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ABSTRACT In recent years, the haze has caused serious troubles to people’s lives, with the continuous

increase of PM2.5 emissions. The accurate prediction of PM2.5 is very crucial for policy makers to make

predictive measures. Due to the nonlinearity of the PM2.5 time series, it is difficult to predict accurately.

Despite some studies about PM2.5 being proposed, the problem of the LSTM (long short-term memory)

gradient disappearance and random selection of wavelet orders and layers isn’t still solved. In this study,

a novel model based on WT (wavelet transform)-SAE (stacked autoencoder)-LSTM is proposed. Firstly, six

study sites from China are taken as examples and WT is used to decompose PM2.5 time series into several

low-and high- frequency components based on different samples. Secondly, the decomposed components are

predicted based on SAE-LSTM. Finally, the predicted results are reconstructed in view of all low-and high-

frequency components and the predicted results are obtained. The results imply that: (1) the forecasting

performance of SAE-LSTM is better than that of other models (e.g., BP (back propagation)) used for

comparison; (2) for six different PM 2.5 samples, four orders five layers, five orders six layers, five orders

seven layers, three orders six layers, five orders seven layers, and five orders six layers are the most

appropriate. The conclusion that such a novel model may help to enhance the accuracy of PM 2.5 prediction

can be drawn.

INDEX TERMS PM 2.5 time series, wavelet transform, stacked autoencoder, long short-term memory,

prediction.

I. INTRODUCTION

With the frequent occurrence of the smog in recent years,

FPM (fine particulate matter) has attracted wide widespread

attention [1]–[4]. PM 2.5 whose equivalent diameter is less

than or equal to 2.5 µm can be suspended in the air for a long

time [5]. The higher the concentration of PM 2.5 in the air,

the more serious the air pollution is. And, compared with the

coarser ambient air particulate matter, PM 2.5 has a smaller

particle size, stronger activity, which is easy to be accom-

panied by toxic and harmful substances (e.g., heavy metals,

microorganisms) [6], [7]. Furthermore, PM 2.5 has a long

residence time in the atmosphere, which has a great impact
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on human health and the quality of the atmospheric environ-

ment [8]. Therefore, accurate prediction of PM 2.5 concentra-

tion is of great significance for the protection of public health

and the formulation of preventive measures.

However, the accurate prediction of PM 2.5 has become

a challenging task, because of the volatility characteristics

of PM 2.5. Last several years, some scholars have estab-

lished some models to try to predict PM 2.5. In addition,

these results can be roughly divided into two categories:

(1) conventional prediction models; (2) artificial intelligence

prediction models. What is more, some research results on

the conventional forecasting models are listed in Table 1.

It can be seen from Table 1 some conventional prediction

models have been used to forecast the PM2.5. However,

due to the volatility characteristics of PM2.5 in view of the
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TABLE 1. Forecasting of the PM 2.5 based on the conventional models in recent years.

TABLE 2. Forecasting of the PM 2.5 based on some artificial intelligence models in recent years.

different samples, conventional prediction models have some

limitations. In recent years, artificial intelligence forecasting

models have been applied to the forecasting of PM2.5, in view

of its strong fitting ability. These study results on artificial

intelligence prediction models are shown in Table 2.

By means of summarizing Table 2, artificial intelligence

forecasting models are widely used for PM2.5 forecasting

(e.g., NN (neural network)), but NN has the disadvantage

of local extremum. So, some scholars have tried to com-

bine wavelet transform with artificial intelligence predic-

tion model to obtain more information about the original

PM2.5 and improve the prediction accuracy of PM2.5. These

studies are shown in Table 3.

To make a long story short, the combination of the arti-

ficial intelligence forecasting models and wavelet transform

are applied to the forecasting of PM2.5. However, when

the wavelet transform is adopted to decompose PM2.5 time

series, wavelet orders and layers are randomly determined.

In addition, LSTM solves the gradient disappearance prob-

lem of RNN (recurrent neural network) to some extent. So,

to solve these two scientific problems, some novel research

work is carried out in this paper:

(1) To improve the problem of LSTM gradient disap-

pearance, the combination of SAE and LSTM is proposed.

