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The Formation of Networks with Transfers among

Players

Fran
is Blo
h Matthew O. Ja
kson

Abstra
t

We examine the formation of networks among a set of players whose payo�s depend on
the stru
ture of the network. We fo
us on games where players may bargain by promising
or demanding transfer payments when forming links. We examine several variations of
the transfer/bargaining aspe
t of link formation. One aspe
t is whether players 
an
only make and re
eive transfers to other players to whom they are dire
tly linked, or
whether they 
an also subsidize links that they are not dire
tly involved in. Another
aspe
t is whether or not transfers related to a given link 
an be made 
ontingent on the
full resulting network or only on the link itself. A �nal aspe
t is whether or not players

an pay other players to refrain from forming links. We 
hara
terize the networks that
are supported under these variations and show how ea
h of the above aspe
ts is related
either to a

ounting for a spe
i�
 type of externality, or to dealing with the 
ombinatorial
nature of network payo�s.

JEL 
lassi�
ation numbers: A14, C71, C72

Key words: Networks, Network Games, Network Formation, Game Theory, EÆ
ient
Networks, Side Payments, Transfers, Bargaining, Externalities



The Formation of Networks with Transfers among

Players�
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kson

1 Introdu
tion

Many so
ial, e
onomi
, and politi
al intera
tions take the form of a network of bilateral
relationships. This ranges from friendships to trading relationships and politi
al allian
es.
As the stru
ture of the network of relationships 
an have a profound impa
t on the
welfare of all the involved parties, it is essential to develop a good understanding of whi
h
networks are likely to form and how this depends on the spe
i�
s of the 
ir
umstan
es.
This paper 
ontributes to a growing literature that models network formation.1

Here, our fo
us is on the role played by transfers payments in the formation of so
ial
and e
onomi
 networks. In many appli
ations, agents bargain on possible transfers at
the time of forming relationships. For example, when two airlines form a 
ode-sharing
agreement, in
luded in that agreement are the details of how the 
osts and revenues on

ross-booked passengers are to be split. Similarly, when two politi
al parties form an
ele
toral pa
t, they expli
itly or impli
itly agree on the division of seats, 
ommittee po-
sitions, 
abinet posts, and government bene�ts. Without transfer payments (in 
urren
y
or in kind), many agreements would simply never exist.

Our �rst obje
tive in this paper is to 
onstru
t a simple model where the agreement
on transfers is part of the pro
ess of the formation of links. Our se
ond obje
tive is to
study how the formation of networks depends on the types of transfers that agents 
an
make. How important is it that agents 
an subsidize the formation of links that they
are not dire
tly involved in? How important is it that agents be able to make payments

ontingent on the full network that emerges? What is the role of making payments to
other players if they refrain from forming links? Sin
e the types of payments that agents
will have at their dis
retion depends on the appli
ation, the answers to these questions

�Finan
ial support from the Lee Center for Advan
ed Networking and from the NSF under grant
SES{0316493 is gratefully a
knowledged. We thank Anke Gerber and the parti
ipants of the Ninth
Coalition Theory Network Workshop for a helpful dis
ussion of the paper, and Toni Calvo-Armengol for

omments on an earlier draft.

1See Ja
kson (2003b) for a survey of the literature that is most 
losely related to our work here.



help us to understand the relationship between the networks that emerge, and for instan
e
whether eÆ
ient networks form, and the spe
i�
s of the so
ial or e
onomi
 intera
tion.

Our results outline some simple and intuitive relationships between the types of trans-
fers available and the networks that emerge. The main results 
an be summarized as
follows. If transfers 
an only be made between the players dire
tly involved in a link,
then the set of networks that emerge as equilibria are 
hara
terized by a balan
e 
on-
dition. While there are some settings where eÆ
ient networks are supported with only
dire
t transfers, there are many settings where the networks that form will be ineÆ
ient.
If players 
an make indire
t transfers, so that they 
an subsidize the formation of links
between other players, then they 
an properly a

ount for some forms of positive exter-
nalities. However, even with indire
t transfers, we still need to worry about the fa
t that
there are many di�erent 
ombinations of links that players might 
onsider forming or
not forming. Thus, even though links are bilateral, the multitude of su
h relationships
results in some multilateral de
ision problems. This means that in order to guarantee
that eÆ
ient networks form, players need not only to be able to make indire
t transfers
in order to deal with (positive) externalities, but also to make those transfers 
ontingent
on the network that emerges in order to take 
are of the multitude of interrelated bilat-
eral problems. Thus, there is a basi
 sense in whi
h one 
an view the role of indire
t
payments as taking 
are of externalities, and 
ontingen
ies as taking 
are of the 
ombi-
natorial nature of network formation. Finally, in order to handle negative externalities,
players need to be able to pay other players not to form links. Our analysis also in
ludes
some dis
ussion of how to model equilibrium, and we defer all dis
ussion of that analysis
until we have laid out the details of the network formation games. This outlining of the
relationship between the types of transfers admitted and the types of externalities and
the multilateral de
ision problem that are over
ome is the �rst that we know of in the
networks literature, or even the 
ontra
ting literature for that matter.

Before presenting the model, let us brie
y dis
uss its relationship to the most 
losely
related literature. This paper �ts into a re
ent literature that examines network formation
when players a
t in their own interest and their payo�s may depend on the whole stru
ture
of the network.2 In su
h network games, Ja
kson and Wolinsky (1996) showed that the
networks that maximize so
iety's overall payo� will often not be stable in an equilibrium
sense, regardless of how players' payo�s are allo
ated or re-allo
ated (subje
t to two
basi
 
onditions of anonymity and 
omponent balan
edness).3 Moreover, simple examples
showed that even when players have the ability to make side-payments, eÆ
ient networks
may fail to form be
ause side-payments do not enable players to over
ome the diÆ
ulties
linked with network externalities.

This tension between eÆ
ien
y and stability underlies our analysis of link formation
with transfers, and we develop a deeper understanding of the sour
e of su
h ineÆ
ien
ies.

2See Ja
kson (2003a) for a survey of this literature; as well as Slikker and van den Nouweland (2001a)
for a look at the literature that deals with 
ommuni
ation stru
tures in 
ooperative game theory, where
a graph stru
ture determines whi
h 
oalitions 
an generate value.

3See Ja
kson and Wolinsky (1996) and Dutta and Mutuswami (1997) for detailed dis
ussion of the
role of the 
onditions.
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We identify two reasons why side-payments may be ine�e
tive in resolving the 
on
i
t
between eÆ
ien
y and stability. First, there is the fairly obvious point that widespread
externalities in the network may imply that agents have to have input into the formation
of links by other players for the eÆ
ient network to form. For example, if the eÆ
ient
network involves the formation of a link between two players who get a negative utility
from that link, side-payments will be ine�e
tive in rea
hing the eÆ
ient out
ome. Se
ond,
is the less obvious point that sin
e players are involved in multiple bilateral relationships
at the same time, side-payments negotiated bilaterally may not be suÆ
ient to sustain
the formation of eÆ
ient networks. In some situations, players may have an in
entive to
renege on di�erent relationships at on
e, even though ea
h bilateral relationship 
an be
sustained by side-payments. The main message of this paper is that the two diÆ
ulties
identi�ed above 
an be over
ome by enlarging the range of possible transfers, and 
an
be tra
ed to spe
i�
 features of the transfers. Network externalities 
an be dealt with if
players have the ability to make indire
t transfers, subsidizing the formation of links by
other players or paying players not to form links. The 
ombinatorial diÆ
ulties linked to
the multitude of bilateral relationships 
an be solved if players have the ability to make

ontingent transfers depending on the network being formed. In parti
ular, if players

an make indire
t 
ontingent transfers, eÆ
ient networks 
an be sustained by individual
in
entives under very mild regularity 
onditions.

Ours is not the �rst paper to look at the endogenous determination of payo�s together
with network formation. Re
ent models of network formation by Currarini and Morelli
(2000) and Mutuswami and Winter (2002)4 allow players to simultaneously bargain over
the formation of links and the allo
ation of value. In parti
ular, Currarini and Morelli
(2000), and Mutuswami and Winter (2002), model network formation as a sequential
pro
ess where players move in turn and announ
e the total payo� that they demand
from the eventual network that will emerge, as well as the spe
i�
 links that they are
willing form. The network that forms as a fun
tion of the announ
ements is the largest
one su
h that the total demands are 
ompatible with the total value that is generated.
They show that the equilibria of su
h games are eÆ
ient networks, assuming that there
are no externalities a
ross network 
omponents and that some other payo� monotoni
ity

onditions are satis�ed. Part of the intuition is that by moving in sequen
e and making
su
h take it or leave it demands, players 
an extra
t their marginal 
ontribution to an
eÆ
ient network, and this provides 
orre
t in
entives in some situations.

Currarini and Morelli (2000) and Mutuswami and Winter (2002) make the important
point that the ability to determine payo�s in 
onjun
tion with link formation may aid in
the emergen
e of eÆ
ient networks. However, these sequential games have spe
ial features
and are better for illustrating the importan
e of taking su
h bargaining seriously (or for
implementing variations on the Shapley value), than for providing reasonable models
of network formation. In parti
ular, the end-gaming and �nite extensive forms drive
the results. Moreover, while they provide some suÆ
ient 
onditions for the support of
eÆ
ient networks, they do not give us mu
h of a feel for how generally this might hold, or
how this depends on the stru
ture of the pro
ess. In parti
ular, the nature of the game

4See also Slikker and van den Nouweland (2001b) in the 
ontext of 
ommuni
ation games.
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does not even allow an analysis of whi
h players pay whi
h others - essentially everything
is impli
itly 
entralized.5

The rest of this paper is organized as follows. Se
tion 2 introdu
es our notations for
players and networks. We des
ribe the di�erent models of network formation in Se
tion 3.
We then study the di�erent models in turn. Se
tion 4 is devoted to the dire
t transfer
game, Se
tion 5 to the indire
t transfer game, Se
tion 6 to 
ontingent transfers and
Se
tion 7 to a game where players may pay to prevent the formation of links by other
players. We 
on
lude in Se
tion 8. The paper ends with two Appendi
es. Appendix A
dis
usses the relation between pairwise stability, as de�ned by Ja
kson and Wolinsky
(1996), and the networks supported by the dire
t transfer game. Appendix B 
ontains
the proofs of our results.

