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The Formation of Networks with Transfers among

Players

Franis Bloh Matthew O. Jakson

Abstrat

We examine the formation of networks among a set of players whose payo�s depend on
the struture of the network. We fous on games where players may bargain by promising
or demanding transfer payments when forming links. We examine several variations of
the transfer/bargaining aspet of link formation. One aspet is whether players an
only make and reeive transfers to other players to whom they are diretly linked, or
whether they an also subsidize links that they are not diretly involved in. Another
aspet is whether or not transfers related to a given link an be made ontingent on the
full resulting network or only on the link itself. A �nal aspet is whether or not players
an pay other players to refrain from forming links. We haraterize the networks that
are supported under these variations and show how eah of the above aspets is related
either to aounting for a spei� type of externality, or to dealing with the ombinatorial
nature of network payo�s.

JEL lassi�ation numbers: A14, C71, C72

Key words: Networks, Network Games, Network Formation, Game Theory, EÆient
Networks, Side Payments, Transfers, Bargaining, Externalities



The Formation of Networks with Transfers among

Players�

Franis Bloh Matthew O. Jakson

1 Introdution

Many soial, eonomi, and politial interations take the form of a network of bilateral
relationships. This ranges from friendships to trading relationships and politial allianes.
As the struture of the network of relationships an have a profound impat on the
welfare of all the involved parties, it is essential to develop a good understanding of whih
networks are likely to form and how this depends on the spei�s of the irumstanes.
This paper ontributes to a growing literature that models network formation.1

Here, our fous is on the role played by transfers payments in the formation of soial
and eonomi networks. In many appliations, agents bargain on possible transfers at
the time of forming relationships. For example, when two airlines form a ode-sharing
agreement, inluded in that agreement are the details of how the osts and revenues on
ross-booked passengers are to be split. Similarly, when two politial parties form an
eletoral pat, they expliitly or impliitly agree on the division of seats, ommittee po-
sitions, abinet posts, and government bene�ts. Without transfer payments (in urreny
or in kind), many agreements would simply never exist.

Our �rst objetive in this paper is to onstrut a simple model where the agreement
on transfers is part of the proess of the formation of links. Our seond objetive is to
study how the formation of networks depends on the types of transfers that agents an
make. How important is it that agents an subsidize the formation of links that they
are not diretly involved in? How important is it that agents be able to make payments
ontingent on the full network that emerges? What is the role of making payments to
other players if they refrain from forming links? Sine the types of payments that agents
will have at their disretion depends on the appliation, the answers to these questions

�Finanial support from the Lee Center for Advaned Networking and from the NSF under grant
SES{0316493 is gratefully aknowledged. We thank Anke Gerber and the partiipants of the Ninth
Coalition Theory Network Workshop for a helpful disussion of the paper, and Toni Calvo-Armengol for
omments on an earlier draft.

1See Jakson (2003b) for a survey of the literature that is most losely related to our work here.



help us to understand the relationship between the networks that emerge, and for instane
whether eÆient networks form, and the spei�s of the soial or eonomi interation.

Our results outline some simple and intuitive relationships between the types of trans-
fers available and the networks that emerge. The main results an be summarized as
follows. If transfers an only be made between the players diretly involved in a link,
then the set of networks that emerge as equilibria are haraterized by a balane on-
dition. While there are some settings where eÆient networks are supported with only
diret transfers, there are many settings where the networks that form will be ineÆient.
If players an make indiret transfers, so that they an subsidize the formation of links
between other players, then they an properly aount for some forms of positive exter-
nalities. However, even with indiret transfers, we still need to worry about the fat that
there are many di�erent ombinations of links that players might onsider forming or
not forming. Thus, even though links are bilateral, the multitude of suh relationships
results in some multilateral deision problems. This means that in order to guarantee
that eÆient networks form, players need not only to be able to make indiret transfers
in order to deal with (positive) externalities, but also to make those transfers ontingent
on the network that emerges in order to take are of the multitude of interrelated bilat-
eral problems. Thus, there is a basi sense in whih one an view the role of indiret
payments as taking are of externalities, and ontingenies as taking are of the ombi-
natorial nature of network formation. Finally, in order to handle negative externalities,
players need to be able to pay other players not to form links. Our analysis also inludes
some disussion of how to model equilibrium, and we defer all disussion of that analysis
until we have laid out the details of the network formation games. This outlining of the
relationship between the types of transfers admitted and the types of externalities and
the multilateral deision problem that are overome is the �rst that we know of in the
networks literature, or even the ontrating literature for that matter.

Before presenting the model, let us briey disuss its relationship to the most losely
related literature. This paper �ts into a reent literature that examines network formation
when players at in their own interest and their payo�s may depend on the whole struture
of the network.2 In suh network games, Jakson and Wolinsky (1996) showed that the
networks that maximize soiety's overall payo� will often not be stable in an equilibrium
sense, regardless of how players' payo�s are alloated or re-alloated (subjet to two
basi onditions of anonymity and omponent balanedness).3 Moreover, simple examples
showed that even when players have the ability to make side-payments, eÆient networks
may fail to form beause side-payments do not enable players to overome the diÆulties
linked with network externalities.

This tension between eÆieny and stability underlies our analysis of link formation
with transfers, and we develop a deeper understanding of the soure of suh ineÆienies.

2See Jakson (2003a) for a survey of this literature; as well as Slikker and van den Nouweland (2001a)
for a look at the literature that deals with ommuniation strutures in ooperative game theory, where
a graph struture determines whih oalitions an generate value.

3See Jakson and Wolinsky (1996) and Dutta and Mutuswami (1997) for detailed disussion of the
role of the onditions.
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We identify two reasons why side-payments may be ine�etive in resolving the onit
between eÆieny and stability. First, there is the fairly obvious point that widespread
externalities in the network may imply that agents have to have input into the formation
of links by other players for the eÆient network to form. For example, if the eÆient
network involves the formation of a link between two players who get a negative utility
from that link, side-payments will be ine�etive in reahing the eÆient outome. Seond,
is the less obvious point that sine players are involved in multiple bilateral relationships
at the same time, side-payments negotiated bilaterally may not be suÆient to sustain
the formation of eÆient networks. In some situations, players may have an inentive to
renege on di�erent relationships at one, even though eah bilateral relationship an be
sustained by side-payments. The main message of this paper is that the two diÆulties
identi�ed above an be overome by enlarging the range of possible transfers, and an
be traed to spei� features of the transfers. Network externalities an be dealt with if
players have the ability to make indiret transfers, subsidizing the formation of links by
other players or paying players not to form links. The ombinatorial diÆulties linked to
the multitude of bilateral relationships an be solved if players have the ability to make
ontingent transfers depending on the network being formed. In partiular, if players
an make indiret ontingent transfers, eÆient networks an be sustained by individual
inentives under very mild regularity onditions.

Ours is not the �rst paper to look at the endogenous determination of payo�s together
with network formation. Reent models of network formation by Currarini and Morelli
(2000) and Mutuswami and Winter (2002)4 allow players to simultaneously bargain over
the formation of links and the alloation of value. In partiular, Currarini and Morelli
(2000), and Mutuswami and Winter (2002), model network formation as a sequential
proess where players move in turn and announe the total payo� that they demand
from the eventual network that will emerge, as well as the spei� links that they are
willing form. The network that forms as a funtion of the announements is the largest
one suh that the total demands are ompatible with the total value that is generated.
They show that the equilibria of suh games are eÆient networks, assuming that there
are no externalities aross network omponents and that some other payo� monotoniity
onditions are satis�ed. Part of the intuition is that by moving in sequene and making
suh take it or leave it demands, players an extrat their marginal ontribution to an
eÆient network, and this provides orret inentives in some situations.

Currarini and Morelli (2000) and Mutuswami and Winter (2002) make the important
point that the ability to determine payo�s in onjuntion with link formation may aid in
the emergene of eÆient networks. However, these sequential games have speial features
and are better for illustrating the importane of taking suh bargaining seriously (or for
implementing variations on the Shapley value), than for providing reasonable models
of network formation. In partiular, the end-gaming and �nite extensive forms drive
the results. Moreover, while they provide some suÆient onditions for the support of
eÆient networks, they do not give us muh of a feel for how generally this might hold, or
how this depends on the struture of the proess. In partiular, the nature of the game

4See also Slikker and van den Nouweland (2001b) in the ontext of ommuniation games.
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does not even allow an analysis of whih players pay whih others - essentially everything
is impliitly entralized.5

The rest of this paper is organized as follows. Setion 2 introdues our notations for
players and networks. We desribe the di�erent models of network formation in Setion 3.
We then study the di�erent models in turn. Setion 4 is devoted to the diret transfer
game, Setion 5 to the indiret transfer game, Setion 6 to ontingent transfers and
Setion 7 to a game where players may pay to prevent the formation of links by other
players. We onlude in Setion 8. The paper ends with two Appendies. Appendix A
disusses the relation between pairwise stability, as de�ned by Jakson and Wolinsky
(1996), and the networks supported by the diret transfer game. Appendix B ontains
the proofs of our results.