Furthermore, to test the effectiveness based on the pro-

posed model, some advanced forecasting models are adopted

for comparisons, e.g. SAE-BP (SAE-back propagation),

SAE-ELM (SAE -extreme learning machine), SAE-BiLSTM

(SAE - bi-directional), LSTM, BP, and ELM;

(2) Coiflets is adopted to decompose the PM2.5, into

several high- and low-frequency components. In addition,

SAE-LSTM is used to predict the decomposed components.

Lastly, the forecast results obtained by SAE-LSTM are recon-

structed. Thereby, the optimal wavelet layers and orders are

determined by comparing the evaluating indicators for differ-

ent samples.

II. METHODS

In this part, some methods are used in this paper, including

WT [28], SAE [34], LSTM [27], the combination process of
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TABLE 3. Combination of wavelet and neural network to forecast PM2.5 in recent years.

SAE and LSTM, and BiLSTM [35]. Furthermore, statistical

evaluation indexes and forecasting framework are given in

detail.

A. WAVELET TRANSFORM

WT inherits and develops the idea of short-time Fourier trans-

form localization, and overcomes the shortcomings of win-

dow size not changing with frequency. Furthermore, WT is

an ideal tool for signal analysis and processing, because it

can provide a ‘‘time-frequency’’ window that varies with

frequency.

In practical applications, because most of the computer

processing is a discrete equation, the continuous wavelet

transform is often discretized. The Mallat algorithm is

adopted, which can be expressed as:

aj = aj+1h1; dj = dj+1l1, (j = 0,1, · · · , n− 1) (1)

where h1 and l1 are low-pass filters and high-pass filters

respectively.

Mallat algorithm is used for wavelet decomposition. After

each decomposition, the low- and high-frequency component

are twice as much as the signal points before decomposition.

The reduction of points is disadvantageous to prediction.

In order to overcome this disadvantage, the decomposed com-

ponents can be reconstructed by the reconstruction algorithm.

The reconstruction algorithm is described as follows:

aj = aj+1h2 + dj+1l2, (j = n− 1, · · · ,1,0) (2)

where h2 and l2 are dual operators of h1 and l1, respectively.

The process of WT is shown in FIGURE 1.

B. MACHINE LEARNING ALGORITHM

1) STACKEN AUTOENCODER

Autoencoder is a kind of unsupervised one hidden layer

neural network, in which the output layer is set to be equal

to the input layer. FIGURE 2 shows the basic structure of an

AE model.

AE is composed of an encoder and decoder, and their

mapping functions are defined as follows.

h = f1 (x1) = sf 1 (W1x1 + b1) (3)

x2 = f2 (h) = sf 2 (W2h+ b2) (4)

FIGURE 1. Diagrammatic sketch of wavelet transform: (a) decomposition
process; (b) reconstruction process.

FIGURE 2. Model structure of AE.

where x1 = [x11, x12, · · · , x1dl]
T ∈ R1dl is the inputs of the

AE; h = [h1, h2, · · · , hdh]
T ∈ Rdh is the join vector between

x1 and x2; x2 = [x21, x22, · · · , x2dr ]
T ∈ R2dr is the inputs of

the AE; 1dl is the dimension of the inputs; dh is the dimension

of the hidden variable vector; 2dr is the dimension of the

outputs; b1 ∈ R1dl is the bias vector; b2 ∈ R2dr is the bias

vector; the nonlinear activation function of sf 1 can be chosen

as the sigmoid function, or others like the tanh function the

rectified linear unit function; the activation function sf 2 of the

decoder can be either the sigmoid function or other functions.
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Stacked autoencoder, deep belief network, and deep convo-

lutional neural networks are three typical deep learning algo-

rithms, which is a hierarchical deep neural network structure

composed of multilayer AEs. The model structure of SAE

based on multiple AEs is shown in FIGURE 3.

FIGURE 3. Structure of AE.

