
— o P — i
Wi 2V 3y’ VA ._.Vaz 5 (3)

In this example the fluid is circulating in a cyclic region, but the force on
the sphere must depend only on the convergence and curvature of the undis-
turbed stream lines in its vicinity ; so that the formula (3) is general for any
type of undisturbed flow provided that the changes in velocity in a length
equal to the diameter of the sphere are small compared with the velocity of
the stream.

To apply this method to bodies of any shape one may write T for the energy
in the fluid surrounding a body when it moves without rotation in a fluid at
rest at infinity. If w, v, w are the components of its velocity™

2Ty /p = Au? 4 Bo? + Cu? + 2A'vw + 2B'wu 4 2C uw, (4)

where A, B, C, A’, B/, (' are six constants which depend only on the shape of
the body. They are determined relative to some axes fixed in the body.
Equation (2) then takes the form q

2K /p = constant — V (u* 4 v® 4+ w?) — 2T /p. (5) ‘!
As in the case of the sphere
oK __ K .. oK
L LR
so that
Lmidel %wz+v~+w~> +5 2:;+ %‘5 2;+2%S;’ -

* See Lamb’s ¢ Hydrodynamics,” 4th edn., p. 155.
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~ These expressions may be simplified by taking the axis of z parallel to the
* gtream at the point considered. In that case » = w = 0, and

! .a_T._n =3 A’u’ a-Ll == C"u, 'a—Tp = B"ll,-.
ou ov dw
ou ov

Also some of the partial differentials u A W ete., are proportional to the

qromponents of the pressure gradient, thus with this choice of axes

=

8 u_ 9 u_ d_ 3 _du_ du_
2 "% Moy MaT oy e T MEaT o

B0

20 that

o 0p w0 1 0p )

o = — A —C — B’ =£

£ = (¥ +8) ox ¢ dy 0z

& 9 d 9

5 Y=—(V4+A) L+ Cul 4 pBuZl §, 7
;b (+)aypaypayr (7)
.:":‘: - dp v OV . OW

= Z——(V-}—A)az-{—pﬁus—z——i—pBua—z

a -

% From these equations it will be seen that in the particular case when B’ =
'gC' = 0, 1.e., when the body has one of its axes of permanent translation parallel
gt the direction of flow so that it would experience no couples in a uniform

oy

stream, the resultant force is in the direction of the pressure gradient and equal

AT

ttps é/
=
+
&
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E
=
g
g
E
£
:
%5
&
£
&

An ellipsoid, for instance, placed with one of its principal axes in the direction
EOf the stream would experience a force acting in the direction of the pressure
Seradient in the undisturbed stream. The magnitude of this force would differ
Baccording to which axis was parallel to the stream ; thus, if the long axis were
‘gparallel to the stream the force would be smaller than if a shorter axis were in
%that direction. In general, however, when the direction of the stream is not
%pam]le.l to one of the axes of permanent translation, the force acting on the
Bbody is not in the direction of the pressure gradient.
- The particular case of a converging flow with a straight central stream line
is of special interest because, as has already been pointed out, it is the con-
dition which may be expected in the middle of a parallel-sided wind tunnel.

In this case %g = -gf =0, s0 that X = — (V + A) gl; and no restriction is
Placed on the shape of the body. This is the generalised form of the expression

obtained by Munk for a sphere and a certain class of elongated bodies of
U 2
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revolution. The ** virtual mass” of a body in accelerated motion through a
fluid is Ap. This is sometimes expressed in the form «Vp, where o = AV

gothat X = — (1+a) V %f: . (1 - 2) is the factor by which the “ horizontal

2

buoyancy ” should be multiplied in order to find the effect of convergence
on the resistance of an airship model hung in a horizontal wind tunnel.

In order to estimate the value of (1 + «) in the case of a body whose shape
approximates to that of an airship, it seems useful to give the value of (1 - )
for a prolate spheroid of eccentricity ¢ moving parallel to its long axis.

In that case*

= 1 1 —e? 14 e
) l=— — 1 :
(42 (o %8¢ °1—e ®)
It is customary in aerodynamical work to use the expression ‘ fineness
ratio ” to indicate the ratio of the length to maximum diameter of an airship
shape. The fineness ratio, B, for a spheroid is (1 — ¢®)~*. From these formula
the following Table T was calculated :—

Table 1.

B i o B. l14+a
1-00 1-50 3-64 1-093
1-34 135 5-08 1-057
1-81 1-24 7-12 1-035
2.5 1-16

Tt will be seen that for this series of shapes the factor by which the * hori-
zontal buoyancy ” must be multiplied decreases from 1-5 for the sphere
(B = 1-00) to 1-057 for a body five times as long as its maximum diameter.

