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Summary. An attribute g r a m m a r  is one-visit if the attributes can be evaluated 

by walking th rough  the derivation tree in such a way that  each subtree is 

visited at most  once. One-visit (1V) attr ibute g rammars  are compared  with 

one-pass left-to-right (L) attr ibute grammars  and with at tr ibute g rammars  

having only one synthesized attr ibute (1 S). 

Every 1 S attr ibute g rammar  can be made one-visit. One-visit at tr ibute 

g rammars  are simply permutat ions  of  L attr ibute g rammars ;  thus the classes 

of  output  sets of  1 V and L attr ibute g rammars  coincide, and similarly for 1S 

and L-1S attribute grammars .  In case all at tr ibute values are trees, the trans- 

lation realized by a 1 V attr ibute g r a m m ar  is the composi t ion of the trans- 

lation realized by a 1 S attr ibute g rammar  with a deterministic top-down tree 

transduction,  and vice versa; thus, using a result of  Duske e.a., the class of  

output  languages of 1 V (or L) at tr ibute grammars  is the image of  the class of 

IO macro  tree languages under  all deterministic top -down tree transductions. 

Introduction 

An attribute g r a m m a r  (AG), as defined in [18], is a context-free g rammar  with 

(synthesized and inherited) attr ibutes associated with each of  its nonterminals,  
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whose values are computed by means of semantic rules associated with its con- 

text-free productions. An AG realizes a translation by giving a meaning to each 

derivation tree, viz. the value of a (designated) synthesized attribute of its root. 

The formal power of attribute grammars (with both synthesized and inherited 

attributes) as a translation defining mechanism has not yet been investigated very 

much. This lack of enthousiasm in incorporating attribute grammars into formal 

language and automata theory may be due partly to the complexity of the model 

and partly to the (obvious) fact that attribute grammars of a very simple type, 

having only one synthesized attribute and no inherited attributes, can already 

realize all possible translations [18] and can e.g. easily simulate type 0 Chomsky 

grammars (cf. [19]). The latter phenomenon is clearly caused by the power in- 

herent in the involved (semantic) domains of attribute values and in the allowable 

operations on them (as used in the semantic rules). Since we are not interested in 

meaning, but rather in the method used by attribute grammars for assigning 

meaning to derivation trees, we should either abstract from the meaning of the 

semantic operations (as in program scheme theory) or restrict our attention to a 

fixed domain (such as the set of strings with the operation of concatenation, the 

set of trees, or an arbitrary fixed domain). In program scheme theory it can often 

be shown that both approaches amount to the same thing (in particular when 
taking the "free" domain of trees). In this paper we will study the formal power 

of attribute grammars using the second approach. In the following points (1)-(3) 

we discuss some earlier work done in this direction. 
(1) In the "pre-Knuth era" (before [18]) attribute grammars were called 

syntax-directed translations and had synthesized attributes only (OnlyS-AG, i.e. 

without inherited attributes). These translations have been formalized and 

investigated intensively as syntax-directed translation schemes, see e.g. [-1], and 

as top-down (!) tree transducers, see e.g. [26, 27, 11]. Their attribute values are 

either strings or trees. 
(2) Lewis, Rosenkrantz and Stearns [20] show that arbitrary AGs are more 

powerful than L-AGs (i.e. AGs whose attributes can be evaluated in one left-to- 

right pass, see also [6]), and L-AGs are more powerful than OnlyS-AGs. Although 

their model is different from the one of Knuth [18], their results on power are 

essentially obtained by forcing the values of one synthesized attribute to be 

strings (of "action symbols"). It is also shown in [20] that the L-AG translations 

can be realized by a machine: the attributed pushdown transducer. 

(3) Duske, Parchmann, Sedello and Specht [10] characterize the class of out- 

put languages (i.e. ranges of translations) of L-1S attribute grammars (L-AGs 
having only one synthesized attribute) over the domain of strings as the class of 

languages generated by the well-known IO (inside-out) macro grammars of 

Fischer [15]. For the interested reader we note that this result can be understood 

intuitively by observing that the arguments of a macro (nonterminal) may be 
viewed as inherited attributes and the string generated by it as (one) synthesized 
attribute. (It is also related to the fact that the IO macro languages are the homo- 
morphic image, under the "YIELD" mapping, of certain recognizable tree 
languages [21, t3]: the YIELD mapping can clearly be realized by such an 

attribute grammar). We observe that the 1 S restriction on attribute grammars is 
quite natural: the value of the synthesized attribute of the root of a tree is the 
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translation of the tree (and no auxiliary translations are needed). Early papers on 

syntax-directed translation also assumed the 1 S restriction (cf. the discussion 

in [18,]). 

This paper is based on and continues the work of Duske e.a. 1-10]. Our results 

answer the question (which we asked ourselves when reading El0-]) whether both 

the L and the 1 S restriction are necessary in their characterization result. It turns 

out that (a) the L condition can be dropped, but (b) the 1 S condition is necessary. 

Moreover, we give a characterization of the class of L-AG output languages 

similar to the one of Duske e.a. 

The essential reason that (a) the L condition can be dropped (i.e., 1S = L-1S 

for output languages) is that 1 S-AGs (over any semantic domain) "by  nature" 

satisfy a property which generalizes the L property: they are "one-visit" (ab- 

breviated by 1 V) meaning that attribute evaluation of a derivation tree can 

proceed by visiting each subtree at most once. This led us to consider the class 

of one-visit attribute grammars in general. Using a simple static characterization 

of the 1 V property, we show that 1V-AGs are essentially just "permutat ions" 

of L-AGs and hence their classes of output sets coincide (and similarly for 1 S 

and L-1 S, respectively). 

The fact that (b) the 1 S condition is necessary means that L is more powerful 

than L-1S for output languages, or in other words (in view of the preceding re- 

marks on one-visit) that 1V is more powerful than 1 S for output languages. In 

order to show the latter we express (for the domain of trees) the 1 V-AG trans- 

lations in terms of 1 S-AG translations and top-down tree transductions (which 

correspond to OnlyS-AGs). This can be done because the 1 V property implies 

that all synthesized attributes can be computed simultaneously as if they were 

just one synthesized attribute, whereas the use of many rather than one syn- 

thesized attribute corresponds to a deterministic top-down tree transducer. This 

implies that we can characterize the class of 1 V-AG output (tree) languages as 

the class of images of 1 S-AG output tree languages under the deterministic top- 

down tree transductions (and similarly for L and L-IS, respectively). Since a 

characterization result corresponding to the one of Duske e.a. also holds for 

trees, and since the class of IO macro tree languages is not closed under deter- 

ministic top-down tree transductions, the result then follows. 

Altogether, the above results establish close relationships between the class 

of 1 V-AGs on the one hand and the classes of L-AGs and 1 S-AGs on the other 

hand. These relationships enable us to show that the diagrams of Fig. 1 charac- 

terize the power of the investigated classes of attribute grammars with respect to 

their translations and their output sets. The inclusions shown hold for every fixed 

semantic domain; moreover there exists a semantic domain (viz. the domain of 

trees) for which the diagrams do not collapse, i.e. all inclusions are proper and all 

unconnected classes are incomparable. 

The paper is organized as follows. Section 1 contains preliminary notation 

and a few easy new concepts. Since the one-visit property permeates our whole 

approach, we start in Sect. 2 by defining it. We show that it can be detected 

statically, i.e. by an easy property of the dependencies in the semantic rules, just 

as in the L case E6]. Then we show that each 1 S-AG is equivalent to a 1 S-AG 

which is one-visit. Actually we define two, slightly different, 1V properties: one 
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can be detected statically and the other is a property of all 1 S-AGs; the difference 

is that in the one case we require the evaluation of all attributes, in the second 

case only of those which are needed to compute the translation of the derivation 

tree, i.e. the designated synthesized attribute of its root. In Sect. 3 we formulate 

the fact that 1V attribute grammars are permutations of L attribute grammars 

(and 1 S-AGs of L-1 S-AGs). In Sect. 4 we prove that (for trees) the 1V-AG trans- 

lations can be decomposed into 1 S-AG translations and deterministic top-down 

tree transductions (and similarly for L and L-1 S). Section 5 contains a discussion 

of how the diagrams of Fig. 1 can be proved correct. 

We finally note that throughout the paper we assume the reader to be familiar 

with attribute grammars (e.g. [18, 6]). Section 1-3 do not require any knowledge 

of tree transducers (in Sect. 4-5 this would be helpful). 

1. Preliminaries 

We denote by [m, n] the set of integers {i lm<i<n} and, for functions f and g, 

by fo  g the function such that (fo g)(x)= g(f(x)). 

In the rest of this section we recall the definition of attribute grammar [18, 6] 

and discuss some related concepts which we think are necessary for the under- 

standing of the paper. 

We start by defining the notion of semantic domain. As we said in the intro- 

duction, the concept of semantic domain is of great importance in our approach 

to the formal power of attribute grammars. 

A semantic domain D is a pair (~2, 4) where f2 is a set of sets, called sets of 

attribute values, and �9 is a collection of mappings of the form f: V 1 x V 2 x ... x 

V ~ V  o with m > 0  and Vief2 for ie[0, m]. The mappings in �9 are called semantic 

functions. Note that in the case that m = 0, f is simply an element of V o. 

