
The Formation and Biological Significance of N7-Guanine
Adducts

Gunnar Boysen1,2,*, Brian F. Pachkowski2, Jun Nakamura2, and James A Swenberg2,*
1Department of Environmental and Occupational Health, The University of Arkansas for Medical
Science, Little Rock, AR
2Department of Environmental Sciences and Engineering, The University of North Carolina, Chapel
Hill, NC

Abstract
DNA alkylation or adduct formation occurs at nucleophilic sites in DNA, mainly the N7-position of
guanine. Ever since identification of the first N7-guanine adduct, several hundred studies on DNA
adducts have been reported. Major issues addressed include the relationships between N7-guanine
adducts and exposure, mutagenesis, and other biological endpoints. It became quickly apparent that
N7-guanine adducts are frequently formed, but may have minimal biological relevance, since they
are chemically unstable and do not participate in Watson Crick base pairing. However, N7-guanine
adducts have been shown to be excellent biomarkers for internal exposure to direct acting and
metabolically activated carcinogens. Questions arise, however, regarding the biological significance
for N7-guanine adducts that are readily formed, do not persist, and are not likely to be mutagenic.
Thus, we set out to review the current literature to evaluate their formation and the mechanistic
evidence for the involvement of N7-guanine adducts in mutagenesis or other biological processes.
It was concluded that there is insufficient evidence that N7-guanine adducts can be used beyond
confirmation of exposure to the target tissue and demonstration of the molecular dose. There is little
to no evidence that N7-guanine adducts or their depurination product, apurinic sites, are the cause of
mutations in cells and tissues, since increases in AP sites have not been shown unless toxicity is
extant. However, more research is needed to define the extent of chemical depurination versus
removal by DNA repair proteins. Interestingly, N7-guanine adducts are clearly present as endogenous
background adducts and the endogenous background amounts appear to increase with age.
Furthermore, the N7-guanine adducts have been shown to convert to ring opened lesions (FAPy),
which are much more persistent and have higher mutagenic potency. Studies in humans are limited
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in sample size and differences between controls and study groups are small. Future investigations
should involve human studies with larger numbers of individuals and analysis should include the
corresponding ring opened FAPy derivatives.
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1 Introduction
DNA alkylation or adduct formation occurs at nucleophilic sites in DNA. Of these nucleophilic
sites, the N7-position of guanine is the most reactive [1]. A PubMed search on “N7-guanine
adducts” resulted in over 300 publications with 9 out of 10 focusing on basic characterization
of chemical or biochemical properties of N7-guanine adducts alone or in DNA. In addition,
N7-guanine adducts are classified as non promutagenic since they are chemically unstable and
the N7-position does not participate in Watson Crick base pairing [2]. Ever since identification
of the first N7-guanine adduct [1], several hundred studies on DNA adducts have been reported
and reviewed from different perspectives [3-16]. Consequently, many studies sought to
establish the relationship between DNA adduct formation and other biological endpoints
(mutations, DNA strand breaks, etc.). Technical limitations, however, did not permit
integration into large molecular epidemiological studies during this era of lesion
characterization. Despite superior sensitivity of the 32P-postlabeling assay, insufficient
chemical specificity made it impossible to identify the chemical source of damage, and
chemical depurination of N7-guanine adducts during sample preparation was a major concern.
Almost all studies started with in vitro proof of concept experiments demonstrating covalent
binding of the compounds of interest or their metabolites to DNA. Surprisingly, the
identification and development of sensitive analytical methods remain a primary focus of many
DNA adduct studies, even 50+ years later.

N7-guanine adducts appear to be good biomarkers of internal exposure because of their higher
abundance compared to other DNA alkylations. Questions arise, however, regarding the
biological significance for N7-guanine adducts that are readily formed, do not persist, and are
not likely to be mutagenic. Thus, we set out to review the current literature to evaluate their
formation and the mechanistic evidence for the involvement of N7-guanine adduts in
mutagenesis or other biological processes.

1.1 Formation of DNA adducts
Miller and Miller pioneered the field of chemical carcinogens and were the first to demonstrate
covalent binding of chemical carcinogens to macromolecules in vivo [17,18]. The first evidence
for binding of chemical carcinogens or their metabolites to nucleic acid was reported by
Wheeler and Skipper [19]. It quickly became apparent that carcinogens comprise a diverse
group of chemicals. Some of them were from endogenous sources or natural products, while
others arise from synthetic products of modern human life. These chemicals are able to react
with nucleophilic sites (electron rich, S, N, and O), in DNA and proteins. Subsequent in
vitro and in vivo studies quickly demonstrated that under physiological conditions (pH 7.4, 37°
C), alkylation of DNA primarily occurred at the N7-position of guanine (Table 1) [20]. The
distribution of methylation and ethylation adducts in DNA was studied in in vitro reactions, in
bacterial or mammalian cell cultures, and in several tissues of mice and rats (reviewed by
Beranek [8]). Overall, it confirmed the notion that the relative distribution of alkylation in DNA
is similar in vivo and in vitro [21]. However, as technology advanced and allowed examination
of lower exposures distinct differences in adduct distribution were established (see Section 2).
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Binding was shown to mainly occur via monomolecular (SN1, e.g., nitrogen mustards) or
bimolecular nucleophilic (SN2, e.g., sulfonyl esters) substitutions [22-24]. SN2 reactions are
heavily dependent on steric accessibility while SN1 reactions generally follow first-order
kinetics. In DNA, the ring nitrogens and the exocyclic oxygens are the preferred sites for
alkylation. Although the N7-position is the major site of alkylation, the electrophilic species
formed by the N-nitroso compounds for example, following SN1 kinetics, will have a greater
preference for reaction at the exocyclic oxygens than will the alkanesulfonates, which are
limited to SN2 reactions. The larger the alkyl group is, the stronger will be its preference for
reaction at the O6-position of guanine. Hence, N-ethyl-N-nitrosourea (ENU) binds more
efficiently to the O6-position than does N-methyl-N-nitrosourea (MNU) (Table 1)[8,25,26].
The important difference in alkylation agents undergoing SN1 or SN2 reactions is that agents
capable of SN1 reactions react more frequently at the O6-position of guanine, thus producing
more mutagenic O6-guanine adducts, compared to agents that solely react via the SN2
mechanism.

These early binding experiments in DNA, cell culture and animal studies also showed that
some carcinogens required metabolic activation to gain their ability to form DNA adducts and
to exhibit their mutagenic and carcinogenic effects. Consequently, compounds were classified
as “direct-acting” or “metabolically activated” carcinogens. The latter type is also termed a
pro-carcinogen. In addition to mono adducts, compounds with multiple reactive groups were
shown to have the ability to form protein-protein, DNA-DNA or protein-DNA cross-links
[20]. The decades following have produced a better understanding of the relationship between
carcinogen exposures, DNA adduct formation, mutagenesis, and carcinogenesis [4-7,10,12,
27]. Various technologies have been applied to animal and human exposure studies for routine
analysis of N7-guanine adducts and other DNA adducts. These studies have increased our
understanding of formation and persistence of DNA adducts, and their relationship to
carcinogenesis. It has become clear that cancer is a complex, multi-step process that varies
with types of exposure, site of tumor induction, and species. Understanding the implications
of N7-guanine adducts has significantly contributed to identification of the mode of action in
chemically-induced mutagenesis and carcinogenesis. These findings have subsequently led to
a better understanding of the role of DNA adducts in mutagenesis and mechanism-based risk
assessment [27].

1.2 Stability of N7-guanine adducts
Compared to many other DNA adducts, N7-guanine adducts are chemically unstable, with half
lives in double-stranded DNA (dsDNA) ranging from as little as 2 h to 150 h. The instability
of N7-guanine adducts is created by the formal placement of an additional positive charge on
the guanine ring system. In general, larger alkyl groups promote depurination in dsDNA. This
has been demonstrated under physiological conditions (pH 7.4, 37°C), where the half-lives for
N7-methyl-guanine (N7-Me-Gua), N7-(2-hydroxy-3-butene)-guanine (N7-HB-Gua) and N7-
(trihydroxy-benzo[a]pyreneyl) guanine are 150 h, 50 h, and 3 h, respectively [28-31]. In
addition, N7-guanine adducts accumulate in DNA with continuous exposure or treatment and
usually reach a plateau (steady state) after ∼7-10 days [15,32-34]. Steady state is reached when
the rate of N7-guanine adducts formed is equal to the rate of adducts lost. In contrast, adducts
that are more persistent, such as O4-ethyl-thymidine (O4-Et-Thy), accumulate over a period of
4 weeks [35], and O6-methyl-guanine (O6-Me-Gua) in the brain continue to accumulate over
6 weeks of dosing [36]. The formal placement of an additional positive charge on the guanine
ring system also promotes further reactions that have been reviewed by Gates et al. [37].
Relative to guanine, N7-Me-Gua depurinates 106 times more rapidely at pH7, 37 °C [37].
Reactions characteristic for N7-guanine adducts are: (i) loss of C-8 proton, (ii) depurination,
(iii) ring opening to yield 5-N-alkyl-2,6,-diamino-4-hydroxyformamidopyrimidine (alkyl-
FAPy), (iv) hydrolysis of the N7-alkyl bond, and (v) rearrangement to C8 adducts. For details
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of the chemical reactivity of N7-guanine adducts, the reader is referred to the thorough review
by Gates [37].