In a recent papert I have given a simple method by which the “ virtual
mass >’ of any airship shape derived from a system of sources and sinks may
be found. Suppose that a system of sources and sinks m,U, m,U, ... m/U,
..., placed at points (zy, %y, 2,), (Za, Ya» Za) ..., in & stream of fluid flowing with
uniform velocity — U parallel to the axis of  has been found to represent the

* This expression was first calculated by integrating the pressure over a spheroid due
to the flow from a source placed on the axis. It was only after finishing the calculation
that it was found that (8) gives also the expression for the * virtual mass.”

t « The Energy of a Body moving in an Infinite Fluid, with an Application to Airships,”
* Roy. Soc. Proe.,” supra, p. 13,
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Iul flow round a body of volume V. The “ virtual mass” of this body in
~ accelerated motion was shown to be*
pA = pZmgx, — pV. (9)
When placed in a converging stream this body experiences a force
» a
X = — P(A+V)az'
Hence from (9)
X = — (Sma) 2. (92)
817

ust 2022

80This is equivalent to Munk’s formula. It can only be applied when the
<ﬂrequii&it;e distribution of sources and sinks is known.

Verification of Equation (7) in a Simple Case.

It is of interest to notice why the terms in C’ and B’ must come into the
expressions for the forces. Consider, for example, the case of a body, O,
laced between two concentric circular cylinders
see fig. 1) with liquid circulating between them.
et u be the velocity of the fluid at the radius »
here the body is situated.

Now consider a displacement in which the
= body rotates through an angle 36 about the axis

S &C of the cylinders. Since there is no change in
\ the circulation round the inner cylinder, such a
&dmplacement does not alter the energy of the
';system. If there is a couple N acting on the
& body owing to its being placed so that the
2 direction of the stream is not one of its axes of permanent translation, then
S there must also be a force X in the direction of motion so that the work
% done during the displacement is zero. Hence

é Xy 30— N80 =0 o X=DNp (10)

Now the couple on a body moving parallel to the axis of », which may be
taken in the direction of flow as shown in fig. 1, ist

g‘org/ on 09

i =

alsocietypublishin
H 1

Fic. 1.

dT, 4k .
N/e = aau —u %—U-ﬂ = — ("l (11)

K3
* Loc. cit., equation (21). There given as pA = o J. ma dr — pV, which is the form of
~ (9) above, suitable for a continuous distribution of sources along a line.
T Lamb, ‘ Hydrodynamics,’ 4th edn., p. 1569.
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Hence from (10) and (11)

X = — pCé?/r.
But;
g—f = pu*/r.
Hence
X=—C'3—€=—C'%§. (12)

Comparing (12) with (7) it will be seen that for the particular case when

e
oz 2

the first of formulze (7) is verified by this very simple argument.
As regards the practical application of equations (7) it will be seen that
convergence in a stream of fluid produces an effect on lift as well as on drag.

Thus, for a wind tunnel for which Qﬂ — @]—7= 0, the convergence produces

oy 0Oz
an effect on lift, Y, equal to + pC'u %} In the case where the convergence
¥
is the same in all axial planes, as in a wind tunnel of square or circular section,
E-3£_—_ — 3 ou , 8o that the effect on lift is
oy * dw
+i02, (13)
=" oz

It appears, therefore, that the effect of convergence on lift may be of the same
order of magnitude as that on drag.

Determination of Forces and Couples by Integration of Pressures over the Surface
of the Body.

The formuls (7) were not originally obtained by the simple process described
in the first part of this paper. They were first derived by laborious integration
of pressures over the surface of the body, a process made possible by Green’s
theorem, which enabled the integrations to be transformed into integrations ‘
over a spherical surface. |

For finding the couples acting on the body, equation (5) giving K in terms of
u, v, w is of no value. Tt is true that couples about axes perpendicular to the
direction of the stream could be derived from (5), but these would only be
the couples which would act on the body in a uniform stream. This can be ‘w‘
illustrated by reversing the argument in the example given in the preceding |
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“gection. To determine the changes in these couples owing to convergence, or
~ the couple acting about the direction of the stream, it would be necessary to
‘determine K to a higher order of approximation than can be done by Dr.
Lamb’s artifice. It is clear, for instance, that rotation of the body about the
direction of the stream makes no change in (5), for T, is unaltered by such a
rotation, so that as far as (5) goes one might conclude that the couple is zero.
i, To find the couples, therefore, I found it necessary to revert to my original
S method and to expand both the disturbed and the undisturbed stream in a
N.aseries of spherical harmonics.