2 Modeling Networks

Players and Networks

N = f1; : : : ; ng is the set of players who may be involved in a network relationship.6

A network g is a list of pairs of players who are linked to ea
h other. For simpli
ity,
we denote the link between i and j by ij, so ij 2 g indi
ates that i and j are linked in the
network g. Let gN be the set of all subsets of N of size 2. The network gN is referred to
as the 
omplete network. The set G = fg � gNg denotes the set of all possible networks
on N:

For any network g 2 G, let N(g) be the set of players who have at least one link in the
network g. That is, N(g) = fi j 9j s:t: ij 2 gg. Given a player i 2 N and a network g 2 G,
let Li(g) denote the set of links in g involving player i, Li(g) = fjk 2 gjj = i or k = ig:

Paths and Components

A path in a network g 2 G between players i and j is a sequen
e of players i1; : : : ; iK
su
h that ikik+1 2 g for ea
h k 2 f1; : : : ; K � 1g, with i1 = i and iK = j.

A 
omponent of a network g, is a nonempty subnetwork g0 � g, su
h that

� if i 2 N(g0) and j 2 N(g0) where j 6= i, then there exists a path in g0 between i
and j, and

5We have be
ome aware of independent work by Matsubayashi and Yamakawa (2004) who analyze
a game whi
h operates on a link by link basis, as do some of the games we study here. Their work
fo
uses on Ja
kson and Wolinsky's (1996) 
onne
tions model, and a game where players negotiate over
how mu
h of the 
ost of a link ea
h player will bear. Thus, there is almost no overlap with our results.

6For ba
kground and dis
ussion of the model of networks dis
ussed here, see Ja
kson (2003b).
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� if i 2 N(g0) and ij 2 g, then ij 2 g0.

Utility Fun
tions

The utility of a network to player i is given by a fun
tion ui : G! IR+.
7 Let u denote

the ve
tor of fun
tions u = (u1; : : : ; un). We normalize payo�s so that ui(;) = 0.

A utility fun
tion tells us what value a

rues to any given player as a fun
tion of the
network. This might in
lude all sorts of 
osts, bene�ts, and externalities.

For any network g 2 G and subset of links ` � g, we de�ne the marginal utility of
the links ` in g to player i by mui(g; `) = ui(g)� ui(g n `):

Externalities

While the 
lass of utility fun
tions we 
onsider is 
ompletely general, the following
de�nitions of externalities will prove useful.

A pro�le of utility fun
tions u satis�es no externalities if ui(g) = ui(g + jk) for all g,
jk =2 g, and i =2 jk.

A pro�le of utility fun
tions u satis�es nonpositive externalities if ui(g) � ui(g + jk)
for all g, jk =2 g, and i =2 jk.

A pro�le of utility fun
tions u satis�es nonnegative externalities if ui(g) � ui(g+ jk)
for all g, jk =2 g, and i =2 jk:

These de�nitions of externalities are not exhaustive sin
e there are settings where
some links may result in positive externalities and others in negative externalities, or
the nature of the externality may di�er a
ross players. Nevertheless, these de�nitions
provide a useful organizing devi
e, and 
an easily be interpreted. Situations with no
externalities 
orrespond to 
ases where players only 
are about who they are 
onne
ted
to, but no further information. Nonpositive (negative) externalities arise when players
are hurt by the formation of links by other players. An example of this is the 
o-
author model of Ja
kson and Wolinsky (1996), where a player is hurt if their 
o-authors
take on other 
o-authors. Other examples of these are seen in Goyal and Joshi (2003),
where two �rms form strategi
 allian
es and other �rms are harmed by the resulting
redu
tion in marginal 
ost; or in Goyal and Joshi (2000) and Furusawa and Konishi
(2002), where two 
ountries enter into a free-trade agreement and other 
ountries su�er.
Nonnegative (positive) externalities arise when players bene�t from the formation of
new links. In Ja
kson and Wolinsky's (1996) and 
onne
tions model, externalities are

7As opposed to Ja
kson and Wolinsky (1996) we do not distinguish between a value fun
tion and an
allo
ation rule. Instead, our primitive is the set of individual values for every network.

5



positive as all players bene�t from an in
rease in the friendship/
ommuni
ation network.
Positive externalities also emerge in Belle
amme and Blo
h (2001)'s 
ollusive networks,
where market sharing agreements redu
e the number of 
ompetitors on the market to
the bene�t of other �rms.

Values and EÆ
ien
y

A network g 2 G Pareto dominates a network g0 2 G relative to u if ui(g) � ui(g
0)

for all i 2 N , with stri
t inequality for at least one i 2 N . A network g 2 G is Pareto
eÆ
ient relative to u if it is not Pareto dominated.

A network g 2 G is eÆ
ient relative to u if it maximizes
P

i ui(g).

When transfers are possible, Pareto eÆ
ien
y and eÆ
ien
y are equivalent, so we
fo
us here on eÆ
ient networks.8

3 Network Formation Games

We 
onsider several models of network formation where various types of transfers are
available, and examine whi
h networks emerge as equilibria of these games. There are
two basi
 versions of the game, allowing for dire
t or indire
t transfers. In the dire
t
transfer game, players 
an only bargain over the distribution of payo�s of the links they
are involved with. In the indire
t transfer game, players 
an subsidize the formation of
links by other players. We later extend both games to allow for 
ontingent transfers.

The Dire
t Transfer Network Formation Game

In the dire
t transfer game, every player i 2 N announ
es a ve
tor of transfers
ti 2 IRn�1. We denote the entries in this ve
tor by tiij, representing the transfer that
player i proposes on link ij: Announ
ements are simultaneous.

Link ij is formed if and only if tiij + tjij � 0: Formally, the network that forms as a
fun
tion of the pro�le of announ
ed ve
tors of transfers t = (t1; : : : ; tn) is

g(t) = fij j tiij + tjij � 0g

In this game, player i's payo� is given by

ui(g(t))�
X

ij2g(t)

tiij:

8For a detailed dis
ussion of various notions of eÆ
ient networks in the presen
e of transfers, see
Ja
kson (2003a).
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This game is easily interpreted. Players simultaneously announ
e a transfer for ea
h
possible link that they might form. If the transfer is positive, it represents the o�er
that the player makes to form the link. If the transfer is negative, it represents the
demand that a player requests to form the link. Note that the o�er may ex
eed the
demand, tiij+ tjij > 0. In that 
ase, we hold both players to their promises. If for instan
e

tiij > �tjij > 0, player i ends up making a bigger payment than player j demanded.
Player j only gets his demand, and the ex
ess payment is wasted.

It is important to note that wasted transfers will never o

ur in equilibrium, and
alternative spe
i�
ations of the game (for instan
e, letting player i only pay player j's
demand or player j re
eive the total o�er of player i) would not 
hange the stru
ture of
the equilibria.

The Indire
t Transfer Network Formation Game

In the indire
t transfer game, every player i announ
es a ve
tor of transfers ti 2
IRn(n�1)=2. The entries in the ve
tor ti are given by tijk, denoting the transfer that player
i puts on the link jk. If i =2 jk, tijk � 0. Player i 
an make demands on the links that he
or she involved with (it is permissible to have tiij < 0), but 
an only make o�ers on the
other links. The reasoning here is that a player 
annot prevent the formation of a link
between two other players (ex
ept possibly by paying them not to form the link, as we

onsider later).

Link jk is formed if and only if
P

i2N tijk � 0: Formally, the network that forms as a
fun
tion of the pro�le of announ
ed ve
tors of potential transfers t = (t1; : : : ; tn) is

g(t) = fij j
X
i2N

tijk � 0g

In this game, player i's payo� is given by

ui(g(t))�
X

jk2g(t)

tijk:

Network Formation Games with Contingent Transfers

In the games we have de�ned above, players only have a limited ability to 
ondition
their a
tions on the a
tions of other players. Those games do not allow for 
ontingent

ontra
ts of the form \I will pay you to form link ij only if link jk is also formed." It
turns out that being able to make this kind of 
ontingent 
ontra
t 
an be very important,
and so we now de�ne su
h games.

7



Every player announ
es a ve
tor of 
ontingent transfers ti(g) 
ontingent on g forming,
for ea
h 
on
eivable nonempty g 2 G. In the dire
t transfer game, ti(g) 2 IRn�1 for ea
h
i, while in the indire
t transfer game, ti(g) 2 IRn�1!

There are many possible ways to determine whi
h network forms given a set of 
on-
tingent announ
ements. We 
onsider the following one, but it will be
ome 
lear that
the results are robust to 
hanges in the way the network is determined. Let there be
an ordering over G, 
aptured by a fun
tion � whi
h maps G onto f1; : : : ;#Gg. The
network that forms is determined as follows. Start with the �rst network, g1 su
h that
�(g1) = 1, and 
he
k whether g(t(g1)) = g1: If the answer is yes, then this is the network
that forms. Otherwise, move on to the se
ond network, g2, and 
ontinue the pro
ess until
we �nd su
h a network. The network formed is thus the �rst network gk in the ordering
for whi
h g(t(gk)) = gk. If there is no su
h k, then the empty network forms.

Equilibrium and Supporting a Network

Given a ve
tor of transfers t in any of the variants of the game, a players payo� is
given by

�i(t) = ui(g(t))�
X

jk2g(t)

tijk

in the non-
ontingent game,9 and

�i(t) = ui(g(t))�
X

jk2g(t)

tijk(g(t))

in the 
ontingent game.

A ve
tor t forms an equilibrium of one of the above games if it is a pure strategy
Nash equilibrium of the game. That is, t is an equilibrium if

�(t) � �(t�i; bti);
for all i and bti.

We say that a network g is supported via a given game relative to a pro�le of utility
fun
tions u = (u1; : : : ; un) if there exists an equilibrium t of the game su
h that g(t) = g.

A Comment on Simultaneous Move Games

A 
riti
al advantage of 
onsidering a simultaneous version of network formation is that
after seeing the resulting network and transfers, players will not wish to make further

9This equation in
ludes tijk, even when i =2 jk, and su
h transfers are not in
luded in the dire
t

transfer game. Simply set tijk = 0 when i =2 jk for the dire
t transfer game.
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hanges to their transfers and links. This is not true if one instead models network
formation sequentially, by having the players move in some order. It 
ould be that the
resulting network and transfers would not be stable if players 
ould then 
ome ba
k and
make further 
hanges.

