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7000 Mons, Belgium

Correspondence should be addressed to Mondher El Jaziri; jaziri@ulb.ac.be

Received 29 June 2014; Revised 3 September 2014; Accepted 7 September 2014

Academic Editor: Nikos Chorianopoulos

Copyright © 2015 Tsiry Rasamiravaka et al. 
is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

P. aeruginosa is an opportunistic pathogenic bacterium responsible for both acute and chronic infections. Beyond its natural
resistance to many drugs, its ability to form bio�lm, a complex biological system, renders ine�ective the clearance by immune
defense systems and antibiotherapy.
e objective of this report is to provide an overview (i) on P. aeruginosa bio�lm lifestyle cycle,
(ii) on the main key actors relevant in the regulation of bio�lm formation by P. aeruginosa including QS systems, GacS/GacA and
RetS/LadS two-component systems and C-di-GMP-dependent polysaccharides biosynthesis, and (iii) �nally on reported natural
and synthetic products that interfere with control mechanisms of bio�lm formation by P. aeruginosa without a�ecting directly
bacterial viability. Concluding remarks focus on perspectives to consider bio�lm lifestyle as a target for eradication of resistant
infections caused by P. aeruginosa.

1. Introduction


e misuse and abuse of antibiotics are recognized to create
selective pressure, resulting in the widespread development
of resistant bacterial strains [1, 2]. Antibiotics are also known
to kill “good/bene�cial” indigenous bacteria, whichmay have
protective role against pathogenic bacteria [3, 4]. Another
important point to consider is that antibiotics have been
found to be less e�ective in bio�lm-growing bacteria [5].

Facing these limitations of antibiotics, there is an increas-
ing need for the discovery and the development of antimi-
crobial agents that present novel or unexplored properties
to e
ciently control and manage bacterial infectious dis-
eases [6]. Inhibition of bacterial virulence and/or bio�lm
formation by targeting nonmicrobicidal mechanisms are
examples of increasingly explored antipathogenic approaches
[7–9]. Among opportunistic pathogenic bacteria, P. aerug-
inosa, which produces several virulence factors, is known
to be an important human and plant pathogen, responsible
for various infections, particularly in immunocompromised

persons [10]. Besides this, the remarkable ability of P. aerugi-
nosa to form bio�lms in many environments renders antibi-
otic treatments ine
cient and therefore promotes chronic
infectious diseases [5, 11].


ree global nonmicrobicidal strategies have been pro-
posed to struggle against pathogenic bacteria with bio�lm
formation ability by (i) avoiding microbial attachment to a
surface; (ii) disrupting bio�lm development and/or a�ecting
bio�lm architecture in order to enhance the penetration of
antimicrobials; and (iii) a�ecting bio�lm maturation and/or
inducing its dispersion and degradation [8, 12, 13].


e present review covers the scope of natural com-
pounds from both prokaryote and eukaryote organisms that
have been identi�ed to disrupt bio�lm lifestyle cycle in
P. aeruginosa without a�ecting directly bacterial viability.
As a prerequisite and for a better understanding of the
proposed mechanisms of action of some of the identi�ed
compounds, relevant key molecular actors in P. aeruginosa
bio�lm formation and its regulation, such as the chemical
signalization machinery involved in bacteria-environment
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Figure 1: Bio�lm lifestyle cycle of P. aeruginosa PAO1 grown in glucose minimal media. In stage I, planktonic bacteria initiate attachment to
an abiotic surface, which becomes irreversible in stage II. Stage III corresponds to microcolony formation. Stage IV corresponds to bio�lm
maturation and growth of the three-dimensional community. Dispersion occurs in stage V and planktonic bacteria that are released from
the bio�lm to colonize other sites. 
e bio�lm formation by P. aeruginosa PAO1 was revealed with Syto9 and visualized in Leica DM IRE2
inverted �uorescence microscope with 400x magni�cation at 2 h (Stage I), 8 h (Stage II), 14 h (Stage III), 1 to 4 days (Stage IV), and 5 days
(Stage V). Images represent a 250 × 250-�m �eld.

interaction, including quorum sensing (QS) pathways, will be
summarized.

2. Biofilm Lifestyle Cycle of P. aeruginosa

Bio�lm formation is an endless cycle, in which organized
communities of bacteria are encased in a matrix of extra-
cellular polymeric substances (EPS) that hold microbial
cells together to a surface [14, 15]; these are thought to be
determinant in 65–80% of all microbial infections [16–18]. In
this microscopic world, bio�lms are metaphorically called a
“city of microbes” [19, 20] with EPS, which represents 85% of
total bio�lm biomass, as “house of the bio�lm cells” [21]. EPS
is composed mainly of biomolecules, exopolysaccharides,
extracellular DNA (eDNA), and polypeptides that form

a highly hydrated polarmixture that contributes to the overall
structural sca�old and architecture of the bio�lm [22–24].