Representation of the Undisturbed Stream.

o The velocity potential of a uniform stream of fluid is represented by a

Céspherical harmonic function of the first degree. In general three terms are
£ necessary to determine the three components of velocity, but we shall simplify
o the formul® by taking the direction of the stream at the origin as the line
220 — 0 when we use spherical polar co-ordinates, or the axis of # when we use

S Cartesian co-ordinates.

Augu

1

-—g Convergence or curvature in the stream lines near the origin may be repre-
gsented, to the degree of approximation required, by spherical harmonics of the
-5 second degree. The general expression for the velocity potential of a curved
& and converging stream may, therefore, be written in the form

<

3 $o =18, + 8, (14)
gwhere 8, and 8, are surface harmonics of the first and second degrees. When
= the velocity at the origin is parallel to 6 = 0 and equal to U,

E 8; = — Ucos 6, (15)
3 the most general form of 8, is

'}g 8y = G (3 cos®? 0 —3) 4+ (H cos @+ J sin w) cos 6 sin 6

E + (E cos 2w + F sin 2e) sin? 0, (16)
8 when o is the angular co-ordinate of an axial plane so that

z = r cos 0

y = 7 sin 0 cos @ . (17)

z = r g8in 0 5in @
If G is positive the flow is diverging; if G is negative it is converging.
M H=J—0 the stream line through the origin is straight. If
H=J=E=F=0 the flow is symmetrical about the axis of z. If

k.
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H = J = ¥ = 0 the stream is symmetrical about the planes y =0, z =0,
and if, in addition, G = 2E the motion is two-dimensional, the stream
lines being parallel to the plane y = 0.

If G = E = F = 0 the stream lines are curved but do not converge in any

axial plane and the direction of maximum pressure gradient is at right angles

to the stream lines. If, in addition, J = 0 the stream lines lie in the plane
z =0, and if H is then positive the centre of curvature of the central stream
line is in the direction 0 = 4=, @ = 7, t.e., it lies on the negative side of the axis
of y.

If H =0 and J is positive the central stream line lies in the plane y = 0
and its centre of curvature lies in the negative side of the axis of z.

Representation of the Disturbed Flow.
The disturbed flow may be represented by the velocity potential

b=¢o+ d =18+ 8 +r % + r 3%+ .. ™ s+ .. (18)

where s,, is a surface spherical harmonic of degree m.

Forces found by Integration of Pressures.
Since the motion is steady p/p + % (#® + v® + w?)* is constant. If the
components of the resultant force on the body are X, Y, Z,

%:g,;“_z(u2+v2+wz)ds, %:%J‘j'm(uz—i—v’—kw”)ds,

Z 2 2 2 '

—=%j. n (u? 4+ 0® - w?) ds,

e i
the suffix ¢ shows that the integration extends over the surface of the body and
I, m, n are the direction cosines of the outward drawn normal to the surface

of the body.
These expressions may be transformed by Green’s theorem in the forms

% iy %jv[o(,uz 4 02 4 w?) I ds — jjo(lu + mw -+ nw) w ds d

%=%jjo(u2 + v? 4 w?)mds — H.o(lu - mw - nw) v ds , (19)

2

%:%J‘L(uﬂ + 2 4 w?) nds — jjo(lu + mw + nw) wds

* Note that u, », w are used here and in succeeding pages as the components of
velocity at any point in the fluid. In the first part of the paper up to equation (13)
they represent the components of velocity in the fluid before the introduction of the solid.
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' the integrations extending over any surface 0 which completely surrounds the
body. Taking 0 as a sphere of radius 7 it is found that

X 3] om0 (L22F + () 4 kg )

.” { cos O — % sin 0) g)qS} ds, (20)

gibh similar expressions for Y /p and Z/p.

N Now the value of X/p is independent of », and ds is 72 sin O dwdb, so that it
% only necessary to pick out terms in the integrands of (20) which contain
5‘ 2 as a factor. All other terms must vanish when integrated over the sphere
f radius 7. It is hardly worth while to complete the whole operation because
e should ultimately only find the expressions given in equations (7), but it
Fpems worth while to verify, say, the first term in the expression for X/p

e Substituting from (14) and (18) in (20) and picking out only terms in »~2
&n the integrands, it is found that

X a aS ) aSo a,‘
; =H0{4ST¢1 cos O — 2 sin 0(% 5% — 31-6—62) 4+ P2 Peos 0

Taking the case when H = J = 0 so that the centre line of the undisturbed
ow is straight, and substituting for s,, its most general value

a, cos O - a, sin 0 cos w - a, sin 6 sin ©,
nd for 8, from (16), it is found that the only terms in (21) which do not vanish
those containing a,G thus :

https://royalsocietypublishing.