2 Modeling Networks

Players and Networks

N = f1; : : : ; ng is the set of players who may be involved in a network relationship.6

A network g is a list of pairs of players who are linked to eah other. For simpliity,
we denote the link between i and j by ij, so ij 2 g indiates that i and j are linked in the
network g. Let gN be the set of all subsets of N of size 2. The network gN is referred to
as the omplete network. The set G = fg � gNg denotes the set of all possible networks
on N:

For any network g 2 G, let N(g) be the set of players who have at least one link in the
network g. That is, N(g) = fi j 9j s:t: ij 2 gg. Given a player i 2 N and a network g 2 G,
let Li(g) denote the set of links in g involving player i, Li(g) = fjk 2 gjj = i or k = ig:

Paths and Components

A path in a network g 2 G between players i and j is a sequene of players i1; : : : ; iK
suh that ikik+1 2 g for eah k 2 f1; : : : ; K � 1g, with i1 = i and iK = j.

A omponent of a network g, is a nonempty subnetwork g0 � g, suh that

� if i 2 N(g0) and j 2 N(g0) where j 6= i, then there exists a path in g0 between i
and j, and

5We have beome aware of independent work by Matsubayashi and Yamakawa (2004) who analyze
a game whih operates on a link by link basis, as do some of the games we study here. Their work
fouses on Jakson and Wolinsky's (1996) onnetions model, and a game where players negotiate over
how muh of the ost of a link eah player will bear. Thus, there is almost no overlap with our results.

6For bakground and disussion of the model of networks disussed here, see Jakson (2003b).
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� if i 2 N(g0) and ij 2 g, then ij 2 g0.

Utility Funtions

The utility of a network to player i is given by a funtion ui : G! IR+.
7 Let u denote

the vetor of funtions u = (u1; : : : ; un). We normalize payo�s so that ui(;) = 0.

A utility funtion tells us what value arues to any given player as a funtion of the
network. This might inlude all sorts of osts, bene�ts, and externalities.

For any network g 2 G and subset of links ` � g, we de�ne the marginal utility of
the links ` in g to player i by mui(g; `) = ui(g)� ui(g n `):

Externalities

While the lass of utility funtions we onsider is ompletely general, the following
de�nitions of externalities will prove useful.

A pro�le of utility funtions u satis�es no externalities if ui(g) = ui(g + jk) for all g,
jk =2 g, and i =2 jk.

A pro�le of utility funtions u satis�es nonpositive externalities if ui(g) � ui(g + jk)
for all g, jk =2 g, and i =2 jk.

A pro�le of utility funtions u satis�es nonnegative externalities if ui(g) � ui(g+ jk)
for all g, jk =2 g, and i =2 jk:

These de�nitions of externalities are not exhaustive sine there are settings where
some links may result in positive externalities and others in negative externalities, or
the nature of the externality may di�er aross players. Nevertheless, these de�nitions
provide a useful organizing devie, and an easily be interpreted. Situations with no
externalities orrespond to ases where players only are about who they are onneted
to, but no further information. Nonpositive (negative) externalities arise when players
are hurt by the formation of links by other players. An example of this is the o-
author model of Jakson and Wolinsky (1996), where a player is hurt if their o-authors
take on other o-authors. Other examples of these are seen in Goyal and Joshi (2003),
where two �rms form strategi allianes and other �rms are harmed by the resulting
redution in marginal ost; or in Goyal and Joshi (2000) and Furusawa and Konishi
(2002), where two ountries enter into a free-trade agreement and other ountries su�er.
Nonnegative (positive) externalities arise when players bene�t from the formation of
new links. In Jakson and Wolinsky's (1996) and onnetions model, externalities are

7As opposed to Jakson and Wolinsky (1996) we do not distinguish between a value funtion and an
alloation rule. Instead, our primitive is the set of individual values for every network.
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positive as all players bene�t from an inrease in the friendship/ommuniation network.
Positive externalities also emerge in Belleamme and Bloh (2001)'s ollusive networks,
where market sharing agreements redue the number of ompetitors on the market to
the bene�t of other �rms.

Values and EÆieny

A network g 2 G Pareto dominates a network g0 2 G relative to u if ui(g) � ui(g
0)

for all i 2 N , with strit inequality for at least one i 2 N . A network g 2 G is Pareto
eÆient relative to u if it is not Pareto dominated.

A network g 2 G is eÆient relative to u if it maximizes
P

i ui(g).

When transfers are possible, Pareto eÆieny and eÆieny are equivalent, so we
fous here on eÆient networks.8

3 Network Formation Games

We onsider several models of network formation where various types of transfers are
available, and examine whih networks emerge as equilibria of these games. There are
two basi versions of the game, allowing for diret or indiret transfers. In the diret
transfer game, players an only bargain over the distribution of payo�s of the links they
are involved with. In the indiret transfer game, players an subsidize the formation of
links by other players. We later extend both games to allow for ontingent transfers.

The Diret Transfer Network Formation Game

In the diret transfer game, every player i 2 N announes a vetor of transfers
ti 2 IRn�1. We denote the entries in this vetor by tiij, representing the transfer that
player i proposes on link ij: Announements are simultaneous.

Link ij is formed if and only if tiij + tjij � 0: Formally, the network that forms as a
funtion of the pro�le of announed vetors of transfers t = (t1; : : : ; tn) is

g(t) = fij j tiij + tjij � 0g

In this game, player i's payo� is given by

ui(g(t))�
X

ij2g(t)

tiij:

8For a detailed disussion of various notions of eÆient networks in the presene of transfers, see
Jakson (2003a).
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This game is easily interpreted. Players simultaneously announe a transfer for eah
possible link that they might form. If the transfer is positive, it represents the o�er
that the player makes to form the link. If the transfer is negative, it represents the
demand that a player requests to form the link. Note that the o�er may exeed the
demand, tiij+ tjij > 0. In that ase, we hold both players to their promises. If for instane

tiij > �tjij > 0, player i ends up making a bigger payment than player j demanded.
Player j only gets his demand, and the exess payment is wasted.

It is important to note that wasted transfers will never our in equilibrium, and
alternative spei�ations of the game (for instane, letting player i only pay player j's
demand or player j reeive the total o�er of player i) would not hange the struture of
the equilibria.

The Indiret Transfer Network Formation Game

In the indiret transfer game, every player i announes a vetor of transfers ti 2
IRn(n�1)=2. The entries in the vetor ti are given by tijk, denoting the transfer that player
i puts on the link jk. If i =2 jk, tijk � 0. Player i an make demands on the links that he
or she involved with (it is permissible to have tiij < 0), but an only make o�ers on the
other links. The reasoning here is that a player annot prevent the formation of a link
between two other players (exept possibly by paying them not to form the link, as we
onsider later).

Link jk is formed if and only if
P

i2N tijk � 0: Formally, the network that forms as a
funtion of the pro�le of announed vetors of potential transfers t = (t1; : : : ; tn) is

g(t) = fij j
X
i2N

tijk � 0g

In this game, player i's payo� is given by

ui(g(t))�
X

jk2g(t)

tijk:

Network Formation Games with Contingent Transfers

In the games we have de�ned above, players only have a limited ability to ondition
their ations on the ations of other players. Those games do not allow for ontingent
ontrats of the form \I will pay you to form link ij only if link jk is also formed." It
turns out that being able to make this kind of ontingent ontrat an be very important,
and so we now de�ne suh games.

7



Every player announes a vetor of ontingent transfers ti(g) ontingent on g forming,
for eah oneivable nonempty g 2 G. In the diret transfer game, ti(g) 2 IRn�1 for eah
i, while in the indiret transfer game, ti(g) 2 IRn�1!

There are many possible ways to determine whih network forms given a set of on-
tingent announements. We onsider the following one, but it will beome lear that
the results are robust to hanges in the way the network is determined. Let there be
an ordering over G, aptured by a funtion � whih maps G onto f1; : : : ;#Gg. The
network that forms is determined as follows. Start with the �rst network, g1 suh that
�(g1) = 1, and hek whether g(t(g1)) = g1: If the answer is yes, then this is the network
that forms. Otherwise, move on to the seond network, g2, and ontinue the proess until
we �nd suh a network. The network formed is thus the �rst network gk in the ordering
for whih g(t(gk)) = gk. If there is no suh k, then the empty network forms.

Equilibrium and Supporting a Network

Given a vetor of transfers t in any of the variants of the game, a players payo� is
given by

�i(t) = ui(g(t))�
X

jk2g(t)

tijk

in the non-ontingent game,9 and

�i(t) = ui(g(t))�
X

jk2g(t)

tijk(g(t))

in the ontingent game.

A vetor t forms an equilibrium of one of the above games if it is a pure strategy
Nash equilibrium of the game. That is, t is an equilibrium if

�(t) � �(t�i; bti);
for all i and bti.

We say that a network g is supported via a given game relative to a pro�le of utility
funtions u = (u1; : : : ; un) if there exists an equilibrium t of the game suh that g(t) = g.

A Comment on Simultaneous Move Games

A ritial advantage of onsidering a simultaneous version of network formation is that
after seeing the resulting network and transfers, players will not wish to make further

9This equation inludes tijk, even when i =2 jk, and suh transfers are not inluded in the diret

transfer game. Simply set tijk = 0 when i =2 jk for the diret transfer game.
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hanges to their transfers and links. This is not true if one instead models network
formation sequentially, by having the players move in some order. It ould be that the
resulting network and transfers would not be stable if players ould then ome bak and
make further hanges.

Regardless of whether one thinks that network formation is simultaneous, the ondi-

tions imposed by equilibrium are neessary onditions for any proess to ome to a stable

position. That is, the equilibrium onditions that are derived here are onditions that
apture the idea that we have arrived at a network suh that no players would gain from
further hanges.