Regardless of whether one thinks that network formation is simultaneous, the 
ondi-

tions imposed by equilibrium are ne
essary 
onditions for any pro
ess to 
ome to a stable

position. That is, the equilibrium 
onditions that are derived here are 
onditions that

apture the idea that we have arrived at a network su
h that no players would gain from
further 
hanges.

A Re�nement: Pairwise Equilibrium

The simultaneity of announ
ements has a drawba
k; but one that we 
an easily deal
with. It allows for a multipli
ity of equilibrium networks as a result of 
oordination
failures. Consider for example the following example where all the transfer games are
equivalent.

Example 1 Why re�ne?

t t

1 1

t t

0 0

There are two supported networks. One is the empty network and the other is 
om-
plete network (one link). The 
omplete network is supported by transfers t112 = t212 = 0.
To support the empty network, set t112 = t212 = �t, where t � 1. In the se
ond equilibrium,
the link is not formed be
ause both players expe
t the other to make an unreasonable
demand.

Note that the equilibrium supporting the empty network survives an elimination of
weakly dominated strategies and is also a trembling hand perfe
t equilibrium.10 To
eliminate this equilibrium using standard re�nements would require the ma
hinery of
iterative elimination of strategies, whi
h is 
umbersome in games with a 
ontinuum of
a
tions.

10Demanding �t fares well in the 
ase where the other agent happens to o�er at least t.
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Alternatively, we should expe
t players forming a link to be able to 
oordinate their
a
tions on that formation, as the real-life pro
ess that we are modeling would gener-
ally already involve some form of dire
t 
ommuni
ation. This suggests a very simple
re�nement.

Given t, let t�ij indi
ate the ve
tor of transfers found simply by deleting tiij and tjij.

A ve
tor t is a pairwise equilibrium of one of the above games if it is an equilibrium
of the game, and there does not exist any ij =2 g(t), and bt su
h that

(1) �i(t�ij; btiij; btjij) � �i(t),

(2) �j(t�ij; btiij; btjij) � �j(t), and

(3) at least one of (1) or (2) holds stri
tly.11

This re�nement allows any two agents who have not yet formed a link to 
hange their
demands and o�ers in order to add a link. We fo
us attention on the addition of links, as
players 
an already unilaterally 
hoose to sever links by in
reasing their demands. Hen
e,
the proper in
entives to sever links are already 
aptured by Nash equilibrium.12

While it is 
lear that Nash equilibria always exist in all the games we 
onsider (the
empty network is always supported in equilibrium), the existen
e of pairwise equilibria
is not guaranteed. The following example shows that there exist environments for whi
h
no pairwise equilibrium exists.

Example 2 Nonexisten
e of Pairwise Equilibria

11Given the 
ontinuity of transfers, this is easily seen to be equivalent to requiring that both (1) and
(2) hold stri
tly.

12There are many other re�nements we 
ould also 
onsider. In the indire
t transfer game, it seems
natural to allow all agents to 
hange their transfers on a given link, and we do introdu
e this more
stringent re�nement later. However, we believe that these more stringent re�nements are harder to
justify. On
e one allows for su
h group deviations, it makes sense to go all the way to allowing general
group deviations. At that point one is led to something that is equivalent to the 
on
ept of strong
stability with side payments of Ja
kson and van den Nouweland (2000). Su
h a re�nement is quite
stringent, and while it has the ni
e property of only supporting eÆ
ient networks, it only applies in
situations where there is substantial room for 
ommuni
ation between all individuals.

10
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1

0 0

1

1

The empty network is a (pure strategy Nash) equilibrium, but not a pairwise equi-
librium: two players 
an set zero demands to form a link and get 1 > 0. No network
that has at least two links 
an be supported as an equilibrium. Any su
h network must
involve a player who gets a negative payo�, and who 
ould pro�tably deviate by setting
high demands on all his links whi
h results in a payo� of 0. Finally, a network with
one link 
annot be a pairwise equilibrium. The unlinked player and either of the linked
players would bene�t from setting transfers �3:5 and 3:5, respe
tively.

4 The Dire
t Transfer Game

We now provide an analysis of the dire
t transfer network formation game. This is a
natural, and the simplest, game to 
apture dire
t bargaining in the formation of links.
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We start with a simple example to show that externalities may prevent the emergen
e of
an eÆ
ient network in equilibrium.

Example 3 IneÆ
ient Network Formation with Dire
t Transfers and Positive External-
ities

t t t

u1(g)=2 u2(g)=0

1 2 3

u3(g)= -1

All other networks result in a utilities of 0 for all players.

The eÆ
ient network is the line f12; 23g. For this network to be supported, we must
have t323 � �1, as otherwise 3 would bene�t by lowering t3. If t223 � 1 � �t323, player 2
will bene�t by lowering t223, regardless of what other links have formed as u2 is 0 for all
other networks. Thus, the network f12; 23g 
annot be supported in equilibrium.

This example shows that, in the presen
e of positive externalities, dire
t transfers may
be insuÆ
ient to guarantee that eÆ
ient networks are supported in equilibrium. In fa
t,
this example 
learly suggests that indire
t transfers (in the form of link subsidization)
are needed to support eÆ
ient networks in equilibrium.

The next example shows that, even in the absen
e of any externalities, the eÆ
ient
network may fail to form in equilibrium.

Example 4 The EÆ
ient Network is Not Supportable in the Complete Absen
e of Ex-
ternalities.

Consider a three-player so
iety and a pro�le of utility fun
tions des
ribed as follows.
Any player gets a payo� of 0 if he or she does not have any links. Player 1 gets a payo�
of 2 if she has exa
tly one link, and a payo� of 1 if she has two links. Player 2 gets a
payo� of -2 if he has exa
tly one link, and a payo� of 0 if he has two links. Player 3's
payo� fun
tion is similar to that of player 2: he gets a payo� of -2 if he has exa
tly one
link, and a payo� of 0 if he has two links.

It is 
lear from this spe
i�
ation that all players' payo�s depend only on the 
on�gu-
ration of their own links and so there are no externalities in payo�s. This payo� stru
ture
is pi
tured in the network below.

12
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u1 = 1

u2 = 0

u3 = 0

2

0

�21

�2

�2 2

�2

0

2

0

�22

�2

0 �2

u1 = 0

u2 = 0

u3 = 0

Let us argue that there is no equilibrium of the dire
t transfer game that supports
the 
omplete network, whi
h is the unique eÆ
ient network . By setting t22i � 0 for ea
h
i, player 2 gets a payo� of at least 0. The same is true for player 3. Thus, players 2 and 3
must have a payo� of at least 0 in any equilibrium. Now, suppose by 
ontradi
tion that
the 
omplete network were supported in an equilibrium. It would follow that t11i � 0 for at
least one i, or otherwise one of players 2 and 3 would have a negative payo�. Without loss
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of generality, suppose that t112 � 0. Player 1's payo� would then be 1� t112� t113. Suppose
that player 1 deviated and 
hanged t112 so that t112 + t212 < 0. Then the network that
would form would be 13; 23 and player 1's payo� would be
ome 2� t113 whi
h is greater
than 1� t112 � t113 (sin
e t112 � 0). Hen
e player 1 would have a pro�table deviation, and
the 
omplete network 
annot be supported in equilibrium.

This example points to another diÆ
ulty in sustaining eÆ
ient networks. Players

an 
hoose to delete any 
ombination of links. In order to sustain a given network as an
equilibrium, it must be that ea
h possible deviation is unpro�table, and ea
h 
ombination
of links that 
ould be deleted might require di�erent transfers in order to be avoided.
Some of these 
ombinations might be in 
on
i
t with ea
h other. In the above example,
it is the possibilities that either player 2 or 3 might sever both of his links that lies in

on
i
t with what player 1 
an get by severing a single link at a time.

The pre
eding examples suggest two features that the link formation game must have
in order to always result in eÆ
ient networks in equilibrium. First, indire
t transfers
are needed in order to take 
are of externalities, as suggested by Example 3. Se
ond, as
Example 4 suggests, transfers need to be 
ontingent on the network in order to adjust to
the parti
ular 
ombination of links that are formed.

Before turning to a full analysis of the games with indire
t transfers and/or 
ontingent
transfers, we analyze the game with only dire
t transfers. We do this for several reasons.
First, there may be appli
ations where this is the most appropriate game; se
ond, this
serves as a useful ben
hmark; and third, if an eÆ
ient network 
an be supported via just
dire
t transfers, then it is in a sense more plausible that it will emerge than one that
requires a more involved transfer s
heme to sustain it.

We �rst o�er a 
omplete 
hara
terization of the networks that 
an be supported in
equilibrium of the dire
t transfer game, and then we identify some settings where dire
t
transfers suÆ
e to support eÆ
ient networks.

A Complete Chara
terization of Networks Supported by Dire
t Transfers:

The Network Balan
e Condition

A set of nonnegative weights f�i
`gi2N;`�Li(g) is balan
ed relative to a network g ifX

`�Li(g):ij2`

�i
` =

X
`�Lj(g):ij2`

�j
`

for ea
h ij 2 g.

The network g is balan
ed relative to the pro�le of utility fun
tions u ifX
i

X
`�Li(g)

�i
`mui(g; `) � 0:

14



for every balan
ed ve
tors of weights.

We should emphasize that the balan
e 
onditions identi�ed here are di�erent both
in stru
ture and impli
ations from the balan
e 
onditions used in 
ooperative game the-
ory. Our balan
e 
ondition assigns weights to ea
h player and 
ombination of bilateral
links involving that player. This 
ontrasts with weights assigned to 
oalitions in 
ooper-
ative games, and re
e
ts the bilateral stru
ture of networks. This also re
e
ts the fa
t
that these balan
e 
onditions are set to address an equilibrium notion that deals with
deviations by at most two individuals at a time.

Proposition 5 A network g is supportable as an equilibrium of the dire
t transfer net-
work formation game relative to the pro�le of utility fun
tions u if and only if it is
balan
ed relative to the pro�le of utility fun
tions u.