” 48, s, cos 0 r 2 ds = $% na,G,
0

- aé ag —n 6 ™
”02 sin 6 <82 30 — 5 86) r2ds = ¢4 na,G,

Downloaded frgrn

aS asl —2 4
H 69 55 o008 0 r—2ds = $§ ma,G,

08, 9s, .

~2ds =0,
T B =

jj cos 0 cosec® O =2
0
50 that from (21)

32 + 64 4 24

X =
15

7 Se = 8na,Ge. (22)
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Remembering that H = J = 0 in (16), it can be shown that

dp __Op
oy 0z

so that the value of X from (]) 18
— N _l- ._2
( A) a .

=0

(23)

In comparing the two expressions for X given in (22) and (23) we must first
calculate the value of dp 0z at the origin in the undisturbed flow. The velocity
along the central stream line before the introduction of the body is

%] - Sl = 27‘Sd9_0 3
9= O
so that the rate of change in pressure along the axis of = is
07 0
L—— £ (Goud) =—p E a,;] — — oU [— 28,00 = 26GU. (24)

It remains to find the relationship between @, and A. @, is the coefficient of
cos 0/r2 or #[r® in the expansion of the velocity potential of the disturbed
motion in spherical harmonics. We can regard the disturbed motion as
consisting of two parts, one due to the term 78, in the undisturbed motion and
the other to the term #28,. Let the coefficients of z/r® in these two parts be
a," and a,” respectively, so that

ay = a + a,". (25)

So far we have made no assumptions as to the relative magnitudes of the
terms 7,8, and 723, in ¢,. If now we make the assumption made in obtaining
(7) that the changes in velocity of the undisturbed stream in a distance com-
parable with the linear dimensions of the body are small, then a,” is small
compared with a,". Now a,’ is the coefficient of /s in the expansion of the
disturbed motion due to a uniform stream of velocity U flowing past the body.
This is identical with the coefficient of z/r® in the expansion of the velocity
potential in spherical harmonics of the flow produced by moving the body with
velocity — U in an infinite fluid at rest.

The connection between this coefficient and the expression for the energy
of a body moving without rotation in an infinite fluid has been discussed by
the author in a previous paper.* As a particular case of the formulwm in that
paper the coefficient of /r® in the expansion of the velocity potential due to a
velocity — U parallel to the axis of z is

— U (A 4 V) /4=, (26)
* Loc. cit., p. 13.

_]
|
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l
|
1
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where A and V have the same meaning as in (7). If we neglect ," compared
:‘with a,, we can therefore write

dng, = — (A + V)U. (27)

. Taking the value of a; from (27) and of G from (24) and substituting them in
- (22), it will be found that

€

)
B 00,00 — (4n6,) (30) = = (A £ V)UGp =~ (4 + V) an
S which is identical with the expression (23) derived from the first part of the
S paper.

= In the same way the rest of formule (7) can be found by direct integration

<

%of the pressures over the surface of the body.

=

L:D Couples found by Integration of Pressures over the Surface of the Body.

=

& If Lo, Mp, Np are the component couples,

-q -

'é, = 1“‘]7 (mz — ny) ds = % ‘H (ny — mz) (u® + v* 4+ w?) ds. (28)
= P i

©

g:First the integral will be transformed into an integral over an outer surface 0

© ecompletely surrounding the body, thus :

1

Q

o}

= QH‘ ny (U2 + 02 + w?) ds = {,J-J. ny (u® + v* 4 w?) ds

> : 0

£ (2

:\g — %j“ Y a(u2 + v® 4 w?) de dy dz, (29)
éthe volume integral extending between the body and the outer surface 0.
& Remembering that % -+ -g—;’ +- % =0 and at the surface of the body
= z

