
The Formative Years

by
John McDermott

Department of Computer Science
Carnegie-Mellon University

Pittsburgh, Pennsylvania 15221

RI is a rule-based program that configures VAX-I 1
computer systems. Given a customer’s purchase order, it
determines what, if any, substitutions and additions have to
be made to the order to make it consistent and complete and
produces a numnber of diagrams showing the spatial and
logical relationships among the 90 or so components that
typically constitute a system. The program has been used on a
regular basis by Digital Equipment Corporation’s manufac-
turing organization since January of 1980. Rl has sufficient
knowledge of the configuration domain and of the peculari-
ties of the various configuration constraints that at each step
in the configuration process, it simply recognizes what to do;
thus it requires little search in order to configure a computer

system.
The approach RI takes to the configuration task and the

way its knowledge is represented has been described elsewhere
[McDermott 80a, MC Dermott 80b]. This article provides a
detailed description of Rl’s design and implementation
history. As will become apparent, only a part of the effort to
develop an expert configurer for Digital dealt in a direct way
with AI issues. The other, and in fact larger, part involved
providing the ever widening circle of individuals who came in

The development of Rl was supported by Digital Equipment

Corporation. The research that led to the development of OPS4 and
OPS5, the languages in which Rl is written, was sponsored by the

Defense Advanced Research Projects Agency (DOD), ARPA Order
No. 3597, and monitored by the Air Force Avionics Laboratory

under Contract F33615-78-C-1151. The views and conclusions
contained in this document are those of the author and should not be

interpreted as representing the official policies, either expressed or
implied, of Digital Equipment Corporation, the Defense Advanced

Research Projects Agency, or the U.S. Government

contact with the program with an understanding of why AI
tools are appropriate for the task and why the use of AI tools
demands a change in attitude toward the programming
enterprise.

Rl’s Development

Rl’s development went through six distinct stages. During
the first stage, December 1978 through April 1979, a strategy
for attacking Digital’s configuration problem was formulated
and a program with minimal knowledge of the configuration
domain was written to demonstrate the potential of a
knowledge-based approach. During the second stage, May
1979 through September 1979, a large amount of knowledge
was added to the program. October and November 1979
constituted the validation stage; Digital put RI through an
extensive test and determined that it was sufficiently expert
to be used on a regular basis to configure VAX-l l/ 780’s. The
fourth stage, January 1980 through May 1980, was the period
during which the question of how to integrate Rl into
Digital’s organizational structure was seriously addressed for
the first time. During the fifth stage, June 1980 through
December 1980, the organizational plans that evolved during
the previous stage were implemented. The sixth stage, which
began in January 198 1 and has not yet ended, is the period of
Digital’s initial self-sufficiency with respect to Rl. In this
section, some of the more significant events that occurred
within each stage will be described and the main lesson or
lessons learned during each stage will be discussed.

Initial Contact

Digital differs significantly from most other computer

Al MAGAZINE Summer 1981 21

manufacturers in the degree of flexibility it allows its
customers in component selection; rather than marketing a
number of “standard systems” with a limited number of
options, Digital markets processors with a relatively* large
number of options, and allows the customer to tailor a system
to his needs. One result of this strategy is that most of the
systems it sells are one of a kind, and consequently each poses
a distinct configuration problem. Since configuring computer
systems is time-consuming, Digital made several efforts to
develop a computer program that could perform the task.
None of these attempts were successful, and in retrospect, it
seems clear that the lack of success was due to the fact that the
task is knowledge intensive and thus extremely difficult to
program with traditional software tools.