2) LONG SHORT-TERM MEMORY

The structure of the basic neural network includes input layer,

hidden layer, and output layer. The output is controlled by

the activation function, and the weights are used to connect

the layers. Recently, on the basis of the basic neural network,

a new type of neural network has been developed, which

is called RNN. The biggest difference between RNN and

basic neural network is that RNN also establishes weighted

connections between neurons. However, RNN has the prob-

lem of gradient disappearance. Therefore, in order to solve

this problem, some RNN variants such as LSTM have been

proposed. LSTM adds three gates based on RNN to control

information transmission and final result calculation. The

three gates are forgetting gate, input gate, and output gate. The

structure of the LSTM processor unit is shown in FIGURE 4.

FIGURE 4. LSTM processor unit.

And the forgotten gate can be computed as:

f t = σ
(

W f · [ht−1, xt ] + bf
)

(5)

where ft is the vector of the input gate; Wf and bf is the

weight and bias vector of forgotten gate; [ht−1, xt ] means

connecting two vectors into a longer vector; σ which is the

sigmoid function used in this study is activation function. The

expansion ofWf · [ht−1, xt ] is as follows:

W f · [ht−1, xt ] =
[

W f

]

·

[

ht−1

xt

]

=
[

W fh W fx

]

[

ht−1

xt

]

= W fhht−1 +W fxxt (6)

The input and output gate can be computed as:

it = σ (W i · [ht−1, xt ] + bi) (7)

ct = f t · ct−1 + it · tanh (W c · [ht−1, xt ] + bc) (8)

ot = σ (W0 · [ht−1, xt ] + b0) (9)

ht = ot · tanh (ct) (10)

where it , ot and ct are the vectors for input gate, output gate,

and cell activations, respectively; ht is the output vector;Wi,

Wc, andWo are the weight of the corresponding gate; bi, bc,

and bo are the bias vectors of the corresponding gate.

3) BI-DIRECTIONAL LONG SHORT-TERM MEMORY

In timing processing, standard RNN and LSTM often ignore

future information, while BiLSTM can take advantage of

future information. The basic structural idea of BiLSTM is

that the front and back layers of each training sequence are

two LSTM networks, respectively, and the LSTM networks

are both connected to one input layer and one output layer.

The output layer can obtain past information of each point

in the input sequence, and can also get future information

of each point through this structure. FIGURE 5 shows a

BiLSTM that expands along time. Increased neural network

update equation can be computed as:

htr = H
(

W1xt +W2h(t−1)r + br
)

(11)

htl = H
(

W1xt +W2h(t−1)l + bl
)

(12)

yt = W4htr +W6htl + by (13)

where htr, htl , yt are respectively the vectors forward propa-

gation, backward propagation and output layer;W1,W2,W3,

W4, W5, and W6 are respectively the corresponding weight

coefficients; br , bl , by are the corresponding bias vectors.

FIGURE 5. Expansion structure of BiLSTM.

4) THE COMBINATION PROCESS OF SAE AND LSTM

The combination of SAE and LSTM is actually a process of

data transfer. The specific calculation process is as follows:

Step 1: The PM2.5 time series is divided into training

samples, testing samples, and prediction samples.

Step 2: Set the parameters of SAE and LSTM;
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FIGURE 6. Forecasting framework using novel WT-SAE-LSTM for
PM 2.5 time series in this paper.

Step 3: Train SAE network;

Step 4: The trained SAE network is used to predict the

training samples, and the prediction results are used as the

input of LSTM;

Step 5: Based on the output results of SAE, LSTM network

is trained;

Step 6: The training samples, test samples, and prediction

samples are predicted by the trained LSTM network. Also,

if the set error precision is satisfied, the output result is

exported or returned to Step 3.

C. STATISTICAL EVALUATION

In order to comprehensively assess the characteristics of dif-

ferent prediction models, seven commonly used and mean

absolute error (MAE) [36]–[39] is applied in this subsection.

The definition of this index is shown in EQUATION (14).