-“'; w4 mv 4+ nw = 0,

=}

= -—szﬁy—a-(uz—{— v® - w?) da dy dz

% 0z

Q \

=—.—jﬁy<u%+v%’—{-w%)dzdydz

= — ” yw (lu + mv + nw) ds
0

P

+[[f w2 wm +%'(yv) + 2 (o) o dy @

=—Hoyw(lu -+ mw - 1m)ds+”-jw’0d’3d!ldz-
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The integral — -” mz (u® 4 v® 4 w?) ds can be treated in the same way,

and by adding the two results it is found that

Y=} H (ny — mz)(u® + v* - w?) ds — Hj (yw — 2v) (le 4 mv - nw) ds.
< J0 0

(30)
If now the outer surface be taken on a sphere of radius r, ny — mz = 0 so that
== }” (yw — zv)a—é(Ls. ]
Jo or -
Similarly,
M= j- | (2u — aw) %a’n - - (31)
Jo or
N= j. [ (20 — yu) ai’ds.
Jo or )
Expressing u, v, w in terms of the velocity potential
yw — 2w = — g—i 1
2U — TW = ¢ sin o -+ ¢ cot 0 cos @ . (32)
36 3o (
o — yu = — g%cos ® + -g—i cot O sin @ )
and substituting these expressions in (31)
d¢ a¢, ]
L=
gl
M — Jjo <%§ sin @ -+ %:é cot 0 cos m>%bds e (33) “
N=.”0<g—‘g co8 —l—g—gcotesin m>g—;éd‘s |

J |

The remainder of this paper will be devoted to the discussion of L. |
Since L has a definite value independent of the radius of the sphere over |
0¢ 0d

which the integration is taken, it is only necessary to pick out terms in 5 O
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- which contain the factor »~2. Differentiating the expression (18) for ¢ with
respect to r and o, multiplying and picking out terms in 7%,

BT TEYVIN NS
oS, 0s,

) U (3 L pels 2a<.,> ds, (39

~and since S, does not contain « when the axis of z is parallel to the stream
Sdirection at the origin, the first of these integrals vanishes so that

i

Z B ” 3:,aS 95y __ 928 aﬁ) 2 s, (35)
%D a(t)
<Now S, is
oN
S G(§cos® 6 — ) + (Hcos o + Jsin ) cos 0sin 0

‘\:0 + (B cos 20 + Fsin 20)sin2 0 (36)
i~

E&nd s, may be expressed in its most general form

= 5, =g(3cos® 6 — 1)+ (hcos ® + jsin w) cos O sin 6

—E -+ (e cos 2w -+ fsin 2w) sin® 0. (37)
e

%It will be seen that only four kinds of terms can occur in (35), namely, those
'gcontaining Hj, &J, Ef, eF'; all others vanish when integrated over the surface
=of the sphere.

& To find the coefficient of Hj take J — E — F = 0, then

g2 L=Hj j’j’"(— 3 5in? 0 cos® 0 sin? « — 2 sin? B cos? O cos® ) sin O de d0
= 0JO

; — — 4zHj.  (38)
LgSimila.rly the term in Jk is + 4=Jh.

9 To find the coefficient of Ef put H=J =F = 0.

2 Then

)

§ Yi= Efj (— 6 sin* 0 gin? 20 — 4 sin* 0 cos? 2w) r~2 ds = — 2 Ef.

o

A Hence this complete expression for L is

L=4=n(Jh— Hj)+ ¢ '“r(l‘e—Df) (39)

Each of these terms represents the reaction between some type of asymmetry
in the body and a corresponding type of asymmetry in the low. If the changes
in velocity of the undisturbed stream in a distance comparable with the linear
‘dimensions of the body are small compared with the velocity of the undis-
turbed stream, we can use the same argument to find %, j, e and f that we




Downloaded from https://royalsocietypublishing.org/ on 09 August 2022

276 G. 1. Taylor.

previously used to find the coefficient @; which occurs in finding the force com-
ponent X in (22). Thus 4, j, e and f are the coefficients of four of the terms in
the harmonic of the second degree in the expansion of the velocity potential
due to the motion of the body with velocity — U parallel to the axis of z in an
infinite fluid.

The first two harmonics in the velocity potential due to a movement of the
body with veloeity | U are therefore

¢ = r 2 (— a, cos O — a, sin 6 cos w — a, sin O sin )

— 77 3{g (¥ cos® 6 — %) 4 (h cos &+ j sin w) sin O cos O
+ (e cos 2w + fsin 2w) sin® 0}.  (40)

Though it is not possible to express the coefficients in the harmonics of the
second degree in terms of the coeflicients occurring in the energy equation,
as it is in the case of the harmonics of the first degree ; yet it is possible to
see what kind of asymmetry in the body will give rise to positive values of
the coeflicients 4, 5, e and f.

Consider, for instance, what kind of body might be expected to give rise
to a flow for which j = e = f = 0 but 4 is not zero. The simplest such body
is a sphere with its centre not at the origin.