Depending on P. aeruginosa strains and/or nutritional
conditions, di�erent bio�lm phenotypes can be developed
[25]. For instance, in glucose minimal media, bio�lm lifestyle
cycle of P. aeruginosa PAO1 can be subdivided into �ve
major phenotypic steps (Figure 1). 
e process begins by the
reversible adhesion of planktonic bacteria onto a surface suit-
able for growth (Figure 1(a), Stage I), followed by irreversible
attachment of bacteria, which therea�er form microcolonies
in EPS matrix (Figure 1(b), Stage II). Progressively, bacterial
microcolonies expand and their con�uences lead to a more
structured phenotype with noncolonized space (Figure 1(c),
Stage III). 
en, noncolonized spaces are �lled with bacteria,
which �nally cover the entire surface (Figure 1(d), Stage IV).
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Meanwhile, the growth of three-dimensional communities is
observed (Figure 1, Stages III and IV). Finally, bacteria dis-
perse from the sessile structure and reenter in planktonic state
to spread and colonize other surfaces [15, 26] (Figure 1(e),
Stage V).

P. aeruginosa produces at least three polysaccharides
(alginate, Pel, and Psl) that are determinant for the stability
of the bio�lm structure [27, 28]. Mucoid and nonmucoid P.
aeruginosa strains di�er by the qualitative composition of
their polysaccharides in the bio�lm matrix, predominantly
alginate or Psl/Pel, respectively [29–31]. Alginate, a linear
unbranched polymer composed of D-mannuronic acid and
L-guluronic acid [32], contributes to the structural stability
and protection of bio�lms as well as to the retention of
water and nutrients [33]. 
e Pel polysaccharide is mainly a
glucose-rich matrix material, with still unclari�ed composi-
tion [34, 35], while Psl comprises a repeating pentasaccharide
consisting of D-mannose, L-rhamnose, and D-glucose [36].
Pel and Psl can serve as a primary structure sca�old for
bio�lm development and are involved at early stages of
bio�lm formation [30, 37, 38].

eDNA constitutes an important functional component of
P. aeruginosa bio�lm matrix; indeed (i) P. aeruginosa bio�lm
formation is prevented by exposition to DNase I [39]; (ii)
bio�lms that are de�cient in eDNA have been shown to be
more sensitive to the detergent sodium dodecyl sulfate [40];
(iii) eDNA facilitates the twitchingmotility-mediated bio�lm
expansion by maintaining coherent cell alignments [41]; (iv)
eDNA has been proposed to play an important role in the
initial and early development of P. aeruginosa bio�lms as a
cell-to-cell interconnecting compound [24, 42, 43]; and (v)
�nally, eDNAconstitutes a nutrient source for bacteria during
starvation [44, 45].

Beyond their role in bacterial motilities [46–48], P.
aeruginosa extracellular appendages �agella, type IV pili and
cup �mbriae, are also considered to be matrix components
that play adhesive roles in the cell-to-surface interactions
(irreversible attachment) as well as in microcolony formation
in bio�lms. Mutants defective in �agellar-mediated motility
and mutants defective in biogenesis of the polar-localized
type IV pili do not develop microcolonies compared to the
wild type strains [49–51].

3. Overview of Global Regulating
Systems Involved in P. aeruginosa
Biofilm Formation


e complex regulation of bio�lm formation involves multi-
ple bacterial machineries, including the QS systems and the
two-component regulatory systems that both interact mainly
with EPS production [52]. De�ciency in the network regula-
tion required for bio�lm matrix formation e�ectively results
in the alteration of the bio�lm structure and architecture and,
therefore, of its protective role. 
e main key actors relevant
in the regulation of bio�lm formation by P. aeruginosa are
summarized in Figure 2.

3.1. QS Mechanisms and Bio�lm Formation. QS is a cell-to-
cell communication used by many bacteria to detect their
population density by producing and perceiving di�usible
signal molecules that coordinate virulence factors produc-
tion, motility, and bio�lm formation [53, 54]. P. aeruginosa
possesses two main QS systems (las and rhl) which drive
the production (throughout synthases LasI and RhlI) and the
perception (by the transcription factors LasR and RhlR) of
the autoinducer signaling molecules N-(3-oxododecanoyl)-
L-homoserine lactone (3-oxo-C12-HSL) and N-butanoyl-
L-homoserine lactone (C4-HSL) (Figure 3(a)), respectively
[54]. A third QS system, based on quinolone signals (PQS
system), interacts with the acyl homoserine lactones (AHLs)
systems in an intricate way [54].