A Re�nement: Pairwise Equilibrium

The simultaneity of announements has a drawbak; but one that we an easily deal
with. It allows for a multipliity of equilibrium networks as a result of oordination
failures. Consider for example the following example where all the transfer games are
equivalent.

Example 1 Why re�ne?

t t

1 1

t t

0 0

There are two supported networks. One is the empty network and the other is om-
plete network (one link). The omplete network is supported by transfers t112 = t212 = 0.
To support the empty network, set t112 = t212 = �t, where t � 1. In the seond equilibrium,
the link is not formed beause both players expet the other to make an unreasonable
demand.

Note that the equilibrium supporting the empty network survives an elimination of
weakly dominated strategies and is also a trembling hand perfet equilibrium.10 To
eliminate this equilibrium using standard re�nements would require the mahinery of
iterative elimination of strategies, whih is umbersome in games with a ontinuum of
ations.

10Demanding �t fares well in the ase where the other agent happens to o�er at least t.
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Alternatively, we should expet players forming a link to be able to oordinate their
ations on that formation, as the real-life proess that we are modeling would gener-
ally already involve some form of diret ommuniation. This suggests a very simple
re�nement.

Given t, let t�ij indiate the vetor of transfers found simply by deleting tiij and tjij.

A vetor t is a pairwise equilibrium of one of the above games if it is an equilibrium
of the game, and there does not exist any ij =2 g(t), and bt suh that

(1) �i(t�ij; btiij; btjij) � �i(t),

(2) �j(t�ij; btiij; btjij) � �j(t), and

(3) at least one of (1) or (2) holds stritly.11

This re�nement allows any two agents who have not yet formed a link to hange their
demands and o�ers in order to add a link. We fous attention on the addition of links, as
players an already unilaterally hoose to sever links by inreasing their demands. Hene,
the proper inentives to sever links are already aptured by Nash equilibrium.12

While it is lear that Nash equilibria always exist in all the games we onsider (the
empty network is always supported in equilibrium), the existene of pairwise equilibria
is not guaranteed. The following example shows that there exist environments for whih
no pairwise equilibrium exists.

Example 2 Nonexistene of Pairwise Equilibria

11Given the ontinuity of transfers, this is easily seen to be equivalent to requiring that both (1) and
(2) hold stritly.

12There are many other re�nements we ould also onsider. In the indiret transfer game, it seems
natural to allow all agents to hange their transfers on a given link, and we do introdue this more
stringent re�nement later. However, we believe that these more stringent re�nements are harder to
justify. One one allows for suh group deviations, it makes sense to go all the way to allowing general
group deviations. At that point one is led to something that is equivalent to the onept of strong
stability with side payments of Jakson and van den Nouweland (2000). Suh a re�nement is quite
stringent, and while it has the nie property of only supporting eÆient networks, it only applies in
situations where there is substantial room for ommuniation between all individuals.
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1

0 0

1

1

The empty network is a (pure strategy Nash) equilibrium, but not a pairwise equi-
librium: two players an set zero demands to form a link and get 1 > 0. No network
that has at least two links an be supported as an equilibrium. Any suh network must
involve a player who gets a negative payo�, and who ould pro�tably deviate by setting
high demands on all his links whih results in a payo� of 0. Finally, a network with
one link annot be a pairwise equilibrium. The unlinked player and either of the linked
players would bene�t from setting transfers �3:5 and 3:5, respetively.

4 The Diret Transfer Game

We now provide an analysis of the diret transfer network formation game. This is a
natural, and the simplest, game to apture diret bargaining in the formation of links.
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We start with a simple example to show that externalities may prevent the emergene of
an eÆient network in equilibrium.

Example 3 IneÆient Network Formation with Diret Transfers and Positive External-
ities

t t t

u1(g)=2 u2(g)=0

1 2 3

u3(g)= -1

All other networks result in a utilities of 0 for all players.

The eÆient network is the line f12; 23g. For this network to be supported, we must
have t323 � �1, as otherwise 3 would bene�t by lowering t3. If t223 � 1 � �t323, player 2
will bene�t by lowering t223, regardless of what other links have formed as u2 is 0 for all
other networks. Thus, the network f12; 23g annot be supported in equilibrium.

This example shows that, in the presene of positive externalities, diret transfers may
be insuÆient to guarantee that eÆient networks are supported in equilibrium. In fat,
this example learly suggests that indiret transfers (in the form of link subsidization)
are needed to support eÆient networks in equilibrium.

The next example shows that, even in the absene of any externalities, the eÆient
network may fail to form in equilibrium.

Example 4 The EÆient Network is Not Supportable in the Complete Absene of Ex-
ternalities.

Consider a three-player soiety and a pro�le of utility funtions desribed as follows.
Any player gets a payo� of 0 if he or she does not have any links. Player 1 gets a payo�
of 2 if she has exatly one link, and a payo� of 1 if she has two links. Player 2 gets a
payo� of -2 if he has exatly one link, and a payo� of 0 if he has two links. Player 3's
payo� funtion is similar to that of player 2: he gets a payo� of -2 if he has exatly one
link, and a payo� of 0 if he has two links.

It is lear from this spei�ation that all players' payo�s depend only on the on�gu-
ration of their own links and so there are no externalities in payo�s. This payo� struture
is pitured in the network below.
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u1 = 1

u2 = 0

u3 = 0
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0

�21

�2

�2 2

�2

0

2

0

�22

�2

0 �2

u1 = 0

u2 = 0

u3 = 0

Let us argue that there is no equilibrium of the diret transfer game that supports
the omplete network, whih is the unique eÆient network . By setting t22i � 0 for eah
i, player 2 gets a payo� of at least 0. The same is true for player 3. Thus, players 2 and 3
must have a payo� of at least 0 in any equilibrium. Now, suppose by ontradition that
the omplete network were supported in an equilibrium. It would follow that t11i � 0 for at
least one i, or otherwise one of players 2 and 3 would have a negative payo�. Without loss
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of generality, suppose that t112 � 0. Player 1's payo� would then be 1� t112� t113. Suppose
that player 1 deviated and hanged t112 so that t112 + t212 < 0. Then the network that
would form would be 13; 23 and player 1's payo� would beome 2� t113 whih is greater
than 1� t112 � t113 (sine t112 � 0). Hene player 1 would have a pro�table deviation, and
the omplete network annot be supported in equilibrium.

This example points to another diÆulty in sustaining eÆient networks. Players
an hoose to delete any ombination of links. In order to sustain a given network as an
equilibrium, it must be that eah possible deviation is unpro�table, and eah ombination
of links that ould be deleted might require di�erent transfers in order to be avoided.
Some of these ombinations might be in onit with eah other. In the above example,
it is the possibilities that either player 2 or 3 might sever both of his links that lies in
onit with what player 1 an get by severing a single link at a time.

The preeding examples suggest two features that the link formation game must have
in order to always result in eÆient networks in equilibrium. First, indiret transfers
are needed in order to take are of externalities, as suggested by Example 3. Seond, as
Example 4 suggests, transfers need to be ontingent on the network in order to adjust to
the partiular ombination of links that are formed.

Before turning to a full analysis of the games with indiret transfers and/or ontingent
transfers, we analyze the game with only diret transfers. We do this for several reasons.
First, there may be appliations where this is the most appropriate game; seond, this
serves as a useful benhmark; and third, if an eÆient network an be supported via just
diret transfers, then it is in a sense more plausible that it will emerge than one that
requires a more involved transfer sheme to sustain it.

We �rst o�er a omplete haraterization of the networks that an be supported in
equilibrium of the diret transfer game, and then we identify some settings where diret
transfers suÆe to support eÆient networks.

A Complete Charaterization of Networks Supported by Diret Transfers:

The Network Balane Condition

A set of nonnegative weights f�i
`gi2N;`�Li(g) is balaned relative to a network g ifX

`�Li(g):ij2`

�i
` =

X
`�Lj(g):ij2`

�j
`

for eah ij 2 g.

The network g is balaned relative to the pro�le of utility funtions u ifX
i

X
`�Li(g)

�i
`mui(g; `) � 0:
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for every balaned vetors of weights.

We should emphasize that the balane onditions identi�ed here are di�erent both
in struture and impliations from the balane onditions used in ooperative game the-
ory. Our balane ondition assigns weights to eah player and ombination of bilateral
links involving that player. This ontrasts with weights assigned to oalitions in ooper-
ative games, and reets the bilateral struture of networks. This also reets the fat
that these balane onditions are set to address an equilibrium notion that deals with
deviations by at most two individuals at a time.

Proposition 5 A network g is supportable as an equilibrium of the diret transfer net-
work formation game relative to the pro�le of utility funtions u if and only if it is
balaned relative to the pro�le of utility funtions u.

The proof of Proposition 5, together with all of our other proofs, appears in the
appendix. It follows a logi similar to that of the proof of the existene of the ore for
balaned games, exploiting duality to onvert the problem of existene of transfers into
a set of balane onditions. There are a ouple of twists due to the bilateral nature of
the problem, but the proof is fairly short. While balane onditions are not transparent
to interpret, they still have a simple intuition. They examine whether or not all of
the possible marginal utilities from potential deviations an be overome via some set
of transfers. Our balane onditions prove useful in exploring suÆient onditions for
eÆient networks to be supported in equilibrium.

Proposition 5 only haraterizes supportability, and not supportability via pairwise
equilibrium. Clearly this provides neessary, but not suÆient onditions for supportabil-
ity via pairwise equilibrium. The additional onstraints imposed by pairwise equilibrium
are diÆult to apture through balanedness onditions. Nevertheless, we an identify a
suÆient ondition, as follows.