Early in 1978 Sam Fuller, who was then a faculty member
in the Computer Science Department of CMU, accepted a
position at Digital. As he became aware of the problem that
Digital was having with automating the configuration task, it
occurred to him that a knowledge-based approach to the task
might make the problem tractable. In the Fall of 1978, he
proposed both to Herb Shanzer, the manager at Digital
responsible for solving the configuration problem, and to the
production system group at CMU that they meet to discuss
the possiblity of CMU developing a program that could do
the configuration task. Mike Rychener and I went to Digital
in December of 1978 to meet with Shanzer. After spending
half a day being told about the nature and scope of the
configuration problem, Rychener and I agreed that the
problem had characteristics which made a knowledge-based
approach appropriate. We proposed that Digital support an
effort at CMU to develop a configuration expert Shanzer
wanted to believe that we could develop such a program, but
didn’t (at least not enough to provide funding). We then
offered to develop a simple prototype system within a few
months that would demonstrate the feasability of a know-
ledge-based approach. After some discussion, it was decided
that we should focus our attention on the problem of
configuring VAX-l l/780 systems (rather than tackling the
bigger and more serious problem of configuring PDP-11
systems). Shanzer offered to make whatever information we
needed available to us and appointed Dick Caruso, an
engineer who had worked on the configuration problem, to
coordinate the information transfer After returning to CMU,
Rychener and I decided to take a two-pronged approach to
the problem. Rychener would work on developing a program
with a general understanding of computer architecture, while
I focused on developing the promised prototype. Rychener’s
work resulted in IPSML, a system that supports the symbolic
description and manipulation of computer structures at the
PMS (processor-memory-switch) level [Rychener 791.

During December, I spent several days at Digital learning
the rudiments of the configuration task. Caruso had done a
great deal of work in attempting to uncover the structure of
the task. He had broken the task up into a number of smaller
subtasks and had generated descriptions of the kinds of
actions called for within each subtask. After I had a
reasonable understanding of the structure of the configuration
task, Caruso gave me two VAX-l l/780 configuration man-

uals which contained a wealth of information about the
details of the task After discussing the content of the manuals
with him, I went back to CMU to build the prototype
configurer.

The issue of what language to use to implement the
configuration program was never in question. One of the
appeals of the configuration task was that it would give us an
opportunity to build an OPS production system for a non-toy
task. The OPS language has been described at length
elsewhere [Forgy 81, Forgy 771; it is a general-purpose, rule-
based language which provides a rule memory, a global
working memory, and an interpreter that tests the rules to
determine which ones are satisfied by a set of the descriptions
in working memory. A rule is an IF-THEN statement
consisting of a set of conditions (patterns that can be matched
by the descriptions in working memory) and a set of actions
that modify working memory. On each cycle, the interpreter
selects one of the satisfied rules and applies it. Since applying
a rule results in changes to working memory, different subsets
of rules are satisfied on successive cycles OPS does not
impose any organization on rule memory; all rules are
evaluated on every cycle If more than one rule is satisfied (01
can be instantiated in more than one way) on a given cycle,
OPS uses a set of conflict resolution strategies to determine
which rule to apply From Rl’s point of view, it often makes
no difference which rule is applied; RI does, however, rely
heavily on the special case strategy. Given two rule instantia-
tions, one of which contains a proper subset of the data ele-
ments contained by the other, OPS will select the instantiation
containing more data elements on the assumption that it is
specialized for the particular situation it is in In OPS4, the
version of OPS used to implement the initial version R 1, con-
dition elements are represented as lists of constants and
and variables.

There are four characteristics of the configuration task that
strongly influenced the design of RI:

l Orders are frequently incomplete; the configurer
must add components to an order if prerequisite
components are missing.

l The data that a configurer needs consists of descrip-
tions of each of the components on an order (together
with descriptions of any components that might need
to be added).

l The relatively large number of constraints on how
components can be associated are conditional on
characteristics of the components and on the ways in
which already configured components have been
associated.

l The configuration task can be decomposed into a set
of loosely coupled, temporally ordered subtasks.

The number of components supported on the VAX-l l/780 is
quite large (about 400 in December 1978). Since RI would
need access to descriptions of both the set of components on
an order and any components it might have to add, it was
decided that the descriptions of components should be stored

in a data base that R 1 could access Each description is a set of

22 Al MAGAZINE Summer 1981

attribute/ value pairs; Rl can access these descriptions by
name or by specifying a partial description of a component.
Since the constraints on how components can be associated
are conditional on the characteristics of components and on
the current state of the configuration, it was decided that
descriptions of the components ordered and of partial
configurations would be held in working memory and that
each of the constraints would be formulated as an OPS4 rule.
Since the constraints are subtask specific, the rules would be
placed into groups on the basis of the subtask to which they
were relevant. This would allow each rule to presuppose
certain things about the current state of the configuration,
thus reducing the number of condition elements required in
each rule. It was assumed that Rl’s basic strategy would be
Generate and Test, that is, that some of the rules associated
with each subtask would propose extending a partial configu-
ration in a particular way, and that other rules would examine
the proposed extension and either accept or reject it.