The proof of Proposition 5, together with all of our other proofs, appears in the
appendix. It follows a logi
 similar to that of the proof of the existen
e of the 
ore for
balan
ed games, exploiting duality to 
onvert the problem of existen
e of transfers into
a set of balan
e 
onditions. There are a 
ouple of twists due to the bilateral nature of
the problem, but the proof is fairly short. While balan
e 
onditions are not transparent
to interpret, they still have a simple intuition. They examine whether or not all of
the possible marginal utilities from potential deviations 
an be over
ome via some set
of transfers. Our balan
e 
onditions prove useful in exploring suÆ
ient 
onditions for
eÆ
ient networks to be supported in equilibrium.

Proposition 5 only 
hara
terizes supportability, and not supportability via pairwise
equilibrium. Clearly this provides ne
essary, but not suÆ
ient 
onditions for supportabil-
ity via pairwise equilibrium. The additional 
onstraints imposed by pairwise equilibrium
are diÆ
ult to 
apture through balan
edness 
onditions. Nevertheless, we 
an identify a
suÆ
ient 
ondition, as follows.

Proposition 6 If a network g is supportable via pairwise equilibrium by the dire
t trans-
fer network formation, then it is balan
ed relative to the pro�le of utility fun
tions u.
Conversely, if u satis�es nonnegative externalities, and g is eÆ
ient and balan
ed rel-
ative to u, then g is supportable via pairwise equilibrium by the dire
t transfer network
formation game.

More generally, we show the following lemma, whi
h also applies to the indire
t
transfer game.

Lemma 7 If g is eÆ
ient and supportable via the dire
t or indire
t transfer game, and
u satis�es nonnegative externalities, then g is supportable in pairwise equilibrium.

Supportability with Nonpositive Externalities and Convexity in Own-Links
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We now identify suÆ
ient 
onditions for the eÆ
ient network to be supported in
equilibrium, using the intuition of Examples 3 and 4. Example 3 suggests that we should
look at situations where externalities are nonpositive. Example 4 suggests a restri
tion
that marginal payo�s from a given set of links be at least as high as the sum of the
marginal payo�s from separate links. This 
ondition is formalized as follows.

A pro�le of utility fun
tions u are 
onvex in own-links if

mui(g; `) �
X
ij2`

mui(g; ij)

for all i, g, and ` � Li(g).

Under these two 
onditions eÆ
ient networks are supportable, as stated in the fol-
lowing proposition.

Proposition 8 If utility fun
tions are 
onvex in own-links and satisfy nonpositive exter-
nalities, then any eÆ
ient network g is supportable via the dire
t transfer game. If utility
fun
tions are 
onvex in own links and satisfy no externalities, then g is supportable via
a pairwise equilibrium.13

Goyal and Joshi (2003)'s model of networks of 
ollaboration in oligopoly provides
an example of a setting where 
onvexity in own links and nonpositive externalities hold.
Suppose that n �rms are engaged in quantity 
ompetition in a market for a homogeneous
good. By forming a link, �rms 
an de
rease their 
onstant marginal 
ost of produ
tion.
Suppose that 
ost redu
tions are an in
reasing but 
on
ave fun
tion of the number of
links, 
(�i(g)) where �i(g) denotes the number of edges of �rm i in the graph g: It is
easy to 
he
k that the formation of links by players j and k redu
es the produ
tion

osts of those two �rms, resulting in a de
rease in the pro�t of �rm i and so there are
nonpositive (negative) externalities. Furthermore, when the additional bene�t of a new
link is de
reasing with the number of links the �rm has already formed, 
onvexity in own
links holds. Thus, Proposition 8 applies and the eÆ
ient network is supportable via the
dire
t transfer game.

Link-Separable Payo�s

13Toni Calvo-Armengol has pointed out to us that this proposition holds if we weaken 
onvexity in
own-links to only require that there exist some � > 0 su
h that mui(g; `) � �

P
ij2` mui(g; ij) for all

i, g, and ` � Li(g). [The proof in the appendix is easily modi�ed, by simply pla
ing an � on the right
hand side of the inequalities.℄ This 
aptures some appli
ations, su
h as the 
o-author model of Ja
kson
and Wolinsky (1996), whi
h satis�es nonpositive externalities and the � version of 
onvexity in own
links, but does not satisfy 
onvexity in own links. We have not stated the proposition using this weaker

onvexity 
ondition, as Proposition 13, whi
h uses a parallel 
onvexity 
ondition 
annot be stated in the
weaker form.
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While Proposition 8 shows that the eÆ
ient network is supported as one equilibrium
of the game, it does not guarantee that no other networks will be supported as equilibria
as well. In order to 
he
k when eÆ
ient networks may be supported as the only pairwise
equilibria of the dire
t transfer game, we turn to a spe
ial 
ase of 
onvexity in own links,
where payo�s are separable a
ross links.

Payo�s are link-separable, if for ea
h player i there exists a ve
tor wi 2 IRn�1, where
wi

jk is interpreted as the net utility that player i obtains from link jk forming. Then

ui(g) =
X
jk2g

wi
jk:

This very strong 
ondition states that players view relationships 
ompletely separately.
A spe
ial 
ase of link separable payo�s is one where agents only 
are about their dire
t
links.

Corollary 9 If payo�s are link-separable and have nonpositive externalities, then any
eÆ
ient network g is supportable via the dire
t transfer game. Furthermore, if payo�s are
link-separable and have no externalities, then g is supportable via a pairwise equilibrium
if and only if g is eÆ
ient.

The �rst statement and �rst part of the se
ond statement follow from Proposition 8.
To see the only if 
laim, suppose to the 
ontrary that g is supportable via a pairwise
equilibrium but not eÆ
ient. Then there exists g0 su
h that

P
i ui(g

0) >
P

i ui(g). As
payo�s are link separable and have no externalities, either there exists ij 2 gng0 su
h
that wiij + wjij < 0 or there exists ij 2 g0ng and wiij + wjij > 0. In the �rst 
ase, g

annot be supported as an equilibrium, be
ause one of the two players has an in
entive
to in
rease her demanded transfer thereby severing the link; in the se
ond 
ase, g 
annot
be supported as a pairwise equilibrium, sin
e will exist a pair of 
ompatible transfer su
h
that the players have an in
entive form the link.

Distan
e-Based Payo�s and Stars

Convexity in own links and nonpositive externalities are suÆ
ient 
onditions for the
eÆ
ient network to be supported as an equilibrium of the dire
t transfer game, but are
by no means ne
essary, as there are other 
onditions that ensure that network balan
e
is satis�ed. We now exhibit another 
lass of utility fun
tions, whi
h violate both these

onditions, but for whi
h the eÆ
ient network 
an be sustained in equilibrium. This is
the 
lass of distan
e based utilities, where players get value from the number of players
they are linked to, and this value is de
reasing with the distan
e of the 
onne
tion.

Let d(i; j) denote the distan
e between i and j in terms of the number of links in the
shortest path between them (setting d(i; j) =1 if there is no path).
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A pro�le of utility fun
tions is distan
e-based if there exist 
 and f su
h that

ui(g) =
X
j 6=i

f(d(i; j))� 
jLi(g)j

for all i, where 
 � 0 is a 
ost per link, and f is a nonin
reasing fun
tion.

A distan
e-based payo� stru
ture is one where players may get bene�ts from indire
t

onne
tions, but where those bene�ts are determined by the shortest paths. Spe
ial 
ases
of distan
e-based payo�s are the 
onne
tions model and trun
ated 
onne
tions models of
Ja
kson and Wolinsky (1996). In su
h settings, \star" networks play a very 
entral role,
as 
aptured in the following proposition.

Proposition 10 If u is distan
e-based, then the unique eÆ
ient network stru
ture is

(i) the 
omplete network gN if 
 < f(1)� f(2),

(ii) a star en
ompassing all players if f(1)� f(2) < 
 < f(1) + (n�2)f(2)
2

, and

(iii) the empty network if f(1) + (n�2)f(2)
2

.

In the 
ase where 
 is equal to f(1) � f(2) or f(1) + (n�2)f(2)
2

, there are 
an be a
variety of network stru
tures that are eÆ
ient. Nevertheless, the star is still eÆ
ient in
those 
ases.

The proof of Proposition 10 is an easy extension of the proof of a Proposition in
Ja
kson and Wolinsky (1996), but we in
lude it in the appendix for 
ompleteness.

It turns out that eÆ
ient networks 
an be supported (even by pairwise equilibrium)
in the dire
t transfer game for distan
e-based payo� stru
tures. This result is related to
the spe
ial nature of the eÆ
ient network. In a star, every player is related to the 
enter
and positive externalities pass through the 
enter. Peripheral players 
an subsidize the

enter of the star to keep their links formed, and this properly a

ounts for externalities.
This is 
aptured in the following 
orollary to Propositions 5 and 6.

Corollary 11 If u is distan
e-based, then some eÆ
ient network is supportable as an
equilibrium the dire
t transfer game, and is also supportable in pairwise equilibrium.

The 
laim is easy to see dire
tly in 
ases where either the empty or 
omplete networks
are eÆ
ient. Consider the remaining 
ase where f(1)� f(2) � 
 � f(1) + (n�2)f(2)

2
, and

thus a star involving all players is eÆ
ient. Here, we let us dis
uss how one 
an verify
the balan
e 
onditions. An agent i 
onne
ted to the 
enter j in a star has only one
link, we 
an simply set �ifijg = 
 for any 
 � 0. Then for the 
enter j, it must be

that
P

`�Lj(g):ij2` �
j
` = 
. The fa
t that a star is balan
ed then follows from noting

that 
mui(g; ij) + 
�j(g; ij) = 2f(1) + (n � 2)f(2) � 2
 � 0 in situations where the
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star is eÆ
ient, and noting that the 
enter's payo� is additively separable a
ross links.14

Proposition 6 implies that we 
an support an eÆ
ient g as a pairwise equilibrium, noting
that there are nonnegative externalities in a distan
e-based u (as adding a link that does
not involve i 
an only in
rease i's payo� as it may de
rease the distan
e between i and
some other agent, but does not impose a 
ost on i)

5 Indire
t Transfers

As dis
ussed above, indire
t transfers are needed to over
ome some of the diÆ
ulties
linked to positive externalities in the network. However, in the indire
t transfer game,

onvexity in own-links is no longer suÆ
ient to over
ome the diÆ
ulty due to the deletion
of 
ombinations of links, as a player's deviation 
an result in the severan
e of links
in whi
h he is not involved. Thus the problem asso
iated with the intera
tion of the
multitude of bilateral relationships is more 
omplex when indire
t transfers are present.
This is illustrated in the following example.