1.3 Methods for detection of N7-guanine adducts
During the past 50 years many technologies have been used for analysis of N7-guanine adducts.
These technologies have been applied to rodent and human exposure studies for routine
analysis of N7-guanine adducts and other DNA adducts. In the earliest studies, radiolabeled
carcinogens were administered to rodents and binding to protein, RNA, and DNA was assessed
by scintillation counting of the corresponding cellular fractions [38]. After DNA isolation and
hydrolytic treatments, individual DNA adducts could be purified and quantified by basic
column chromatography. This approach allowed analysis of one sample per day, with a
detection limit of 1 adduct per 106 normal nucleotides (nnt) using ≥5 mg DNA [29,39]. Longer
exposure regimes were laborious and expensive, due to the requirement of radiolabeled
carcinogen for these studies. Consequently, most studies employed single exposures [40,41].

By the 1980's, HPLC with fluorescence detection, radioimmunoassay, or enzyme-linked
immuno sorbent assay were commonly used for the analysis of DNA adducts. These
approaches significantly increased throughput, reduced cost via elimination of custom
radioisotope synthesis, and allowed application to study designs that included multiple
exposure protocols. The extended exposure protocols provided information on the steady-state
concentrations of DNA adducts and demonstrated that what had previously appeared to be
minor adducts following single exposures could actually become major adducts if they were
poorly repaired and accumulated with extended exposure [42]. These methods, however, had
limited sensitivity compared to present day technology and some of the immunoassays were
prone to false positive results due to cross-reactivity.

A major break though in methodology occurred in 1982, when Randerath and colleagues
developed 32P-postlabeling methods for DNA adducts [43]. The limit of detection for the
early 32P-postlabeling assays was 1 adduct per 108 nnt using as little as 1-2 μg DNA [43,44].
Subsequently, combinations of 32P-postlabeling with HPLC or immunoaffinity permitted
larger amounts of DNA to be analyzed and improved the sensitivity by one or more orders of
magnitude. The major problems associated with this methodology include the lack of chemical-
specific identity and poor reproducibility [45,46]. The 32P-postlabeling method was most
suitable for more stable DNA adducts, such as etheno adducts [47-49] and N2-guanine adducts
derived from polycyclic aromatic hydrocarbons (PAH) [50], and less so for N7-guanine
adducts, due to their instability.

More recently, advances in mass spectrometry have lowered the limit of detection for this
chemical-specific and quantitative technology, making it the method of choice in contemporary
investigations. Earlier studies applied gas chromatography - negative ion chemical ionization
- mass spectrometry (GC-MS), after hydrolysis and derivatization, to the analysis of DNA
adducts [51-56]. Presently, however, the vast majority of quantitative analysis of DNA adducts
is performed with liquid chromatography tandem mass spectrometry (LC-MS/MS). The
application of mass spectrometry for DNA adducts has been recently reviewed by Singh and
Farmer [57] and others [15,16,58-63]. Major advances in instrumentation for both mass
spectrometry and chromatography have increased the detection limits for DNA adducts up to
100-fold, making it possible to routinely measure 1 adduct per 108 nnt. A major advantage of
GC- and LC-MS/MS methods is the utilization of chemically identical stable isotope labeled
internal standards for accurate quantitation.

The greatest sensitivity for measuring DNA adducts, however, is achieved with accelerator
mass spectrometry (AMS), which can quantitate down to 3 adduct per 1011 nucleosides using
1 μg DNA [64]. While this method is extremely sensitive, it is limited to the following
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radioisotopes (3H, 14C, 26Al, 41Ca, 10Be, 36Cl, 59Ni, 63Ni, and 129I), of which 14C and 3H are
the most commonly used in biomedical research. Therefore, specific chemical syntheses are
required to either obtain radioisotope-labeled test compounds or for chemical labeling of
compounds of interest (postlabeling, derivatization). Unfortunately, access to AMS is limited
worldwide (only 5 instruments as of 2007), mainly due to the expense of the mostly custom-
made instruments [65].

2 Formation of N7-guanine adducts in animal models
Several investigators have successfully utilized N7-guanine adducts as biomarkers to answer
important toxicology questions in rodent models. These studies used multi-dose exposure
protocols to generate comprehensive dose-response curves. Data from studies in mice and rats
are presented in supplemental materials (Table S1 and Table S2). Adduct formation was
compared to other biological endpoints such as unscheduled DNA synthesis, mutation
frequency, micronucleus, apurinic sites (AP sites), gene expression, and others [7, 10, 12,
66]. In the following sections we will describe studies demonstrating factors influencing the
formation and persistence of N7-guanine adducts. First, metabolic activation and subsequent
formation of N7-guanine adducts can be species, strain, tissue, and cell dependant [32,
67-69]. Second, chemical stability and DNA repair influence the ratios of N7-guanine adducts
to other DNA adducts [36, 40]. Lastly, there is some evidence for accumulation and increased
tolerance to, and higher formation rates of N7-guanine adducts in DNA at later ages compared
to young ages [70, 71].

2.1 Nitrosourea compounds
N-methyl-N-nitrosourea (MNU) primarily induced tumors in the nervous system in rats and
lymphoid tumors in mice [72-74]. Subsequent analysis of N7-Me-Gua in several tissues of
MNU-treated A/J and C3H3B/FeJ mice showed the highest formation of N7-Me-Gua and
O6-methyl-guanine (O6-Me-Gua) in liver, kidney, lung, and brain, suggesting that adduct
formation might be involved in carcinogenesis (Figure 1) [75]. Comparison of the ratio of
N7-guanine adducts to O6-guanine adducts in brain and liver, assuming no active repair for
N7-Me-Gua, suggested somewhat slower repair of O6-Me-Gua in the more susceptible C3H3B/
FeJ strain than in A/J mice [75]. Persistence of N7-Me-Gua was similar in liver (non-target
tissue) and brain (target tissue), suggesting that N7-Me-Gua adducts are most likely not causally
linked to mutagenesis and carcinogenesis. O6-Me-Gua adducts, however, were removed much
faster in liver than in brain, demonstrating active removal in the liver and suggesting
involvement of O6-Me-Gua in mutagenesis and carcinogenesis [76]. In contrast, the persistence
and amounts of O6-Me-Gua were similar in brain of both rats and mice, although these species
differ markedly in their susceptibility to brain tumorigenesis, with the rat being a much more
susceptible species [73,77]. It was concluded that organotropic carcinogenic effects of
methylating carcinogens do not solely depend on DNA adduct formation and persistence, since
formation and persistence correlated only in certain cases with tumor formation [75,78,79].

From the earliest studies on N7-guanine adducts, it quickly became apparent that certain
adducts exist in control DNA and the notion of endogenous DNA damage was established.
Amounts of N7-Me-Gua were 2-fold higher in liver DNA of rats that were 24 months old
compared to 6 month-old animals, suggesting accumulation with age [71]. Similarly,
endogenous amounts of N7-Me-Gua were twice as high in 29 month-old C57BL/6NNia mice,
compared to 11 month-old mice [70]. More importantly, not only was the endogenous amount
higher in older mice (29 month), they also formed twice as many N7-Me-Gua adducts as
younger mice after 25 or 50 mg/kg MNU-treatment (11 months) [70]. These two reports
demonstrate that endogenous background amounts and adduct formation may be significantly
different at different ages. Unfortunately, to our knowledge age dependence of N7-guanine
adduct formation has not been systematically investigated. Future studies should include
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establishing endogenous background amounts of N7-guanine adducts and their formation in
target tissues at different ages in mice, rats, and humans.

N-Ethyl-N-nitrosourea (ENU), similar to MNU, is a potent carcinogen inducing mainly tumors
of nervous system and forming N7-ethyl-guanine (N7-Et-Gua) and O6-ethyl-guanine (O6-Et-
Gua) adducts. The persistence of N7-Et-Gua adducts is dependent upon their chemical stability
and possible elimination by active DNA repair enzymes. It has been shown that DNA repair
capacity is tissue-specific and influences accumulation of promutagenic O6-Et-Gua, O4-Et-
Thy and O2-ethyl-thymidine (O2-Et-Thy) adducts, but not N7-Et-Gua adducts [40]. Tissue-
specific DNA repair can greatly affect dose-response of DNA adducts as exemplified with
O6-Me-Gua and O6-Et-Gua in brain and liver of MNU- or ENU-treated mice or rats [36,40,
41]. O6-Me-Gua and O6-Et-Gua adducts are actively repaired in liver but not in the brain, the
target tissue of MNU and ENU tumorigenesis in rats [80]. After a single exposure, O6-guanine
adducts are readily removed in the repair-proficient hepatic tissue but remain relatively
persistent in the repair-deficient brain tissue. In contrast, the chemically less stable N7-Et-Gua
and N3-Et-adenine adducts have similar elimination rates in both tissues, suggesting that these
adducts are lost due to spontaneous depurination [40,41]. Consequently, the ratio of N7-Et-
Gua to O6-Et-Gua decreases in target tissues with time and duration of exposure, and the
presence of N7-guanine adducts does not predict a fixed amount of O6-guanine adducts. Most
importantly, the presence of N7-guanine adducts cannot serve as quantitative indicator for the
existence of other mutagenic or genotoxic lesions, without reliable knowledge of the half-lives
in tissue and time since exposure. Although ratios of formation of related adducts can be
expected to following in vitro chemistry, tissue-specific differences in repair and stability of
the individual adducts will alter adduct-distribution and this dynamic must be considered in
subsequent interpretations.