Proposition 6 If a network g is supportable via pairwise equilibrium by the diret trans-
fer network formation, then it is balaned relative to the pro�le of utility funtions u.
Conversely, if u satis�es nonnegative externalities, and g is eÆient and balaned rel-
ative to u, then g is supportable via pairwise equilibrium by the diret transfer network
formation game.

More generally, we show the following lemma, whih also applies to the indiret
transfer game.

Lemma 7 If g is eÆient and supportable via the diret or indiret transfer game, and
u satis�es nonnegative externalities, then g is supportable in pairwise equilibrium.

Supportability with Nonpositive Externalities and Convexity in Own-Links
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We now identify suÆient onditions for the eÆient network to be supported in
equilibrium, using the intuition of Examples 3 and 4. Example 3 suggests that we should
look at situations where externalities are nonpositive. Example 4 suggests a restrition
that marginal payo�s from a given set of links be at least as high as the sum of the
marginal payo�s from separate links. This ondition is formalized as follows.

A pro�le of utility funtions u are onvex in own-links if

mui(g; `) �
X
ij2`

mui(g; ij)

for all i, g, and ` � Li(g).

Under these two onditions eÆient networks are supportable, as stated in the fol-
lowing proposition.

Proposition 8 If utility funtions are onvex in own-links and satisfy nonpositive exter-
nalities, then any eÆient network g is supportable via the diret transfer game. If utility
funtions are onvex in own links and satisfy no externalities, then g is supportable via
a pairwise equilibrium.13

Goyal and Joshi (2003)'s model of networks of ollaboration in oligopoly provides
an example of a setting where onvexity in own links and nonpositive externalities hold.
Suppose that n �rms are engaged in quantity ompetition in a market for a homogeneous
good. By forming a link, �rms an derease their onstant marginal ost of prodution.
Suppose that ost redutions are an inreasing but onave funtion of the number of
links, (�i(g)) where �i(g) denotes the number of edges of �rm i in the graph g: It is
easy to hek that the formation of links by players j and k redues the prodution
osts of those two �rms, resulting in a derease in the pro�t of �rm i and so there are
nonpositive (negative) externalities. Furthermore, when the additional bene�t of a new
link is dereasing with the number of links the �rm has already formed, onvexity in own
links holds. Thus, Proposition 8 applies and the eÆient network is supportable via the
diret transfer game.

Link-Separable Payo�s

13Toni Calvo-Armengol has pointed out to us that this proposition holds if we weaken onvexity in
own-links to only require that there exist some � > 0 suh that mui(g; `) � �

P
ij2` mui(g; ij) for all

i, g, and ` � Li(g). [The proof in the appendix is easily modi�ed, by simply plaing an � on the right
hand side of the inequalities.℄ This aptures some appliations, suh as the o-author model of Jakson
and Wolinsky (1996), whih satis�es nonpositive externalities and the � version of onvexity in own
links, but does not satisfy onvexity in own links. We have not stated the proposition using this weaker
onvexity ondition, as Proposition 13, whih uses a parallel onvexity ondition annot be stated in the
weaker form.
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While Proposition 8 shows that the eÆient network is supported as one equilibrium
of the game, it does not guarantee that no other networks will be supported as equilibria
as well. In order to hek when eÆient networks may be supported as the only pairwise
equilibria of the diret transfer game, we turn to a speial ase of onvexity in own links,
where payo�s are separable aross links.

Payo�s are link-separable, if for eah player i there exists a vetor wi 2 IRn�1, where
wi

jk is interpreted as the net utility that player i obtains from link jk forming. Then

ui(g) =
X
jk2g

wi
jk:

This very strong ondition states that players view relationships ompletely separately.
A speial ase of link separable payo�s is one where agents only are about their diret
links.

Corollary 9 If payo�s are link-separable and have nonpositive externalities, then any
eÆient network g is supportable via the diret transfer game. Furthermore, if payo�s are
link-separable and have no externalities, then g is supportable via a pairwise equilibrium
if and only if g is eÆient.

The �rst statement and �rst part of the seond statement follow from Proposition 8.
To see the only if laim, suppose to the ontrary that g is supportable via a pairwise
equilibrium but not eÆient. Then there exists g0 suh that

P
i ui(g

0) >
P

i ui(g). As
payo�s are link separable and have no externalities, either there exists ij 2 gng0 suh
that wiij + wjij < 0 or there exists ij 2 g0ng and wiij + wjij > 0. In the �rst ase, g
annot be supported as an equilibrium, beause one of the two players has an inentive
to inrease her demanded transfer thereby severing the link; in the seond ase, g annot
be supported as a pairwise equilibrium, sine will exist a pair of ompatible transfer suh
that the players have an inentive form the link.

Distane-Based Payo�s and Stars

Convexity in own links and nonpositive externalities are suÆient onditions for the
eÆient network to be supported as an equilibrium of the diret transfer game, but are
by no means neessary, as there are other onditions that ensure that network balane
is satis�ed. We now exhibit another lass of utility funtions, whih violate both these
onditions, but for whih the eÆient network an be sustained in equilibrium. This is
the lass of distane based utilities, where players get value from the number of players
they are linked to, and this value is dereasing with the distane of the onnetion.

Let d(i; j) denote the distane between i and j in terms of the number of links in the
shortest path between them (setting d(i; j) =1 if there is no path).

17



A pro�le of utility funtions is distane-based if there exist  and f suh that

ui(g) =
X
j 6=i

f(d(i; j))� jLi(g)j

for all i, where  � 0 is a ost per link, and f is a noninreasing funtion.

A distane-based payo� struture is one where players may get bene�ts from indiret
onnetions, but where those bene�ts are determined by the shortest paths. Speial ases
of distane-based payo�s are the onnetions model and trunated onnetions models of
Jakson and Wolinsky (1996). In suh settings, \star" networks play a very entral role,
as aptured in the following proposition.

Proposition 10 If u is distane-based, then the unique eÆient network struture is

(i) the omplete network gN if  < f(1)� f(2),

(ii) a star enompassing all players if f(1)� f(2) <  < f(1) + (n�2)f(2)
2

, and

(iii) the empty network if f(1) + (n�2)f(2)
2

.

In the ase where  is equal to f(1) � f(2) or f(1) + (n�2)f(2)
2

, there are an be a
variety of network strutures that are eÆient. Nevertheless, the star is still eÆient in
those ases.

The proof of Proposition 10 is an easy extension of the proof of a Proposition in
Jakson and Wolinsky (1996), but we inlude it in the appendix for ompleteness.

It turns out that eÆient networks an be supported (even by pairwise equilibrium)
in the diret transfer game for distane-based payo� strutures. This result is related to
the speial nature of the eÆient network. In a star, every player is related to the enter
and positive externalities pass through the enter. Peripheral players an subsidize the
enter of the star to keep their links formed, and this properly aounts for externalities.
This is aptured in the following orollary to Propositions 5 and 6.

Corollary 11 If u is distane-based, then some eÆient network is supportable as an
equilibrium the diret transfer game, and is also supportable in pairwise equilibrium.

The laim is easy to see diretly in ases where either the empty or omplete networks
are eÆient. Consider the remaining ase where f(1)� f(2) �  � f(1) + (n�2)f(2)

2
, and

thus a star involving all players is eÆient. Here, we let us disuss how one an verify
the balane onditions. An agent i onneted to the enter j in a star has only one
link, we an simply set �ifijg =  for any  � 0. Then for the enter j, it must be

that
P

`�Lj(g):ij2` �
j
` = . The fat that a star is balaned then follows from noting

that mui(g; ij) + �j(g; ij) = 2f(1) + (n � 2)f(2) � 2 � 0 in situations where the
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star is eÆient, and noting that the enter's payo� is additively separable aross links.14

Proposition 6 implies that we an support an eÆient g as a pairwise equilibrium, noting
that there are nonnegative externalities in a distane-based u (as adding a link that does
not involve i an only inrease i's payo� as it may derease the distane between i and
some other agent, but does not impose a ost on i)

5 Indiret Transfers

As disussed above, indiret transfers are needed to overome some of the diÆulties
linked to positive externalities in the network. However, in the indiret transfer game,
onvexity in own-links is no longer suÆient to overome the diÆulty due to the deletion
of ombinations of links, as a player's deviation an result in the severane of links
in whih he is not involved. Thus the problem assoiated with the interation of the
multitude of bilateral relationships is more omplex when indiret transfers are present.
This is illustrated in the following example.

Example 12 EÆient Network are not Supportable with Indiret Transfers and Con-
vexity in Own-Links

Consider a three-player soiety with payo�s pitured below.
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14This also gives us an idea of whih transfers support a star as an equilibrium with agent 1 as the
enter. Setting ti1i = f(1)+(n�2)f(2)�, tiji = �(n�1)f(1) for j > 1, and t11i = �[f(1)+(n�2)f(2)�℄
for eah i. It is easily seen that these form an equilibrium that supports the star.
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The omplete network is eÆient but is not the outome of any equilibrium of the
indiret transfer network formation game. Consider any player i. Player i must o�er to
subsidize the link jk by an amount of at least .4, as otherwise at least one of j and k will
have an inentive to \sever" the link (set their demand to be less than �:2).

Consider some player i and link ij suh that tiij � 0. Suh a link must exist if the
omplete network is supported. Consider the following deviation: player i redues the
payment on the link jk and \severs" link ij (setting tiij to be low enough so that ij does
not form). In that ase, the only link formed is link ik, and player i's base payo� is the
inreased, and transfers have dereased whih is strit improvement for player i.