Example 12 EÆ
ient Network are not Supportable with Indire
t Transfers and Con-
vexity in Own-Links

Consider a three-player so
iety with payo�s pi
tured below.
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14This also gives us an idea of whi
h transfers support a star as an equilibrium with agent 1 as the

enter. Setting ti1i = f(1)+(n�2)f(2)�
, tiji = �(n�1)f(1) for j > 1, and t11i = �[f(1)+(n�2)f(2)�
℄
for ea
h i. It is easily seen that these form an equilibrium that supports the star.
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The 
omplete network is eÆ
ient but is not the out
ome of any equilibrium of the
indire
t transfer network formation game. Consider any player i. Player i must o�er to
subsidize the link jk by an amount of at least .4, as otherwise at least one of j and k will
have an in
entive to \sever" the link (set their demand to be less than �:2).

Consider some player i and link ij su
h that tiij � 0. Su
h a link must exist if the

omplete network is supported. Consider the following deviation: player i redu
es the
payment on the link jk and \severs" link ij (setting tiij to be low enough so that ij does
not form). In that 
ase, the only link formed is link ik, and player i's base payo� is the
in
reased, and transfers have de
reased whi
h is stri
t improvement for player i.

The above network is 
onvex in own-links, as the marginal utility of any se
ond own-
link is negative while the marginal utility of any set of two own-links is always positive.
However, note that the 
onvexity in links fails more generally. The marginal utility to
player 1 at the 
omplete network of the links 12,23 is negative, while the marginal utility
of 23 at the 
omplete network is 1.1, and the marginal utility of 12 is -.2, so the sum of
the marginal utilities is positive. Indeed, this is the sour
e of the problem in the example.

Convexity in All Links

A pro�le of utility fun
tions u is 
onvex in all links if

mui(g; `) �
X
jk2`

mui(g; jk)

for all i, g, and any ` � g.

We 
an now state the following proposition.

Proposition 13 If payo�s are 
onvex in all links, then any eÆ
ient network g is sup-
portable via the indire
t transfer game. If payo�s also have nonnegative externalities,
then g is supportable via pairwise equilibrium.
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With indire
t transfers, eÆ
ient networks 
an thus be supported irrespe
tive of the
nature of externalities in payo�s if one simply requires equilibrium, and 
an be supported
under nonnegative externalities if we require pairwise equilibrium. However, the 
onvex-
ity assumption property needed to support eÆ
ient networks is stronger than "
onvexity
in own links" whi
h was required to support eÆ
ient networks in the dire
t transfer game.
In words, we require that the marginal bene�t of any subset of links (and not only the
links involving the player) be greater than the sum of the additional bene�ts link per link.
This 
onvexity assumption is likely to be satis�ed when the marginal bene�t of a new
link is de
reasing with the number of links already formed. Examples of su
h situations
are trading and information sharing networks. In these networks, the addition of new

onne
tions typi
ally has positive externalities on all the players. All players bene�t from
enlarging the set of trading opportunities, or in
reasing the number of 
ommuni
ation

hannels. However, the marginal bene�t of an additional link will often be de
reasing
with the number of links already formed. If players in
ur a 
ost for forming dire
t links,
the eÆ
ient network (typi
ally the 
omplete network) may not be formed at equilibrium,
be
ause players do not internalize the positive externalities they produ
e on other play-
ers. We 
laim that indire
t transfers will allow for the formation of the 
omplete network
in su
h trading and information sharing networks.

While indire
t transfers enable the support of eÆ
ient networks as equilibria of the
game, there is no guarantee that eÆ
ient networks are the only equilibria of the game.
We now show that, in games with link separable payo�s and nonnegative externalities,
eÆ
ient networks are the only equilibria of the game if we allow 
ooperation by all
players in the formation of additional links. More pre
isely, we strengthen the de�nition
of pairwise equilibrium to allow all players to 
hange their o�ers/demands on a given
link.

A ve
tor t is a strong pairwise equilibrium of the indire
t transfer game if it is an
equilibrium of the game, and there does not exist any ij =2 g(t) and S � N , and bt that
di�ers from t only on tkij where k 2 S, and su
h that �i(t�ij; btij) � �i(t), for all players
i 2 S, with stri
t inequality for some of the players.

This de�nition is weaker than a strong equilibrium, where arbitrary subsets of players

an alter all of their strategies. We work with the weaker de�nition sin
e the Corollary
below still holds for this weaker de�nition. In fa
t, it turns out that under link separability
and nonnegative externalities, the strong equilibria and the strong pairwise equilibria of
the indire
t transfer game 
oin
ide. This is easy to see as the payo�s separate 
ompletely
a
ross links, and so one 
an 
onsider links one at a time.

Corollary 14 If payo�s are link-separable and satisfy nonnegative externalities, then g
is supportable via a strong pairwise equilibrium of the indire
t transfer game if and only
if g is eÆ
ient.
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6 Network Contingent Transfers

We now 
onsider network formation games where players 
an 
ondition their transfers
on the network that is formed.

As we see now, allowing transfers to be 
ontingent on the network that forms has a big
impa
t on the set of networks that 
an be supported as equilibrium networks, even when
only dire
t transfers are possible. To understand why 
ontingent transfers may help
to support eÆ
ient networks, even when only dire
t transfers are possible, re
onsider
Example 3. In that example, the eÆ
ient network 
ould not be formed in the dire
t
transfer game, and we argued that the eÆ
ient network 
ould be supported if indire
t
transfers were allowed, as player 1 needs to subsidize the formation of link 23. There is
another possibility, whi
h does not require the use of indire
t transfers, but instead relies
on 
ontingent transfers. Player 1 
ould make transfers to player 2, to pass them on to
player 3. The diÆ
ulty is that if player 1 makes this transfer to player 2, then player
2 might not form the link with player 3 and keep the transfer. This 
an be re
ti�ed if
transfers 
an be made 
ontingent on the network that forms.

More generally, 
ontingent dire
t transfers 
an be built up along paths so that they
end up moving as if they were indire
t transfers within 
onne
ted 
omponents. This
insight is the key to the following proposition and 
orollary.

Proposition 15 Consider the 
ontingent version of the dire
t transfer game and any u.
There exists an equilibrium where the network g is formed and the payo�s are y 2 IRn

where yi � 0 for all i 2 N(g) if and only if
P

i2N(g0) ui(g) =
P

i2N(g0) yi for all g0 2 C(g),
and yi 6= ui(g) implies i 2 N(g).

Corollary 16 Consider the 
ontingent version of the dire
t transfer game. Consider
any u and network g su
h that

P
i2N(g0) ui(g) � 0 for all 
omponents g0 2 C(g). There

exists an equilibrium supporting g. Moreover, there is an equilibrium 
orresponding to
ea
h allo
ation y 2 IRn su
h that

P
i2N(g0) ui(g) =

P
i2N(g0) yi for ea
h g0 2 C(g) and

yi = ui(g) or yi < 0 implies i =2 N(g).

Proposition 15 is based on a 
onstru
tive proof, where we expli
itly derive equilibrium

ontingent transfers to support the network. While this proposition shows that a wide
set of networks 
an be supported as equilibria of the 
ontingent dire
t transfer game, it
is limited by the fa
t that transfers 
annot 
ow a
ross separate 
omponents of a network
in the dire
t transfer game, even if payments are 
ontingent. If we allow for 
ontingent
indire
t transfers, then there are additional networks that 
an be supported, as we now
show.

Proposition 17 Consider the 
ontingent version of the indire
t transfer network for-
mation game. Consider any u, any network g, and any allo
ation y 2 IRn

+ su
h that
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P
i yi =

P
i ui(g), and yi > ui(g) implies i 2 N(g).15 There exists an equilibrium where g

is formed and payo�s are y.

Corollary 18 Consider the 
ontingent version of the indire
t transfer network formation
game, and any u. Any eÆ
ient network su
h that dis
onne
ted players earn zero payo�s
is supportable. Moreover, there is an equilibrium supporting ea
h allo
ation y 2 IRn

+ su
h
that

P
i yi =

P
i ui(g) and yi > 0 implies i 2 N(g).

Proposition 17 and Corollary 17 show that the 
ombination of indire
t transfers and
allowing these to be 
ontingent allows the support of almost all eÆ
ient networks as
equilibria. The artifa
t that this in
ludes situations where negative externalities might
be present is due to the fa
t that we are 
onsidering only equilibrium and not pairwise
equilibrium.

Pairwise Equilibria with Contingent Transfers

Propositions 15 and 17 have 
ounterparts for pairwise equilibrium,16 provided the
network being supported is eÆ
ient and there are nonnegative externalities. A simple
extension of the proof Lemma 7 leads to the following 
orollary.

Corollary 19 Consider the 
ontingent version of the indire
t transfer network formation
game, and any u satisfying nonnegative externalities. Consider the 
ontingent version
of the indire
t transfer network formation game. Consider any eÆ
ient network g and
allo
ation y 2 IRn

+ su
h that
P

i yi =
P

i ui(g), and yi > ui(g) implies i 2 N(g). Then g
is supportable as a pairwise equilibrium with equilibrium payo�s y.

7 Transfers to Prevent Link Formation

The previous analysis shows that eÆ
ient networks 
an be supported as a Nash equi-
librium of the indire
t 
ontingent transfer game under very mild assumptions on the
payo� fun
tion. However, in order to sustain eÆ
ient networks as pairwise equilibria, we
needed the additional restri
tion that externalities are nonnegative. To see why this is
important, 
onsider the following example exhibiting negative externalities.

Example 20 Negative Externalities and IneÆ
ient Pairwise Equilibria

15The y's in Proposition 17 are required to be nonnegative. One 
an also support the networks
from Proposition 15 that are not 
overed in this proposition through the 
onstru
tion used there. The
di�eren
e is that here one sometimes needs a player not inN(g) to subsidize the formation of a 
omponent
that has a negative value to its members. For this to work, it must be that the dis
onne
ted player
earns a nonnegative payo�, or they would withdraw their subsidies. Rather than break this into separate

ases, we have simply worked with the assumption of nonnegative payo�s.

16In order to de�ne pairwise equilibrium, allow players i and j to vary their announ
ements tiij(�) (as

ontingent on any network).
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The so
iety has four players. If one link forms, the two players involved ea
h get a
payo� of 3.

t t

3 3

t t

0 0

If two (separate) links form, then the four players ea
h get a payo� of 1.

t t

1 1

t t

1 1

All other networks result in a payo� of 0.