Davies et al. [55] have evidenced the role of the las system
for bio�lm formation and maturation; compared to wild
type bio�lm, the bio�lm of lasI mutant appears �at, undif-
ferentiated, and quickly dispersed from the surface upon
exposure to sodium dodecyl sulfate. 
e precise implication
of las system in bio�lm formation is not yet clear. However,
Gilbert et al. [56] reported that the QS regulator LasR can
bind to the promoter region of the psl operon, suggesting
that QS can regulate psl expression. 
e rhl system has been
reported to intervene in P. aeruginosa bio�lm formation [57]
by enhancing Pel polysaccharide biosynthesis; transcription
of the pel operon is actually reduced in rhlI mutant. 
e PQS
system, for its part, is linked to eDNA release during bio�lm
development; bio�lm formed by pqsA mutant contains less
eDNA than bio�lm formed by the wild type [40, 42]. All
together these data indicate that the three QS systems known
in P. aeruginosa play roles in bio�lm lifestyle cycle.

Importantly, an indirect link between bio�lm formation
and QS has been reported, through the control of swarming
and twitching motilities, as well as rhamnolipids and lectins
production. 
e swarming motility, a form of organized
surface translocation, depends on extensive �agellation and
cell-to-cell contact [58, 59]; regulated by the rhl system
[60], swarming motility is implicated in early stages of
P. aeruginosa bio�lm establishment. Strains grown under
conditions that promote swarming motility (growth medium
with glutamate or succinate as carbon source) form �at and
uniform bio�lmwhile strains with limited swarmingmotility
result in bio�lm containing noncon�uent cell aggregates [25].
Twitching motility, a �agella-independent form of bacterial
translocation, occurs by successive extension and retraction
of polar type IV pili [47]. Known to be regulated by the
rhl system on Fe-limited minimal medium [61], twitching
motilities are necessary for the assembly of a monolayer of
P. aeruginosa cells into microcolonies [49].

Beyond their biosurfactant and virulence factor roles
[62], rhamnolipids, whose production is under the rhl system
control [63], present multiple roles in bio�lm formation by
P. aeruginosa. Indeed, they are believed to be involved in (i)
forming microcolonies [64]; (ii) maintaining open channel
structures that prevent bacterial colonization by disrupting
both cell-to-cell and cell-to-surface interactions [26]; (iii)
facilitating three-dimensional mushroom-shaped structures
formation in P. aeruginosa bio�lms [64]; and (iv) facilitat-
ing the cell dispersion from the bio�lm as P. aeruginosa
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Figure 2: Relevant bacterial systems and factors implicated in the regulation of P. aeruginosa bio�lm formation. (1) Quorum sensing system;
(2) Two-component regulatory system GacS/GacA and RetS/LadS (RR: response regulator domain receiver; P: phosphorylation) pathway;
(3) Exopolysaccharides production and c-di-GMP pool regulation. See text for explanation.

variants which produce more rhamnolipids than wild-type
P. aeruginosa exhibit hyper-detaching properties [65, 66].
Finally, the cytotoxic virulence factor, galactophilic lectins
LecA and LecB, has been proposed to contribute to bio�lm
development in P. aeruginosa, since LecA and LecB mutants
form thin bio�lms as compared to the wild type bacteria
[67, 68]. Both LecA and LecB expressions are regulated by
the rhl QS system [69].

3.2. Bio�lm Regulation by GacS/GacA and RetS/LadS Two-
Component Systems. Among the 60 two-components sys-
tems found in the genome of P. aeruginosa [70], the
GacS/GacA system acts as a super-regulator of the QS system
and is involved in the production of multiple virulence
factors as well as in bio�lm formation [71]. 
e Gac system
consists of a transmembrane sensor kinase (GacS) that,
upon autophosphorylation, transfers a phosphate group to

its cognate regulator (GacA) which in turn upregulates the
expression of the small regulatory RNAs (RsmZ and RsmY).
RsmZ and RsmY capture the small RNA-binding regulatory
protein RsmA (encoded by rsmA gene), a repressor that
posttranscriptionally regulates the psl locus (pslA-L) [72–74].

e GacS/GacA system also has a control on the AHL system
as it inactivates free RsmA which negatively controls the
synthesis of C4-HSL and 3-oxo-C12-HSL and therefore the
extracellular virulence factors controlled by the las and rhl
systems [75–77].