MAE =
(

1
/

n
)

∑n

t=1
|At − Ft | (14)

where n represents the number of training or test set; At and

Ft represent the raw and forecasting value.

D. PREDICTIVE FRAMEWORK

The predictive framework in this study is given in FIGURE 6.

Furthermore, the detailed prediction process is as follows:

To eliminate the effect of the PM 2.5 magnitude on the

forecasting results, the PM 2.5 is normalized based on the

normalization method whose interval is from - 1 to 1.

Furthermore, to get more information about PM 2.5 time

series, it is broken down into several low- and high-frequency

components by wavelet decomposition algorithm. In addi-

tion, the low- and high-frequency components are forecasted

by SAE-LSTM, and the forecasting results are gotten. After

reconstructing the forecasting results, the final prediction

results are denormalized.

III. RESULTS ANALYSIS AND DISCUSSION

A. SAMPLE COLLECTION AND PREPROCESSING

In order to verify the generality of the forecasting model

proposed in this paper, six groups of PM2.5 time series are

selected from Jiayuguan, Datong, Fushun, Qiqihar, Weinan,

and Xuchang. They are located in China, as shown in

FIGURE 7(A). These data are from China air quality online

monitoring and analysis platform (https://www.aqistudy.cn/),

which are shown in FIGURE 7(B). In addition, in order

to understand the data differences of different PM2.5 time

series, some statistical indicators (e.g., Mean, S.D., min, and

max) are calculated, as shown in Table 4.

The normalization method is adopted to normalize PM

2.5 time series, as depicted in FIGURE 7(C). Here, one-step-

ahead forecasting is adopted in all experiments.

TABLE 4. Statistical results of PM 2.5 based on the different study sites.

B. EXPERIMENTAL DESIGN AND PARAMETER SETTINGS

In this paper, to ensure the fairness of the comparison of

the experimental results, all experiments are calculated on

the same computer. And the detailed configuration of the

computer is shown in Table 5.

TABLE 5. The specific configuration of the computer.

The goal of this study is to improve the gradient disap-

pearance of LSTM and to determine the optimal wavelet

layers and orders for different PM2.5 samples. According

to these two goals, two experiments are designed, which
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FIGURE 7. Research site and sample data.

are Experiment I: comparison of forecasting efficiency and

accuracy based on the proposed model and four models con-

sidered for comparison and Experiment II: determination of

the optimal wavelet layers and orders based on six different

samples.

In Experiment I: the proportion of the test sample and

the training sample is 0.2 and 0.8, respectively. In addition,

the length of the sliding timewindow is 20 and the experiment

is repeated 10 times. The parameters of the Experiment II

are the same as those of the Experiment I. Furthermore, the
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TABLE 6. The specific parameter settings in two experiments.

detailed parameter settings of the two experiments are listed

in Table 6.

C. EXPERIMENT I: COMPARISON OF FORECASTING

EFFICIENCY AND ACCURACY BASED ON THE PROPOSED

MODEL AND FOUR MODELS CONSIDERED FOR

COMPARISON

To know the forecasting efficiency and accuracy of the pro-

posed model, six models including SAE-BP, SAE- ELM,

SAE-BiLSTM, LSTM, BP, ELM are considered for compar-

ison.

The parameters in this experiment are shown in

Section II. B. In addition, the results are described in

FIGURE 8 and Table 7.

The following crucial findings are listed by analyzing

FIGURE 8 and Table 7.

(1) It can be seen that the results gained by SAE-LSTM

and the raw value are the closest based on the six test sam-

ples, comparing with other forecasting models considered for

comparison from FIGURE 8.

(2) From Table 7, theMAE value of SAE-LSTM is 0.3094,

0.4291, 0.0527, 0.0325, 0.1304, 0.0665, 0.3733, 0.3059,

0.1511, 0.2514, 0.2125, 0.1073, 0.7248, 0.4030, 0.0604,

0.1222, 0.1113, 0.1446, 0.9039, 3.8966, 0.0757, 0.0752,

1.1352, 0.7127, 0.7040, 1.1887, 0.0724, 0.4541, 0.4476,

0.4418, and 0.8935, 1.4574, 0.1723, 0.6040, 0.6549. 0.6378

lower than the that of SAE-BP, SAE-ELM, SAE-BiLSTM,

LSTM, BP, ELM for Jiayuguan, Datong, Fushun, Qiqihar,

Weinan, and Xuchang.