In this example, the only pairwise equilibria are ineÆ
ient.17 Two players who are
dis
onne
ted always bene�t from forming a link, and there is no way to prevent them
from doing so. Indeed, two players involved in a link would like to pay the other players
not to form a link.

A Game with Payments to Prevent Link Formation

In order to over
ome the diÆ
ulty exhibited in Example 20, we need to have a game
where players have the ability to make transfers to prevent the formation of links.

We �rst des
ribe a game that allows payments to prevent link formation, but without

onsidering 
ontingent transfers. We 
ome ba
k to in
orporate 
ontingen
ies after this
game is made 
lear. The game is based on the indire
t link formation game, with the
following modi�
ation. Ea
h player announ
es two transfers per link, instead of just

17The eÆ
ient network is supportable as an equilibrium, where the two dis
onne
ted players fail to
form a link be
ause ea
h demands too large a transfer. This, again, is a 
ase where pairwise equilibrium
is a reasonable re�nement.
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one. This pair of announ
ements by player i relative to link jk is denoted ti+jk and ti�jk .
Again, these must be nonnegative if i =2 jk, and 
an be anything otherwise. Player i also
announ
es mi

j 2 f+;�g for ea
h j 6= i. The interpretation is that i is de
laring whether
the default de
ision on link ij is not to add ij or to add ij.

The network g(t;m) is then determined as follows.

� If mi
j 6= mj

i , then ij =2 g.

� If mi
j = mj

i = +, then ij 2 g if and only if
P

k t
k+
ij � 0.

� If mi
j = mj

i = �, then ij =2 g if and only if
P

k t
k�
ij � 0.

Payo�s are then

ui(g(t))�
X

jk2g(t);mj
k
=mk

j=+

ti+jk �
X

jk=2g(t);mj
k
=mk

j=�

ti�jk :

The 
ontingent version of the game with payments to prevent the formation of links
is the version where the ti and mi

j's are announ
ed as a fun
tion of g, and then solved
via an ordering over games, just as before.

Equilibrium is again pure strategy Nash equilibrium in pure strategies, and pairwise
equilibrium and strong pairwise equilibrium are the obvious extensions to this game.
In parti
ular, here a pairwise equilibrium is an equilibrium su
h that no pair i and j

ould alter their strategies pertaining to ij (as 
ontingent on any g's mi

j(�), m
j
i (�), t

i+
ij (�),

tj+ij (�), t
i�
ij (�)) and both be weakly better o� and one stri
tly better o�. A strong pairwise

equilibrium is an equilibrium su
h that there does not exist any ij and a deviation by
some set of players S � N on the strategies tk+ij (�), tk�ij (�), (and mi

j(�) if k 2 ij) su
h that
all members of S are stri
tly better o� as a result of the deviation.

To see how the game de�ned above works, re
onsider Example 20.

Example 21 Negative Externalities with Payments to Prevent Links

Consider the payo� fun
tion of Example 20. Let us �nd a pairwise equilibrium of
the game with payments not to form links that supports an eÆ
ient network. Let us
support the eÆ
ient network f12g. Have all players set ti+12 (f12g) = 0. Set t1�34 (f12g) =
t2�34 (f12g) = 1=2 and t3�34 (f12g) = t4�34 (f12g) = �1=2, and m3

34(g) = m4
34(g) = � for all g,

and mi
ij(g) = + otherwise. For any other transfers set ti�ij(g) = �2, and ti�jk(g) = 0 when

i =2 jk.

Here, players 1 and 2 pay players 3 and 4 if the link 34 is not formed. It is straight-
forward to 
he
k that this is a pairwise equilibrium.

25



Proposition 22 In the 
ontingent game with indire
t transfers to form or not to form
links, any eÆ
ient network is supportable via pairwise equilibrium, and in fa
t via strong
pairwise equilibrium.

Proposition 22 shows that with the ability to make 
ontingent indire
t transfers that
both subsidize the formation or the prevention of links, eÆ
ient equilibria are supportable
via pairwise equilibria.

8 Con
luding Remarks

We have de�ned a series of games of network formation where transfers among players are
possible, and through an analysis of the equilibrium networkse have shed light on how the
type of transfers is related to the support of eÆ
ient networks. We pointed out two basi

hurdles in supporting eÆ
ient networks in equilibrium. First, the presen
e of positive
externalities in payo�s may prevent the formation of eÆ
ient networks, be
ause players
involved in a link do not internalize the external e�e
ts the link has on other players.
Se
ond, players may be unable to rea
h an eÆ
ient network be
ause the transfers needed
to prevent the deletion of various subsets of links may be in
ompatible. Over
oming
positive externalities relies on players' ability to subsidize the formation of links by other
players, and over
oming negative externalities relies on their ability to pay to prevent the
formation of links. The problem of dealing with the 
ombinatorial nature of the set of
bilateral links that need to be 
onsidered together is over
ome if players have the ability
to 
ondition their transfers on the entire network.

We would like to point out a limitation of our analysis. While some of our results
provide 
omplete 
hara
terizations of supportable networks (for instan
e, the network
balan
e 
onditions, the link separability 
onditions, and the 
onditions outlined for the

ontingent dire
t transfer game); others only outline suÆ
ient 
onditions for the support
of eÆ
ient networks and rely on 
onstru
tive proofs. This leaves open some questions
of the pre
ise ne
essary 
onditions for supportability in some of the games, whi
h goes
together with a question of whi
h ineÆ
ient networks might emerge in some of the games.
Closing the remaining gaps to developing a full understanding of the situations where
eÆ
ient networks emerge as the unique plausible equilibria of a network formation game
is a priority for future resear
h.
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Appendix A Pairwise Stability and Equilibrium

Networks

In this Appendix, we dis
uss the relation between the networks supported in the dire
t
and indire
t transfer games, and the pairwise stable networks introdu
ed by Ja
kson and
Wolinsky (1996). This dis
ussion highlights the 
onne
tions between situations where
the allo
ation rule is �xed before the formation of the networks, and situations where
players 
an freely bargain over the allo
ation of the value of additional links.

The following de�nitions identify networks that are stable when the payo�s are �xed
before the formation pro
ess.18

A network g is pairwise stable with respe
t to a pro�le of utility fun
tions u if

(i) for all i and ij 2 g, ui(g) � ui(g � ij), and

(ii) for all ij =2 g, if ui(g + ij) > ui(g) then uj(g + ij) < uj(g).

This is a self-evident solution 
on
ept that requires that no player bene�t by severing
a link and no two players bene�t by adding one.

A network g is pairwise stable� with respe
t to a pro�le of utility fun
tions u if

(i) for all i and ` � Li(g), ui(g) � ui(g n `), and

(ii) for all ij =2 g, if ui(g + ij) > ui(g) then uj(g + ij) < uj(g).

This variation on pairwise stability is stronger than pairwise stability in that it allows
players to sever sets of links rather than just 
onsidering one link at a time. This solution
is dis
ussed by Ja
kson and Wolinsky (1996) and is also essentially the same as the
pairwise Nash equilibrium re�nement of pairwise stability dis
ussed by Goyal and Joshi
(2003).19

The next de�nition is a way of in
orporating transfers into the study of network
formation without a
tually modeling the bargaining pro
ess expli
itly.20

A network g is pairwise stable with transfers with respe
t to a pro�le of fun
tions u
if

18The �rst two de�nitions are from Ja
kson and Wolinsky (1996). Strong pairwise stability is dis
ussed
by Ja
kson and Wolinsky (1996, se
tion 5), but is not named.

19For a more in depth dis
ussion of the relation between the 
on
epts of pairwise stable and pairwise
stable�, see Calvo-Armengol (2004). We stay away from the term pairwise Nash equilibrium, to avoid

onfusion with pairwise equilibrium.

20This di�ers from the 
on
ept of pairwise stability allowing for side payments that is dis
ussed by
Ja
kson and Wolinsky (1996). That 
on
ept had a stronger requirement in (i), requiring that ui(g) �
ui(g � ij) and uj(g) � uj(g � ij). If transfers are possible in sustaining a network, and not just in
deviations, then arguably the de�nition here is more appropriate.

28



(i) ij 2 g ) ui(g) + uj(g) � ui(g � ij) + uj(g � ij), and

(ii) ij =2 g ) ui(g) + uj(g) � ui(g � ij) + uj(g � ij).

Part (ii) 
aptures the idea that there are no two players who 
ould add a link between
them, together with some transfers, and both be better o�. Part (i) 
aptures the idea
that if a link is in the network, then there must be some transfer (possibly 0) for whi
h
both players do not wish to delete the link.

While the notions of pairwise stability and pairwise stability� 
an di�er from the
equilibria of the dire
t transfer game, the notion of pairwise stability with transfers

aptures some of the spirit of the equilibria of the dire
t transfer game.

Proposition 23 The set of networks supportable as pairwise equilibria is exa
tly the
interse
tion of those networks that are supportable via the dire
t transfer game and the
networks that are pairwise stable with transfers.

The relationship between supportable networks, pairwise equilibria, and the other
pairwise stability 
on
epts is outlined in the following proposition. The relationships
between the solution 
on
epts 24 are 
aptured in the following Venn diagram.

Equilibrium (Supportable)

Pairwise Stable

Pairwise Stable�

Pairwise Equilibrium

Proposition 24

(i) The set of pairwise equilibria is a subset of the set of equilibria.
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(ii) If a network g is pairwise stable� relative to a pro�le of utility fun
tions u, then it
is supportable via the dire
t transfer game and it is pairwise stable.

(iii) There exist u and g for whi
h g is pairwise stable� (and thus pairwise stable and
supportable), but not supportable via pairwise equilibrium.

(iv) There exist u and g for whi
h g is supported via pairwise equilibrium (and thus
supportable) and pairwise stable but not pairwise stable�.

(v) There are networks that are supportable and not pairwise stable nor supportable via
pairwise equilibrium.

(vi) There are networks that are pairwise stable and not supportable (nor supportable
via pairwise equilibrium, nor pairwise stable�).

(vii) There are networks that are both supportable and pairwise stable, but not pairwise
stable� nor supportable via pairwise equilibrium.

(viii) There are networks that are supportable via pairwise equilibrium and not pairwise
stable.