e hybrid sensor histidine kinase RetS is known to
repress bio�lm formation [78, 79] whereas the histidine
kinase LadS antagonizes the e�ect of RetS [80]. Indeed, ΔretS
mutant form more structured bio�lms as compared to wild
type P. aeruginosa PAO1 [78]; the PA14 strain (naturally
de�cient in ladS gene) displays attenuated bio�lm formation
compared to PA14 LadS+ strain [81]. It is reported that RetS
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Figure 3: Structure of natural and synthetic AHL-based compounds which inhibit bio�lm formation by P. aeruginosa. (a) Native N-acyl-l-
homoserine lactone, signal molecules of P. aeruginosa (C4-HSL and 3-oxo-C12-HSL), (b) synthetic analogue of AHLs with side aromatics and
synthetic analogues of AHLs with modi�ed lactone rings, and (c) natural (manoalide, penicillic acid, and patulin), and synthetic (furanones)
compounds with lactone ring analogues.

and LadS interact with the GacS/GacA system by modulat-
ing the phosphorylation state of GacS, which consequently
inhibits and promotes, respectively, the phosphorylation of
GacA [82, 83].

It is interesting to note that GacS/GacA and RetS/LadS
systems are proposed to be involved in mediating the transi-
tion of the P. aeruginosa phenotype from an acute to chronic
phase infection [78].

3.3. C-di-GMP-Dependent Polysaccharides Biosynthesis and
Bio�lm Formation. Polysaccharides production is dependent
on the intracellular pool of bis-(3�-5�)-cyclic dimeric guano-
sinemonophosphate (c-di-GMP) [84, 85], a ubiquitous intra-
cellular secondmessenger widely distributed in bacteria [86].
In bacterial cells, c-di-GMP is generated from two molecules
of guanosine triphosphate by diguanylate cyclases and broken
down into 2-GMP by speci�c phosphodiesterases [86].
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High levels of c-di-GMP promote the biosynthesis of
polysaccharides (alginate and Pel). Indeed, a binding process
of c-di-GMP to PelD and Alg44 proteins is required for
Pel and alginate polymer formation, respectively [85, 87].
However, the exact molecular mechanism by which this
interaction regulates the polymerization of sugar precursors
is not known.

Conversely, low levels of c-di-GMP promote bacterial
motilities by enhancing �agellar formation and bacterial
dispersion [85].

4. Natural and Synthetic Products That Affect
P. aeruginosa Biofilm Formation

Plants and animals are naturally exposed to bacterial infec-
tions and they respond to bacterial components and signal
molecules in di�erent manners, including the activation of
defense mechanisms and/or the expression of stress manage-
ment genes [88–93]. 
erefore, it is obvious to expect that
eukaryotes have developed chemical mechanisms to combat
pathogens by killing them or silencing virulencemechanisms
such as QS system and/or bio�lm formation. Tables 1 and 2
summarize the reported natural and synthetic products that
a�ect P. aeruginosa bio�lm formation.

4.1. Antibio�lm Compounds with Anti-QS Activity. Several
classes of molecules have been reported to present both
antibio�lm formation and anti-QS properties in P. aeruginosa
[94–96].

Some AHL analogues (Figure 3(b)) have been shown to
exhibit this double inhibitory activity. Geske et al. [97] have
reported that synthetic analogues of AHLs with additional
aromatic moieties [N-(indole-3-butanoyl)-L-HSL and N-(4-
bromo-phenylacetanoyl)-L-HSL] display inhibitory activity
on LasR-based QS system as well as bio�lm formation in
P. aeruginosa PAO1. Synthetic AHLs analogues, where the
homoserine lactone ring is replaced by a cyclohexanone ring,
downregulate expression of the LasI AHL synthase, resulting
in a reduced expression of the virulence factors pyocyanin
and elastase and in an alteration of bio�lmmorphology/phe-
notype [98].Nonhydrolysable cyclopentyl analogues ofAHLs
(N-acyle cyclopentylamides) inhibit the lasI and rhlA expres-
sion, the production of virulence factors, including elastase,
pyocyanin, and rhamnolipids, and the bio�lm formation,
without a�ecting bacterial growth [99].

Halogenated furanones (particularly furanones C-30 and
C-56), inspired from natural compounds produced by the
marine macroalga Delisea pulchra, exhibit bio�lm reduction
and target the las and rhl systems in P. aeruginosa [55, 100,
101]. Besides, inmouse lungs infected with P. aeruginosa, they
were found to inhibit bacterial colonization to improve the
clearance of bacteria from the host and to reduce the tissue
damage [102].