Assumption 1.1 (on the semantic domain). Throughout  the paper we consider only 

semantic domains D =(g ,  4) such that �9 contains an element of V, for every 

Veg.  [] 
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Next we give the definition of an attribute grammar (abbreviated by AG). 

This definition is practically the same as the original one of Knuth [18], the only 

difference being the stress laid on the semantic domain. 

An attribute grammar G over semantic domain D=(~D, ~o) consists of (1)-(4) 

as follows. 

(1) A context-free grammar (CFG) G o = ( T , N , P , Z  ), called the underlying 
context-free grammar of G, consisting of terminals, nonterminals, productions 

and initial nonterminal respectively. We will always denote production p of Go 

(or of G) as 

p: Fo~woFxwl. . .w,p_lF,  w,p 

where F/eN and wieT*  for ie[0,  np] and np>O. 

Note that, as usual, subscripts put on the nonterminals of the right-hand side 

will be used as a way of distinguishing among different occurrences of the same 

nonterminal. Note also that, when considering a derivation tree of G o, we assume 

its leaves to be labeled with terminals (or the empty string); a derivation tree is 

said to be complete if its root is labeled with Z. 

Assumption 1.2 (on the underlying CFG). We will consider only AGs G such that 

the underlying CFG Go is reduced in the usual sense, that is, every nonterminal 

is reachable from the initial nonterminal and can generate a string of terminals. [] 

(2) Each nonterminal F of G o (or of G) has two associated finite sets, denoted 

S(F) and I(F), S (F)~I (F)=r  The set S(F) contains the synthesized attributes 
of F (abbreviated by s-attributes) and I(F) its inherited attributes (/-attributes). 

The initial nonterminal Z does not have any/-at tr ibute and, always, one element 

of S(Z) is designated to hold the translation of the derivation tree (and we refer 

to it as the designated s-attribute of Z). We will denote an attribute a of non- 
terminal F also by a(F). 

(3) For  each attribute a, f2 o contains an associated set V(a) of the possible 

values of a. 

(4) With each production p of P is associated a set rp of semantic rules which 

define all and only the attributes in S(Fo) and in I(Fj), for je[-1, n~]. A semantic 

rule of rp defining attribute a(Fk) , kE[0, np], is specified by (i) a mapping feq~o 
of the form f: V 1 x V 2 x . . .  x V,,--* V o, where V o = V(a(Fk)), and (ii) by a sequence 

of m attributes of nonterminals al(Fil), az(Fi2) . . . . .  am(Fi,,), ije[O, np], such that 

Vj = V(aj(Fi)) for all j e  [1, m]. We will write such a semantic rule as 

a(Fk)~ f (al (Fil), ... , a , , (Fj )  

or simply a ~ f ( a l ,  ..., a,,) when the identity of the nonterminals is not important. 

We say that, in p, a(Fk) depends on al (Fq) . . . . .  a,,(Fi,,). 

Assumption 1.3 (on semantic rules). We assume that, in every semantic rule 

a*--f(aD.. . ,  a,,) of rp, every a~, ie [1, m], is either an attribute of I(Fo) or of some 
S(Fj),je[1, np]. See e.g. (3) in Sect. 4 of [6]. []  

This ends our definition of attribute grammar. 

Now we give some short definitions and terminology concerning concepts 
related to AGs which are going to be used in what follows. 
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The translation realized by AG G, denoted by T(G), is the mapping from 

complete derivation trees of G to the set of values of the designated s-attribute 

of G, such that if t is a complete derivation tree, then T(G)(t) is the value of the 

designated s-attribute of the root of t (after attribute evaluation). The output set 
of G, denoted by OUT(G), is the range of T(G), that is OUT(G)= {T(G)(t)[t is a 

complete derivation tree of G}. In case OUT(G) is a set of strings or trees, we will 

call it the output language of G. We define and denote translations and output 

sets of a class X of AGs over a given semantic domain D as follows: T(X, D)= 

{T(G)[ G~X and G is over D} and OUT(X, D)= {OUT (G)[G~X and G is over D}. 

Since we will only compare AGs over the same domain, we define equivalence 

of AGs as follows. Two AGs, G t and G z, are equivalent if they are over the same 

semantic domain and T(G 0 = T(Gz). 
Next we recall the concept of dependency graph of a production of an AG, as 

introduced originally by Knuth [18]. Our terminology will be closer to the one 

used in [17]. 

Let G be an AG and consider production p of G. The dependency graph of p 

(denoted by DGp) is the graph which has as nodes all attributes of all Fj, for 

je [0 ,  np], and whose arcs are defined as follows: there is an arc from al(Fj, ) to 

a z (Fj2) iff a z (Fj2) depends on al(Fii). By viewing derivation trees as the connection 

of single productions, it is easy to extend to them the concept of dependency 

graph: for a derivation tree t of  G, the dependency graph of t, denoted by DG(t), 
is the graph obtained by connecting, according to t, the dependency graphs of 

the productions used in t. For  a more precise definition see [18]. It is easy to 

extend to derivation trees also the idea of "one  attribute depending on another":  

for a derivation tree t, if in DG(t) there is an oriented path running from node a I 

to node a2, then we say that attribute a 1 depends on attribute a z in t. We say that 

an attribute grammar G is noncircular ("well-formed" in [18]) if there is no 

derivation tree t of G such that DG(t) contains an oriented cycle. 

Assumption 1.4 (on noncircularity). We consider only noncircular AGs. []  

We now recall the concept of input/output graph (or i/o graph) of a derivation 

tree and ofa  nonterminal. Consider a derivation tree t of an A G  G and assume its 

root is labeled by nonterminal F. Then the input~output graph of t is the graph 

whose nodes are the attributes of F and in which there is an arc from a~ to az iff a 2 

depends on al in t (as attributes of the root). From this we immediately define an 

input/output graph of nonterminal F to be any graph which is the i/o graph of a 

derivation tree with root  F. 
It will be important, in the sequel, to consider the way different nonterminals 

of the right-hand side of a production depend on each other through their attrib- 

utes. In order to have a clear picture of this dependency situation we introduce 

the concept of brother-graph of a production as follows (see also [22]). Given an 

AG G and a production p of G, the brother-graph of p (denoted by BGp) is the 

graph whose nodes are the nonterminals F1 . . . . .  F,p of the right-hand side of p 

and such that there is an arc from F i to Fj iff some element of I(Fj) depends on some 

element of S(Fi), i, je[1, np]. Note that in this definition we already assume 

Assumption 1.3. 
Finally we define a few properties of AGs. For  a property X we denote the 
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class of AGs which satisfy X as X-AG (and the class of all AGs is denoted as AG). 

Particular classes of AGs which we will consider in this paper are the following. 

L-AG: defined in [20, 6] as the class of AGs for which all attributes of all 

derivation trees can be evaluated in a single pass from left to right. Equivalently, 

exploiting already the concept of brother-graph, an AG is L if for every produc- 

tion p, BGp has no arc from F~ to F~ i f j<i  (see also Theorem 2 of [6]). 

1S-AG: the class of AGs whose nonterminals have at most one s-attribute 

(and an arbitrary number of/-attributes). 

OnlyS-AG: the class of AGs whose nonterminals have no/-attributes. 

Onlyl S-AG: clearly, the class of AGs whose nonterminals have no/-attributes 

and at most one s-attribute. 

2. The One-Visit Property 

In this section we define "one-visit" attribute evaluation of AGs as a generaliza- 

tion of left-to-right (or right-to-left) one-pass attribute evaluation I-6, 20]. We 

present an easy static condition on the productions of the grammar (also con- 

sidered in [22]) to decide whether its attributes can be evaluated in one visit 

(Theorem 2.1). Then we examine the class of 1 S-AGs and show that a slightly 

more general notion of one-visit attribute evaluation naturally applies to them. 

We prove that for any 1 S-AG an equivalent 1 S-AG can be constructed satis- 

fying the (strict) one-visit property (Theorem 2.2). 

An attribute grammar will be called "one-visit" if the attributes of every 

derivation tree can be evaluated by walking through the tree without visiting any 

subtree more than once. Before defining this more formally we observe that in 

general two different approaches to attribute evaluation may be discerned: the 

first ("conventional" one) requires all attributes of all nodes to be computed, 

whereas the second (which we will call the "translational" approach) requires 

that, for every complete derivation tree t, only those attributes are evaluated 

which are needed to compute the translation of t, i.e. the value of the designated 

s-attribute of its root. Although the second approach is more natural, the first 

has certain theoretical advantages. For  "one-visit" we will discuss both concepts 

but mainly consider the first. 

Definition 2.1. Let t be a derivation tree of a given attribute grammar. An attribute 

evaluation strategy for t is a way of walking along the branches of t and com- 

puting attributes of its nodes. An attribute evaluation strategy for t is one-visit 

(abbreviated by 1 V) if it visits each subtree t' of t at most once, and in such a way 

that entering t' it computes some/-attr ibutes of the root n of t', and exiting t' it 

computes some s-attributes ofn.  [] 

Thus, for every node, a one-visit attribute evaluation strategy first visits the 
node computing some of its /-attributes, then visits some of its sons (and their 

descendants) in some order (computing some of their attributes), and finally visits 

the node again computing some of its s-attributes. 