The above network is onvex in own-links, as the marginal utility of any seond own-
link is negative while the marginal utility of any set of two own-links is always positive.
However, note that the onvexity in links fails more generally. The marginal utility to
player 1 at the omplete network of the links 12,23 is negative, while the marginal utility
of 23 at the omplete network is 1.1, and the marginal utility of 12 is -.2, so the sum of
the marginal utilities is positive. Indeed, this is the soure of the problem in the example.

Convexity in All Links

A pro�le of utility funtions u is onvex in all links if

mui(g; `) �
X
jk2`

mui(g; jk)

for all i, g, and any ` � g.

We an now state the following proposition.

Proposition 13 If payo�s are onvex in all links, then any eÆient network g is sup-
portable via the indiret transfer game. If payo�s also have nonnegative externalities,
then g is supportable via pairwise equilibrium.
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With indiret transfers, eÆient networks an thus be supported irrespetive of the
nature of externalities in payo�s if one simply requires equilibrium, and an be supported
under nonnegative externalities if we require pairwise equilibrium. However, the onvex-
ity assumption property needed to support eÆient networks is stronger than "onvexity
in own links" whih was required to support eÆient networks in the diret transfer game.
In words, we require that the marginal bene�t of any subset of links (and not only the
links involving the player) be greater than the sum of the additional bene�ts link per link.
This onvexity assumption is likely to be satis�ed when the marginal bene�t of a new
link is dereasing with the number of links already formed. Examples of suh situations
are trading and information sharing networks. In these networks, the addition of new
onnetions typially has positive externalities on all the players. All players bene�t from
enlarging the set of trading opportunities, or inreasing the number of ommuniation
hannels. However, the marginal bene�t of an additional link will often be dereasing
with the number of links already formed. If players inur a ost for forming diret links,
the eÆient network (typially the omplete network) may not be formed at equilibrium,
beause players do not internalize the positive externalities they produe on other play-
ers. We laim that indiret transfers will allow for the formation of the omplete network
in suh trading and information sharing networks.

While indiret transfers enable the support of eÆient networks as equilibria of the
game, there is no guarantee that eÆient networks are the only equilibria of the game.
We now show that, in games with link separable payo�s and nonnegative externalities,
eÆient networks are the only equilibria of the game if we allow ooperation by all
players in the formation of additional links. More preisely, we strengthen the de�nition
of pairwise equilibrium to allow all players to hange their o�ers/demands on a given
link.

A vetor t is a strong pairwise equilibrium of the indiret transfer game if it is an
equilibrium of the game, and there does not exist any ij =2 g(t) and S � N , and bt that
di�ers from t only on tkij where k 2 S, and suh that �i(t�ij; btij) � �i(t), for all players
i 2 S, with strit inequality for some of the players.

This de�nition is weaker than a strong equilibrium, where arbitrary subsets of players
an alter all of their strategies. We work with the weaker de�nition sine the Corollary
below still holds for this weaker de�nition. In fat, it turns out that under link separability
and nonnegative externalities, the strong equilibria and the strong pairwise equilibria of
the indiret transfer game oinide. This is easy to see as the payo�s separate ompletely
aross links, and so one an onsider links one at a time.

Corollary 14 If payo�s are link-separable and satisfy nonnegative externalities, then g
is supportable via a strong pairwise equilibrium of the indiret transfer game if and only
if g is eÆient.
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6 Network Contingent Transfers

We now onsider network formation games where players an ondition their transfers
on the network that is formed.

As we see now, allowing transfers to be ontingent on the network that forms has a big
impat on the set of networks that an be supported as equilibrium networks, even when
only diret transfers are possible. To understand why ontingent transfers may help
to support eÆient networks, even when only diret transfers are possible, reonsider
Example 3. In that example, the eÆient network ould not be formed in the diret
transfer game, and we argued that the eÆient network ould be supported if indiret
transfers were allowed, as player 1 needs to subsidize the formation of link 23. There is
another possibility, whih does not require the use of indiret transfers, but instead relies
on ontingent transfers. Player 1 ould make transfers to player 2, to pass them on to
player 3. The diÆulty is that if player 1 makes this transfer to player 2, then player
2 might not form the link with player 3 and keep the transfer. This an be reti�ed if
transfers an be made ontingent on the network that forms.

More generally, ontingent diret transfers an be built up along paths so that they
end up moving as if they were indiret transfers within onneted omponents. This
insight is the key to the following proposition and orollary.

Proposition 15 Consider the ontingent version of the diret transfer game and any u.
There exists an equilibrium where the network g is formed and the payo�s are y 2 IRn

where yi � 0 for all i 2 N(g) if and only if
P

i2N(g0) ui(g) =
P

i2N(g0) yi for all g0 2 C(g),
and yi 6= ui(g) implies i 2 N(g).

Corollary 16 Consider the ontingent version of the diret transfer game. Consider
any u and network g suh that

P
i2N(g0) ui(g) � 0 for all omponents g0 2 C(g). There

exists an equilibrium supporting g. Moreover, there is an equilibrium orresponding to
eah alloation y 2 IRn suh that

P
i2N(g0) ui(g) =

P
i2N(g0) yi for eah g0 2 C(g) and

yi = ui(g) or yi < 0 implies i =2 N(g).

Proposition 15 is based on a onstrutive proof, where we expliitly derive equilibrium
ontingent transfers to support the network. While this proposition shows that a wide
set of networks an be supported as equilibria of the ontingent diret transfer game, it
is limited by the fat that transfers annot ow aross separate omponents of a network
in the diret transfer game, even if payments are ontingent. If we allow for ontingent
indiret transfers, then there are additional networks that an be supported, as we now
show.

Proposition 17 Consider the ontingent version of the indiret transfer network for-
mation game. Consider any u, any network g, and any alloation y 2 IRn

+ suh that
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P
i yi =

P
i ui(g), and yi > ui(g) implies i 2 N(g).15 There exists an equilibrium where g

is formed and payo�s are y.

Corollary 18 Consider the ontingent version of the indiret transfer network formation
game, and any u. Any eÆient network suh that disonneted players earn zero payo�s
is supportable. Moreover, there is an equilibrium supporting eah alloation y 2 IRn

+ suh
that

P
i yi =

P
i ui(g) and yi > 0 implies i 2 N(g).

Proposition 17 and Corollary 17 show that the ombination of indiret transfers and
allowing these to be ontingent allows the support of almost all eÆient networks as
equilibria. The artifat that this inludes situations where negative externalities might
be present is due to the fat that we are onsidering only equilibrium and not pairwise
equilibrium.

Pairwise Equilibria with Contingent Transfers

Propositions 15 and 17 have ounterparts for pairwise equilibrium,16 provided the
network being supported is eÆient and there are nonnegative externalities. A simple
extension of the proof Lemma 7 leads to the following orollary.

Corollary 19 Consider the ontingent version of the indiret transfer network formation
game, and any u satisfying nonnegative externalities. Consider the ontingent version
of the indiret transfer network formation game. Consider any eÆient network g and
alloation y 2 IRn

+ suh that
P

i yi =
P

i ui(g), and yi > ui(g) implies i 2 N(g). Then g
is supportable as a pairwise equilibrium with equilibrium payo�s y.

7 Transfers to Prevent Link Formation

The previous analysis shows that eÆient networks an be supported as a Nash equi-
librium of the indiret ontingent transfer game under very mild assumptions on the
payo� funtion. However, in order to sustain eÆient networks as pairwise equilibria, we
needed the additional restrition that externalities are nonnegative. To see why this is
important, onsider the following example exhibiting negative externalities.

Example 20 Negative Externalities and IneÆient Pairwise Equilibria

15The y's in Proposition 17 are required to be nonnegative. One an also support the networks
from Proposition 15 that are not overed in this proposition through the onstrution used there. The
di�erene is that here one sometimes needs a player not inN(g) to subsidize the formation of a omponent
that has a negative value to its members. For this to work, it must be that the disonneted player
earns a nonnegative payo�, or they would withdraw their subsidies. Rather than break this into separate
ases, we have simply worked with the assumption of nonnegative payo�s.

16In order to de�ne pairwise equilibrium, allow players i and j to vary their announements tiij(�) (as
ontingent on any network).
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The soiety has four players. If one link forms, the two players involved eah get a
payo� of 3.

t t

3 3

t t

0 0

If two (separate) links form, then the four players eah get a payo� of 1.

t t

1 1

t t

1 1

All other networks result in a payo� of 0.

In this example, the only pairwise equilibria are ineÆient.17 Two players who are
disonneted always bene�t from forming a link, and there is no way to prevent them
from doing so. Indeed, two players involved in a link would like to pay the other players
not to form a link.

A Game with Payments to Prevent Link Formation

In order to overome the diÆulty exhibited in Example 20, we need to have a game
where players have the ability to make transfers to prevent the formation of links.

We �rst desribe a game that allows payments to prevent link formation, but without
onsidering ontingent transfers. We ome bak to inorporate ontingenies after this
game is made lear. The game is based on the indiret link formation game, with the
following modi�ation. Eah player announes two transfers per link, instead of just

17The eÆient network is supportable as an equilibrium, where the two disonneted players fail to
form a link beause eah demands too large a transfer. This, again, is a ase where pairwise equilibrium
is a reasonable re�nement.
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one. This pair of announements by player i relative to link jk is denoted ti+jk and ti�jk .
Again, these must be nonnegative if i =2 jk, and an be anything otherwise. Player i also
announes mi

j 2 f+;�g for eah j 6= i. The interpretation is that i is delaring whether
the default deision on link ij is not to add ij or to add ij.