Among the macrolide antibiotics, azithromycin, derived
from Saccharopolyspora erythraea, has been the most investi-
gated anti-QS antibiotic that presents a strongQS and bio�lm
inhibitory e�ect in P. aeruginosa [103–105]. Indeed, at subin-
hibitory azithromycin concentration (2�g/mL),P. aeruginosa

produces lower AHL signal molecules and virulence factors
[106, 107] suggesting that the observed bio�lm inhibition is
at least partially due to the reduction of both C4-HSL and
3-oxo-C12-HSL production [108]. Interestingly, azithromycin
has been reported to diminish the expression of GacA but
also RsmA at translational level [109], to inhibit the synthesis
of alginate [103] and to reduce the three types of motility
(swimming, swarming, and twitching) [110].

Penicillic acid and patulin, two secondary fungalmetabo-
lites from Penicillium species, were shown to e�ect QS-
controlled gene expression in P. aeruginosa, most likely by
a�ecting the RhlR and LasR regulatory proteins at posttran-
scriptional level. In vitro studies showed that P. aeruginosa
PAO1 bio�lms treated with patulin and tobramycin were
considerably more susceptible to the antibiotic as compared
to control bio�lms exposed to either tobramycin or patulin
alone [111]. However, treatment with patulin alone did not
a�ect development of the bio�lm and no hypothesis of mech-
anisms of action was proposed by authors. 
e genotoxicity
of patulin certainly limits its potential usefulness [112].

Manoalide, a sesterterpenoid from the marine organism
Lu�ariella variabilis, exhibits antibio�lm and anti-QS activi-
ties (las system) in P. aeruginosa without bactericidal e�ects
[113], although presenting antibiotic activity against gram-
positive bacteria [114].

Solenopsin A alkaloid, isolated from the ant Solenopsis
invicta, inhibits P. aeruginosa pyocyanin production, proba-
bly throughdisruption of the rhl signaling systemand reduces
bio�lm production in a dose-dependent manner [115].

Mammalian cells release enzymes called paraoxonases 1
(extracted from human and murine sera) that have lactonase
activity; degrading P. aeruginosa AHLs, they prevent, in an
indirect way, QS and bio�lm formation [116, 117].


ephenolic compound curcumin, amajor constituent of
turmeric roots (Curcuma longa L.), downregulates virulence
factors (pyocyanin, elastase, and protease) in P. aeruginosa
PAO1 and inhibits adherence of the bacteria to polypropylene
surfaces. 
is was correlated with a decrease in 3-oxo-C12-
HSL production [118]. Rosmarinic acid, a natural phenolic
compound produced by the root of Ocimum basilicum L.
upon P. aeruginosa infection, prevents bio�lm formation but
fails to penetrate mature bio�lm under in vivo and in vitro
conditions [89]. Structure-based virtual screenings against
LasR and RhlR receptor proteins e�ectively indicate that
rosmarinic acid is a potential QS inhibitor [119]. Ellagic acid
derivatives, from Terminalia chebula Retz., have been shown
to downregulate lasIR and rhlIR genes expression with a
concomitant AHLs decrease, resulting in the attenuation of
virulence factor production and in an enhanced sensitivity
of bio�lm towards tobramycin [120]. Girennavar et al. [121]
demonstrated that the furocoumarins from grapefruit juice,
bergamottin and dihydroxybergamottin, inhibit the activities
of the autoinducers AI-1 (N-3 hydroxybutanoyl-homoserine
lactone) and AI-2 (furanosyl borate diester) in a V. harveyi
bioassay. Besides, these authors showed that AI-1 and AI-
2 inhibit bio�lm formation in E. coli O157:H7, Salmonella
typhimurium, and P. aeruginosa without a�ecting bacterial
growth. However, the mechanisms of action remain unclear.
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Figure 4: Phenolic compounds and derivatives with antibio�lm and anti-QS proprieties.

Docking screening for QS inhibitors predicted that the
�avone baicalein, obtained from the roots of Scutellaria
baicalensis Georgi, could interact with A. tumefaciens QS
transcription activator protein TraR. E�ectively, at 20�M,
baicalein promotes the proteolysis of the signal receptor TraR
protein in Escherichia coli biosensor, signi�cantly inhibiting
the bio�lm formation by P. aeruginosa [122]. Similarly, the
screening of traditional Chinese medicinal plants identi�ed
the anthraquinone emodin, extracted from rhubarb (Rheum
palmatum L.); emodin actually inhibits the P. aeruginosa
bio�lm formation at 20�M, increasing the activity of ampi-
cillin [123].


e �avan-3-ol catechin, isolated from the bark of Com-
bretum albi�orum (Tul.) Jongkind, as well as the �avanone
naringenin, both at 4mM �nal concentration, do interfere
with QS mechanism in P. aeruginosa PAO1 by a�ecting
autoinducers perception and bio�lm formation [124–126]. A
coumarate ester isolated from the bark extract of Malagasy
endemicDalbergia trichocarpa Baker interferes with P. aerug-
inosaQS systems (las and rhl), inhibits the bio�lm formation
and increases the e�ectiveness of the antibiotic tobramycin
in killing bio�lm-encapsulated P. aeruginosa [126] (Figures 4
and 5).