Implementing the initial version of R 1 was straightforward
The information that I had gotten from Caruso about the
configuration task (augmented with occasional telephone
conversations) was sufficient to write a program that could
correctly configure simple orders. This prototype program
had about 250 rules and took about three man-months to
develop. An English translation of one of the rules is shown in
Figure 1. In April 1979 the program was demonstrated at
Digital to a group of about 60 people and was received with
guarded enthusiasm. Though no one was convinced that the
program could be extended so that it could configure really
complex orders, the program showed enough promise that
Digital decided to support further work on it.

It seems almost unbelievable to me now that we almost
focused our initial efforts on the PDP-11 world rather than on
the VAX-l l/780. Though it did not become clear until later
just how fortuitous our choice was, it is worth making the
point here since if we had focused on a PDP-11, it is likely
that RI would never have found a home at Digital. The VAX-
11 nd PDP-I 1 configuration tasks, in the abstract, are
essentially identical But the PDP-11 problem is more
complex for two reasons:

l The number of components that are supported on
PDP-11 systems is more than an order of magnitude
larger than the number currently supported on the
VAX-l 1; thus tackling the PDP-I 1 task would have
required attending to many more details right from
the beginning.

l The constraints on the configuration of VAX-11
systems are more specific (less ambiguous) than the
contraints for the PDP-11 systems; thus fewer rules
are required for the VAX-l 1 task.

It has turned out the the VAX-l 1 task was a perfect size. It
requires enough knowledge so that a program that can

perform the task is interesting But the amount of knowledge
required for the task and the specificity of the configuration
constraints is such that the problem does not push very hard
on state-of-the-art knowledge-engineering techniques.

PUT-UB-MODULE-6

I

IF: THE MOST CURRENT ACTIVE CONTEXT IS
PUTTING UNIBUS MODULES IN THE
BACKPLANES IN SOME BOX

AND IT HAS BEEN DETERMINED WHICH
MODULE TO TRY TO PUT IN A
BACKPLANE

AND THAT MODULE IS A MULTIPLEXER
TERMINAL INTERFACE

AND IT HAS NOT BEEN ASSOCIATED TBITH
PANEL SPACE

AND THE TYPE AND NUMBER OF BACKPLANE
SLOTS IT REQUIRES IS KNOWN

AND THERE ARE AT LEAST THAT MANY
SLOTS AVAILABLE 1M A BACKPLANE
OF THE APPROPRIATE TYPE

AND THE CURRENT UNIBUS LOAD ON THAT
BACKPLANE IS KNOWN

AND THE POSITION OF THE BACKPLANE IN
THE BOX IS KNOWN

I THEN: ENTER THE CONTEXT OF VERIFYING
PANEL SPACE FOR A MULTIPLEXER

From Novice to Expert

Though several people at RI’s initial demonstration be-
lieved that it was in Digital’s interest to support further work
on the program. Dennis O’Connor (representing System
Manufacturing) emerged as RI’s principal sponsor. O’Connor
established a steering committee consisting of himself, Sam
Fuller (representing Central Engineering), and Lou Reagan
(representing Order Processing Administration). Kent Mc-
Naughton, a member of O’Connor’s group, was asked to
coordinate the project.

The magnitude of the configuration problem at Digital
created a certain amount of pressure to move beyond the
demonstration stage as quickly as possible. Since I lacked an
understanding of the complexity of the task, it was difficult
for me to estimate just how long it might take to develop the
program to a point where its performance was comparable to
that of skilled humans. The initial version of RI appeared to
have most of the basic knowledge needed; that is, it could
configure simple systems correctly. On the basis of the
number and kinds of mistakes it made on more complex
orders, I guessed that it had about half the knowledge it
needed, and suggested that an adequate version of Rl could
be developed within four or five months. After some
discussion, that suggestion somehow became a commitment
to deliver to Digital, by the end of September, a program that
(1) could correctly configure at least 75% of the orders it was
given, and (2) could be easily modified or extended to
configure any orders that it configured incorrectly. We met
this deadline with a day and a half to spare.