(ix) There exist networks that are pairwise stable� (and thus pairwise stable) and at the
same time supported via pairwise equilibrium (and thus supportable).

Proof of Proposition 24: (i) follows from the de�nition of pairwise equilibrium. The
pairwise stable part of (ii) is dire
t. To see the other part of (ii), set tiij = tjij = 0 for
ea
h ij 2 g, and tiij = �X for ea
h ij =2 g, for some X > 0. For large enough X this
forms an equilibrium. To see (iii), 
onsider the empty network in Example 26. To see
(iv), see Example 27. To see (v), 
onsider the empty network in Example 1. To see (vi),
see Example 25. To see (vii), see Example 28. To see (viii), see Example 26. To see (ix),
see the 
omplete network in Example 1.

The examples illustrating the 
laims in Proposition 24 are as follows.

Example 25 Pairwise stable but not Supportable.
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u1 = 1

u2 = �3

u3 = 1

u2 = �4 u2 = �4

u1 = 1

Example 26 Supportable via Pairwise Equilibrium but not Pairwise Stable

t t

u1(g)=2 u2(g)=-1

1 2

t t

u1(g)=0 u2(g)=0

1 2

Example 27 Supportable via Pairwise Equilibrium and Pairwise Stable but not Pair-
wise Stable�
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All other networks have value of 0. The network f12; 23g is supportable via pairwise
equilibrium and pairwise stable but not pairwise stable�.

Example 28 Supportable and Pairwise Stable but not Pairwise Stable� nor Supportable
via Pairwise Equilibrium

This is the same as Example 27, ex
ept that the 
omplete network leads to u1 = 6,
u2 = �3, and u3 = �1. The network f12; 23g is still supportable and pairwise stable,
but no longer supportable via pairwise equilibrium.

Appendix B Proofs

This Appendix 
ontains the proof of the Propositions in the body of the paper.

Proof of Proposition 5: The network g is supported via an equilibrium of the dire
t
transfer network formation game relative to the pro�le of utility fun
tions u if and only
if there exists a ve
tor of transfers t su
h that:

�
P

ij2` t
i
ij � mui(`), for all players i and subsets of their links ` � Li(g), and
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� tiij + tjij � 0 for all ij 2 g.

Furthermore, we know that in equilibrium, we 
annot have tiij + tjij > 0 for any ij, as
then either one of the players would stri
tly bene�t by lowering their tiij.

21

Therefore, to 
he
k whether g is supportable, we 
an solve the problem

mint
P

ij2g t
i
ij + tjij

subje
t to:

�
P

ik2` t
i
ik � �mui(`); 8i 2 N; ` � Li(g) and

tiij + tjij � 08ij 2 g

and verify that the solution satis�es:

min
P

tiij + tjij = 0:

The dual of this problem is22

maxf�i
`
gi2N;`�Li(g)

;f�ijgij2g �
P

i

P
`�Li

�i
`mui(g; `) subje
t to

P
`�Li(g):ij2` �

i
` � �ij = �1; for all ordered pairs i 2 N and ij 2 g, and

�i
` � 0 for all i 2 N and ` � Li(g), �ij � 0 for all ij 2 g.

Sin
e we are free to 
hoose any the �ij's do not appear in the obje
tive fun
tion, this
problem is equivalent to

maxf�i
`
gi2N;`�Li(g)

;f�ijgij2g �
P

i

P
`�Li

�i
`mui(g; `) subje
t to

P
`�Li(g):ij2` �

i
`� �ij =

P
`�Lj(g):ij2` �

j
` � �ij for all ordered pairs i 2 N and ij 2 g, and

�i
` � 0 for all i 2 N and ` � Li(g).

As the obje
tive 
an be set to 0 by setting all of the �i
`'s to 0, we need only verify

that
P

i

P
`�Li

�i
`mui(g; `) is at least 0 for all sets of �i

`'s that satisfy the 
onstraints. The

onstraints 
orrespond to the de�nition of balan
ed weights, and thus the proposition
follows.

21We 
an set tiij = tjij = �X for some large enough s
alar X for any ij =2 g, to 
omplete the
spe
i�
ation of the equilibrium strategies.

22By standard te
hniques, one 
an write the tiij = ti+ij � ti�ij , where ti+ij and ti�ij are both nonnegative.
Working a
ross the two inequalities generated by ea
h one of these, we �nd the equality to -1.
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Proof of Proposition 6: Given Propositions 24 and 5, the �rst statement follows
dire
tly. Thus, the result follows from Lemma 7.

Proof of Lemma 7: Consider t supporting g in either game. In the indire
t transfer
game, for any ij =2 g and k =2 ij, without loss of generality rearrange transfers so that
tkij = 0. Sin
e g is eÆ
ient, and satis�es nonnegative externalities, it must be that
ui(g + ij) + uj(g + ij) � ui(g) + uj(g), and so mui(g; ij) +muj(g; ij) � 0. Given that
tkij = 0 for all k =2 ij, it follows that any joint deviation by i and j on ij that leads to an
improvement for one player, must lead to a loss for the other player.

Proof of Proposition 8: Let g be an eÆ
ient graph, then for all link ij we must
have X

k

muk(g; ij) � 0:

As the game has nonpositive externalities, this implies that for all links muk(g; ij) � 0
for all k 6= i; j. Hen
e, mui(g; ij) + muj(g; ij) � 0: Now by 
onvexity in own-links,
mui(g; `) �

P
ij2`mui(g; ij) for any ` � Li(g). Hen
eX

i

X
`�Li(g)

�i
`mui(g; `) �

X
i

X
`�Li(g)

�i
`

X
ij2`

mui(g; ij)

=
X
i

X
ij2g

mui(g; ij)
X

`�Li(g):ij2`

�i
`

=
X
ij2g

(mui(g; ij)
X

`�Li(g):ij2`

�i
` +muj(g; ij)

X
`0�Lj(g):ij2`0

�j
`0)

Now, by balan
edness,
P

`�Li(g):ij2` �
i
` =
P

`0�Lj(g):ij2`0 �
j
`0 = �ij � 0: Hen
e,X

i

X
`�Li(g)

�i
`mui(g; `) �

X
ij2g

�ij(mui(g; ij) +muj(g; ij)) � 0;

whi
h is the required balan
e 
ondition.

The Se
ond statement obtains from Lemma 7.

Proof of Proposition 10:(i) Given that f(2) < f(1)� 
, any two players who are not
dire
tly 
onne
ted will improve their utilities, and thus the total value, by forming a link.

(ii) and (iii). Consider g0, a 
omponent of g 
ontaining m players. Let k � m� 1 be
the number of links in this 
omponent. The value of these dire
t links is k(2f(1)� 2
).
This leaves at most m(m � 1)=2� k indire
t links. The value of ea
h indire
t link is at
most 2f(2). Therefore, the overall value of the 
omponent is at most

k(2f(1)� 2
) + (m(m� 1)� 2k)f(2): (1)

If this 
omponent is a star then its value would be

(m� 1)(2f(1)� 2
) + (m� 1)(m� 2)f(2): (2)
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Noti
e that
(1)� (2) = (k � (m� 1))(2f(1)� 2
� 2f(2));

, whi
h is at most 0 sin
e k � m� 1 and 
 > f(1)� f(2), and less than 0 if k > m� 1.
The value of this 
omponent 
an equal the value of the star only when k = m� 1. Any
network with k = m�1, whi
h is not a star, must have an indire
t 
onne
tion whi
h has
a path longer than 2, getting value at most 2f(2). Therefore, the value of the indire
t
links will be below (m� 1)(m� 2)f(2), whi
h is what we get with star.

We have shown that if 
 > f(1)�f(2), then any 
omponent of a eÆ
ient network must
be a star. Note that any 
omponent of a eÆ
ient network must have nonnegative value.
In that 
ase, a dire
t 
al
ulation using (2) shows that a single star of m+m0 individuals
is greater in value than separate stars of m and m0 players. Thus if the eÆ
ient graph is
nonempty, it must 
onsist of a single star. Again, it follows from (2) that if a star of n
players has nonnegative value, then a star of n + 1 players has higher value. Finally, to

omplete (ii) and (iii) noti
e that a star en
ompassing everyone has positive value only

when f(1) + (n�2)
2

f(2) > 
.

Proof of Proposition 13: Let g be an eÆ
ient network. If ij =2 g, let the transfers
be tiij = tjij = �X and tkij = 0 for k =2 ij, where X is suÆ
iently large to be ex
eed
the largest marginal utility of any agent for any set of links. If ij 2 g, by eÆ
ien
yP

k muk(g; ij) � 0: If muk(g; ij) � 0 for all k set all the transfers tkij = 0. Ifmui(g; ij) < 0

and/or muj(g; ij) < 0 then set the 
orresponding tiij and or tjij equal to the marginal
utility, and then for ea
h k su
h that muk(g; ij) > 0 set tkij 2 [0; muk(g; ij)℄ so thatP

l t
i
ij = 0. This is possible by the eÆ
ien
y of g.

These t are su
h that for any ij 2 g, mul(g; ij) � tlij whenever l 2 ij or l =2 ij and
tlij > 0. Let us argue that this forms an equilibrium of the indire
t transfer game.

First, note that by the de�nition of X, if there exists an improving deviation, there
will exist one that only 
hanges t's on links in g.

By 
onvexity in all links, if there exists a deviation that is improving for some l on tl

on some set of links, then there exists some deviation that involves at most one link tlij,
with the possibility that l 2 ij. For ij 2 g, in
reasing transfers is 
ostly and does not

hange the out
ome. Redu
ing transfers implies that the link will not be formed. Su
h
a deviation 
annot be pro�table as mul(g; ij)� tlij � 0 if l 2 ij or if l =2 ij and tlij > 0.
It is not possible to lower tlij below 0 if l =2 ij.

The last 
laim in the Proposition follows from Lemma 7.

Proof of Corollary 14 We �rst show that the eÆ
ient network is supported in a
strong pairwise equilibrium. Clearly, an eÆ
ient network must satisfy ij 2 g if and
only if

P
k w

k
ij � 0. Consider then the following transfer s
heme. For any link su
h thatP

k w
k
ij � 0. If wi

ij � 0 and wj
ij � 0, let tkij = 0 for all k. If at least one of the two involved
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players has a negative marginal utility from that link, 
onsider all players k for whi
h
wk
ij > 0 and set transfers so that tkij = wk

ij � (
P

k w
k
ij=jKj) and for i su
h that wi

ij < 0 set
tiij = wi

ij:For any link su
h that
P

k w
k
ij < 0 set transfers tkij = X where X is very large.