Recently, Meliaceae, Melastomataceae, Lepidobotryaceae,
and Sapindaceae, collected from neotropical rainforests in
Costa Rica, presented signi�cant anti-QS activities in a Chro-
mobacterium violaceum bioassay and/or inhibition of bio�lm
formation by P. aeruginosa PA14 [127]. Although the exact

natures of the active constituents are not yet elucidated, the
authors suggest that they could belong to polar polyphenols
similar to tannic acid.

A recent screening of various herbal extracts revealed
that clove extract (Syzygium aromaticum (L.) Merr. Et Perry)
inhibits QS-controlled gene expression (las and pqs systems)
in P. aeruginosa with eugenol as major active constituent
[128]. Eugenol, at subinhibitory concentrations (400�M)
inhibited virulence factors production including elastase,
pyocyanin and bio�lm formation. In agreement with this
�nding, subinhibitory concentrations of the clove essential oil
signi�cantly reduces las- and rhl-regulated virulence factors,
exopolysaccharide production, and bio�lm formation by P.
aeruginosa PAO1 [129].

Ajoene, an allyl sul�de isolated from garlic (Allium
sativum L.), has been reported to a�ect QS-regulated genes
in P. aeruginosa, including the production of rhamno-
lipids. Additionally, ajoene synergizes with the antibiotic
tobramycin in killing bio�lm-encapsulated P. aeruginosa,
improving the clearance of P. aeruginosa from lungs in a
mouse model of pulmonary infection [130]. A naturally-
inspired organosulfur compound (S-phenyl-L-cysteine sul-
foxide) and its derivative (diphenyl disul�de) have been
reported to signi�cantly reduce the amount of bio�lm forma-
tion by P. aeruginosa [131]. 
e S-phenyl-L-cysteine sulfoxide
antagonizes both the las and rhl QS systems whereas the
diphenyl disul�de only interferes with the las system.



10 BioMed Research International

Two-day old culture

Two-day old cultureOne-day old culture +
CE at culture initiation 

One-day old culture +
DMSO at culture initiation

(a) (b)

+ tobramycin (100�g/mL)

+ tobramycin (100�g/mL)

Figure 5: P. aeruginosa bio�lm phenotypes and e�ectiveness of tobramycin treatment in presence of DMSO 1% or coumarate ester (CE) at
300 �g/mL. (a) A�er 1 day of incubation, P. aeruginosa fails to form structured con�uent aggregate in presence of CE as compared to DMSO
treatment. (b) CE considerably increases the susceptibility of P. aeruginosa to tobramycin (100 �g/mL), as shown by the increased proportion
of dead cells compared with DMSO. 
e bacterial viability was assessed by staining the cells with SYTO-9 (green areas—live bacteria) and
propidium iodide (red areas—dead bacteria) furnished in the LIVE/DEADBacLight kit. Cells were visualized using a LeicaDM IRE2 inverted
�uorescence microscope using a 40x objective lens and colored images were assembled using Adobe Photoshop.

4.2. Antibio�lm Compounds without or with Unspeci�ed Anti-
QS Activity. Various organisms, including prokaryotes and
eukaryotes (marine organisms, animals, and plants) have
been reported to produce secondary metabolites which exert
antibio�lm activity. Some of those natural compounds have
been used as models to build synthetic antibio�lm com-
pounds against P. aeruginosa.

Bromoageliferin, pyrrole-imidazole alkaloids from
marine sponges (Agelas conifer, Agelaceae), has been the
sca�olding for the development of two derivatives, trans-
bromoageliferin analogue 1 (TAGE) and cis-bromoageliferin
analogue 2 (CAGE). Both synthetic derivatives inhibit bio�lm
formation and furthermore are able to disperse preexisting
P. aeruginosa PAO1 bio�lms without demonstrating a
bactericidal or growth-inhibiting e�ect [132]. Analogues
based upon the oroidin template, parent molecules of bro-
moageliferin, have been synthesized and screened in P. aeru-
ginosa for their antibio�lm ability [133]. 
e authors found
that the most potent analogue turned out to be dihydro-
sventrin, a variant of the pyrrole-imidazole alkaloids sventrin
(from Agelas sventres) which exhibits bio�lm inhibition and
bio�lm dispersion for di�erent strains of P. aeruginosa
without any microbicidal activity.