The network g(t;m) is then determined as follows.

� If mi
j 6= mj

i , then ij =2 g.

� If mi
j = mj

i = +, then ij 2 g if and only if
P

k t
k+
ij � 0.

� If mi
j = mj

i = �, then ij =2 g if and only if
P

k t
k�
ij � 0.

Payo�s are then

ui(g(t))�
X

jk2g(t);mj
k
=mk

j=+

ti+jk �
X

jk=2g(t);mj
k
=mk

j=�

ti�jk :

The ontingent version of the game with payments to prevent the formation of links
is the version where the ti and mi

j's are announed as a funtion of g, and then solved
via an ordering over games, just as before.

Equilibrium is again pure strategy Nash equilibrium in pure strategies, and pairwise
equilibrium and strong pairwise equilibrium are the obvious extensions to this game.
In partiular, here a pairwise equilibrium is an equilibrium suh that no pair i and j
ould alter their strategies pertaining to ij (as ontingent on any g's mi

j(�), m
j
i (�), t

i+
ij (�),

tj+ij (�), t
i�
ij (�)) and both be weakly better o� and one stritly better o�. A strong pairwise

equilibrium is an equilibrium suh that there does not exist any ij and a deviation by
some set of players S � N on the strategies tk+ij (�), tk�ij (�), (and mi

j(�) if k 2 ij) suh that
all members of S are stritly better o� as a result of the deviation.

To see how the game de�ned above works, reonsider Example 20.

Example 21 Negative Externalities with Payments to Prevent Links

Consider the payo� funtion of Example 20. Let us �nd a pairwise equilibrium of
the game with payments not to form links that supports an eÆient network. Let us
support the eÆient network f12g. Have all players set ti+12 (f12g) = 0. Set t1�34 (f12g) =
t2�34 (f12g) = 1=2 and t3�34 (f12g) = t4�34 (f12g) = �1=2, and m3

34(g) = m4
34(g) = � for all g,

and mi
ij(g) = + otherwise. For any other transfers set ti�ij(g) = �2, and ti�jk(g) = 0 when

i =2 jk.

Here, players 1 and 2 pay players 3 and 4 if the link 34 is not formed. It is straight-
forward to hek that this is a pairwise equilibrium.
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Proposition 22 In the ontingent game with indiret transfers to form or not to form
links, any eÆient network is supportable via pairwise equilibrium, and in fat via strong
pairwise equilibrium.

Proposition 22 shows that with the ability to make ontingent indiret transfers that
both subsidize the formation or the prevention of links, eÆient equilibria are supportable
via pairwise equilibria.

8 Conluding Remarks

We have de�ned a series of games of network formation where transfers among players are
possible, and through an analysis of the equilibrium networkse have shed light on how the
type of transfers is related to the support of eÆient networks. We pointed out two basi
hurdles in supporting eÆient networks in equilibrium. First, the presene of positive
externalities in payo�s may prevent the formation of eÆient networks, beause players
involved in a link do not internalize the external e�ets the link has on other players.
Seond, players may be unable to reah an eÆient network beause the transfers needed
to prevent the deletion of various subsets of links may be inompatible. Overoming
positive externalities relies on players' ability to subsidize the formation of links by other
players, and overoming negative externalities relies on their ability to pay to prevent the
formation of links. The problem of dealing with the ombinatorial nature of the set of
bilateral links that need to be onsidered together is overome if players have the ability
to ondition their transfers on the entire network.

We would like to point out a limitation of our analysis. While some of our results
provide omplete haraterizations of supportable networks (for instane, the network
balane onditions, the link separability onditions, and the onditions outlined for the
ontingent diret transfer game); others only outline suÆient onditions for the support
of eÆient networks and rely on onstrutive proofs. This leaves open some questions
of the preise neessary onditions for supportability in some of the games, whih goes
together with a question of whih ineÆient networks might emerge in some of the games.
Closing the remaining gaps to developing a full understanding of the situations where
eÆient networks emerge as the unique plausible equilibria of a network formation game
is a priority for future researh.
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Appendix A Pairwise Stability and Equilibrium

Networks

In this Appendix, we disuss the relation between the networks supported in the diret
and indiret transfer games, and the pairwise stable networks introdued by Jakson and
Wolinsky (1996). This disussion highlights the onnetions between situations where
the alloation rule is �xed before the formation of the networks, and situations where
players an freely bargain over the alloation of the value of additional links.

The following de�nitions identify networks that are stable when the payo�s are �xed
before the formation proess.18

A network g is pairwise stable with respet to a pro�le of utility funtions u if

(i) for all i and ij 2 g, ui(g) � ui(g � ij), and

(ii) for all ij =2 g, if ui(g + ij) > ui(g) then uj(g + ij) < uj(g).

This is a self-evident solution onept that requires that no player bene�t by severing
a link and no two players bene�t by adding one.

A network g is pairwise stable� with respet to a pro�le of utility funtions u if

(i) for all i and ` � Li(g), ui(g) � ui(g n `), and

(ii) for all ij =2 g, if ui(g + ij) > ui(g) then uj(g + ij) < uj(g).

This variation on pairwise stability is stronger than pairwise stability in that it allows
players to sever sets of links rather than just onsidering one link at a time. This solution
is disussed by Jakson and Wolinsky (1996) and is also essentially the same as the
pairwise Nash equilibrium re�nement of pairwise stability disussed by Goyal and Joshi
(2003).19

The next de�nition is a way of inorporating transfers into the study of network
formation without atually modeling the bargaining proess expliitly.20

A network g is pairwise stable with transfers with respet to a pro�le of funtions u
if

18The �rst two de�nitions are from Jakson and Wolinsky (1996). Strong pairwise stability is disussed
by Jakson and Wolinsky (1996, setion 5), but is not named.

19For a more in depth disussion of the relation between the onepts of pairwise stable and pairwise
stable�, see Calvo-Armengol (2004). We stay away from the term pairwise Nash equilibrium, to avoid
onfusion with pairwise equilibrium.

20This di�ers from the onept of pairwise stability allowing for side payments that is disussed by
Jakson and Wolinsky (1996). That onept had a stronger requirement in (i), requiring that ui(g) �
ui(g � ij) and uj(g) � uj(g � ij). If transfers are possible in sustaining a network, and not just in
deviations, then arguably the de�nition here is more appropriate.
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(i) ij 2 g ) ui(g) + uj(g) � ui(g � ij) + uj(g � ij), and

(ii) ij =2 g ) ui(g) + uj(g) � ui(g � ij) + uj(g � ij).

Part (ii) aptures the idea that there are no two players who ould add a link between
them, together with some transfers, and both be better o�. Part (i) aptures the idea
that if a link is in the network, then there must be some transfer (possibly 0) for whih
both players do not wish to delete the link.

While the notions of pairwise stability and pairwise stability� an di�er from the
equilibria of the diret transfer game, the notion of pairwise stability with transfers
aptures some of the spirit of the equilibria of the diret transfer game.

Proposition 23 The set of networks supportable as pairwise equilibria is exatly the
intersetion of those networks that are supportable via the diret transfer game and the
networks that are pairwise stable with transfers.

The relationship between supportable networks, pairwise equilibria, and the other
pairwise stability onepts is outlined in the following proposition. The relationships
between the solution onepts 24 are aptured in the following Venn diagram.

Equilibrium (Supportable)

Pairwise Stable

Pairwise Stable�

Pairwise Equilibrium

Proposition 24

(i) The set of pairwise equilibria is a subset of the set of equilibria.
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(ii) If a network g is pairwise stable� relative to a pro�le of utility funtions u, then it
is supportable via the diret transfer game and it is pairwise stable.

(iii) There exist u and g for whih g is pairwise stable� (and thus pairwise stable and
supportable), but not supportable via pairwise equilibrium.

(iv) There exist u and g for whih g is supported via pairwise equilibrium (and thus
supportable) and pairwise stable but not pairwise stable�.

(v) There are networks that are supportable and not pairwise stable nor supportable via
pairwise equilibrium.

(vi) There are networks that are pairwise stable and not supportable (nor supportable
via pairwise equilibrium, nor pairwise stable�).

(vii) There are networks that are both supportable and pairwise stable, but not pairwise
stable� nor supportable via pairwise equilibrium.

(viii) There are networks that are supportable via pairwise equilibrium and not pairwise
stable.

(ix) There exist networks that are pairwise stable� (and thus pairwise stable) and at the
same time supported via pairwise equilibrium (and thus supportable).

Proof of Proposition 24: (i) follows from the de�nition of pairwise equilibrium. The
pairwise stable part of (ii) is diret. To see the other part of (ii), set tiij = tjij = 0 for
eah ij 2 g, and tiij = �X for eah ij =2 g, for some X > 0. For large enough X this
forms an equilibrium. To see (iii), onsider the empty network in Example 26. To see
(iv), see Example 27. To see (v), onsider the empty network in Example 1. To see (vi),
see Example 25. To see (vii), see Example 28. To see (viii), see Example 26. To see (ix),
see the omplete network in Example 1.

The examples illustrating the laims in Proposition 24 are as follows.