Now we define one-visit attribute grammars, according to both above- 
mentioned approaches. 
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Definition 2.2. (i) An attribute grammar G is one-visit (1 V) if for every complete 
derivation tree t of G there exists a one-visit attribute evaluation strategy com- 
puting all attributes of all nodes of t. 

(ii) An attribute grammar G is translationally one-visit if for every complete 

derivation tree t of G there exists a one-visit attribute evaluation strategy which 
computes the designated s-attribute of the root of t. []  

Note that Definition 2.2(i), requiring the computation of all attributes, im- 
plies that the one-visit attribute evaluation strategy enters each subtree computing 

all/-attributes of its root n and exits it computing all s-attributes of n. 

Example 2.1. As an easy example, imagine a programming language in which 
identifiers may be declared both before and after the statement list of a block. 

This can be expressed by the context-free production 

<block>-obegin <declsl> in <statlist> where <decls2> end 

where <declsl) and <decls2> are two occurrences of the same nonterminal 
<decls>, distinguished as usual by subscripts. To check whether all identifiers 
have been declared, there is an /-attribute 'context '  (of all nonterminals) which 
contains a list of all valid declarations, and an s-attribute 'updated" (of <decls> 
only) which contains context(<decls>) with the declarations produced by <decls> 

added to it. The semantic rules corresponding to the above production are 

context (<decls 1 >),--context (<block)), 

context (<statlist>)*--updated (<decls2>), 

context (< decls 2> )*-" updated (< decls 1 > ). 

The part of the dependency graph corresponding to these semantic rules is given 

in Fig. 2 (solid arcs). It should be clear that this (part of an) attribute grammar is 
one-visit: assuming that one visit to <decls> suffices to compute updated(<decls>) 
from context(<decls>), as indicated by the dotted lines in Fig. 2, the subtrees of 

<block> can always be visited in the order <declsl>, <decls2>, <statlist>. []  

In the next definition we present a static property of AGs which we will prove 

equivalent to the one-visit property of Definition 2,2(i). For the definition of the 
static one-visit property we use the concept of brother-graph as defined in Sect. 1. 

<declsl> <decls2> 

! ! <statllst> II i t ! 

Fig. 2 
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Definition 2.3. An attribute grammar G is statically one-visit (abbreviated by 

s-lV) if for every production p of G the brother-graph BGp has no oriented 

cycles. [] 

As an example, the brother-graph of the production in Example 2.1 is given 

in Fig. 2 if one views the c- and u-node of (decls)  to be one node; it clearly has 

no oriented cycles and consequently is statically one-visit. 

To show that each s-1V attribute grammar is also 1 V, we now construct a 

one-visit attribute evaluation algorithm as implied by the s-1 V property (a similar 

algorithm is given in [22, 23]). To do this we need the notion of a "visiting se- 

quence" (of the direct descendants of a node), which we will now explain. Con- 

sider an attribute grammar G which is s- 1 V and let production p of G have the 

(usual) form p: Fo~woFlwl...wnp_lF~pwnp. Recall that by Assumption 1.3 of 

Sect. 1 the semantic rules of p define all and only the attributes of S(Fo) and I(Fj) 

in terms of those of I(Fo) and S(Fk), for j, ke[1,  np]. In this respect, we can view 

BGp as a picture of how the nonterminals of the right-hand side of p depend on 

each other. From the fact that there are no cycles in BGp (Definition 2.3) it is easy 

to see that there is at least one ordering in which to visit the F~, i~[1, np], such 

that when F i is visited, all the F k it depends on have already been visited. We will 

call such an ordering a visiting sequence. 

Definition 2.4. Let G be an attribute grammar. A visiting sequence vp of production 

p of G is a sequence vp=(il, i2, ..., inp) which is a permutation of the sequence 

(1, 2, ..., np) such that, for all j,k~[1,np], i f j < k  then in BGp there is no arc 

from F~k to F~. []  

As an example, the production of Example 2.1 has visiting sequence (1, 3, 2) 

and no others (note that a production can have more than one visiting sequence). 

Observe that an AG is s-1 V if and only if there exists a visiting sequence for each of 

its productions (this version of s-1 V was introduced in [22], where it is called 

"reordered",  and in [23] where it is called "grammar with permutation attribute 

scheme"). 

The attribute evaluation algorithm is constructed easily from these visiting 

sequences (and depends on their choice). Since it is obtained from the static 1 V 

property, we will call it the "static algorithm". 

Algorithm 2.1 (the static algorithm) 

begin 

procedure evaluate-node (m); 

begin compute all attributes of I(m); 

{assume production p is applied at node m and let vp=(il .. . . .  i~p) be a 
visiting sequence of p} 

for j . .= 1 to np do 

evaluate-node ( i f th  nonterminal son of m) 

od; 

compute all attributes of S(m) 
end; 

evaluate-node (root) 

end [] 
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Clearly the static algorithm has a fixed behaviour for each production p of G 

independently from the particular occurrence of p in the same or in a different 

derivation tree of G. Instead, the 1 V definition would allow the attribute evalua- 

tion strategy to behave differently at different occurrences of the same produc- 

tion. That this difference between 1V and s-1V is only apparent will be shown in 

the following theorem. 

Theorem 2.1. An attribute grammar is statically one-visit if and only if it is one- 

visit. 

Proof (=~) Let G be a statically one-visit AG. It is easy to see that the static 

algorithm (Algorithm 2.1) provides a one-visit strategy for all derivation trees 

of G. Therefore we have to show only that it computes all attributes, i.e. that it 

does not block. The proof is by induction on the height of the derivation trees 

with the following induction hypothesis: if the values needed to evaluate the i- 

attributes of the root m are available, the static algorithm (i.e. the call evaluate- 

node(m)) evaluates all the attributes of all nodes of the tree rooted at m. The base 

of the induction is obvious, and the applicability of the induction hypothesis in 

the induction step is ensured by the property of the visiting sequence (Defini- 

tion 2.4). 
(~ )  Consider a 1 V-AG G and assume that G is not s-1 V. Then there is a 

production p of G such that BGp has an oriented cycle. Let the nodes connected 

by the cycle be Fk,, ..., Fk. with z > 1. The existence of the cycle implies that any 

attribute evaluation strategy (which computes all attributes) will have to enter 

at least one of those nodes, say Fk,, when not all elements of I(Fk) are computable! 

But this contradicts Definition 2.2(i) of 1V (see the observation following this 

definition). Note that here we use Assumption 1.2 that G has a reduced under- 

lying CFG, implying that there is at least one derivation tree of G in which pro- 

duction p is used. [] 

We note here that it easily follows from this result that every one-visit attribute 

grammar is absolutely noncircular as defined in [17]. 

We have just shown that the 1 V property, as defined according to the "con- 

ventional" approach (Definition 2.2(i)), can be characterized statically. A similar 

static characterization of the translational 1V property (Definition 2.2(ii) does 

not seem to exist (or is much more complicated). This might be the reason that 

usually, in defining properties of attribute evaluation, the conventional approach 

has been taken, rather than the translational one. We observe however that an 

attribute grammar can be " reduced"  in the sense that it can be transformed into 

an equivalent AG with the property that in every dependency graph of a deriva- 

tion tree each node is connected to the designated s-attribute of the root. For  

such AGs, since all attributes are needed to compute the translation of the tree, 

the two approaches coincide. 
Let us now turn our attention to the class of I S-AGs, that is, those AGs 

whose nonterminal symbols have at most one s-attribute (and any number of 

/-attributes). As we have suggested in the introduction, 1 S-AGs are naturally 

related to the concept of one-visit. In fact, every 1 S-AG is translationally one- 

visit. Let us intuitively see why. We look at attribute evaluation of a derivation 
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tree t as a process to which every visit to each subtree t' of t contributes in the 

following way: a visit to t' is influenced by the parts of t surrounding t' (through 

some/-attributes of the root of t') and, in its turn, influences the future computa- 

tion on these surrounding parts (by means of some s-attributes of the root of t'). 

From this point of view it is clear that, in the case of a 1 S-AG, one visit to t' 

would compute the only s-attribute of its root  and, therefore, no second visit 

would be needed. 

Instead of formally proving that every 1 S-AG is translationally one-visit, we 

will show the closely related fact that from every 1 S-AG one can construct an 

equivalent 1 S-AG which is 1 V. Let us first explain, through an example, why a 

1 S-AG is not necessarily 1 V (i.e. its one-visit attribute evaluation strategy cannot 

always compute all attributes or, in other words, by Theorem 2.1, some of its 

productions have oriented cycles in their brother-graphs). Consider a 1 S-AG G 

which is not IV because its production p: Fo~F1Fa has a cycle in BGv: say, i- 

attribute i1(F1) depends on s-attribute s(Fa), and i2(F2) depends on s(F1). Because 

of Assumption 1.4 of considering only noncircular AG, there cannot exist two 

derivation trees t 1 and t z of G with roots F~ and F2 respectively, and such that 

s(F1) depends on il(F1) in t 1 and s(F2) on i2(F2) in t 2 . In fact, if this would be the 

case, then we could construct a derivation tree t =Fo [h ,  t2] of G such that DG(t) 
has a cycle, as shown in Fig. 3. 