2.2 Nitrosamines
Nitrosamines are a class of chemical compounds that were first described in the chemical
literature over 100 years ago, but not until 1956, did they receive much attention. During a
routine screening of chemicals that were being proposed for use as solvents in the dry cleaning
industry, John Barnes and Peter Magee, reported that dimethylnitrosamine (DMN) produced
liver tumors in rats [81]. Magee and Barnes' landmark discovery caused scientists around the
world to investigate the carcinogenic properties of other nitrosamines and N-nitroso
compounds. Approximately 300 of these compounds have been tested, and 90% of them have
been found to be carcinogenic in a wide variety of experimental animals, with many of them
exhibiting organ specificity in their carcinogenicity [74]. For instance, DMN causes liver,
kidney, and lung cancer in experimental animals, and some of the tobacco-specific
nitrosamines are very potent pulmonary carcinogens [82-85]. N-nitrosamines require metabolic
activation to exhibit their mutagenic and carcinogenic effects. Metabolic activation of
nitrosamines is catalyzed by various forms of P450 enzymes in reactions that in general form
a highly reactive diazonium ions and aldehydes [86]. Both the diazonium ions and the
aldehydes form DNA adducts, including N7-guanine adducts (Figure 2).

N,N-Dimethylnitrosamine (DMN) is potent rodent carcinogen inducing liver, kidney, and
lung tumors, with mice being more susceptible than rats [81,87]. To investigate potential
mechanisms responsible for species differences, the formation of N7-Me-Gua and O6-Me-Gua
were determined in mice and rats treated with DMN [88]. The experimental results of this study
indicated distinct differences in rat and mouse hepatocytes for repair of the promutagenic DNA
lesion, O6-Me-Gua. The ratio of N7-Me-Gua to O6-Me-Gua indicated similar repair of O6-Me-
Gua at low DMN exposures in rats and mice. However, the ratios of N7-Me-Gua to O6-Me-
Gua changed with increasing DMN dose, suggesting differential ability of these 2 species to
repair increasing amounts of O6-Me-Gua. This difference was due to readily inducible O6-
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methylguanine DNA-methyltransferase (O6MT), found in the rat liver, but not the mouse. Pegg
and Hui [89] first observed that the dose-response curves for O6-Me-Gua induced by DMN
were different from that of N7-Me-Gua. Studying DNA adducts derived from DMN, it was
noticed that the amounts of O6-Me-Gua were much lower relative to N7-Me-Gua at low
exposures than at high exposures. The ratio of N7-Me-Gua to O6-Me-Gua at high doses was
approximately 10, while at lower exposure the amounts of N7-Me-Gua were about 100-fold
higher than that of O6-Me-Gua [89]. The change in ratio of N7-Me-Gua to O6-Me-Gua was
later shown to be a result of depletion of O6MT at high doses. O6MT is a highly efficient and
specific DNA repair protein that selectively repairs O6-Me-Gua. O6MT removes the alkyl
groups from the O6-guanine position by transferring them to the protein itself, effectively
restoring the guanine base in DNA, and thereby inactivating the protein [90]. Thus at low
exposures O6-Me-Gua adducts are effectively repaired by O6MT producing a higher N7-Me-
Gua to O6-Me-Gua ratio. As exposure increases, this O6-Me-Gua specific DNA repair system
is depleted and amounts of O6-Me-Gua start to accumulate at a rate similar to their chemical
formation. This may explain why early studies of adduct distribution with relative high
exposures suggested that the adduct distribution in vivo is similar to the reaction of alkylating
compounds with isolated DNA in vitro [8]. However as methodology improved, measurement
at lower exposure concentrations were possible and differences in adduct profiles depending
on exposures and tissue types were observed. Subsequent advancements in DNA repair
research enabled correlation of specific DNA adduct profiles with repair capacities. In general,
the dose response for N7-Me-Gua is linear, while it is sub-linear for O6-Me-Gua in O6MT
repair proficient tissues. The slope of the upper portion of such a sub-linear dose response is
similar to that of N7-Me-Gua and represents the chemical formation rate, since proportionately
fewer adducts are removed by repair enzymes like O6MT. At low exposures O6-alkylguanine
adducts are readily repaired in most tissues. Consequently, at higher exposures where DNA
repair activity is saturated the number of DNA adducts formed increases per unit dose of
carcinogen, producing a non-linear dose-response.

4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), a tobacco-specific nitrosamine is
a potent pulmonary carcinogen inducing lung tumors in experimental animals independent of
route of exposure [83]. NNK is metabolically activated in several tissues by an P450-catalyzed
hydroxylation of the methylene or methyl carbon adjacent to the N-nitroso group (α-
hydroxylation, reviewed by Jalas et al. [91]). These hydroxylation reactions form unstable
intermediates that spontaneously decompose to reactive diazonium ions, which can form DNA
adducts including N7-guanine adducts, and formaldehyde (Figure 2)[92-100], as reviewed by
Hecht [82]. The formation of NNK-derived N7-Me-Gua and O6-Me-Gua has been observed
in a number of tissues including placenta, esophagus, larynx, liver, and white blood cells
(WBC) [101]. The dose-responses for N7-Me-Gua and O6-Me-Gua in NNK-treated rat lung
and liver tissues are similar in shape to the ones observed after DMN treatment discussed above.
The dose-responses for N7-Me-Gua and O6-Me-Gua are supra-linear in the lung and liver of
NNK-treated rats due to saturation of the α-hydroxylation step in metabolic activation [102].
Furthermore, in lung the persistence of O6-Me-Gua was greatest in Clara cells, the progenitor
cells for nitrosamine-induced lung tumors [67,103,104]. NNK metabolism was shown to be
greatest in Clara cells followed by alveolar macrophages, type II cells and minor in alveolar
small cells (300, 220, 100, <10 mol/106cells/1h, respectively), demonstrating cell specific
activation [69,69,103]. In addition, O6MT activity was 2-fold greater in macrophages and Type
II cells than in alveolar small cells or Clara cells [69,69,103]. Therefore, the Clara cell-specific
accumulation of O6-Me-Gua in rats was attributed to reduced O6MT activity coupled with a
high capacity for NNK activation.
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2.3 Hydrazines
Similar to nitrosamines, hydrazine compounds have been studied both as potential anticancer
drugs and as cancer-causing agents. Early studies of hydrazines, including hydrazine sulfate,
were conducted and these compounds were found to induce tumors in laboratory animals
[105-107]. Hydrazines require metabolic activation to exhibit their carcinogenic effects and
experiments with rat liver microsomes suggested involvement of P450s [108]. Treatment of
mice, rats or hamsters with hydrazines substantially increases the incidence of several tumor
types [107]. When administered by gavage, 1,2-dimethylhydrazine (SDMH) increased the
incidence of lung tumors in female mice. When administered in drinking water, SDMH induced
high incidences of angiosarcomas in various organs and tumors of the kidneys, lungs, and liver
in mice of both sexes [107]. The same route of administration induced liver carcinomas and
angiosarcomas in rats.

Herron and Shank [109] investigated the time course of N7-Me-Gua in liver and kidney of rats
over a 25-week period, during which the animals received 21 mg/kg SDMH s.c., once every
week during the first 14 weeks. During the treatment period, N7-Me-Gua adducts accumulated
in liver and kidney and then were below the limit of detection of 156 N7-Me-Gua/ 107 nnt six
or 11 weeks post treatment. No adducts were found in non target tissues (lung or pancreas)
[109]. Unfortunately, the limit of detection at these early studies was not sufficient to determine
potential endogenous amounts of N7-Me-Gua, which are discussed in detail below. This study
clearly demonstrated that metabolic activation, and subsequent adduct formation was tissue-
specific, and that reactive hydrazine metabolites were not stable enough to diffuse to distant
sites.

Surprisingly, in rats no adduct accumulation was found in colon, another target site for SDMH
tumorigenesis [110-112]. In colon DNA, N7-Me-Gua and O6-Me-Gua have the same half-life,
∼30 h, which is much lower than the ∼150 h determined in other tissues [29]. Therefore, the
removal of N7-Me-Gua and other DNA adducts in colon is to a greater extent dependant on
cell division and sloughing compared to liver, where DNA repair and spontaneous depurination
are responsible for adduct removal [113]. O6-Me-Gua accumulated in kidney, while in liver it
was only detected after the first SDMH treatment, adding support to the inducibility of O6MT
in rat liver, but not in kidney, one of the main target organ of SDMH-induced tumorigenesis
[89,114].