Example 25 Pairwise stable but not Supportable.
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u1 = 1

u2 = �3

u3 = 1

u2 = �4 u2 = �4

u1 = 1

Example 26 Supportable via Pairwise Equilibrium but not Pairwise Stable

t t

u1(g)=2 u2(g)=-1

1 2

t t

u1(g)=0 u2(g)=0

1 2

Example 27 Supportable via Pairwise Equilibrium and Pairwise Stable but not Pair-
wise Stable�

31



J
J

J
J

J
J

JJ

J
J

J
J

J
J

JJ

































t t

t t

t t t

t

t

J
J

J
J

J
J

JJ

















t t

t t

t t t

t

t
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All other networks have value of 0. The network f12; 23g is supportable via pairwise
equilibrium and pairwise stable but not pairwise stable�.

Example 28 Supportable and Pairwise Stable but not Pairwise Stable� nor Supportable
via Pairwise Equilibrium

This is the same as Example 27, exept that the omplete network leads to u1 = 6,
u2 = �3, and u3 = �1. The network f12; 23g is still supportable and pairwise stable,
but no longer supportable via pairwise equilibrium.

Appendix B Proofs

This Appendix ontains the proof of the Propositions in the body of the paper.

Proof of Proposition 5: The network g is supported via an equilibrium of the diret
transfer network formation game relative to the pro�le of utility funtions u if and only
if there exists a vetor of transfers t suh that:

�
P

ij2` t
i
ij � mui(`), for all players i and subsets of their links ` � Li(g), and
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� tiij + tjij � 0 for all ij 2 g.

Furthermore, we know that in equilibrium, we annot have tiij + tjij > 0 for any ij, as
then either one of the players would stritly bene�t by lowering their tiij.

21

Therefore, to hek whether g is supportable, we an solve the problem

mint
P

ij2g t
i
ij + tjij

subjet to:

�
P

ik2` t
i
ik � �mui(`); 8i 2 N; ` � Li(g) and

tiij + tjij � 08ij 2 g

and verify that the solution satis�es:

min
P

tiij + tjij = 0:

The dual of this problem is22

maxf�i
`
gi2N;`�Li(g)

;f�ijgij2g �
P

i

P
`�Li

�i
`mui(g; `) subjet to

P
`�Li(g):ij2` �

i
` � �ij = �1; for all ordered pairs i 2 N and ij 2 g, and

�i
` � 0 for all i 2 N and ` � Li(g), �ij � 0 for all ij 2 g.

Sine we are free to hoose any the �ij's do not appear in the objetive funtion, this
problem is equivalent to

maxf�i
`
gi2N;`�Li(g)

;f�ijgij2g �
P

i

P
`�Li

�i
`mui(g; `) subjet to

P
`�Li(g):ij2` �

i
`� �ij =

P
`�Lj(g):ij2` �

j
` � �ij for all ordered pairs i 2 N and ij 2 g, and

�i
` � 0 for all i 2 N and ` � Li(g).

As the objetive an be set to 0 by setting all of the �i
`'s to 0, we need only verify

that
P

i

P
`�Li

�i
`mui(g; `) is at least 0 for all sets of �i

`'s that satisfy the onstraints. The
onstraints orrespond to the de�nition of balaned weights, and thus the proposition
follows.

21We an set tiij = tjij = �X for some large enough salar X for any ij =2 g, to omplete the
spei�ation of the equilibrium strategies.

22By standard tehniques, one an write the tiij = ti+ij � ti�ij , where ti+ij and ti�ij are both nonnegative.
Working aross the two inequalities generated by eah one of these, we �nd the equality to -1.
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Proof of Proposition 6: Given Propositions 24 and 5, the �rst statement follows
diretly. Thus, the result follows from Lemma 7.

Proof of Lemma 7: Consider t supporting g in either game. In the indiret transfer
game, for any ij =2 g and k =2 ij, without loss of generality rearrange transfers so that
tkij = 0. Sine g is eÆient, and satis�es nonnegative externalities, it must be that
ui(g + ij) + uj(g + ij) � ui(g) + uj(g), and so mui(g; ij) +muj(g; ij) � 0. Given that
tkij = 0 for all k =2 ij, it follows that any joint deviation by i and j on ij that leads to an
improvement for one player, must lead to a loss for the other player.

Proof of Proposition 8: Let g be an eÆient graph, then for all link ij we must
have X

k

muk(g; ij) � 0:

As the game has nonpositive externalities, this implies that for all links muk(g; ij) � 0
for all k 6= i; j. Hene, mui(g; ij) + muj(g; ij) � 0: Now by onvexity in own-links,
mui(g; `) �

P
ij2`mui(g; ij) for any ` � Li(g). HeneX

i

X
`�Li(g)

�i
`mui(g; `) �

X
i

X
`�Li(g)

�i
`

X
ij2`

mui(g; ij)

=
X
i

X
ij2g

mui(g; ij)
X

`�Li(g):ij2`

�i
`

=
X
ij2g

(mui(g; ij)
X

`�Li(g):ij2`

�i
` +muj(g; ij)

X
`0�Lj(g):ij2`0

�j
`0)

Now, by balanedness,
P

`�Li(g):ij2` �
i
` =
P

`0�Lj(g):ij2`0 �
j
`0 = �ij � 0: Hene,X

i

X
`�Li(g)

�i
`mui(g; `) �

X
ij2g

�ij(mui(g; ij) +muj(g; ij)) � 0;

whih is the required balane ondition.

The Seond statement obtains from Lemma 7.

Proof of Proposition 10:(i) Given that f(2) < f(1)� , any two players who are not
diretly onneted will improve their utilities, and thus the total value, by forming a link.

(ii) and (iii). Consider g0, a omponent of g ontaining m players. Let k � m� 1 be
the number of links in this omponent. The value of these diret links is k(2f(1)� 2).
This leaves at most m(m � 1)=2� k indiret links. The value of eah indiret link is at
most 2f(2). Therefore, the overall value of the omponent is at most

k(2f(1)� 2) + (m(m� 1)� 2k)f(2): (1)

If this omponent is a star then its value would be

(m� 1)(2f(1)� 2) + (m� 1)(m� 2)f(2): (2)
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Notie that
(1)� (2) = (k � (m� 1))(2f(1)� 2� 2f(2));

, whih is at most 0 sine k � m� 1 and  > f(1)� f(2), and less than 0 if k > m� 1.
The value of this omponent an equal the value of the star only when k = m� 1. Any
network with k = m�1, whih is not a star, must have an indiret onnetion whih has
a path longer than 2, getting value at most 2f(2). Therefore, the value of the indiret
links will be below (m� 1)(m� 2)f(2), whih is what we get with star.

We have shown that if  > f(1)�f(2), then any omponent of a eÆient network must
be a star. Note that any omponent of a eÆient network must have nonnegative value.
In that ase, a diret alulation using (2) shows that a single star of m+m0 individuals
is greater in value than separate stars of m and m0 players. Thus if the eÆient graph is
nonempty, it must onsist of a single star. Again, it follows from (2) that if a star of n
players has nonnegative value, then a star of n + 1 players has higher value. Finally, to
omplete (ii) and (iii) notie that a star enompassing everyone has positive value only

when f(1) + (n�2)
2

f(2) > .

Proof of Proposition 13: Let g be an eÆient network. If ij =2 g, let the transfers
be tiij = tjij = �X and tkij = 0 for k =2 ij, where X is suÆiently large to be exeed
the largest marginal utility of any agent for any set of links. If ij 2 g, by eÆienyP

k muk(g; ij) � 0: If muk(g; ij) � 0 for all k set all the transfers tkij = 0. Ifmui(g; ij) < 0

and/or muj(g; ij) < 0 then set the orresponding tiij and or tjij equal to the marginal
utility, and then for eah k suh that muk(g; ij) > 0 set tkij 2 [0; muk(g; ij)℄ so thatP

l t
i
ij = 0. This is possible by the eÆieny of g.

These t are suh that for any ij 2 g, mul(g; ij) � tlij whenever l 2 ij or l =2 ij and
tlij > 0. Let us argue that this forms an equilibrium of the indiret transfer game.

First, note that by the de�nition of X, if there exists an improving deviation, there
will exist one that only hanges t's on links in g.

By onvexity in all links, if there exists a deviation that is improving for some l on tl

on some set of links, then there exists some deviation that involves at most one link tlij,
with the possibility that l 2 ij. For ij 2 g, inreasing transfers is ostly and does not
hange the outome. Reduing transfers implies that the link will not be formed. Suh
a deviation annot be pro�table as mul(g; ij)� tlij � 0 if l 2 ij or if l =2 ij and tlij > 0.
It is not possible to lower tlij below 0 if l =2 ij.

The last laim in the Proposition follows from Lemma 7.

Proof of Corollary 14 We �rst show that the eÆient network is supported in a
strong pairwise equilibrium. Clearly, an eÆient network must satisfy ij 2 g if and
only if

P
k w

k
ij � 0. Consider then the following transfer sheme. For any link suh thatP

k w
k
ij � 0. If wi

ij � 0 and wj
ij � 0, let tkij = 0 for all k. If at least one of the two involved
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players has a negative marginal utility from that link, onsider all players k for whih
wk
ij > 0 and set transfers so that tkij = wk

ij � (
P

k w
k
ij=jKj) and for i suh that wi

ij < 0 set
tiij = wi

ij:For any link suh that
P

k w
k
ij < 0 set transfers tkij = X where X is very large.