In other words, il(F1) or i2(F2) is useless in the following sense. 

Definition 2.5. Given a 1S-AG G, an/-at t r ibute i~(F) of a nonterminal F of G is 

useless if there is no derivation tree t in G with root F, such that DG(t) contains 

an oriented path from i~(F) to the only s-attribute s(F) of the root of t. [] 

If, e.g., i~(F1) is useless (in our example), then any attribute evaluation strategy 

would have to visit subtree t~ twice to compute all its attributes, but only once to 

compute the s-attribute of its root. 

We will now state these observations more formally, but  for doing so we need 

to express a cycle in the brother-graph of a production in terms of the actual at- 

tributes whose dependencies give rise to the cycle. Let p: F o ~ w o F~ wl...w,p_ 1 F~p w,~ 

be a production of an AG and let c be a cycle in BG v consisting of arcs (Fj~, Fi2), 
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(Fj2, Fj3) . . . . .  (F~m, Fjl ) where m > l  and jke[1, n v] for all ke[1,  m]. Since each arc 

of BG, corresponds to, at least, one arc in DGp, we can find for each such cycle c 

in BGp at least one corresponding sequence of arcs in DGp: (s(F~l), i2(Fh)), (s(Fh) , 

i3 (Fi3)), .. . ,  (s(F~,,), il (Fa)) where ik is an/-at t r ibute  of Fj~ and s is its s-attribute. 

Lemma 2.1. Let G be a 1 S-AG which is not 1 V. For any cycle in BGp of a production 

p of G and any corresponding sequence of arcs in DGp, at least one of the i-attributes 

occurring in the sequence is useless. 

Proof Consider without loss of generality a cycle c in BGp which does not traverse 

a node more than once (apart from the first). Assume that a sequence of arcs in 

DG; corresponding to c is (s(Fj,), i2(Fh)), (s(Fj2), ia(Fj3)) , ...,(s(Fjm), it(Fjl))where 

1 _< m < np and for all k, n e [1, m] if k + n then Jk +J,. The fact that at least one i- 

attribute ik(Fj~ ) of the sequence must be useless can now easily be proved using 

noncircularity of G as we did before in the example preceding Definition 2.5. [] 

We will now take advantage of this result in order to "b r eak"  all the cycles in 

the brother-graphs of a 1 S-AG making it 1 V. First we observe that there is an 

effective way of detecting, given a 1 S-AG, which are its useless/-attributes. To do 

so we use the circularity algorithm of Knuth [18] for computing all the i/o graphs 

of all nonterminals of the given AG. We then detect all useless/-attributes by the 

following cri terion:/-at tr ibute i t of nonterminal F is useless iff in no i/o graph of 

F there is an arc from i 1 to the only s-attribute of F. We note that in the case of 

1 S-AGs the computat ion of the i/o graphs need not take exponential time [16]. 

Actually, it can be shown that Knuth 's  original (wrong) circularity algorithm 

[18], which works in polynomial time, is correct for 1 S-AG! 

Lemma 2.2. For every 1S-AG there exists (effectively) an equivalent 1 V-1S-AG. 

Proof Given a 1 S-AG G over semantic domain D = (f2, ~), we change it into a 

1 S-AG G' by making the following changes to its semantic rules: every semantic 

rule ao~-f(a ~ , ..., am) where a o is a useless/-attribute, is changed into the semantic 

rule ao*--c, where c is an element of V(ao) such that c e ~  (the existence of which 

is guaranteed by Assumption 1.1). 

By the construction it is clear that G and G' are defined over the same do- 

main D. To see that G and G' are equivalent it suffices to observe that the value 

of the (designated) s-attribute of the root of any derivation tree of G never depends 

on a useless /-attribute, and that G' is obtained from G simply changing those 

semantic rules of G that define useless/-attributes. 

Finally, to show that G' is 1 V, consider two corresponding productions p and 

p' of G and G' respectively. By the construction we know that every arc of DG v, 

is also in DGp and that no arc of DG v, enters an/-a t t r ibute  which is useless in G. 

This means that every arc of BGp, is also in BGp and (by Lemma 2.1) that no cycle 

of BGp carries over to BGp,. [] 

From the previous lemma we now obtain the following (effective) result on 

translations of 1 S-AG. 

Theorem 2.2. For any semantic domain D, T(1 S-AG, D) = T(1 V-1 S-AG, D). 

We end this section with a few observations on the translational approach 

(Definition 2.2(ii)). 



Formal Power of Attribute Grammars 287 

For  1 S-AGs (which are translationally 1 V) we have shown that an equivalent 

1 S-AG can be found which is 1 V, simply redefining the useless/-attributes. About 

general AGs which are translationally 1 V we note that a similar, though more 

complicated, construction exists which finds an equivalent 1V-AG (it "reduces" 

the AG, as discussed after Theorem 2.1). 

In Lemma 2.1 we have made essential use of the noncircularity of the 1 S-AG. 

Observe however that the definition of noncircularity (see Sect. 1) is based on the 

conventional approach to attribute evaluation which requires all attributes to 

be computed. Another definition of noncircularity is possible, based on the trans- 

lational approach to attribute evaluation. In this approach an AG would be 

circular only if the computation of the translation of a derivation tree depends 

on the elements of a cycle. We observe that Theorem 2.2 would stay true assuming 

just the translational version of noncircularity (by a slight change of proof). 

3. Syntactic Permutations 

In this section we will compare translations of 1 V-AGs with those of L-AGs. 

We will show (Theorem 3.1) that for any semantic domain D the class of trans- 

lations defined by 1 V-AGs over D is equal to the class of translations defined by 

"syntactic permutations" of L-AGs over D. As a consequence these classes of 

AGs have the same class of output sets (Corollary 3.2). As a particular case, the 

same results hold for translations and output sets of 1S-AGs and L-1 S-AGs, 

respectively. 

We start by giving an intuitive feeling of the difference between the 1 V and the 

L properties. It is immediate that the L property is a special case of the 1 V prop- 

erty: for any production p of an L-AG G, BGp is not only acyclic, as required by 

the 1V property (Definition 2.4), but all its arcs run from left to right. It is easy 

to see, then, that if we permute the order of the nonterminals of the right-hand 

side of p, without modifying the dependencies among their attributes, the BG of 

the obtained production is isomorphic to BGp and, thus, satisfies the 1 V property, 

but it does not necessarily satisfy the L property: there may be arcs running from 

right to left. It is also easy to see that if we permute the nonterminals of the right- 

hand side of a production p of a 1 V-AG according to any visiting sequence vp 

for p (Definition 2.4), the obtained production satisfies the L property. As an 

example, permuting the production p of Example 2.1 according to the visiting 

sequence (1, 3, 2) produces the production 

p': (block)--*begin (dec ls l )  in (decls2) where (statlist) end 

which satisfies the L property. Note that for readability, it would also be wise to 

change the terminals; in what follows we will not bother about terminals. There- 

fore, each 1 V-AG G1 can be viewed as an L-AG G 2 whose productions have 

been permuted leaving the semantics unchanged. The relation between G1 and 

G 2 can also be expressed by saying that their underlying CFGs are the input and 

output grammars of a syntax-directed translation scheme (sdts) [1]. The relation 

between 1 V-AGs and L-AGs via sdts was observed in [23]. 
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As we have seen, the idea of syntactic permutation of an A G  G is very simple. 

Therefore we will quickly introduce it, leaving a formal definition to the reader. 

An AG G' is a syntactic permutation of an AG G if it can be obtained from G 

by permuting in some way the nonterminals of the right-hand side of each produc- 

tion of G without changing anything else. This means that every nonterminal F 

has in G' the same set of attributes as in G and every permuted production of G' 

has the same set of semantic rules as the corresponding production of G. Observe 

that, in particular, G' is over the same semantic domain as G. 

A way of permuting the right-hand sides of the productions of an AG G can 

be specified by giving, for each production p: Fo~woF 1 wl...w,p_ a Fnpwnr, of G, 
a sequence z p = ( i l  . . . .  , i,~) which is a permutation of the sequence 1 . . . .  , %. 

Permuting p according to re. we obtain the production Fo--, w0 F~ 1 wl... w, 1 F~ w, . 
p-- ~p P 

Let ~ be a set containing one such sequence rcp for each production p of G. The 

syntactic permutation G' of G obtained by permuting the productions of G ac- 

cording to the sequences in rc is denoted by perm(G, r~). It is easy to see that there 

is a one-to-one correspondence between derivation trees of G and G '=  perm(G, ~r). 

If t is a derivation tree of G, we will indicate the corresponding permuted tree of 

G' by t '=  perm(t, ~z). It should be clear that there is also a one-to-one correspon- 

dence between the nodes of t and t'. Furthermore, from the fact that the semantics 

of G' is the same as that of G it follows immediately that DG(t) and DG(t') are 

isomorphic. F rom this the following result is easy to show. 