Alginate lyase, produced by P. aeruginosa itself, promotes
bio�lm dispersion and acts synergically with antibiotics for
successful elimination of mucoid strains of P. aeruginosa
established in the respiratory tracts of cystic �brosis patients
[134]. However, a recent study demonstrated that this e�ect

cannot be attributed to the catalytic activity of the enzyme.
Indeed, bovine serum albumin or simple amino acids lead
to the same results. 
e authors postulate that alginate
lyase acts simply as a nutrient source, modulating cellular
metabolism and thus inducing cellular detachment and
enhancing tobramycin e
cacy [135].

Bovine pancreatic Dnase I andDnase-1L2, extracted from
human stratum corneum, exhibited strong antibio�lm activity
inP. aeruginosa [136]. Indeed, the degradation of extracellular
DNA leads to an altered bio�lm that permits increased
antibiotics penetration [137].

Extracts of Ginger (Zingiber o
cinale Rosc.), long used
by Indians, Asians, and Arabs to treat numerous ailments
[137], inhibit P. aeruginosa PA14 bio�lm formation through
the reduction of c-di-GMP production and consequent
reduction of total polysaccharides production [138]. 
e
ginger extract revealed no AHL-based QS inhibition in
the Chromobacterium violaceum CV026 and Agrobacterium
tumefaciens NT1 reporter biosensor systems. 
e major
component of dry ginger root, zingerone (vanillyl acetone),
has been shown to inhibit bio�lm formation, to increase the
susceptibility of P. aeruginosa PAO1 to cipro�oxacin [139]
and to inhibit swimming, swarming, and twitchingmotilities.
However, authors did not propose any mechanism of action.


e casbane diterpene, isolated from the ethanolic extract
ofCroton nepetaefoliusBaill., a plant native fromnortheastern
Brazil, inhibits bio�lm formation in several clinical relevant
species, including P. aeruginosa (at 250�g/mL) without
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a�ecting the planktonic growth. Authors suggest that this
inhibition of bio�lm formation may be related to an inter-
action between casbane diterpene and lipopolysaccharides
present on the cell surface, whichmight a�ect their adherence
properties [140].

Ursolic acid (3�-hydroxy-urs-12-en-28-oic acid) from
Diospyros dendo Welw. is identi�ed to inhibit bio�lm for-
mation without interfering with QS systems in E. coli, P.
aeruginosa, andV. harveyi; ursolic acid, at 10 �g/mL, has been
found to reduce 72% of E. coli JM109 bio�lm. Transcriptomic
analyses led to the conclusion that ursolic acid inhibits
bio�lm formation by inducingmotility [141].
e 3�-O-cis-p-
coumaroyl-20�-hydroxy-12-ursen-28-oic acid, isolated from
the same plant, strongly inhibits bio�lm formation by P.
aeruginosa PAO1 [142]. However, the mechanism of activity
was not investigated.

5. Concluding Remarks and Perspectives


ere is increasing evidence that bio�lm-mediated infection
facilitates the development of chronic infectious diseases and
recurrent infections [143–145]. Relevance in using antibio�lm
compounds is based on the restoration of antibiotic e�ective-
ness by facilitating their penetration through compromised
bio�lm structure. Moreover, a degradation of the bio�lm
matrix could render infectious bacteria reachable to immune
defenses (e.g., polymorphonuclear leukocytes, innate, and
speci�c antibodies) [146, 147]. 
us, antibio�lm compounds
could be interesting antibiotic adjuvants to prevent or treat
chronic infections. Similarly, relevance in using anti-QS
compounds is based on the concomitant drastic reduction
of virulence factors expression, which gives the necessary
time for immune defense systems to elaborate appropriate
responses by the recruitment of immune cells and production
of speci�c antibodies. Unlike antibio�lm compounds, anti-
QS compounds are interesting to prevent or jugulate acute
infection. However, it should also be noted that (i) anti-QS
and antibio�lm compoundsmay lose their appeal in immune
compromised patients who o�en harbor bacteria that are
still alive but present in a disorganized and less virulent
stage; (ii) QS systems do not control the totality of virulence
factors expression; and (iii) the development of anti-QS
bacterial resistance cannot be excluded [148]. 
ese facts
partly explainwhy the discovery ofQSmodulators has not yet
led to major therapeutic breakthroughs. In our opinion, such
bioactive compounds will probably not substitute antibiotics
but rather optimize the e�ectiveness of infectious diseases
treatment, notably through bio�lm disruption and antibiotic
dose reduction; their use is also appealing to optimize the use
of microbicidal products by reducing bio�lm encroachment
on biomaterials and medical devices.