Furthermore, metabolic activation, detoxication, and DNA repair can be different among cell
types. The first evidence for different DNA adduct profiles between cells within a target organ
was demonstrated in rats exposed to single [32] or chronic [115] doses of SDMH. Swenberg
and colleagues investigated the formation and persistence of N7-Me-Gua and O6-Me-Gua in
individual liver cell types. SDMH induces mainly malignant liver angiosarcoma [116-118].
Analysis of N7-Me-Gua in purified non-parenchymal cells (NPC), the origin of angiosarcomas,
compared with hepatocytes demonstrated similar increases in both cell types, confirming even
distribution of exposure between cell types. The corresponding amounts of O6-Me-Gua were
significantly different, with amounts in hepatocytes peaking one day after exposure and then
declining to 1/30 of the initial amounts, while in NPC cells, amounts of O6-Me-Gua steadily
accumulated for 8 days [119]. The significant decline of O6-Me-Gua in hepatocytes was due
to both constitutive and an additional 4-fold enhancement of O6MT activity during continuous
exposure, an activity that is much lower and remained constant in NPC cells [119].

Summary—Even though O6-Me-Gua was identified as the potentially promutagenic adduct
in the examples described above, it would have been difficult to come to such a conclusion
without normalization of the data to N7-Me-Gua. These and other studies with pro-carcinogens
clearly established that metabolic activation of carcinogens and DNA alkylation can be
species-, strain-, tissue-, and cell-type specific. In addition, evidence has been reported that
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adduct formation rates and endogenous background levels could be age-dependent, and are
modified by DNA repair. Consequently, these studies have greatly advanced our understanding
in the origin and molecular mechanisms of tissue specificity of these model carcinogens.
Unfortunately, as has been described above, the ratio of N7-guanine adducts to other DNA
adducts (e.g., O6-guanine adducts) is not constant and is heavily dependent on time since
exposure, dose, species, tissue, and cell type. Therefore, to use N7-guanine adducts as a
surrogate biomarker for other DNA adducts, it is essential to have detailed knowledge of the
rate of formation and persistence of N7-guanine adducts, and the corresponding adducts of
interest.

2.4 Olefins: ethylene, propylene, butadiene, and their metabolites
Olefins are characterized by one or more double bonds, with ethylene (ET), propylene, and
1,3-butadiene (BD) being the best studied in respect to DNA adduct formation. BD and the ET
metabolite, ethylene oxide (EO), have been classified as human carcinogens [120].
Occupational exposure to butadiene has been associated with increased risk for leukemia in
workers exposed to BD in synthetic rubber production [121-123] and an increase in
lymphohematopoietic cancers in BD monomer production workers that was not exposure
related [124]. Olefins are mainly metabolized by P450s to the corresponding epoxides that are
known to form DNA adducts, including N7-guanine adducts via SN2 reactions (Figure 3).
These olefin epoxides are more stable than the reactive metabolites discussed above (diazonium
ion, hydrazine, etc.) and they circulate freely throughout the body. Consequently, DNA adducts
are formed in similar amounts in target and non target tissues [68,125-127]). The main adducts
of olefin epoxides are the corresponding N7-guanine adducts, and N3-adenine adducts in
addition to other minor adducts. The relative reactivities of nucleophilic sites in DNA toward
some olefin epoxides are shown in Table 1.

Ethylene and ethylene oxide—ET is metabolically activated by P450s to ethylene oxide
(EO) and forms N7-hydroxyethyl-guanine (N7-HE-Gua) as its major DNA adduct. Inhalation
studies with ET in mice and rats established supra-linear dose-responses over the exposure
concentrations studied, suggesting saturation of the metabolic activation [128,129]. The
metabolism of ET to EO in mice saturates at ∼1000 ppm ET [130,131], producing in liver ∼3.5
N7-HE-Gua/ 107 nnt (Table 2,Figure 4) [33,132,133]. In contrast, a linear dose-response for
N7-HE-Gua has been found in experiments with mice or rats exposed to EO over a wide range
of exposures (Figure 4)[133,134]. The molecular dose of N7-HE-Gua can be orders of
magnitude greater for exposures to EO than can ever be achieved by ET. In subacute or chronic
exposures to EO, N7-HE-Gua adducts increase daily until they reach a steady state after 7-10
days [33]. This supra-linear response over time is attributed to the chemical instability of N7-
HE-Gua. At steady state, the number of N7-HE-Gua adducts formed is equal to the number of
adducts lost due chemical depurination or cell death.

All animals and humans are constantly exposed to ET and EO produced by numerous
endogenous metabolic processes and by conversion of ET to EO by the liver [135,136].
Additional EO exposures are from numerous food products that can contain up to <0.05 to
1800 μg ET/g [137]. The endogenous formation and steady exposure via the diet produces a
background level of N7-HE-Gua that has been observed in mice, rats, and humans [128,
138-143]. Yong et al. reported N7-HE-Gua in granulocytes from humans that were not exposed
to known sources of ET or EO [143]. The presence of endogenous EO exposure in humans has
been confirmed by detection of hydroxyethyl-valine hemoglobin adducts, another EO-specific
biomarker [144,145]. Endogenous or background amounts in mice and rats were in the range
of 1-18 N7-HE-Gua adducts/107 nnt [132,133,146-148]. The existence of endogenous N7-
guanine adducts has to be accounted for in mechanism-based risk assessments and evaluations
of low exposures [27].
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Propylene and propylene oxide—Propylene is metabolically activated by P450s to
propylene oxide (PO) and forms N7-hydroxypropyl-guanine (N7-HP-Gua). The formation of
N7-HP-Gua in rat liver saturates at exposures greater than 2000 ppm propylene and produces
about 6.5 adducts /107 nnt (Figure 4) [149]. In contrast, exposures to the activated oxide, PO,
produces almost 200-fold greater amounts of N7-HP-Gua and the dose-response is linear
(Figure 4). Comparing the adduct amounts formed after propylene and PO exposures, it can
be estimated that a maximum of 0.5% of the propylene dose is activated to PO and associated
with DNA adduct formation. The fact that the adduct formation appears linear for PO-derived
N7-HP-Gua and that exposures to PO produce much higher amounts of these adducts
demonstrates that adduct formation is not limited by available binding sites in DNA or
induction of specific DNA repair systems. Therefore, the saturation observed with propylene
is due to saturation of the metabolic activation and/or induction of detoxification pathways.
Similar data were obtained from a variety of chemicals and are summarized in Table 2.

Butadiene and butadiene-derived epoxides—1,3-Butadiene (BD) is an olefin of
special interest because it is metabolized to several reactive epoxides (Figure 3)[150]. All BD-
derived epoxides are known to form DNA and protein adducts. Althought the different
oxidation reactions are catalyzed by the same enzymes, mainly by P450 2E1, 2A6 and 3A4,
the dose-responses of their internal formation are vastly different in mice, rats, and humans
[151,152]. BD is first oxidized to 1,2-epoxy-3-butene (EB), a metabolite known to form 2-
hydroxy-3-butenyl DNA and protein adducts. To date, the N7-(2-hydroxy-3-butenyl)-guanine
and N7-(1-hydroxy-3-butenyl)-guanine (N7-HB-Gua)* are the only EB-specific N7-guanine
adducts found in mice and rats exposed to BD (Figure 3)[68]. The dose-response for N7-HB-
Gua has been shown to be linear in mice and rats from the lowest exposure studied (20 ppm
BD 4 weeks) to high exposures known to induce tumorigenesis [68]. The presence of a minor
adduct, N1-HB-Ade, has been reported in rat liver after 5 days of exposure to 300 ppm BD
[153] and its formation was about 3-fold lower than the N7-HB-Gua.

In vitro formation of N3-HB-adenine, N6-HB-adenine, and N1-HB-inosine adducts have been
identified, but their existence in vivo has not been shown [154,155]. Of these theoretical
adducts, N1-HB-inosine is of special interest, since it has the highest mutagenic potency (>95%
per replication cycle) [156,157]. The mutagenic potencies were significantly lower (<1%) for
N2-HB-guanine and N6-HB-adenine [158]. Unfortunately, the N7-HB-Gua adduct is not
suitable for site-directed mutagenesis studies because of its chemical instability that leads to
spontaneous depurination. Therefore, the specific mutagenic potency of N7-HB-Gua remains
to be assessed, although mutagenic potency may be very low given that N7-guanine adducts
are relative unstable and do not participate in hydrogen bonding in the DNA double helix [2].

EB can undergo a second oxidation reaction, catalized by P450s 2E1, 2C9, and 2A6, producing
the 1,2;3,4-diepoxybutane (DEB) [159], which is a bi-functional carcinogen that can form
DNA-DNA [160-162] and DNA-protein crosslinks (Figure 3)[163,164]. In vivo, the presence
of N7-guanine-N7-guanine [1,4-bis(guan-7-yl)-2,3-butanediol (bisN7-Gua-BD-diol)] and N7-
guanine-N1-adenine [1-(guan-7-yl)-4-(aden-1-yl)-2,3-butanediol (N7-Gua-N1-Ade-BD-
diol)] were observed in liver and lung of mice exposed by inhalation to 625 ppm BD [160,
161]. The bisN7-Gua-BD-diol is a weak mutagen, producing miscoding in less than 1% of all
replication cycles, compared to the more mutagenic N6,N6-adenine intrastrand cross-links,
which produce miscoding in 8% of the replication cycles, [156,157]. The dose-responses of
bisN7-Gua-BD-diol and N7-Gua-N1-Ade-BD-diol cross links were recently reported in mice
and rats [165]. It was shown that mice form much more DEB than rats and that adduct formation
was higher in lung and liver compared to kidney, brain and thymus. The tissue difference

*The abbreviation N7-HB-Gua will be used for both the N7-(2-hydroxy-3-butenyl)-guanine and N7-(1-hydroxy-3-butenyl)-guanine (N7-
HB-Gua).
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appears to be due to the high reactivity of the bi-functional DEB compared to the mono-
functional EB or EB-diol and suggests DEB formation in liver and lung tissue. Further,
formation of DEB seemed to saturate in rats at exposures above 62.6 ppm BD and showed a
decrease in slope in mice at exposures above 200 ppm. This dose-response for DEB derived
adducts have been confirmed by the analysis of N,N-(2,3-dihydroxy-1,4-butadiyl)-valine
(pyr-Val), the corresponding DEB-specific globin adduct, in the same animals (Georgieva et
al in preparation).