Lemma 3.1. Let G and G' be two AGs such that G'=perm(G,  ~ ) fo r  some m For 

every complete derivation tree t of G, T(G)(t)= T(G')(t'), where t'= perm(t, re). 

From the previous lemma we obtain immediately that a syntactic permutation 

does not change the output set. 

Corollary 3.1. For every two AGs G and G' such that one is a syntactic permutation 

of the other, OUT(G) = OUT(G'). 

Proof By Lemma 3.1 the ranges of T(G) and T(G') are equal. []  

Let us now apply these results to 1V-AGs and L-AGs. We will denote the 

class of AGs consisting of all possible syntactic permutations of X-AG by 

PERM(X-AG).  

Theorem 3.1. (a) The class of 1 V-AGs is equal to the class of syntactic permutations 

of L-AGs, i.e., 1V-AG = PERM(L-AG). 

(b) For every semantic domain D, T(1 V-~AG, D) = T(PERM(L-AG),  D). 

(c) For every semantic domain D, T(1S-AG, D) = T(PERM(L-1S-AG),  D). 

Proof (a) (i) 1V-AG___PERM(L-AG). It is sufficient to observe that, for any 

1V-AG G, if r~ contains a visiting sequence for each production of G, then 

perm(G, re) is an L-AG. 
(ii) PERM(L-AG)_~ 1V-AG. Observe that a syntactic permutation of a 

1 V-AG is still a 1V-AG. 

(b) Immediate from (a). 
(c) By (a) and the obvious observation that a syntactic permutation of a 

1S-AG is still a IS -AG we have that 1V-1S-AG= PERM(L-1S-AG).  By Theo- 
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rem 2.2 we know that, for any semantic domain D, T(1V-1S-AG, D)= 

T(t S-AG, O). [] 

It follows directly from Theorem 3.1 and Lemma 3.1 that the 1V-AG trans- 
lations can be expressed as the composition of syntax-directed translations (on 
derivation trees) and L-AG translations (over the same semantic domain), and 

similarly for 1S-AG and L-1S-AG respectively. A formal statement of this 
relationship is left to the reader, cf. [23]. We only state the consequences for the 
corresponding classes of output sets. 

Corollary 3.2. For any semantic domain D, 
(a) OUT(1 V-AG, D) = OUT(L-AG, D) 
(b) OUT(I S-AG, D)= OUT(L-1 S-AG, D). 

Proof By Theorem 3.1 and Corollary 3.1. 13 

We finally observe that from Theorem 3.1(a) one might conclude that 
1 V-AGs are just "syntactically sugared" L-AGs, which never arise in practice 
except when one insists on having such unnecessary facilities as putting declara- 
tions after statements (Example 2.1). That this is not completely true is shown 
by the following example [Swierstra, private communication]. Suppose that in 
(decls) one may define procedures which recursively call each other; the cor- 

responding production is p: (decls)~(heading)(body~(decls) .  The semantic 
rules needed to check that all procedure names used in the bodies are declared in 
the headings, will be one-visit with visiting sequence Vp=(1,3,2):  first all 
headings are listed (from left to right) and then all bodies are checked (from right 
to left). It would be awkward to replace p by the permuted production (dec l s )~  

(heading) (decls) (body)  which would result in a sequence of headings followed 

by a sequence of bodies in the wrong order ! 

4. Trees and Strings 

In this section we will restrict attention to two particular semantic domains for 

AGs: the domains TREES and STRINGS. The reason we want to consider these 
two particular domains is that for those it is possible to show the existence of a 
relationship between translations (and output languages) of 1V-AGs and 1 S-AGs, 
and similarly between L-AGs and L-1S-AGs. Actually, we will show that the 
class of translations defined by 1V-AGs over TREES is equal to the class of 
translations which are the composition of a translation defined by a 1 S-AG over 
TREES and a deterministic top-down tree transduction (Theorem 4.1). This re- 
lationship, with the addition of already known results, allow us to express the 

class of output languages of 1 V-AGs (and L-AGs) in terms of known classes of 
languages and translations (viz. the IO macro languages and the top-down tree 
transductions). 

In what foUows we will consider the usual kind of labeled ordered trees (as 
e.g. in [26, tt]). A tree with root labeled a and direct subtrees t 1 . . . . .  t, will be 
denoted by a [ t l ,  ..., t,]. 
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We informally define TREES as the semantic domain containing all possible 

labeled ordered trees and whose only operation is " top-concatenat ion" of trees. 

This means that the values of the attributes of any AG over TREES are trees and 

that its semantic rules will have the form a ~ t ( a l ,  . . . ,  a,,), where t =  t (a l ,  . . . ,  a,,) 

is a labeled tree in which some of its leaves carry names of attributes al ,  ..., am 

in that order (where possibly ai =a j  for i+j) .  Through this semantic rule the value 

of a is computed by "concatenating" the values of a 1, . . . ,a , ,  (which are trees) 

with " t op"  tree t, i.e. if a~ has value ti, then a will become the tree t ( t l  . . . . .  t,,) 

obtained from t by substituting t~ for every occurrence of a~, i~[1, m]. 

Formally, TREES is the semantic domain (O, ~) where f2 = {V} is the singleton 

containing the set V of all labeled ordered trees (with labels taken from some 

fixed denumerable set of symbols) and 4~ contains all "derived functions' ,  i.e. for 

every tree t = t ( a ~ ,  . . . ,  a,,), re>O, cb contains the function f,: V ' ~ V  such that 

f ( t l  . . . .  , t,,)= t ( t l , . . . ,  t,,). For  a still more formal description see [7]. 

The domain STRINGS is similarly defined to contain all possible strings 

with string concatenation as only operation. This means that, for any AG over 

STRINGS the attributes will take strings as values and the semantic rules will 

have the form a*-~b = w~ a~ w2...w,, at, w,,+ 1, where a l, ..., am are attribute names 

and wl is a string, i s [ l ,  m+ 1]. The value of a is computed by substituting in q~ 

the corresponding values (strings) for the attribute names a~ . . . .  , a,,. 

Formally, as for TREES, STRINGS is the semantic domain (f2, 4~) where f2 

consists only of the set of all strings (over some denumerable alphabet) and 

consists of all functions f ( v  I . . . .  , v,,) = wl  vl wz . . .w , ,v , ,w , ,+ 1. The elements of 

are called "simple word functions" in [10]. 

From the way TREES and STRINGS are defined it should be clear that, for 

every class X-AG of attribute grammars discussed in this paper, 

T(X-AG, STRINGS) = T(X-AG, TREES) o yield 

and 
OUT(X-AG, STRINGS) = yield (OUT(X-AG, TREES)), 

where yield is the usual mapping which associates to each tree its sequence of 

leaf labels. 
In the following we will consider the class of IO macro languages (denoted 

by IO) and the class of IO macro tree languages (denoted by IOT). Precise defini- 

tions of the first can be found in [15] and of the second in [13]. Note that yield (IOT) 

=IO.  
A relationship between IO and output languages of AGs was recently estab- 

lished in [10]. This relationship can be expressed as follows. 

(.) OUT(L-1 S-AG, STRINGS) = IO. 

Using Corollary 3.2 we can extend this result immediately to OUT(1S-AG, 

STRINGS) = IO. Thus, in (.), the L condition can be dropped. It is easy to see, 

slightly modifying the proof in [ t0] ,  that an analogous result can be shown for 

TREES instead of STRINGS, that is, OUT(1 S-AG, TREES)=OUT(L-1  S-AG, 
TREES) =IOT.  What we will do in the remaining part of this section is to show 

that OUT(1V-AG, TREES) is a larger class than OUT(1 S-AG, TREES), and 
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thus the same for L and L-1 S respectively (Corollary 3.2). In fact we will prove 

that the class OUT(I V-AG, TREES) can be obtained by applying deterministic 

top-down tree transductions (DT, see [26, 27, 11]) to lOT. That is OUT(1 V-AG, 
TREES)=DT(OUT(1 S-AG, TREES))=DT(IOT). Consequently, for the domain 

STRINGS, we will have OUT(1V-AG, STRINGS)=y'ield(DT(IOT)) which 

shows that in (,) the 1 S condition cannot be replaced by the 1 V condition. We 
will prove these results by showing an even stronger one (Theorem 4.1) on trans- 

lations, viz. T(1 V-AG, TREES) = T(1 S-AG, TREES) o DT. Before proving it we 

need to give a short definition of DT. 

Definition 4.1. A total deterministic top-down tree transducer (denoted by DT) is 

a 5-tuple (2;, A, Q, qo, R) where 2; and A are the input and output alphabets, Q is 

the set of states, qo is the initial state and R is a set of rules of the form 

(**) q(~r Ix1 . . . . .  xd)-- , t  

where aeZ, qeQ, k is the number of sons of o-(k>0), and t is a tree of the form 

t(ql(xil), ..., qm(XJ), re>O, i.e. some of its leaves are labeled by couples of the 

form qj(x@ where qjeQ and ije[1, k], and all other nodes of t are labeled by 

elements of A. We require that, for each aeZ and qeQ, R contains one rule of 

the form(**). [] 

Instead of formally defining the way a DT processes an input tree to produce 
the corresponding output tree, we only give an example. 