D. EXPERIMENT II: DETERMINATION OF THE OPTIMAL

WAVELET LAYERS AND ORDERS BASED ON SIX

DIFFERENT SAMPLES

In this experiment, six cases are used to verify the perfor-

mance of SAE-LSTM. Furthermore, the parameters of all the

cases in this experiment are set to be the same, which are

listed in Section II. B in detail.

1) CASE ONE: JIAYUGUAN

The results, in this case, are shown in Table 8. By analyzing

Table 8, the following comparisons can be given:

In view of Table 8 and MAE, the MAE of the one order

five layers, second orders six layers, three orders eight lay-

ers, four orders five layers and five orders seven layers is

smaller than that of the other orders and layers. And, com-

pared with one order five layers, second orders six layers,

three orders eight layers, and five orders seven layers, four

orders five layers is the smallest. Furthermore, the MAE

based on SAE-LSTM is 3.0655. And the MAE of four orders

five layers is 1.1730 higher than that of SAE-LSTM used

individually.

2) CASE TWO: DATONG

The results, in this case, are shown in Table 9. By analyzing

Table 9, the following comparisons can be given:

In view of Table 9, the MAE of the one order six layers,

second orders four layers, three orders six layers, four orders

four layers and five orders six layers is smaller than that of the

other orders and layers. And, compared with o one order six

layers, second orders four layers, three orders six layers, and

four orders four layers, five orders six layers is the smallest.

Furthermore, the MAE based on SAE-LSTM is 3.6543. And

the MAE of five orders six layers is 1.5427 higher than that

of SAE-LSTM applicated individually.

3) CASE THREE: FUSHUN

The results, in this case, are shown in Table 10. By analyzing

Table 10, the following comparisons can be given:

In view of Table 11 and MAE, the MAE of the one order

six layers, second orders eight layers, three orders six layers,

four orders seven layers and five orders seven layers is smaller

than that of the other orders and layers. And, compared

with one order six layers, second orders eight layers, three

orders six layers and four orders seven layers, five orders

seven layers is the smallest. Furthermore, the MAE based on

SAE-LSTM is 3.8562. And the MAE of five orders seven

layers is 1.5559 higher than that of SAE-LSTM applicated

individually.

4) CASE FOUR: QIQIHAR

The results, in this case, are shown in Table 11. By analyzing

Table 11, the following comparisons can be given:

In view of Table 11 and MAE, the MAE of the one order

seven layers, second orders seven layers, three orders six

layers, four orders four layers and five orders seven layers

is smaller than that of the other orders and layers. And,

compared with one order seven layers, second orders seven

layers, four orders four layers and five orders seven layers,

three orders six layers is the smallest. Furthermore, the MAE

based on SAE-LSTM is 3.6819. And theMAE of three orders
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FIGURE 8. Comparison for the proposed forecasting model and other models considered for comparison using the six different samples based on the
test set: (a) Jiayuguan; (b) Datong; (c) Fushun; (d) Qiqihar; (e) Weinan; (f) Xuchang.

TABLE 7. Evaluating indicator comparison of the proposed forecasting model and other models considered for comparison using the six different
samples based on the test set. The smallest MAE is marked in bold.

six layers is 0.9210 higher than that of SAE-LSTM applicated

individually.

5) CASE FIVE: WEINAN

The results, in this case, are shown in Table 12. By analyzing

Table 12, the following comparisons can be given:

In view of Table 12 and MAE, the MAE of the one order

four layers, second orders four layers, three orders six layers,

four orders six layers and five orders seven layers is smaller

than that of the other orders and layers. And, compared

with one order four layers, second orders four layers, three

orders six layers, and four orders six layers, five orders

seven layers is the smallest. Furthermore, the MAE based on

SAE-LSTM is 4.5091. And the MAE of five orders seven

layers is 1.7131 higher than that of SAE-LSTM applicated

individually.