The epoxides EB and DEB can be hydrolyzed by epoxide hydrolase (EH) producing 3-
butene-1,2-diol (BD-diol) and 1,2-epoxy-3,4-butanediol (EB-diol), respectively [151,
166-171]. The latter, EB-diol, can also be formed by a second oxidation of BD-diol [167,
171]. Analysis of the EB-diol-derived N7-(trihydroxybutanyl)-guanine (N7-THB-Gua)
adducts demonstrated that EB-diol is the main BD-derived epoxide in mice and rats (Figure
3)[68]. Most interestingly, while the dose-response for N7-HB-Gua (EB-derived) is linear, the
dose-response for N7-THB-Gua (EB-Diol derived) shows saturation at exposures greater then
62.5 ppm BD in rats after 20 days of exposure, and its slope of formation is reduced with higher
exposures in mice [68]. In addition, using N7-HB-Gua and N7-THB-Gua, it was shown that
mice form much more EB and EB-diol than rats, a finding that is consistent with the higher
susceptibility of mice to BD induced tumorigenesis.

BD species-dependent tumorigenesis is attributed to species-specific differences in BD
metabolism. The formation of N7-guanine adducts support the hypothesis that mice are more
susceptible because they are more efficient at BD oxidation. Molecular modeling of P450 2E1
also suggested significant species differences between mouse, rat, and human in BD oxidation
[172]. The species differences in formation of N7-HB-Gua, DEB-derived cross-link adducts
and N7-THB-Gua has been confirmed using the corresponding globin adducts hydroxybutenly-
valine (HB-Val), pyr-Val and trihydroxy-butanly–valine (THB-Val), suggesting that the
corresponding hemoglobin adducts are a good biomarker for formation of these reactive
metabolites [173,174]. Lastly it was shown that EB can bind to human P450 2E1 itself [175],
and may alter catalytic activity in a similar fashion as the mechanism-based inhibition by other
P450 substrates including ET [176-186]. Thus, monitoring N7-HB-Gua may provide a
biomarker for functional changes in the metabolic pathways, possibly due to alkylating
inactivation of important enzymes.

In summary, the studies with olefins described above clearly demonstrate that direct alkylating
agents produce a linear dose-response for N7-guanine adducts vs dose, confirming the validity
of N7-guanine adducts as a biomarker for internal dose. In contrast, adducts resulting from
metabolites of metabolically activated compounds show strong species differences and usually
exhibit supra-linear dose-response curves. This is primarily due to saturation of metabolic
activation or changes in detoxification pathways, which means that the N7-guanine adducts
are better dosimeters for internal dose than administered dose, especially if quantified in tissues
of interest. In chronic exposure situations, steady state levels are typically reached after 7-10
days for both olefins and their epoxide metabolites.

3 Formation of N7-guanine adducts in human specimens
Despite the ubiquitous nature of N7-guanine adducts, their application as a biomarker of
exposure in larger molecular epidemiology studies is not common practice. A review of the
literature demonstrated limited numbers of studies using N7-guanine adducts as biomarkers
for exposure to environmental or occupational pollutants. Furthermore, reported data are not
extensive and mostly contain small numbers of individuals per group.

Similar to the data from animal studies, the presence of N7-Me-Gua and other N7-guanine
adducts has been demonstrated ubiquitously in DNA from humans not known to be exposed
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to alkylating agents (Table 3) [146,187-196]. Most of these reports investigated DNA from
blood samples; either white blood cells (WBC) or individual blood cell types, and measured
N7-Me-Gua by 32P-postlabeling or HPLC-ECD. While this seems to be sufficient evidence
for the presence of N7-Me-Gua from endogenous sources in human DNA, it needs to be
mentioned that the numbers of subjects per group in most of these studies were relatively small
(≤20). The amount of N7-Me-Gua in controls, representing endogenous or background adducts,
were about half of the amounts reported for the exposed groups, which were primarily smokers.
Consequently, the statistical power of these studies is reduced because of the small number of
subjects and the limited difference between controls and exposed indviduals. Furthermore, it
is not possible to differentiate endogenous adducts from background adducts, e.g., formed from
potential environmental sources due to their indistinguishable chemical identity. Interestingly,
N7-Me-Gua amounts were 3-fold and 5-fold higher in tumor tissue compared to normal tissues
from cervical or bladder tissues, respectively [187,194]. In contrast, N7-Me-Gua amounts were
lower in colon tumor DNA compared to normal colon tissue [192]. The amounts of N7-Me-
Gua in all controls (representing endogenous background amounts) range from 0.8 to 13.5
adducts/107 nnt compared to 3.9 to 23.6 adducts/107 nnt in the exposed subjects from the
corresponding study groups. Evaluation of N7-Me-Gua amounts in lymphocyte DNA and solid
tissues suggest slightly higher amounts in solid tissues, however sample numbers are small
(Table 3).

Wu et al. reported mean endogenous amounts of 4.8 ± 3.1 N7-HE-Gua adducts / 107 nnt in
lymphocytes (n=23) of unexposed humans [128]. More recently, Yong et al. [143]
demonstrated the presence of N7-HE-Gua in granulocytes of hospital workers not known to
be exposed to sources of ET or EO [143]. The mean amount of N7-HE-Gua was 9.6 ± 5.8
adducts/ 107 nnt in subjects categorized as unexposed controls. The range of these amounts is
similar as reported previously for five control subjects [141]. These N7-HE-Gua background
amounts are believed to stem from EO that forms endogenously from ET derived from
environmental exposures such as vegetation, urban air, smoking, and various endogenous
metabolic processes [137,197-199]. Tompkins et al. report in this special issue evidence of
increased N7-HE-Gua in rat tissue due to oxidative stress [200]. H2O2 may catalize the
formation of ET from methionine, similar to the ET production in fruits and vegetables [201,
202]. The confirmed presence of background DNA alkylation (N7-Me-Gua and N7-HE-Gua)
from environmental and endogenous sources in humans is relevant for consideration in risk
assessments used to make regulatory decisions. No evidence for endogenous N7-HP-Gua and
N7-THB-Gua have been reported, although presence of hydroxypropyl-valine (HP-Val) and
THB-Val, the corresponding PO- and EB-diol-specific globin adducts, have been reported in
subjects or animals not exposed to known sources of propylene, BD or their epoxide
metabolites, PO and EB-diol, respectively [126,203,204]. This may suggest that additional
unknown endogenous N7-guanine adducts may exist that need to be considered.

4 Evidence for mutations resulting from N7-guanine adducts
4.1 N7-Me-Gua and N7-Et-Gua and mutagenesis in mammalian cells

Early efforts aimed to compare DNA alkylation with mutation frequency (MF) and mutation
spectra to identify adducts involved in mutagenesis. Beranek et al. reported a good correlation
between DNA methylation (N7-Me-Gua and O6-Me-Gua) and mutation frequency (MF) in the
HPRT gene in CHO cells after treatment with MMS or MNU [205]. In contrast, the formation
of N7-Et-Gua did not correlate with mutation frequency in HPRT or Na-K-ATPase genes in
CHO cells treated with diethylsulfate (DES), EMS, or ENU [206]. The formation of N7-Et-
Gua was linear with exposures for each ethylating agent, but the slopes were significantly
different. In contrast to the N7-Et-Gua, the amounts of O6-Et-Gua adducts induced by all three
ethylating agents correlated with MF in the HPRT gene, while the MF in the Na-K-ATPase
gene correlated only with EMS and ENU, and not with DES [206]. This suggests that such
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correlation studies may be inadequate to analyze multi-component phenomena like
mutagenesis, and that DES induces mutations by a mechanism not involving N7-Et-Gua
adducts.

Methyl methanesulfonate (MMS) predominantly produces N7-Me-Gua (∼92%) in DNA and
a very low percentage of mutagenic O6-Me-Gua (∼0.3%) [21]. In Chinese hamster ovary
(CHO) cells exposed to MMS at 0.75 mM for 1 hour, the majority of HPRT mutations were
GC to AT transitions [207], with no increase in other types of mutations. This type of mutation
is also found in other Chinese hamster cell lines following exposure to MMS either at 2 mM
for 30 minutes or at 1 mM for 1 hour [208,209]. In these three studies, MMS appears to
introduce 750 to 1000 N7-Me-Gua/107 nnt, 0.8 to 1.0 N3-Me-dAde/107 nnt, and 0.027-0.036
O6-Me-Gua/ 107 nnt roughly estimated from our data and from the ratio of N7-Me-Gua/N3-
Me-Ade/O6-Me-Gua = 83/8.7/0.3 [21]. It was concluded that this specific GC to AT transition
is most likely caused by mispairing of O6-Me-Gua with thymine during replication and cell
division [210,211]. These results strongly suggest that AP sites likely formed by spontaneous
depurination of N7-Me-Gua do not contribute to the induction of HPRT mutations in these
MMS-exposed cells. Interestingly, preliminary results from our lab show that an imbalance of
base excision repair (BER) repair in CHO AA8 cells may start at exposure to 1.9 mM MMS
for 1 hour as determined by the extent of depletion of intracellular NAD(P)H in cells (Figure
5) (Pachkowski, unpublished data). Therefore, if the N7-Me-Gua are 1000 lesions/107 nnt or
less and N3-Me-Ade are 100 lesions/107 nnt or less, the increase in HPRT mutations in cells
exposed to MMS can all be accounted for by induction of O6-Me-Gua (0.036 lesions/107 nnt
or less) and are not due to formation of AP sites as BER intermediates.