Example. Assume that a D T M  has a rule q(a[xl, x 2, x3])~t ,  where 

t = Z  o [Z 1 [Z3, q2 (Xa)], Z2 [ql (X2), q2 (X3)]] 

as shown in Fig. 4, ZiEA. The effect of the application of this rule on an input 

tree, starting in state q, is shown in Fig. 5 (where t h is the root of t~). [] 

Thus, for every input tree t (over Z) and state qeQ, a D T M  produces an out- 

put tree (over A) as a result of processing t in a top-down fashion starting at the 

root of t in state q. This output tree will be called the q-transduction of t (by M). 

It should be clear that the rule (**) in Definition 4.1 (recursively) defines the q- 

transduction of any tree tr It 1 . . . .  , tk] to be the result of substituting the qj-trans- 

duction of ti~ for qi(xi) in t. From this it can be seen that a total deterministic 

top-down tree transducer is very close to an OnlyS-AG over the domain TREES 

(each state q being an attribute of each node with the q-transduction of the sub- 

tree rooted at that node as its value). In fact the following result can easily be 
proved. 

z 

Z 1 z 2 

/\ /\ 
Z3 q2(x3 ) ql (x2) q2(x3 ) 

Fig. 4 
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q(•) 

o 1 o 2 ~ 3 

~ >  
Z 0 

z I z 2 

/ \  / \  
Z3 q2(03 ) ql (02) q2(03 ) 

Fig.  5 

Proposition 4.1. The class of tree languages obtained by applying DT-transductions 

to the class RECOG of recognizable tree languages is equal to the class of output 

languages defined by OnlyS-AGs over the domain TREES, that is 

DT(RECOG)=OUT(OnlyS-AG,  TREES). []  

We point out that the classes of translations defined by DT and OnlyS-AG 

over TREES are also closely related. 

Finally we will show the relationship between translations of 1V-AGs and 

1 S-AGs. The intuitive idea on which this relationship is based can be expressed 

as follows. The 1V-property implies that, during attribute evaluation on any 

derivation tree t, the s-attributes of any node n of t can be computed "simultane- 

ously" (note that the same holds for/-attributes). Thus, a 1S-AG could simulate 

many s-attributes of a 1V-AG by computing them "simultaneously" and then 

tupling them. But then, clearly, a selection operation should be available to select 

the s-attributes from the tuple when needed. Therefore, for any semantic domain 

D, we could say that T(1V-AG, D)__q T(1S-AG, D'), where D' is obtained by aug- 

menting D with the operations of tupling and selection. Since in our case D is the 

domain of TREES, we clearly have the tupling operation available, but not the 

selecting operation. For  this reason we are able to decompose the translation of 

a 1V-AG into the translation of a 1 S-AG, which performs the tupling but does 

the selection only symbolically, followed by the translation of a DT, which per- 

forms the selections. Equality of the two classes of translations comes from the 

fact that T(1V-AG, TREES) is closed under composition with DT-transductions. 

Theorem 4.1. T(1V-AG, TREES) = T(1S-AG, TREES) o DT 

Proof (a) T(1V-AG, TREES)___ T(1S-AG, TREES) o DT. We will show that for 

every 1V-AG G over TREES we can construct a 1S-AG G1 over TREES and a 

D T M such that T ( G ) -  T( G 0 o M. 

Construction 1 (of  G1) 

We assume that, for each nonterminal of G, its s-attributes have a fixed (but 

arbitrary) order. 
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(1) G1 has the same underlying CFG as G. 

(2) To every nonterminal F, G 1 associates the same set of/-at tr ibutes as G 

and only one s-attribute, which we will denote s(F). 

(3) For  each production p: Fo---,woF 1 w~. . .F,  pw,p of G, consider the set rp of 

semantic rules associated to p by G. From rp we will first define a new (auxiliary) 

set of rules r~ and then, from this set, we will construct the set q p of semantic rules 

associated to p by G~. 

The construction of r~ is as follows. For  every semantic rule a ~ t ( a x  . . . . .  am) 

in rp the corresponding rule of r~ is a*--t', where t' is obtained from t by substituting 

for a i the tree k [s(Fj)], if a i is (in G) the k-th s-attribute of Fj, j~  [1, np] (thus if a i 

is in I(Fo), it stays as it is). 

The integer k is used as a (new) symbol (with only one son) and represents the 

operation of selecting the k-th element of a tuple. As we have already said, G~ 

cannot perform selection itself, but leaves messages (selection symbols k) about 

where the selection has to be performed. Interpreting these messages will be the 

only task of the D T M. 

The construction of qp from r~ simply consists of replacing all the rules in r~ 

defining the s-attributes of/7o (in G) by a single semantic rule defining the only 

s-attribute of F o in Ga, as follows. If/7o has in G the d s-attributes s~ . . . . .  s d and 

the semantic rules defining them are s~+--t~ . . . . .  S d ~ t  d, then the semantic rule 

for s(Fo) in qp is s(Fo)+--Cd[t x . . . . .  td]. That is, the rule is S(Fo)~ t ,  where t is pro- 

duced by tupling trees t~ . . . . .  t d using symbol Cn, which is a (new) symbol re- 

presenting the operation of tupling d elements. 

Cons truc t ion  2 ( o f  M )  

The input alphabet Z of M is the output alphabet of G 1 and its output alphabet A 

is the output alphabet of G. Note that, if we denote by K the set of all selection 

symbols, and by C the set of all tupling symbols, as used in Construction 1, then 

Z = A u K u C .  

We will now give the set of rules and the states of M. By Definition 4.1 of D T  

we should describe M as total, but looking at Construction 1, we see that all 

trees produced by G 1 satisfy the following condition: 

each node labeled by selection symbol k has only one direct descendant and 

this descendant is labeled by a tupling symbol Cd such that k < d  (and d is the 

number of direct descendants of Cd). 

Taking this fact into account we give only those rules of M which may actually 

be applied, and the remaining rules can be taken arbitrarily. 

M has a set Q of states qo, ql . . . . .  q,, where r is the maximal element of the 

set K. The set R of rules of M is defined as follows. 

(i) For  every a ~ 2 ~ - K -  C, R contains the rule 

qo (a IX 1 . . . . .  X,,]) ~ a [qo (x 1) . . . . .  qo (xm)] 

where m is the number of sons of a. 

(ii) For  every k ~ K ,  R contains the rule 

q o ( k [ x x ] ) ~ q k ( X , ) .  
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(iii) For  every CdS C, R contains the rule 

qk(Cd IX1 . . . .  , Xd])--*qo (Xk) 

for all states qk such that k s [ l ,  d]. 

Rules of type (i) clearly do not do anything to the input tree. The operation of 

selection which is, as we said before, all M does, is performed by the successive 

application of a rule of type (ii) and a rule of type (iii): in the first step M stores the 

integer k in its finite control and in the next step it selects the k-th subtree. 

Finally, if the designated s-attribute of the initial nonterminal of G is its j-th 

s-attribute, then qj is the initial state of M. 

This ends the two constructions. We will not give a complete proof  of their 

correctness, but we will indicate how the proof  may be organized. Before the 

statement of this theorem we have mentioned that at the basis of the simulation 

o fa  1 V-AG by a 1 S-AG is the fact that in a 1 V attribute evaluation all s-attributes 

of a node are computed "simultaneously".  Now we can make this statement 

more clear. By Construction 1 we know that G and G 1 have the same underlying 

CFG. Considering any production p of this CFG,  it is easy to see that the D @  

of G1 can be obtained from the DGp of G through the obvious transformation of 

considering the set of s-attributes of each nonterminal in p as one s-attribute 

(clearly, in the transformation, some arcs may overlap). Consequently the brother- 

graphs BGp are exactly the same in G and G1, and so attribute evaluation can be 

carried out according to exactly the same static algorithm (Algorithm 2.1), i.e., 

with the same visiting sequences. Therefore, for a given derivation tree t, the static 

algorithm gives rise to two corresponding computat ion sequences c = ( s  t 1 . . . . .  s tk)  

and c l = ( s t '  1, . . . ,S t ' k ) ,  of G and G 1 respectively, where the computat ion steps 

s tj and s t) consist of the evaluation of all/-attributes (or of all s-attributes) of the 

same node of t. The concept of corresponding computat ion sequences of G and 

G1 is at the basis of the proof  we want to sketch. For  a complete derivation tree t 

we clearly have a complete computat ion sequence c - - ( s t 1 , . . . ,  S tk) on t, which 

computes the translation of t, but for the purpose of the proof  we also consider 

every prefix c' of c (i.e. c ' = ( s t l ,  . . . ,  s t . , ) ,  r e < k )  to be a computation sequence. 

The "ou tpu t "  of c' will be the set of values of the attributes computed in step s t m. 

We want to use induction on the length of corresponding computat ion se- 

quences c and c~ of G and G1 respectively, and show, roughly speaking, that the 

transduction of M on the output of c~ is equal to the output  of c. We now make 

some observations which will enable us to formulate this induction hypothesis 

in a precise way. In comparing c and c~ (on some derivation tree t) we distinguish 

two cases: 

(i) The last steps of c and c~ compute the s-attribute(s) of a node n of t. 