The velocity potential due to a sphere of radius ¢ with its centre at small
distance 7) along the axis of ¥ and moving with velocity U parallel to the axis of

x 18

e a’z 5 [z 312y
M =y i T

The harmonic of the second degree is therefore
2UaPnr™3 cos 0 sin 0 cos w,
so that comparing this with (40) it will be seen that
g=j=c¢c=f=0 and —& = inUd®
Hence from (39)
L = §whd = — 2rqUa®J. (41)
Since with positive values of J and 7, L is negative, the couple tends to turn
the sphere about the axis of z'as though its centre were attracted towards the
centre of curvature of the central stream line, which for positive values of J
is in the negative part of the axis of z.
This result can be verified because in the case of a sphere the resultant force
necessarily acts through its centre, and from (7) is

7 — — 9ma?2P
A— dﬂasaz.
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It can be shown that gf = JU, so that
( |

: Z=—2rma*JU and L = Zn= —2ra®JUxy,
|‘

|

which agrees with (41).

Experimental Verification of Ewxpression for Couples on Bodies in Curved
Streams.

o
S
S In the case of a sphere capable of rotation about an axis which does not pass
- guthrough its centre there is a resultant force when it is placed in a curved stream.
2 This lateral force makes it difficult to use such a body for experimental demon-
S stration ; accordingly a body was devised which when suspended under gravity
§ might be expected to give rise to a pronounced value for the coefficient % of

S

&n(40) without necessarily giving rise to lateral force. Such a body is shown in
oobﬁg' 2. It was an elongated body of revolution the centre line of which was
.S afterwards bent into an arc of a circle so that it looked like a small hologna

g
%

wnloaded from https://royalsocietypublishi

z If such a body be set in the position shown in fig. 2 so that the curvature of
A the centre line lies in the plane z = 0 and the centre of curvature lies in the
- positive part of the axis of y, then the effect of the curvature of the centre
line would be to increase the velocity of the flow at points in the negative side

- of the axis of y and to decrease it at points on the positive side. This is

- exactly opposite to the effect of moving the centre of a sphere from the origin
o a distance » out along the positive side of the axis of y. It will be seen,

. ?hel'afore, that if the body shown in fig. 2 is moved parallel to the axis of =

- In the positive direction, the coefficient of the harmonic »~3 cos 0 sin 0 cos ©
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in the corresponding expansion of ¢’ will be negative while that of
73 cos 0 sin 0 sin « will be zero.

Hence from (40) %4 is positive and j = 0. :

Taking the case of the undisturbed flow for which H =E = F — 0 and J
is positive, z.e., curved flow in which the stream lines are parallel to the plane
% = 0 and the centre of curvature in the negative part of the axis of z, it will
be seen from (39) that L is positive so that a couple acts on the body tending
to turn it towards the position where the centre of curvature of the middle
line of the body is in the positive side of the axis of z. Tt appears, therefore,
that a body of this shape should set itself so that the curvature of its centre
line is in the same plane as the curvature of the stream lines but in the opposite
direction. It has two positions of equilibrium,
one stable and the other unstable.

A body of this form was hung by a fine silk
thread in the curved stream created by a
vacuum sweeper sucking air through a curved
channel formed by two bent pieces of sheet

apparatus is shown in fig. 3, which needs little
J%xz:;;':' explanation. In that figure A is the body and
. B is some fine gauze fitted into the mouth of
Fxg.uri(;—BI:‘I:;l;er;:e:t CZ:WZ the :').ppara..tus to preven(:, disturbances in the
Siream (obl Aty outside air from affecting the flow. The
apparatus was mounted so that the air in the
neighbourhood of the middle of the body was descending vertically.

Result.—Directly the vacuum sweeper was started the body swung into the

position shown in fig. 3. This is what was predicted mathematically.

Ezperimental Verification of Formule for Converging and Diverging Flow,
Next suppose the central stream line of the undisturbed flow is straight so
that H = J = 0, and let us consider the expression L = %#= (Fe — Ef).
The quantities E and F represent differences in the amount of convergence
or divergence of stream lines in different axial planes through the central
stream line. We have already pointed out, for instance, that f H=J =F =0

and G = 2E the stream lines are all parallel to the plane y = 0. A convenient

method for obtaining a stream having a pronounced value of E is therefore to
make a channel two of whose walls are parallel (in the actual apparatus glass
plates) and the remaining two are made from sheet metal bent into the form

metal between two parallel glass plates. The

|




¥

shown in fig. 4. If the axes are chosen so that the plane y = 0 is parallel
to the glass sheets, and if the axis of z is the central line of the apparatus, the
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F1a. 4.—Experiment on a Flattened Body in Converging and Diverging Flow,

e
e e | -
Converging —
flow \N \ J iﬂk thread
Bod:
rldﬁ:ular__ mﬂ
to glass plates \ / /plutes
(Q
= Greatest ;
= constriction ! aat
5 J - metal
2 Diverging ot
EO flow "'T
Z . /\Vlre
k- Body parallel | } o\ \ ez
Q to glass plates |p—--—-—
= — Jo vacuum
g sweeper
]
~
oy
]