4.2 N7-HE-Gua and N7-HP-Gua and mutagenesis
The formation of N7-HP-Gua saturates at levels of 6.5 adducts /107 nnt in rats after 20 days of
exposure to propylene (Table 2, Figure 4) [149]. This amount is 15-fold lower than the
molecular dose associated with induction of mutations in Drosophila [212]. In that study, male
Drosophila exposed to PO for 24 h did not show a significant increase in mutations until the
internal dose, measured as N7-HP-Gua adducts, reached approximately 100 adducts /107 nnt.
Since no other adducts were measured, these data do not demonstrate that N7-HP-Gua was the
causal adduct. Together, these reports provide mechanistic evidence that propylene is not
mutagenic. Pottenger et al. [149] demonstrated that metabolic activation of propylene does not
produce sufficient numbers of DNA adducts in mice or rats, compared to that associated with
mutagenesis in Drosophila [212]. Furthermore, the Drosophila system most likely over
estimates the mutagenic potency of PO since cell proliferation is much faster in the
Drosophila gonadocytes, leaving less time for DNA repair compared to mammalian systems.

The range of N7-guanine adducts of 0.8-23 adducts /107 nnt in humans, summarized in Table
3, are significantly below the N7-HP-Gua adducts shown to correlate with mutations in
Drosophila. In contrast, significant increases in mutations in Drosophila after EO exposure
were accompanied by 30 N7-HE-Gua/ 107 nnt. However NER repair decreased the EO-induced
mutation response in Drosophila, suggesting involvement of adducts other then N7-HE-Gua
in mutagenesis [212]. This adduct amount is close to the amounts observed in hospital workers
exposed to EO as a sterilant and only 3 to 6-times higher than the background level of
endogenous N7-HE-Gua [143]. These data may suggest that the large background of
endogenous DNA adducts, derived from endogenous metabolites arising from oxidative stress
and endogenous ET may significantly contribute to background mutagenesis [200,213]. This
is an area that clearly needs additional research.
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4.3 AP sites derived from N7-guanine adducts
Apurinic sites (AP) are the most common form of endogenous DNA damage and are the product
of spontaneous depurination, oxidative damage, and the result of DNA repair. The notion that
N7-guanine adducts convert to AP sites and subsequently cause mutations was investigated by
Rusyn et al. [129]. It was demonstrated that AP sites are not increased following repeated
exposure to ET or EO; the presence of N7-HE-Gua indicates that AP sites would be formed
by spontaneous depurinations, so they must be efficiently repaired so that they do not cause
any increase over the endogenous level [129]. In addition, the HPRT mutation frequency in
mice and rats, and micronuclei in polychromatic or normochromatic erythrocytes (MNPCE)
in rats, were not increased after repeated exposures to 3000 ppm ET, while the N7-HE-Gua
adducts significantly increased over endogenous levels and their formation saturated at
exposures of 3000 ppm ET. This exposure resulted in 6 adducts /107 nnt (Table 2) [33]. In
contrast, exposures of 100 ppm EO significantly increased HPRT mutation frequency and
MNPCE [33,214], but still did not result in accumulation of AP sites [129]. The number of AP
sites ranged from 30 to 70 AP sites /107 nnt for controls, ET-, and EO-exposed rats, while the
number of N7-HE-Gua increased more than 10-fold from ∼6 to 64 /107 nnt in rats exposed to
0 or 100 ppm EO for 4 weeks, respectively [129]. The authors concluded that the mutagenesis
from EO exposures most likely resulted from minor promutagenic adducts, rather than AP sites
or N7-HE-Gua. Measurement of AP sites after neutral thermal hydrolysis of DNA confirmed
that EO produced heat labile lesions as a result of enhanced depurination. Heat-treated spleen
DNA had a 5-fold increase in AP sites after EO exposure [129].

Similarly, PO exposures did not increase AP sites in nasal epithelium, the target tissue for PO
carcinogenesis, despite the high internal dose of N7-HP-Gua, with up to ∼1000 N7-HP-Gua /
107 nnt in rats exposed to 500 ppm PO for 4 weeks [215]. While the number of adducts was
much lower than that found after high PO exposures, 4 week inhalation exposures to 10,000
ppm propylene did not increase the mutation frequency in the HPRT gene in spleenocytes
[149].

AP sites are also intermediates of BER, however, formation from enzymatic removal of N7-
guanine adducts is minimal, compared to those arising from spontaneous depurination. This
area is not fully understood, however, enzymatic removal has been shown to reduce the half-
lives of some N7-guanine adducts to minutes instead of hours [216-218]. The bacterial enzyme
AlkA has been shown to remove a wide variety of damaged purine and pyrimidine bases,
including N7-Me-Gua [219-221]. Mammalian cells do not possess a homologue of AlkA, but
AAG, a member of the N-methylpurine DNA glycosylase family, removes a broad spectrum
of modified purines from DNA including N7-Me-Gua [222,223]. Additional studies on
knockout animals will be needed to demonstrate that DNA repair plays a significant role in
removal of N7-guanine adducts, compared to chemical depurination.

4.4 Mutations induced by BER intermediates in mammalian cells
To characterize the mutagenic potential of AP sites, a BER intermediate in mammalian cells,
an SV-40-derived shuttle vector with a single lesion of either an abasic (AP) site or 5′-
deoxyribose-5-phosphate (5′dRp: 5′-cleaved AP sites), at a defined position, was transfected
into monkey kidney COS7 cells [224]. The mutation spectrum revealed that preferential
incorporation opposite the AP sites is dA (48%) > dC (39%) > dG (13%) ≫ dT (none). Thus,
if either dA or dC is incorporated opposite the AP sites derived from depurination of N7-
guanine adducts, GC->TA transversions are expected as the primary mutation induced by AP
sites. In addition, a small proportion (16%) of deletions was also observed [224]. During BER,
the AP sites are converted into single strand breaks (SSB) by AP endonuclease 1, which leads
to the formation of 5′dRp and 3′ hydroxyl termini. In the same vector system, the mutation
analysis showed that preferential incorporation opposite the 5′-dRp was dA (46%) > dG (41%)
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≫ dC (13%) ≫ dT (none). As with AP sites, a small proportion (9%) of deletions was observed.
Therefore, N7-guanine adducts are expected to cause G->T transversions, G->C transversions,
and deletions if they result from products of BER intermediates 5′dRp and AP sites. In contrast,
the nitrosamine DMN and ENU induce mainly G->A transition mutations in the BigBlue
transgenenic mice model [225-228]. In CHO cells, MMS primarily increases GC to AT
transitions in the HPRT gene [207]. In splenic T-lymphocytes of mice, EO induced four A:T
transversions, three A:T transitions, two G:C transversions, and two G:C transitions [229]. In
in vitro and in vivo test systems, BD and its metabolites, EB, DEB, and EB-diol induce
predominantly deletions and base substitutions at A:T [230-232]. Consequently, the mutation
spectra are quite different for compounds known to form N7-guanine adducts that can convert
to AP sites, than the mutation spectrum produced by AP sites.

4.5 Ring-opened formamidopyrimidine adducts (FAPy adducts)
N7-guanine adducts are susceptible to attack by hydroxide on the C8 carbon and subsequent
ring opening to form 5-N-alkyl-2,6,-diamino-4-hydroxyformamidopyrimidine (Alkyl-FAPy)
[233-241]. Early studies [233,239] proposed placement of a formyl group (-CHO) on the N7-
position and this has been confirmed by NMR examination of 5-N-methyl-2,6,-diamino-4-
hydroxyformamidopyrimidine (Me-FAPy) and 5-N-(9-hydroxyaflatoxin)-2,6,-diamino-4-
hydroxyformamidopyrimidine (AFB1-FAPy) [242,243]. During the ring opening, the negative
charge on the N9-position is delocalized to an α-β-unsaturated carbonyl by the pyrimidine ring,
subsequently stabilizing the glycosidic bond. This has important biological implications since,
unlike the N7-guanine adduct, the Alkyl-FAPy will not spontaneously depurinate and be lost
from DNA. In fact it has been shown that the Me-FAPy was more persistent in rat bladder
epithelium than O6-Me-Gua after 21 days and accounted for approximately 72% of the total
MNU-derived adducts [244]. In rat liver Me-FAPy was the main persistent adduct after DMN
and SDMH treatment [245]. There is an urgent need for more data on the amount of Me-FAPy
and other FAPy adducts in cells and tissues in exposed and control animals.