For any ij 2 g(t), it is 
lear that those transfers form an equilibrium strategy. If ij =2 g(t),
there 
annot be any transfer s
heme su
h that

P
k t

k
ij � 0 and

P
k w

k
ij �

P
k t

k
ij > 0:

Next, suppose by 
ontradi
tion that an ineÆ
ient network is supported in a strong
pairwise equilibrium. As g is ineÆ
ient, there must exist either ij 2 g and

P
k w

k
ij < 0 or

ij =2 g and
P

k w
k
ij > 0. Be
ause payo�s satisfy nonnegative externalities, if

P
k w

k
ij < 0

then wi
ij+wj

ij < 0. Hen
e, one of the players must have a pro�table deviation by 
hanging
transfers so as to sever the link. If

P
k w

k
ij > 0, 
onstru
t a transfer s
heme as above. (

If wi
ij � 0 and wj

ij � 0, let tkij = 0 for all k. If at least one of the two involved players has
a negative marginal utility from that link, 
onsider all players k for whi
h wk

ij > 0 and
set transfers so that tkij = wk

ij � (
P

k w
k
ij=jKj) and for i su
h that wi

ij < 0 set tiij = wi
ij:)

Under this transfer s
heme the link is formed and all players in
rease their utilities.

Proof of Proposition 15: The ne
essity of
P

i2N(g0) ui(g) =
P

i2N(g0) yi for all g
0 2 C(g),

and yi 6= ui(g) implies i 2 N(g) follow from the balan
e of transfers a
ross 
omponents
and the observation that in equilibrium the transfers will sum to 0 on any link that is
formed.

To 
omplete the proof, let us show that any su
h network g and allo
ation y 
an be
supported as an equilibrium.

Let Y = 3maxfmaxi jyij; maxi;g0 jui(g
0)jg.

For g0 6= g, set tiij(g
0) = �Y for all i and j.

For g, set transfers as follows. For any ij =2 g set tiij = tjij = �Y .

For ij 2 g we set transfers as follows.

Consider a 
omponent g0 2 C(g).

Find a tree h � g0 su
h that N(h) = N(g0).23

Let player i be a root of the tree.24 Consider ea
h j who has just one link in the tree.
There is a unique path from j to i. Let this path be the network h0 = fi1i2; : : : ; iK�1iKg,
where j = i1 and i = iK .

23A tree is a network that 
onsists of a single 
omponent and has no 
y
les (paths su
h that every
player with a link in the path has two links in the path).

24A root of the tree is a player who lies on any path that 
onne
ts any two players who ea
h have just
one link in the tree.
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Iteratively, for ea
h k 2 f1; : : : ; Kg set25

tikik�1ik =
X
k0<k

yik0 � uik0 (g)

and
tikikik+1 =

X
k0�k

�
�
yik0 � uik0 (g)

�

Do this for ea
h path in the tree.

For any link ij 2 g but ij =2 h, set tiij = tjij = 0.

Under these transfers, g will be the network that forms and y will be the payo� ve
tor.
Let us 
he
k that there are no improving deviations.

Consider a deviation that leads to another network g0 6= ; being formed. This must
involve a net loss for any i as i's payo� must be below ui(g

0) � Y . Next, 
onsider a
deviation that leads to the empty network. It must be that that the deviating player is
i 2 N(g) in whi
h 
ase the new payo� is 0 for i, whi
h 
annot be improving as yi � 0. So,

onsider a deviation by a player i that still leads to g being formed. Player i's promises
tiij(g) 
an only have in
reased, whi
h 
an only lower i's payo�.

Proof of Proposition 17:

Let Y = 3maxfmaxi jyij; maxi;g0 jui(g0)jg.

For g0 6= g, set tiij(g
0) = �Y for all i and j, and set tijk(g

0) = 0 for i =2 jk.

For g, set transfers as follows. Let A = fijyi > ui(g)g and B = fijyi < ui(g)g.

For i 2 A let `i(g) be the number of links that i has in g. Set tiij(g) =
�yi+ui(g)

`i(g)
if

ij 2 g and set tiij(g) = �Y if ij =2 g, and tijk = 0 otherwise.

For i 2 B let

�i =
ui(g)� yiP

j2B uj(g)� yj
:

Then for i 2 B set

tijk(g)

= �i

 
yj � uj(g)

`j(g)
+
yk � uk(g)

`k(g)

!
if jk 2 g; j 2 A and k 2 A;

25For k = 1 only the se
ond equation applies, and for k = K only the �rst applies.
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= �i

 
yj � uj(g)

`j(g)

!
if jk 2 g; j 2 A and k =2 A;

= �Y if jk =2 g and i 2 jk; and

= 0 otherwise:

For i =2 A [ B, set tiij = �Y if ij =2 g and tijk = 0, otherwise.

Under these transfers, g will be the network that forms and y will be the payo� ve
tor.
Let us 
he
k that there are no improving deviations.

Consider a deviation that leads to another network g0 6= ; being formed. This must
involve a net loss for any i as i's payo� must be below ui(g

0) � Y . Next, we 
onsider a
deviation by a player i that leads to the empty network. This 
annot be improving as
yi � 0. So, 
onsider a deviation by a player i that still leads to g being formed. Player
i's promises tijk(g) 
an only have in
reased, whi
h 
an only lower i's payo�.

Proof of Proposition 23: It is 
lear that the set of pairwise equilibria is a subset of the
set of equilibria of the dire
t transfer game. Let us show that any network supportable
as a pairwise equilibrium is also pairwise stable with transfers. Consider a pairwise

equilibrium bt. For any link ij 2 g, player i prefers to announ
e 
tiij than any transfer X

su
h that X +


tjij < 0: Hen
e, ui(g)�


tiij � ui(g � ij): Similarly, uj(g)�


tjij � ui(g � ij).

Summing up the two inequalities, ui(g)+ uj(g)� ( 
tiij +

tjij) � ui(g� ij)+ uj(g� ij) and

as ( 
tiij +

tjij) � 0, ui(g)+uj(g) � ui(g� ij)+uj(g� ij): Conversely, suppose that ij =2 g:

If ui(g)+uj(g) > ui(g� ij)+uj(g� ij), de�ne a new transfer ve
tor et where ethkl = 
thkl for
all kl 6= ij and etiij = ui(g)�ui(g� ij)� "; etjij = uj(g)�uj(g� ij)� " where " is 
hosen so

that etiij + etjij � 0: It follows that ui(g(et))�Pk;ik2g(et) etiik = ui(g� ij)�
P

k 6=j;ik2g(et) 
tiik+ " >

ui(g(bt)) � P
k;ik2g(bt) 
tiik and similarly, uj(g(et)) � P

k;jk2g(et) etjjk > uj(g(bt)) � P
k;jk2g(bt) 
tjjk,


ontradi
ting the de�nition of pairwise equilibrium.

Finally, let us argue that any network g that is supportable and is also pairwise stable
with transfers is supportable as a pairwise equilibrium. Consider an equilibrium bt that
supports g. We argue that bt must also be a pairwise equilibrium. Suppose to the 
ontrary
that there exists some ij =2 g su
h that

ui(g + ij)�
X
ik2g

tiik � btiij � ui(g)�
X
ik2g

tiik

and
uj(g + ij)�

X
jk2g

tjjk � btjij � uj(g)�
X
jk2g

tjjk;

with one inequality holding stri
tly, and where btiij + btjij � 0 (as otherwise the link ij does
not form and the payo�s 
ould not have 
hanged). Thus,

ui(g + ij)� btiij + uj(g + ij)� btjij > ui(g) + uj(g):
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Sin
e btiij + btjij � 0 it follows that

ui(g + ij) + uj(g + ij) > ui(g) + uj(g);

whi
h 
ontradi
ts the fa
t that g is pairwise stable with transfers.

Proof of Proposition 22: For n = 2, the Proposition is straightforward, as the only
networks are the empty and single link network. The single link network is supportable
as a (strong pairwise) equilibrium if and only if it has nonnegative value. In the 
ase
where a link's value is nonpositive, the empty network is 
learly supportable as a (strong
pairwise) equilibrium.

So 
onsider a setting where n � 3. Let g be su
h that
P

i(g) � 0.

Let Y = 3maxi;g0 jui(g0)j.

For g0 6= g, set ti+ij (g
0) = ti�ij (g

0) = �Y for all i and j, and set tijk(g
0) = 0 for i =2 jk.

Set mi
j(g

0) = + if ij =2 g0 and mi
j(g

0) = � if ij 2 g0. Note that under these rules,
g(t(g0); m(g0)) (the links that would form given these announ
ements) is the 
omplement
of g0.

For g, set transfers as follows. Let u =
P

i
ui(g)

n
be the average payo� from g, whi
h

is at least 0. Let A = fijui(g) � ug and B = fijui(g) < ug, and nA and nB be the

orresponding 
ardinalities.

Set mi
j(g

0) = + for all ij 2 g and mi
j(g

0) = � if ij =2 g. Set the t's as follows. If
nB = 0, then set tk�ij = 0 for all k and ij.

For nB > 0, let �j =
u�uj(g)P
k2B

u�uk(g)
for k 2 B and �j = 0 if j 2 A.

For i 2 B set ti+ij (g) = ti�ij (g
0) = u�ui(g)

n�1
for all j, and set ti�jk(g) = 0 when i =2 jk. For

i 2 A set ti+ij (g) = ti�ij (g
0) = �j

ui(g)�u
n�1

for all j, and set ti�jk(g) = (�j + �k)
ui(g)�u
n�1

when
i =2 jk.

Under these announ
ements, g is formed and ea
h player's payo� is u. Consider any
deviation by a player i. Given the announ
ed t�i and m�i (and the fa
t that there are
three or more players), i 
an only indu
e the empty network and a payo� of 0. This 
an
not be improving. Consider a deviation by some group of players S on the announ
ements
pertaining to a link ij. Again, they 
an only indu
e the empty network and a payo� of
0, or else the network g and some reallo
ation of their own payo�s. Neither of these
deviations 
an make ea
h member of the group as well o� and some better o�.
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