For any ij 2 g(t), it is lear that those transfers form an equilibrium strategy. If ij =2 g(t),
there annot be any transfer sheme suh that

P
k t

k
ij � 0 and

P
k w

k
ij �

P
k t

k
ij > 0:

Next, suppose by ontradition that an ineÆient network is supported in a strong
pairwise equilibrium. As g is ineÆient, there must exist either ij 2 g and

P
k w

k
ij < 0 or

ij =2 g and
P

k w
k
ij > 0. Beause payo�s satisfy nonnegative externalities, if

P
k w

k
ij < 0

then wi
ij+wj

ij < 0. Hene, one of the players must have a pro�table deviation by hanging
transfers so as to sever the link. If

P
k w

k
ij > 0, onstrut a transfer sheme as above. (

If wi
ij � 0 and wj

ij � 0, let tkij = 0 for all k. If at least one of the two involved players has
a negative marginal utility from that link, onsider all players k for whih wk

ij > 0 and
set transfers so that tkij = wk

ij � (
P

k w
k
ij=jKj) and for i suh that wi

ij < 0 set tiij = wi
ij:)

Under this transfer sheme the link is formed and all players inrease their utilities.

Proof of Proposition 15: The neessity of
P

i2N(g0) ui(g) =
P

i2N(g0) yi for all g
0 2 C(g),

and yi 6= ui(g) implies i 2 N(g) follow from the balane of transfers aross omponents
and the observation that in equilibrium the transfers will sum to 0 on any link that is
formed.

To omplete the proof, let us show that any suh network g and alloation y an be
supported as an equilibrium.

Let Y = 3maxfmaxi jyij; maxi;g0 jui(g
0)jg.

For g0 6= g, set tiij(g
0) = �Y for all i and j.

For g, set transfers as follows. For any ij =2 g set tiij = tjij = �Y .

For ij 2 g we set transfers as follows.

Consider a omponent g0 2 C(g).

Find a tree h � g0 suh that N(h) = N(g0).23

Let player i be a root of the tree.24 Consider eah j who has just one link in the tree.
There is a unique path from j to i. Let this path be the network h0 = fi1i2; : : : ; iK�1iKg,
where j = i1 and i = iK .

23A tree is a network that onsists of a single omponent and has no yles (paths suh that every
player with a link in the path has two links in the path).

24A root of the tree is a player who lies on any path that onnets any two players who eah have just
one link in the tree.

36



Iteratively, for eah k 2 f1; : : : ; Kg set25

tikik�1ik =
X
k0<k

yik0 � uik0 (g)

and
tikikik+1 =

X
k0�k

�
�
yik0 � uik0 (g)

�

Do this for eah path in the tree.

For any link ij 2 g but ij =2 h, set tiij = tjij = 0.

Under these transfers, g will be the network that forms and y will be the payo� vetor.
Let us hek that there are no improving deviations.

Consider a deviation that leads to another network g0 6= ; being formed. This must
involve a net loss for any i as i's payo� must be below ui(g

0) � Y . Next, onsider a
deviation that leads to the empty network. It must be that that the deviating player is
i 2 N(g) in whih ase the new payo� is 0 for i, whih annot be improving as yi � 0. So,
onsider a deviation by a player i that still leads to g being formed. Player i's promises
tiij(g) an only have inreased, whih an only lower i's payo�.

Proof of Proposition 17:

Let Y = 3maxfmaxi jyij; maxi;g0 jui(g0)jg.

For g0 6= g, set tiij(g
0) = �Y for all i and j, and set tijk(g

0) = 0 for i =2 jk.

For g, set transfers as follows. Let A = fijyi > ui(g)g and B = fijyi < ui(g)g.

For i 2 A let `i(g) be the number of links that i has in g. Set tiij(g) =
�yi+ui(g)

`i(g)
if

ij 2 g and set tiij(g) = �Y if ij =2 g, and tijk = 0 otherwise.

For i 2 B let

�i =
ui(g)� yiP

j2B uj(g)� yj
:

Then for i 2 B set

tijk(g)

= �i

 
yj � uj(g)

`j(g)
+
yk � uk(g)

`k(g)

!
if jk 2 g; j 2 A and k 2 A;

25For k = 1 only the seond equation applies, and for k = K only the �rst applies.
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= �i

 
yj � uj(g)

`j(g)

!
if jk 2 g; j 2 A and k =2 A;

= �Y if jk =2 g and i 2 jk; and

= 0 otherwise:

For i =2 A [ B, set tiij = �Y if ij =2 g and tijk = 0, otherwise.

Under these transfers, g will be the network that forms and y will be the payo� vetor.
Let us hek that there are no improving deviations.

Consider a deviation that leads to another network g0 6= ; being formed. This must
involve a net loss for any i as i's payo� must be below ui(g

0) � Y . Next, we onsider a
deviation by a player i that leads to the empty network. This annot be improving as
yi � 0. So, onsider a deviation by a player i that still leads to g being formed. Player
i's promises tijk(g) an only have inreased, whih an only lower i's payo�.

Proof of Proposition 23: It is lear that the set of pairwise equilibria is a subset of the
set of equilibria of the diret transfer game. Let us show that any network supportable
as a pairwise equilibrium is also pairwise stable with transfers. Consider a pairwise

equilibrium bt. For any link ij 2 g, player i prefers to announe tiij than any transfer X

suh that X +

tjij < 0: Hene, ui(g)�

tiij � ui(g � ij): Similarly, uj(g)�

tjij � ui(g � ij).

Summing up the two inequalities, ui(g)+ uj(g)� ( tiij +
tjij) � ui(g� ij)+ uj(g� ij) and

as ( tiij +
tjij) � 0, ui(g)+uj(g) � ui(g� ij)+uj(g� ij): Conversely, suppose that ij =2 g:

If ui(g)+uj(g) > ui(g� ij)+uj(g� ij), de�ne a new transfer vetor et where ethkl = thkl for
all kl 6= ij and etiij = ui(g)�ui(g� ij)� "; etjij = uj(g)�uj(g� ij)� " where " is hosen so

that etiij + etjij � 0: It follows that ui(g(et))�Pk;ik2g(et) etiik = ui(g� ij)�
P

k 6=j;ik2g(et) tiik+ " >

ui(g(bt)) � P
k;ik2g(bt) tiik and similarly, uj(g(et)) � P

k;jk2g(et) etjjk > uj(g(bt)) � P
k;jk2g(bt) tjjk,

ontraditing the de�nition of pairwise equilibrium.

Finally, let us argue that any network g that is supportable and is also pairwise stable
with transfers is supportable as a pairwise equilibrium. Consider an equilibrium bt that
supports g. We argue that bt must also be a pairwise equilibrium. Suppose to the ontrary
that there exists some ij =2 g suh that

ui(g + ij)�
X
ik2g

tiik � btiij � ui(g)�
X
ik2g

tiik

and
uj(g + ij)�

X
jk2g

tjjk � btjij � uj(g)�
X
jk2g

tjjk;

with one inequality holding stritly, and where btiij + btjij � 0 (as otherwise the link ij does
not form and the payo�s ould not have hanged). Thus,

ui(g + ij)� btiij + uj(g + ij)� btjij > ui(g) + uj(g):
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Sine btiij + btjij � 0 it follows that

ui(g + ij) + uj(g + ij) > ui(g) + uj(g);

whih ontradits the fat that g is pairwise stable with transfers.

Proof of Proposition 22: For n = 2, the Proposition is straightforward, as the only
networks are the empty and single link network. The single link network is supportable
as a (strong pairwise) equilibrium if and only if it has nonnegative value. In the ase
where a link's value is nonpositive, the empty network is learly supportable as a (strong
pairwise) equilibrium.

So onsider a setting where n � 3. Let g be suh that
P

i(g) � 0.

Let Y = 3maxi;g0 jui(g0)j.

For g0 6= g, set ti+ij (g
0) = ti�ij (g

0) = �Y for all i and j, and set tijk(g
0) = 0 for i =2 jk.

Set mi
j(g

0) = + if ij =2 g0 and mi
j(g

0) = � if ij 2 g0. Note that under these rules,
g(t(g0); m(g0)) (the links that would form given these announements) is the omplement
of g0.

For g, set transfers as follows. Let u =
P

i
ui(g)

n
be the average payo� from g, whih

is at least 0. Let A = fijui(g) � ug and B = fijui(g) < ug, and nA and nB be the
orresponding ardinalities.

Set mi
j(g

0) = + for all ij 2 g and mi
j(g

0) = � if ij =2 g. Set the t's as follows. If
nB = 0, then set tk�ij = 0 for all k and ij.

For nB > 0, let �j =
u�uj(g)P
k2B

u�uk(g)
for k 2 B and �j = 0 if j 2 A.

For i 2 B set ti+ij (g) = ti�ij (g
0) = u�ui(g)

n�1
for all j, and set ti�jk(g) = 0 when i =2 jk. For

i 2 A set ti+ij (g) = ti�ij (g
0) = �j

ui(g)�u
n�1

for all j, and set ti�jk(g) = (�j + �k)
ui(g)�u
n�1

when
i =2 jk.

Under these announements, g is formed and eah player's payo� is u. Consider any
deviation by a player i. Given the announed t�i and m�i (and the fat that there are
three or more players), i an only indue the empty network and a payo� of 0. This an
not be improving. Consider a deviation by some group of players S on the announements
pertaining to a link ij. Again, they an only indue the empty network and a payo� of
0, or else the network g and some realloation of their own payo�s. Neither of these
deviations an make eah member of the group as well o� and some better o�.
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