For example, aflatoxin, one of the most potent liver carcinogens, is metabolically activated to
the 8,9-epoxide which forms primarily N7-AFB1-Gua [246-252]. The N7-AFB1-Gua converts
to secondary lesions including AP sites and AFB1-FAPy. Compared to N7-AFB1-Gua,
AFB1-FAPy is highly persistent in rat liver DNA, reaching maximum amounts 2 weeks after
exposure [249]. While the structures of N7-AFB1-Gua and AFB1-FAPy are similar, they alter
the secondary DNA structure differently [242,253]. The increased chemical stability
(persistence) and altered secondary DNA structure are believed to be responsible for the much
greater mutagenicity of AFB1-FAPy compared to N7-AFB1-Gua. In fact, N7-AFB1-Gua and/
or AFB1-FAPy cause primarily G to T mutations, consistent with the observed G to T mutations
in codon 249 of the p53 tumor suppressor gene in 50% of hepatocellular carcinomas and in
aflatoxin-treated human hepatocytes cultures [254,255]. Additionally, aflatoxin-induced G to
T mutations in the ras oncogene are assumed to be important in tumor progression
[256-258]. Although both N7-AFB1-Gua and AFB1-FAPy cause the types of mutation
consistent with the ones observed in aflatoxin-exposed biological systems, the MF is 6-fold
lower (4% vs 32%) for N7-AFB1-Gua compared to AFB1-Fapy, respectively [259,260].
Whether the N7-AFB1-Gua converted to AFB1-FAPy during the mutation assay was not
determined, however, if this were the case, the mutagenic potency for the N7-AFB1-Gua would
be even less, making the AFB1-FAPy even more important. This suggests that the AFB1-FAPy,
and potentially other ring-opened N7-guanine adducts, may be the ultimate lesions responsible
for mutagenesis and genotoxicity of aflatoxin and other carcinogens. Unfortunately, there are
no data on the formation and persistence of other FAPy adducts and future investigations of
N7-guanine adducts should include studies on the ring-opened FAPy derivates.
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5 Conclusions
After decades of research on N7-guanine adducts in animals and humans, it has become clear
that specific N7-guanine adducts are excellent biomarkers for internal exposure when they are
determined in tissue DNA. In contrast, N7-guanine adducts that can be formed from
endogenous or background sources are less reliable for estimating low external exposures.
While the presence of N7-guanine adducts clearly demonstrate exposure to the tissues or cells,
subsequent interpretations and conclusions need to consider that the value of this endpoint is
complicated by endogenous and background formation, and can vary according to species, age,
duration of exposure, and tissue. From our review of the literature, we did not find any evidence
that N7-guanine adducts can be used beyond confirmation of exposure to the target tissue and
demonstration of the molecular dose. This is especially important for translation to human
studies, since most studies consist of a single time point analysis of an individual adduct. If
the goal is to confirm exposure or identify factors that increase endogenous formation, analysis
of N7-guanine adducts in DNA may be sufficient. Consequently, values of N7-guanine adducts
in human urine (not reviewed herein) may be sufficient to identify exposures or factors
increasing endogenous formation between population groups, even if no information about the
site of formation will be available [246,261,262]. Importantly, a correlation with other
endpoints like chromosome aberrations or mutation frequency cannot be expected to be
definitive, since such biomarkers of effect are not chemical-specific and are products of
complex biological processes that may only partly (or even not at all) involve N7-guanine
adducts.

The main challenge in studying the mutagenic potency of N7-guanine adducts is that their
chemical instability has prevented systematic investigation of the lesions in site-directed
mutagenesis studies. In fact, oligodeoxynucleotides containing N7-Me-Gua have been
prepared, using DNA polymerase and structural analysis by NMR revealed no disturbance of
the b-DNA helix [263]. However, since N7-guanine adducts are not considered stable enough
to undergo site-directed mutagenesis studies, an alternative would be to stabilize the glycosidic
bond by either substitution of guanine with 2-amino-8,9-dihydro-1H-purin-6(7H)-one or by
incorporation of a fluorine at the 2′-position of the 2′deoxyribose moiety as recently reported
by Lee et al. [264]. The ring opened N7-Me-FAPy adduct of N7-Me-Gua have been shown to
block DNA polymerase in vitro [265,266] but its relevance in vivo needs to be determined.
Finally, the formation of N7-guanine adducts is often accompanied by formation of other
adducts (e.g., O6-Me-Gua) that are known to be highly mutagenic lesions. Mechanistically,
the lack of mutagenicity is linked to the fact that the N7-position does not participate in
hydrogen bonding in the DNA double helix, unlike the N1, N2, or O6-positions of Gua [2].

It is noteworthy that covalent binding to DNA and the ability to form N7-guanine adducts alone
has long been considered evidence of genotoxicity for several drugs and chemicals [267].
Conversely, N7-guanine adducts easily depurinate to produce AP sites, however, these lesions
are the most common endogenous DNA damage, and their number does not appear to increase
even with extremely high exposures to alkylating agents. Therefore, one needs to be cautious
in classifying compounds and drugs based on formation of N7-guanine adducts alone. This
becomes very important for risk assessment of low chronic exposures, when data are limited
to high and single dose exposures. The default is to assume a linear dose-response to zero and
subsequent extrapolation of the DNA damage data from high to low dose. However, examples
have been reported that show that at low exposures, biological processes like mutagenesis reach
a background that is much different in slope than N7-guanine adducts [27,200]. It was
suggested that these background mutations are driven by endogenous processes rather than by
external exposure. For example, using [13C]MMS for cell treatment and mass spectrometry
quantition of [13C]N7-Me-Gua and N7-Me-Gua, Swenberg et al. demonstrated that the adduct
formation by MMS from exogenous sources is linear towards zero, while the dose-response
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for mutation frequency follows a “hockeystick” threshold dose-response (Figure 6)[27].
Similar data have also been presented for EO, EMS, and acrylamide [27,200,268]. Based on
the information presented in Section 4, it is very unlikely that exposures resulting in elevated
amounts of N7-guanine adducts are sufficient to induce mutations, since pro-mutagenic lesions,
such as O6-guanine adducts, will also increase and are expected to drive mutagenesis.

A careful review of the literature related to N7-guanine adducts revealed that there is little
evidence that N7-guanine adducts cause mutations. In addition, there is mounting evidence
that they do not cause mutations, since they do not participate in hydrogen bonding and easily
depurinate. In addition, formation of N7-guanine adducts is often accompanied by the
formation of other adducts, known to be mutagenic, and therefore it is difficult to credit
mutation events to N7-guanine adducts. As discussed in detail before, the relative ratio between
N7-guanine adducts and other adducts (e.g., O6-alkylguanine) is dependent upon the chemical
and modified by species, strain, tissue, or cell types, differences in activation, and differences
in DNA-repair. Consequently, the formation of N7-guanine adducts cannot be used in isolation
as a quantitative biomarker for promutagenic DNA lesions, mutagenic response or as a
surrogate for other biological processes.
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Abbreviations
AFB1-FAPy  

5-N-(9-hydroxyaflatoxin)-2,6,-diamino-4-hydroxyformamidopyrimidine

Alkyl-FAPy  
5-N-alkyl-2,6,-diamino-4-hydroxyformamidopyrimidine

AGE  
allyl glycidyl ether

AP-sites  
apurinic sites

BER  
base excision repair

bisN7-Gua-BD-diol 
1,4-bis(guan-7-yl)-2,3-butanediol

DEB  
1,2;3,4-diepoxybutane

DEN  
diethylnitrosamine

DES  
diethylsulfate

EB  
1,2-epoxy-3-butene

EB-diol  
1,2-epoxy-3,4-butanediol

ECH  
epichlorohydrin

EMS  
ethylmethanesulfonate

ENU  
ethylnitrosourea

EO  
ethylene oxide

ET  
ethylene
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HENU  
1-(2-hydroxyethyl)-1-nitrosourea

HPLC-ECD  
High pressure liquid chromatography with electro chemical detection

ISB  
Immunoslot blot

KC  
Kupffer cells

LC-MS/MS  
Liquid chromatography tandem mass spectrometry

Me-FAPy  
5-N-methyl-2,6,-diamino-4-hydroxyformamidopyrimidine

MF  
mutation frequency

MMS  
methylmethanesulfonate

MN  
micronucleus

MNU  
N-methyl-N-nitrosourea

N7-AFB1-Gua 
N7-(9-hydroxyaflatoxin)-guanine

N7-Et-Gua  
N7-ethyl-guanine

N7-Gua-N1-Ade-BD-diol 
1-(guan-7-yl)-4-(aden-1-yl)-2,3-butanediol

N7-HB-Gua  
N7-hydroxybutenly-guanine

N7-HE-Gua  
N7-hydroxyethyl-guanine

N7-HMGSH-Gua 
S-[1-(hydroxymethyl)-2-(N7-guanyl)ethyl]-glutathione

N7-HP-Gua  
N7-hydroxypropyl-guanine

N7-Me-Gua  
N7-methyl-guanine

N7-THB-Gua 
N7-trihydroxybutanly-guanine

nnt  
normal nucleotides
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NPC  
non-parenchymal cells