%ipositive direction being downwards, then E = G is negative in the converging
= upper part of the apparatus and positive in the lower diverging part.
Referring to the expression (39) for L, it will be seen that E occurs associated

S

=
émxth J. For an experimental verification, therefore, we must find what shape a
©hody must be made in order that it may give rise to a pronounced value for f.
§ Referring to (40), — f is the coefficient of ™ sin® 0 sin 2w in ¢’. We shall
Eﬁat find what kind of small alteration must be made to a sphere in order that
Sthe velocity potential of the flow round it may contain a term of the type
Zr%sin? 0 sin 20, Let r — a -+ by (0, w) be the equation to the body, b being
Ssmall compared with @, and % a function of 6 and . This will produce a

g velocity potential

http

¢’ = $Ua® 2 cos O — fr™3 sin 2w sin? 6,

provided IU = —%é: , where [ is the direction cosine of the normal to the
r

surface of the body.
Since b is small compared with a

Downloaded fro

bl s 0
l = cos 6-}-; gin 65(—) x (0, w),
80 that

b% 2(0, w) = — 3fU~1a~% sin 2 sin 0,
or
by (0, @) = 3fU1a 3 sin 2w cos O = b’ sin 2 cos 0. (42)
VOL. OXX.—A, X
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In order to form a picture of the shape of the body whose equation is
r=a-b" sin 2w cos 0, (43)

one can imagine a series of sections by planes perpendicular to the axis of 2.
These are shown in figs. A and 5B. Fig. 5a gives the sections of the half of
the body for which z is positive and fig. 58 for the negative half. It will be
seen that the essential feature is that the body is circular in the central section
Glass Glass

., Glass P

plate Class

plate

LU

2

FITTE LRI/ T L i
777777 7777 1711111
w
/ 2

e = S
T+
Fie. 5aA. F1a. 5B.
Sections of the Body r = a + b’ cos 8 sin 20 by Plane Perpendicular to the Axis,
t.e., 8 = 0.
=

Fia. 5o.—Perspective Sketch of r = a + b’ cos € sin 2.

and that it has a flattened nose and tail, but the direction of flattening at the
nose is at right angles to the direction at the tail and each is at 45° to the axes
of y and z. The asymmetry is, in fact, that possessed by a tetrahedron about
the line joining the mid-points of opposite edges. If a body of this shape is
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 placed in a converging stream of fluid it gives rise to a value of f equal to
| 1b'Ud?, so that
L = — %2 xEb'Uad. (44)
In the converging part of the apparatus shown in fig. 4 E is negative, so
‘that L is positive. The reaction between the fluid and the body is therefore
such that the body tends to turn in the direction of increasing , namely, that
shown by the arrow in fig. ba.
g Since the wind is blowing downwards in the apparatus shown in fig. 4,
Qgs. ba and 5B show the contours of the body when seen from below. The
cé)ositsions of the glass plates in the apparatus of fig. 4 are also shown in figs.
@A and 58 : it will be seen from the direction of the arrow in fig. 5a that in the
Sonverging channel the body tends to set itself so that the flattened lower end
g8 parallel to the glass plates while the flattened upper end is perpendicular
Eﬁp them. This is a position of stable equilibrium. Another stable position
@an evidently be found by rotating the body through 180° round the wind
irection, and these are two intermediate unstable positions of equilibrium at
anht angles to them. '
A perspective sketch of the body » =a 4- b" cos 0 sin 2w is shown in fig. be.
If the body is lowered through the point of maximum constriction of flow
811(’.0 the diverging part of the channel in the apparatus shown in fig. 4, E
._”bhanges sign. The stable positions of equilibrium become unstable and
gmstable positions become stable. The body should therefore rotate through a
S’ight angle as it passes from the converging to the diverging part of the channel.
& These predictions were completely verified. The body used was not, in fact,
Sthe body whose equation is » = a + b’ sin 2w cos 0, because the

bli

=)
o
e

£ ow round bodies which are nearly spherical is known to be be
—quite unlike the flow contemplated in hydrodynamical theory. /“\ y \
-%;In order that the actual flow may resemble at all closely the i\ \