In the perspective of therapeutic application, very few
studies have been progressed to clinical trial. To the best of
our knowledge, garlic is the only extract with anti-QS and
antibio�lm to have been tested in a clinical trial with non-
signi�cant results, contrary to its drastic in vitro bioactivity
e�ect [149]. One reason of this fact is that behavior of clinical
isolates may be di�erent when grown in laboratory condition

and in human body which could lead to unexpected bio�lm
development. 
us, before progressing in clinical trial of
relevant bioactive compounds, e�ort on the improvement
of experimental in vitro and in vivo conditions should be
addressed and clinical trial protocols should be discussed.

Potent antibio�lm agents are considered interesting if
they exert a sustainable bioactivity; this can be indicated by an
activity that resists accumulating bacterial toxins, enzymes,
and metabolites for more than 48 h in culture media. As
less than half of bioactive products have been tested up
to 48 hours, further investigations are warranted to select
those compoundswith sustained activities, whichwould have
more chances to be active in clinical conditions. Halogenated
furanones have been widely studied for their powerful anti-

QS and antibio�lm activities (<10 �M) [100]. However, their
toxic and carcinogenic properties relegate them so far to
the role of positive QS inhibitory controls in laboratory
experiments [150, 151]. In this regard, herbal phenolic com-
pounds and their derivatives, frequent in food components,
and more particularly those already present in popular
and approved herbal drugs (i.e., rosmarinic acid in Melissa
o
cinalis L.), are promising candidates to develop antibio�lm
agents; however, structure-activity studies are still required
to better assign essential structural features responsible for
antibio�lm activity. In the same perspective, searching for
compounds active at nanomolar levels should be privileged as
these could presumably present lower toxicity risks. 
e QS
system is an obvious target for bio�lm-associated infections
as QS interacts, directly and/or indirectly, in di�erent steps
of bio�lm formation. Intriguingly, even if QS inhibition
is the most extensively studied approach against P. aerug-
inosa, several anti-QS natural compounds have not been
yet investigated for their antibio�lm activity (e.g., human
sexual hormones and some antibiotics at subinhibitory con-
centration, notably ce�azidime and cipro�oxacin) [103, 152].
Attractive therapeutic agents are those which modulate QS
system(s) with an extending or particular impact on bio�lm
lifestyle; they could then be helpful as a preventive or curative
approach and at every step of infectious diseases (acute and
chronic). However, �nding universal antibio�lm compounds
represents a challenge as bio�lm lifestyle, composition, and
phenotype strongly depend on several parameters, such as
nutritional conditions. In this regard, we support the hypoth-
esis that compounds which target GacS/GacA pathway are
worthy of interest with respect to the pathway hierarchically
upstream position that controls positively both QS system
and exopolysaccharides biosynthesis (Psl) (Figure 2). Such
compounds could possibly impair almost all the bio�lm
lifestyle cycle of P. aeruginosa, from irreversible attachment
to dispersion stages (Table 3) and could be powerful allies
for conventional antibiotics in the struggle against bacterial
bio�lm-mediated infections [8, 12, 95].
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C. van Delden, “Azithromycin inhibits quorum sensing in Pseu-
domonas aeruginosa,” Antimicrobial Agents and Chemotherapy,
vol. 45, no. 6, pp. 1930–1933, 2001.

[105] T. Ichimiya, K. Takeoka, K. Hiramatsu, K. Hirai, T. Yamasaki,
andM.Nasu, “
e in�uence of azithromycin on the bio�lm for-
mation of Pseudomonas aeruginosa in vitro,”Chemotherapy, vol.
42, no. 3, pp. 186–191, 1996.

[106] J. C. Pechère, “Azithromycin reduces the production of viru-
lence factors in Pseudomonas aeruginosa by inhibiting quorum
sensing,” Japanese Journal of Antibiotics, vol. 54, pp. 87–89, 2001.

[107] D. Sofer, N. Gilboa-Garber, A. Belz, and N. C. Garber, “’Sub-
inhibitory’ erythromycin represses production of Pseudomonas
aeruginosa lectins, autoinducer and virulence factors,” Chem-
otherapy, vol. 45, no. 5, pp. 335–341, 1999.
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