6) CASE SIX: XUCHANG

The results, in this case, are shown in Table 13. By analyzing

Table 13, the following comparisons can be given:

In view of Table 13 and MAE, the MAE of the one order

four layers, second orders five layers, three orders six layers,
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TABLE 8. Evaluating indicator comparison based on the different layers and orders using SAE-LSTM for the test sample of Jiayuguan PM2.5. The minimum
MAE are marked in bold.

TABLE 9. Evaluating indicator comparison based on the different layers and orders using SAE-LSTM for the test sample of Datong PM2.5. The minimum
MAE are marked in bold.

TABLE 10. Evaluating indicator comparison based on the different layers and orders using SAE-LSTM for the test sample of Fushun PM2.5. The minimum
MAE are marked in bold.

four orders six layers and five orders six layers is smaller

than that of the other orders and layers. And, compared

with one order four layers, second orders five layers, three

orders six layers, and four orders six layers, five orders

six layers is the smallest. Furthermore, the MAE based on

SAE-LSTM is 4.5574. And the MAE of five orders six

layers is 1.6492 higher than that of SAE-LSTM applicated

individually.

E. DISCUSSIONS

Precise prediction of PM 2.5 is very crucial for policy-

makers to draw up preventive measures. Besides, the goal
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TABLE 11. Evaluating indicator comparison based on the different layers and orders using SAE-LSTM for the test sample of Qiqihar PM2.5. The minimum
MAE are marked in bold.

TABLE 12. Evaluating indicator comparison based on the different layers and orders using SAE-LSTM for the test sample of Weinan PM2.5. The minimum
MAE are marked in bold.

TABLE 13. Evaluating indicator comparison based on the different layers and orders using SAE-LSTM for the test sample of Xuchang PM2.5. The minimum
MAE are marked in bold.

of this paper is to modify the problem of LSTM gradient

disappearance and to fix the optimal wavelet layers and

orders and layers for PM 2.5 from the different study sites.

The following study results may be gained, in view of the

Experiments I and II.

(1) In view of the Experiment I, the forecasting perfor-

mance of SAE-LSTM is much more outstanding than that of

other forecasting algorithms considered for comparison.

(2) In Experiment II, for the different samples from the

study sites, four orders five layers, five orders six layers, five
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orders seven layers, three orders six layers, five orders seven

layers, and five orders six layers are very rightness.

Although this study fixes the optimal wavelet layers and

orders of the different samples and improves the problem

of LSTM gradient disappearance, there are still some weak

points that need to be addressed in future research:

(1) For the different PM2.5 time series, the optimal wavelet

layers and orders are fixed, but for other time series, whether

these fixed optimal wavelet layers and orders are appropriate

or not?

(2) The parameters are set up in this study, which are fixed.

In future studies, the optimization algorithms will be adopted

to optimize the hyper-parameters in SAE-LSTM, e.g. meta-

heuristic algorithms [40].

(3) The algorithm built in this paper has very good perfor-

mance for PM2.5 prediction. Can this algorithm be applied to

other fields, such as [41]–[45]?

IV. CONCLUSION

In this study, for different PM2.5 time series, Coiflets wavelet

is adopted to decompose them into 160 high- and low-

frequency components, the different neural network models

(e.g. ELM) are adopted for comparison. Besides, the compre-

hensive evaluation indexes are applied to test the performance

of SAE-LSTM. At last, some interesting conclusions are

drawn:

(1) Comparing with other forecasting models considered

for comparison in Experiment I, the forecasting performance

of SAE-LSTM is improved. This experimental result implies

that SAE-LSTMmodifies the problem of the LSTM gradient

disappearance to some extent.

(2) The optimal wavelet layers and orders are determined

for six kinds of samples based on the SAE-LSTM.
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