Otheoretxcal irrotational flow, the body must be smooth and Ho \ i

%elongated Accordingly a body was made in which the essential | | |

'Qfeat.ure of the symmetry about the wind direction, or axis of 2, L1 fen "
of the body represented by (43) was preserved, but the length N !
Wwas six times the maximum diameter. This body was made by \ /
flattening the two ends of a circular cylinder into two knife eV
edges at right angles to one another, as shown in fig. 6. It
was then rounded off carefully so that there were no sharp
edges to spoil the flow except the knife edges at the nose and tail. It
Was suspended by a silk thread at S and hung in the wind tunnel shown

i

Fia. 6.
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in fig. 4, so that it would be raised or lowered through the central part of
the channel.

When a draught was created by applying a vacuum sweeper to the lower
end of the channel, the body set itself so that the upper knife edge was per-
pendicular to the glass plates when it was in the upper converging part ; but
it turned through a right angle when lowered through the point of maximum
constriction into the diverging part of the channel. ]

Tt appears, therefore, that the predictions of mathematical theory as to the "
effect of two types of asymmetry in the flow on corresponding types of
asymmetry in the body are completely verified by experiment.

Tt is well known that the flow of fluid past a body differs considerably from
that contemplated by irrotational theory even in the case of elongated bodies,
but the flow at the forward end is far more like the theoretical flow than that
behind the mid-ship section. In order to separate the effects of asymmetry
of the flow and the body at the forward end from those
at the after end, the body shown in the perspective
sketch (fig. 7) was made. One end was cut to a knife
edge like the body previously described, while the other
end was turned to a point in a symmetrical ogival shape
like the nose of an airship. There were no sharp edges
i except at the nose and tail of the body. 1

When hung in the converging channel with its point
downwards and knife edge upwards, this body set itself
with its knife edge perpendicular to the glass plates.
When hung in the converging channel with the point on
top, the knife edge at the bottom set itself parallel to the
glass plates. It appears, therefore, that the agreement
between theory and experiment extends to the tail end
of the body when the body is of the ‘ easy ' shape
shown in fig. 7.
Flﬁa'm?;l; BZ‘:?)’BS‘_”;:CI’_ A body cut into the shape of half a magnifying lens

tions in lower half, and hung from the middle point of its curved edge

finishingin a pointe, got jtself perpendicular to the glass plates in the con-

and elliptical cross- % . B

sections in wupper verging part and parallel to them in the diverging

half with knife-edge 50 The two positions of this body are shown in
on top.
fig. 4.

A body shaped like a whole magnifying lens or disc sets itself in the same

position as that assumed by the half dise. If the flow were accurately the

v
r
L
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irrotational flow contemplated by theory, the stream should exert no directive
effect on a body with this kind of symmetry. Failure of the stream lines to
elose in at the after end of the body in manner indicated by irrotational theory
would, however, weaken the negative directive effect of the rear portion com-
pared with the positive effect of the front portion. It seems clear that this
i8 the reason for the observed orientation of a lenticular-shaped body hung
from a point in its curved edge. An oblate spheroid with one of its maximum
Q.‘ameters along the wind direction behaves in the same way. The experi-
Cinents here described are very easy to carry out with a domestic vacuum cleaner,
amt in making a body like that shown in fig. 7 great care has to be exercised
keep it symmetrical and to hang it symmetrically. In my experiments
controlled it with a magnet, inserting a small magnet in the body perpendicular
;:to the axis. When the flow was established I removed the control.

In conclusion I should like to express my thanks to Mr. W. S. Farren for
reparing the three perspective sketches of figs. 2, 5¢ and 7, and to Sir Ernest
Blutherford for facilities for making the experiments.
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During recent years a knowledge of the ammonia equilibrium has attained
=& great technical importance. The fact that ammonia decomposes under the
%mtion of an electric spark or on passing through a red-hot tube was known
R as long ago as in the time of Priestly. Tt was, at this time, regarded as a com-

plete decomposition. The first indication of a certain quantity of the ammonia

remaining undecomposed, and thus of the balanced nature of the action, was
obtained by Deville* in 1805. Measurements on the variation of the
equilibrium with temperature, at atmospheric pressure, were made by Haber
and Oordt.f They found that at 1020° C. the equilibrium mixture contained

* “C. R., vol. 60, p. 317 (1865).
t ¢ Z. f. anorg Chem.,’ vol. 44, p. 341 (1905).

nio