(ii) The last steps of c and c I compute the/-at tr ibutes of a node n of t. 

In both cases something has to be said about how M works on the output 

of c 1, because we know only how M should work on the output of a complete 

computat ion sequence of Gt, but not yet on its prefixes. 

Case ( i ) .  From Construction 1 we know that the output  o f q  will be a tree whose 

root is labeled by a tupling symbol c d having d subtrees, each of which represents 

one s-attribute of node n in G. However, the output of c consists directly of the 
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values of the d s-attributes of n. This means that we must run M d times on the 

output of c~ with initial states ql . . . . .  qe, respectively, to obtain the desired values 

of the d s-attributes of n in G. 

Case ( i i ) .  From Construction 1 we know that each nonterminal has the same 

number of/-at t r ibutes in G and G 1. Assume that node n has m /-attributes. Then 

we will run M on each of them, but what should the starting state be? Again 

from Construction 1 we can immediately see that the values of any/-a t t r ibute  of 

G~ can only be trees whose roots are not a c a (tupling) symbol. Furthermore,  from 

Construction 2 we know that states different from qo are needed only when M 

is scanning a node labeled by a ce symbol. Thus, for each of the m runs of M the 

start state should be qo- 

As we said previously, the qrtransduction of a tree t by M is the result of 

" runn ing"  M on t with starting state q~. 

In order to prove this part  of the theorem it would suffice to prove the fol- 

lowing (by induction on the length of the computat ion sequences): 

for every complete derivation tree t of G and G~, and for every couple of 

corresponding computat ion sequences c and c~ on t the following holds: 

(i) if the last step of c computes the d s-attributes of node n of t, with values 

t 1 . . . . .  ta, then t~ is equal to the qrtransduction by M of the output of c~, for 

every iE [1, d]; 

(ii) assume that the last steps of c and c~ compute the m/-attributes of node n 

of t, and let their values in c be t~ . . . . .  t m and in c~ be q ,  .. . ,  tin, then the qo-trans- 

duction by M of t' i is equal to t~, i~[1, m]. 

The induction proof  simply has to look closely how right-hand sides of 

semantic rules of G~ are built and how M works on them. 

(b) T(1 S-AG, TREES) o D T  ~_ r ( 1V-AG,  TREES). 

Given a 1 S-AG G (defined over TREES) and a D T M ,  we will give a construction 

of a 1V-AG G 1 (defined over TREES) such that T ( G O  = T(G)  o M .  We assume G 

to be 1 V, without loss of generality by Theorem 2.2. 

Cons truc t ion  o f  G a 

(1) G 1 has the same underlying C F G  as G. 

(2) Let M have states q l , - . - ,  q,,  then each attribute a of G becomes n attrib- 

utes a 1, . . . ,  a ~ in G1. Thus, if nonterminal Fhas  m i-attributes and one s-attribute 

in G, then, in G1, F has nm /-attributes and n s-attributes. Intuitively, attribute a i 

of G 1 will hold the qi-transduction by M of the value of the attribute a of G. 

(3) For each production p in G, consider the set rp of semantic rules associated 

to p by G. We construct the set rip of semantic rules associated to p by G~ by 

deriving, from each rule in rp, n rules in the following way. Let rule sr: a o ~ t  be 

in rp, where t = t ( a  1 . . . . .  am) for m ~ 0 .  F rom rule sr  we build rules s q  . . . .  , sr,  of 

G 1 which define the n attributes a~ . . . . .  a~ respectively, as follows. For  every 

i~[1, n] let t~ be the tree resulting from " runn ing"  M on t with starting state q~. 

In general, some of the leaves of t~ will be couples qk(a~), where qk is a state of M 

and ax is an attribute in {a 1 . . . . .  am}. F rom t'i we derive the tree t i by replacing 
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k Thus, rule sri of rip is aio~tl. Note each leaf qk(ax) by the new attribute name a x. 

that here we use the fact that M is total. 

(4) The designated s-attribute of the initial nonterminal Z of G a is a ~, where 

a is the (only) s-attribute of Z in G and q~ is the initial state of M. 

This ends the construction of Ga. From the construction we can see that for 

every production p the BGp of G a will be a subgraph of the BGp of G (it is not the 

same graph in general because M may be deleting certain branches). Thus, from 

the fact that G is 1V it follows that Ga is also IV. From this we also see that the 

concept of corresponding computation sequences of G and G a applies as we 

described it in the first half of this proof. 

Intuitively, if we consider two corresponding computation sequences c and ca, 

the output of c a can be viewed as the n transductions that M can perform on the 

output of c with starting states qa . . . . .  q, respectively. More formally the following 

should be proved: 

for any couple of corresponding computation sequences c and ca on a com- 

plete derivation tree t, if the output of c consists of m values t a . . . . .  t,,, then cor- 

respondingly the output of ca consists of nm values t~ with i t  [1, m] and j~ [1, n], 

such that ti is the qftransduction of t~ by M. 

Clearly this can be proved again using induction on the length of corresponding 

computation sequences. The formal proof is left to the reader. [] 

It should be clear that in the construction given in part (b) of the preceding 

proof, there was no need of restricting G to be 1 S. This means that in the same 

way it can be shown that the class of 1 V-AG translations (over TREES) is closed 

under composition with DT. 

We can immediately extend the result of Theorem 4.1 to the domain STRINGS 

by applying the yield operation. 

Corollary 4.1. T(1 V-AG, STRINGS) = T(1 S-AG, TREES) o DTo yield. 

Obviously, analogous results hold for output languages. We summarize all 

results on output languages in the next theorem (including the one of Duske 

e.a. [10]). 

Theorem 4.2. (a) For the domain STRINGS,  
(i) OUT(1 S-AG, STRINGS) = OUT(L-1 S-AG, STRINGS)=  IO, 

(ii) OUT(1 V-AG, STRINGS) = OUT(L-AG, STRINGS) = 

= yield (D T(OUT(1 S-AG, TREES))) = yield (D T(IOT)). 

(b) For the domain TREES, 
(i) OUT(1 S-AG, TREES) = OUT(L-1 S-AG, TREES) = IOT, 

(ii) OUT(1 V-AG, TREES) = OUT(L-AG, TREES) = 

= D T(OUT(1 S-AG, TREES)) = D T(IOT). 

Proof Points a(/) and b(i), as already said before, follow from the results of [10] 

and Corollary 3.2. Points a(ii) and b(ii) follow from Theorem4.1, Corollary4.1 

and point b(i). [] 

Note that, in Theorem 4.2, we may also assume the D T to be partial because 

the domain of a partial DT is recognizable [26] and IOT is closed under inter- 

section with recognizable tree languages [13]. On the other hand the DT could 
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also be restricted to be linear (i.e. noncopying) because the DT constructed in the 

first part of the proof of Theorem 4.1 is linear. 

We end this section with two more general observations on the result 

OUT(L-AG, TREES) = DT(IOT). 

In the literature, the study of DT was motivated from syntax-directed trans- 

lation, i.e. AGs with s-attributes only (cf. Proposition 4.1), whereas macro gram- 

mars were motivated by the possibility to handle certain context-sensitive restric- 

tions on the context-free syntax, which can be handled by AGs with/-attributes 

only. It is more or less to be expected, but still surprising, that the combination 

of s- and/-attributes in L-AGs (or 1 V-AGs) leads to such a simple combination 

of DTand  IOT. 

Fischer [15] suggests the investigation of "multiple-value macro grammars" 

in which a nonterminal generates a finite sequence of strings rather than just one. 

Since, in the proof of OUT(L-I S-AG, STRINGS) = IO in [10], the string gener- 

ated by a nonterminal corresponds to the value of the one s-attribute, one would 

expect multiple-value IO macro grammars to correspond to L-AGs with any 

number of s-attributes. In fact, an obvious generalization of the above-mentioned 

proof shows that OUT(L-AG, STRINGS)=multiple-value IO and similarly 

OUT(L-AG, TREES)=multiple-value IOT. Thus, by Theorem 4.2, multiple- 

value IO =yield(DT(IOT)). Multiple-value macro grammars have been investi- 

gated in an algebraic framework in [2]. 

5. Comparison of Power 

In this section we want to compare the formal power of the restrictions on at- 

tribute grammars which we have considered in this paper. To do so we show the 

correctness of the diagrams of Fig. 6 (which are the same as in Fig. 1). 

In Fig. 6(a) every label X should be replaced by T(X-AG, D) and in Fig. 6(b) 

by OUT(X-AG, D). For any fixed domain D, the inclusions shown in Fig. 6 are 
either obvious or follow from Theorem 2.2 (1 S _~ 1 V in Fig. 8(a)) and Corollary 3.2 

( L = I V  and L 1 S = I S  in Fig. 6(b)). In the rest of the section we want to show 

that there is a semantic domain D, viz. TREES, such that also the proper inclusions 

arbitrary 

1 
lV 

/ \  
L 1S 

/ \ /  
OnlyS L I S 

(a) Translations 

Fig.6, a, b 

arbitrary 

1 
L= iV 

OnlyS LIS = IS 

Onlyl S 

(b) Output sets 
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OUT (AG, TREES) 

I 
OUT(IV-AG, TREES) = 

OUT (L-AG, TREES) = 

DT (IOT) 

OUT(OnlyS-AG, TREES) = 

DT (RECOG) 

OUT(IS-AG, TREES) = 

OUT(L-IS-AG, TREES) = 

IOT 

OUT(OnlylS-AG, TREES) = 

HOM (RECOG) 

Fig. 7 

and incomparabilities hold as shown in Fig. 6. This implies that an upward line 

in the diagrams represents "more power", whereas unconnected classes have 

"incomparable power". It suffices to prove the following. 