NS  
non smokers

O2-Et-Thy  
O2-ethyl-thymidine

O4-Et-Thy  
O4-ethyl-thymidine

O6-Et-Gua  
O6-ethyl-guanine

O6-Me-Gua  
O6-methyl-guanine

O6MT  
O6-methylguanine DNA-methyltransferase

32P  
32P-postlabeling

32P-AEC  
32P-postlabeling anion exchange chromatography

PO  
propylene oxide

S  
smokers

SDMH  
1,2-dimethylhydrazine

SEC  
sinusoidal endothelia cells

SO  
styrene oxide

SSB  
single strand breaks

TCP  
1,2,3-Trichloropropane

THB-Val  
trihydroxybutanly–valine
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Figure 1.
Guanine and adenine methylation by MNU relative to N7-Me-Gua formation (100%).
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Figure 2.
Formation of N7-guanine adducts form diazonium ion metabolites of NNK. NNK is
metabolized by P450–catalyzed α-hydroxylation, producing hydroxymethyl NNK (2) and α-
methylenehydroxy NNK (3), which spontaneously decompose to their corresponding
diazonium ions (4,5), and keto aldehyde and formaldehyde, respectively. The highly reactive
diazonium ions (4,5) subsequently form DNA adducts including N7-guanine adducts [82].
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Figure 3.
Example of olefin metabolism and formation of N7-guanine adducts illustrated on BD. BD is
metabolized by P450s to several epoxides that form DNA adducts including N7-guanine
adducts. Shown are N7-HB-Gua, bisN7-Gua-BD-diol and THB-Gua as representative N7-
guanine adducts formed from EB, DEB and EB-diol, respectively.
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Figure 4.
Comparison of the dose-responses for formation of N7-hydroxyalkyl-Gua adducts following
repeated exposure to the olefins ethylene (A) and propylene (C), and their epoxy metabolites
EO (B) and PO (C), respectively. Formation of N7-guanine adducts is much more efficient for
the epoxide metabolite compared to the parent olefin. Data are from rat lung after 20 days
inhalation exposures to olefins and their epoxides [33,127,133,149].
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Figure 5.
Determination of the number of N7-Me-Gua adducts present with an imbalance in BER. NAD
(P)H values for CHO AA8 cells were plotted against the corresponding cumulative dose (the
product of mM MMS and exposure duration). The X value corresponding to the intersection
of the resulting linear regression line and y = 100 (i.e., 100% NAD(P)H relative to controls)
was determined to be the start of an imbalance in BER. In the case of AA8 cells, exposure to
1.96 mM MMS for 1 hr initiated the imbalance of BER (unpublished results from Pachkowski
et al).
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Figure 6.
Formation of endogenous and exogenous N7-Me-Gua in AHH-1 cells exposed to [13C2] MMS
for 24 h (Modified from Swenberg et al [27]). Exogenous N7-Me-Gua adducts were
distinguished form endogenous N7-Me-Gua base on mass differences due to stable isotope
labeled [13C2] MMS used for cell treatment. Adduct amounts were compared to mutation
frequency in HPRT gene as reported by Doak et al. [283].
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Table 2
Dose response of some N7-guanine adducts in rats exposed to representative olefins in rat liver

Compound Dose response Max adduct (adducts / 107) Adduct Reference

Ethylene Saturates at ∼7 adduct/ 107 nnt N7-HE-Gua [33]

Ethylene oxide Linear up to 463.8 adducts / 107 nnt N7-HE-Gua [129,133]

Propylene Saturates at 6.5 adducts / 107 nnt N7-HP-Gua [149]

Propylene oxide Linear up to 915 adducts / 107 nnt N7-HP-Gua [127]

Butadiene Saturates at 23 adducts / 107 nnt N7-THB-Gua [68]
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Table 3
Amounts of N7-guanine adducts in human DNA

Adduct/ Tissue Group Method N7-Gua adducts/107 nnt
(n)

Ref

N7-Me-Gua

WBC Age<50 32P-HPLC 1.0 ± 0.9 (14) [188]

WBC Age >80 32P-HPLC 0.8 ± 0.4 (20) [188]

WBC NS 32P-HPLC 2.5 [191]

WBC NS 32P-AEC 2.3 (6) [190]

WBC S 32P-AEC 11.5 (11) [190]

WBC NS 32P-AEC 3.4 (10) [189]

WBC S 32P-AEC 6.9 (10) [189]

Granulocytes NS 32P-AEC 2.8 (10) [189]

Granulocytes S 32P-AEC 4.7 (10) [189]

Lymphocytes NS 32P-AEC 13.5 (10) [189]

Lymphocytes S 32P-AEC 23.6 (10) [189]

Lymphocytes 32P-HPLC 6.94 (5) [142]

Lung Lung cancer patients 32P-HPLC 6.3 ± 1.9 (5) [146]

Bronchial tissue Lung cancer patients 32P-HPLC 6.1 ± 1.5 (5) [146]

Lymphocytes Lung cancer patients 32P-HPLC 3.3 ± 0.9 (5) [146]

Lung 32P-HPLC 39.4 (5) [276]

Lung 32P-HPLC 2.7 (10) [142]

Bronchial tissue NS 32P-HPLC 4.7 (6) [190]

Bronchial tissue S 32P-HPLC 17.3 (11) [190]

Cervical cytology NS ISB 0.82b (17) [187]

Cervical cytology S ISB 2.5b (22) [187]

lymphocytes NS HPLC-ECD 4.5 (8) [193]

lymphocytes S HPLC-ECD 3.9 (14) [193]

Colon mucosa ISB & 32P 1.7b (6) [192]

Rectal mucosa ISB & 32P 0.7b (5) [192]

Bronchial Lavage 11.9 [277]

Bronchial Lavage Ex-smoker 32P-HPLC 9.99 ± 20.3 (10) [195]

Bronchial Lavage Ex-Smokers 32P-HPLC 5.59 ± 15.6 (28) [195]

Bronchial Lavage Never smokers 32P-HPLC 0.58 ± 0.5 (6) [195]

Bladder Tumor 0.1 [194]

0.5 [194]

Lung 32P 2.5 (80) [278]

Lung 32P-HPLC 2.74 (10) [142]

Lung 32P 2.11 (90) [142]

N7-alkyl-Gua

Larynx tumor NS 32P 11.3 23.2 (5) [196]

Larynx tumor FS 32P 23.2 ± 24.1(34) [196]

Larynx tumor S 32P 61.8 ± 84.5 (5) [196]

Larynx non-tumor NS 32P 8.3 ± 6.0 (3) [196]
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Adduct/ Tissue Group Method N7-Gua adducts/107 nnt
(n)

Ref

Larynx non-tumor FS 32P 21.1 ±18.7 (25) [196]

Larynx non-tumor S 32P 36.3 ± 20.2 (6) [196]

N7-Me-Gua N7-HE-Gua

WBC NS 32P-HPLC 2.9 ± 0.9 (8) [146]

WBC S 32P-HPLC 3.9 ± 0.8 (11) [146]

Lung NS 32P-HPLC 4.0 [3.6, 4.4](2) [146]

Lung S 32P-HPLC 6.5 ± 2.2 (7) [146]

N7-Et-Gua

Liver 0.084(25) [279]

Lymphocytes 32P-HPLC 1.0 (5) [142]

Lung 32P-HPLC 1.46 (10) [142]

Lung 32P 1.6 (75) [278]

N7-HE-Gua

WBC Controls subjects HPLC-UV 10.5 ± 4.8a (5) [141]

WBC Immuno blot 0.65 [280]

WBC S Immuno blot 0.11 [280]

WBC NS Immuno blot 0.095 [280]

lymphocytes Control subjects GC-HRMS 4.85± 3.1b (23) [128]

Granolocytes Hospital Workers GC-MS 9.6 ± 5.8 (6) [143]

Granolocytes Non exposed

Granolocytes Hospital Workers GC-MS 13.6 ± 3.9(38) [143]

Granolocytes <32 ppm-hr ET

Granolocytes Hospital Workers GC-MS 22.7 ± 11.7 (20) [143]

Granolocytes >32 ppm-hr Et

Lung Lung cancer patients 32P-HPLC 0.8 ± 0.3 (5) [146]

Bronchial tissue Lung cancer patients 32P-HPLC 1.0 ± 0.8 (5) [146]

Lymphocytes Lung cancer patients 32P-HPLC 0.6 ± 0.2 (5) [146]

N7-HOEt-Gua

brain tissue Non treated HPLC-ECD 1.15 ± 0.63 (6)b [281]

Brain tissues distal DTI-015 treated HPLC-ECD 1.6 (6)b [281]

Brain tissues medial DTI-015 treated HPLC-ECD 5.1 (6)b [281]

brain tissues adjacent DTI-015 treated HPLC-ECD 721 (6)b [281]

RAL Non cancer 32P 2.9 (0.6-11.5) [282]

RAL Cholangiocarcinoma 32P 7.2 (1.8-48.4) [282]

RAL Tumor adjacent 32P 8.6 (1.2-51.6) [282]

a
Adduct unit was converted using following calculation: 1 fmol/ μg DNA = 3.25 adducts/ 107 nnt

b
Adduct unit was converted using following calculation: 1 pmol/ μmol Guanine = 1.95 adducts/ 107 nnt

NS; non smokers, S; smokers, ISB; Immunoslot blot, 32P; 32P-postlabeling, 32P-AEC; 32P-postlabeling anion exchange chromatography
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