(1) OUT(OnlyS-AG, TREES) -  OUT(1 S-AG, TREES)#:0. 

(2) OUT(L-I S-AG, TREES) -  OUT(OnlyS-AG, TREES) #: 0. 

(3) OUT(AG, TREES) - OUT(1 V-AG, TREES) :# 0. 

(4) T(1 S-AG, T R E E S ) -  T(L-AG, TREES)4~0. 

In the proof of (1)-(3) we will use the characterization of the classes of output 

languages over TREES in terms of tree transducers and tree grammars as stated 
in Theorem 4.2 and Proposition 4.1, see Fig. 7 which corresponds to Fig. 6(b). 

For completeness we added OUT(Onlyl S-AG, TREES) = HOM(RECOG), where 

HOM is the class of tree homomorphisms, i.e. DTwith one state only (special case 

of Proposition 4.1). 
To show (1). Let T~ be the set of all binary trees with all nodes labeled ~, and 

consider the tree language Lo= {a[t, t ] l t e  T~} where a is a symbol and ~ is equal 

to t except that it is labeled by ft. Clearly L 0 is the output language of the following 
OnlyS-AG with two s-attributes s 1 and s 2 (one to hold t and the other to hold ~). 

Z--,A s,(Z)~cr[sl(A), s2(A)] 

~sl (A)~  [sa (a a), sl (A2)] 
A-~AIA 2 

[s2(A)~ff [s2(A 1), sz(A2)] 

A~a ~ sl(A)~-~ 
(s~(A),-~. 
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We now argue that L o is not in OUT(1 S-AG, TREES) = lOT. In general, assuming 

that an IO macro tree grammar G exists for a language of the form {a [t, ~]lt ~ L}, 

where L is some tree language, it is quite easy to change G slightly such that it is 

linear (i.e., in each right-hand side of a production at most one nonterminal 

occurs) and "i terative" (i.e. if a nonterminal occurs in a right-hand side, then it 

occurs at its root). Such grammars are called ILBT grammars [9] or coregular 

tree grammars [3]. By erasing all barred symbols in (the changed) G, it then 

follows that Lis also an ILBT language. Thus, if {a [t, ~] I t~L} c lO T  then L~ILBT. 

A similar result (without bar on the second t) for OI macro tree languages is 

shown in [4]. Since ILBT grammars are very similar to register programs [9, 5] 

and one register program cannot compute all expressions [24], it follows that T~ 

is not in ILBT [3]. Hence, by the above general result, Lo is not in IOT and cannot 

be produced by a 1 S-AG over TREES. 

To show (2) and (3) we use the "path-approach",  i.e. we determine the classes 

of path-languages corresponding to the involved classes of tree languages. For  a 

tree t, let n(t) be the set of paths through t which lead from the root to some leaf. 

A path is coded by a string of symbols ak meaning that "at  node labeled a the 

k-th branch is taken" (k is omitted for a leaf). For  a tree language L and a class 

of tree languages X, n(L)= U {n(t)lt~L} and n(X)={n(L)]LEX}. By Figs. 8(b) 

and 9, (2) is equivalent to I O T - D T ( R E C O G ) + 0 .  Since n(IOT) is equal to the 

class CF of context-free languages [14] and n(DT(RECOG)) is the class of 

regular languages [26], (2) immediately follows. 

To show (3) we use the equality OUT(1V-AG, TREES)=DT(IOT)  and ob- 

serve that, on paths, a (total deterministic) top-down tree transducer works like 

a gsm (generalized sequential machine): to a rule q(tr [x 1 . . . . .  xn])~t of the D T 
correspond gsm rules (q, ak)--~(q' , V) and (q, ak)--~(qf, W), where v is any path 

through t from the root down to q'(Xk) , W is any path through t from the root to a 

leaf labeled by an output symbol, and qr is a final state which consumes the rest 

of the input without producing more output. In this way it can be proved that, for 

any class X of tree languages, n(DT(X))~_ GSM(n(X)). Hence, since n( IOT)= CF 

and CF is closed under gsm mappings, we obtain that n(DT(IOT))=CF. It now 

remains to give an example of an AG over TREES whose output language has a 

non context-free path language. It is easy to see that the following AG produces 

the path language {wwl we {A~, B~}*. {A, B}}. It uses s-attribute s~ to hold the 

(monadic) derivation tree, uses/-attribute i to pass this value to the leaf and then 

puts the derivation tree on top of itself using s-attribute s 2. Let X, Y~ {A, B}. 

z ~ x  s2(Z),-s2(X); i(x)~-sl(X) 

X ~ Y  sj(X)~-X[si(Y)], j =  1,2; i (Y)~i(X) 

X- -e  s l (X )~X;  s2(X)~X[i(X)]. 

Correctness of the diagram of Fig. 6(b) has now been proved. For  readers inter- 

ested in STRINGS we note that yield(DT(RECOG)) and IO are incomparable; 

the proper inclusion of yield(DT(IOT)) in OUT(AG, STRINGS) is open, but is 

very probably true. 

Finally we prove (4) by providing a counter-example, with a combinatorial 
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proof. In what follows we will use the string o-a o-2.. "O'n- 1 O-, to denote the (monadic) 

tree o-1 [o-z [ . . .a ,_  1 [~r,]...]]. 

Let the (underlying) C F G G o  have productions Z ~ A B ,  A~A[B[e and 

B ~ A  I B[ e. Obviously the derivation trees of Go are of the form Z [Awl e, B wz e] 
with wl, Wz ~{A, B}*. Our counter-example is the translation which transforms 

Z [Awl e, B Wz e] into the monadic tree A w~ B w2. It is easy to see that a 1S-AG 

can define this translation as follows: it would first compute (the right branch) 

Bw I through the only allowed s-attribute, then pass this value down the left 

branch through an /-attribute, and finally compute Awlx  coming up the left 

branch (where x is the value of the/-at tr ibute,  i.e. Bw2) using the s-attribute, cf. 

the similar example in the proof  of (3). Assume now that there is an L-AG G 

which defines this translation. Then G has to have underlying C F G  G o. Consider 

the production Z ~ A B  and the semantic rule defining the designated s-attribute 

s(Z). Consider also a derivation tree t=Z[Aw~e,  Bwze ] with nonempty w 1 

and w 1. Because the output is monadic, we can distinguish the following two 

cases. 

(a) The semantic rule is s(Z)~csx(A ) where ce{A,B}* and sleS(A ). This 

case has an easy solution. In fact, because of the L condition we know that sl(A ) 

cannot depend on any attribute of the right-branch Bw2e. Therefore, from t we 

can build a derivation tree t~ for which G will fail, by simply changing w E . 

(b) The semantic rule s(Z)~cs2(B ) where ce{A,B}* and SEeS(B ). Actually 

also here we would have two cases: s2(B ) depends on attributes in Awle or it 

does not. Since the latter case can be handled as in (a), we consider the first. 

Clearly, SE(B ) can only depend on an attribute of Awl e through some/-at t r ibute  

of B, call it i(B), which depends on some s-attribute of A. Thus the (monadic!) 

value of s2(B) can be represented as sz(B)=d2dl, where d2~{A, B}* is the result 

of attribute evaluation on Bw2e only, and d 1 = i(B)e{A, B} +, which depends on 

attribute evaluation on Aw~e only. Thus, if we change Bw2e, only part  d 2 of 

s2(B) can change. The translation of derivation tree t by G is s(Z)=ed2dl= 
AwxBw 2. Therefore, we can find a derivation tree t x for which G fails simply 

changing the last symbol of w z in t. This proves (4). 

Conclusion 

We consider the results of [10] and this paper as the start of a more thorough 

investigation into the power of attribute grammars  viewed as tree transducers. 

We think that the large amount  of knowledge now available concerning top- 

down tree transducers and macro grammars  allows one to attack all the usual 

formal language theoretic problems concerning this new type of tree transducer. 

A few questions which came to our mind are the following. 

Is it possible to identify the class of output languages of arbitrary attribute 

grammars  in terms of known concepts? 

Do the classes of translations and output languages of arbitrary attribute 

grammars  form a proper hierarchy with respect to the maximal number  of visits 

to subtrees during attribute evaluation? 
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What kind of sequential machines can realize the AG translations or accept 

their output languages? It is rather easy to find an automaton recognizing the 

L-AG output languages, i.e. yield(DT(IOT)), taking a variant of the attributed 

pushdown transducer of [20]. 

After submission of this paper new results on the formal power of AG appeared 

in [25, 8, 12]. In particular, in [25] the second question above was answered in the 

affirmative. 
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