Al MAGAZINE Summer 1981 23

The task for those five months actually had two distinct
parts. It was clear that a considerable amount of knowledge of
configuration constraints would have to be added to the
program and that some of the knowledge the program had
would have to be modified; this is the part of the task that
CMU committed to. The other part of the task was to extend
the data base of component descriptions. In May 1979, there
were 420 components supported on the VAX-l 11780; the data
base used by the initial version of Rl had fewer than 100
component descriptions. Caruso was assigned the task of
producing a complete data base Since Digital had no single
source containing all of the information required (8-10 pieces
of information about each component), and since much of the
information was not in machine readable form, collecting the
information was time-consuming. About three man-months
of effort were required to create the complete data base.

The task of extending RI’s configuration constraint know-
ledge proceeded in parallel with the data base creatoin task
There were two senses in which Rl’s constraint knowledge
was incomplete. (1) the sets of rules that enabled RI to
perform particular subtasks were sufficient for simple sys-
tems, but needed to be augmented to handle systems
consisting of components with more complex interrelation-
ships. (2) Rl had no knowledge of how to configure some
types of components, and thus needed to acquire sets of rules
that would enable it to perform the subtasks implied by those
component types. My approach to extending RI’s knoweldge
base was esentially the same as the approach taken by other
expert system builders [Feigenbaum 771. Rl was given a
number of orders to configure. Its output was shown to
configuration experts who were asked to evaluate the
adequacy of the configurations. When an expert found a
problem, we would talk about it. Such discussions always
resulted in the characterization of the situations in which Rl’s
actions were inappropriate, and an indication of what actions
would be appropriate. Ordinarily, especially in the beginning,
a considerable amount of configuration knowledge came to
light during each interaction with an expert. Thus after each
interaction several rules could be written; one to correct the
problem manifestation and a number of others which, though
not directly related to the problem at hand, were associated, in
the mind of the expert, with the problem situation By the end
of September 1979, Rl had a database of 420 component
descriptions and its rule memory contained about 750 rules
The fact that Rl’s knowledge tripled during this stage came as
something of a surprise. Though it had been clear in May that
RI’s knowledge was incomplete, still RI was able to correctly
configure systems. It is interesting that Rl needed twice as
much knowledge to deal with special situations as it did to
perform the basic task.

It became apparent during this stage that the method Rl
uses is Match [Newell 691. As mentioned, an initial assump-
tion had been that Rl would use Generate and Test as its
principal problem solving method. Each set of rules included
a rule whose function was to test to determine if the current
subtask had been accomplished. In the demonstration version
of RI, each of these rules was a (vacuous) general case of the
other rules associated with the subtask and thus fired only

24 Al MAGAZINE Summer 1981

after all other applicable rules had been applied. I assumed

that as the system was developed, (I) at least some of these
rules would have to be modified so that they could recognize
when the goals of their subtasks had been achieved and (2)
other test rules would have to be added that could recognize
when an incorret configuration was being generated and
inititate actions that would get Rl back on the track. As it
turned out, neither of these was necessary.

The important lesson learned during this stage is that
Match is an appropriate problem solving method for some
class of domains. The configuration task is constructive; it has
the following characteristics:

l It is possible to impose a partial ordering on the set of
components to be configured such that if the compo-
nents are configured in that order, they can be
configured without any backtracking.

l The partial ordering can be defined, dynamically, on
the basis of the total set of components to be
configured and the associations already made among
those components.

Because it is possible to configure a set of components
correctly, without backtracking, if enough knowledge is
brought to bear at each step to determine which component
should be configured next, there is no need within any subtask
to test whether a just configured component has been
configured correctly. Furthermore, since each subtask extends
the configuration in whatever ways are appropriate within the
confines of the subtask, there is no need for a rule to
determine whether the goal of the subtask has been accom-
plished. When none of the rules associated with the subtask
are satisfied, all that can be done has been done. One positive
consequence of the use of the Match method (in addition to
the elimination of search) was that adding knowledge to RI,
once it was extracted from the experts, was straightforward.
Since each rule defines the set of situations to which it is
relevant, if a rule is applicable, it should and will fire (unless it
is a general case of some more specific rule that fires first and
changes the current situation so that the more general rule is
no longer applicable).

Validation

During October and November 1979, Digital put Rl
through a formal validation procedure. The purpose of this
test was to determine whether RI was expert enough in the
configuration task to be used in place of human experts The
validation process consisted of giving RI the 50 most recently
booked orders and having a group of six experts carefully
examine Rl,‘s output for correctness. The experts were given
orders in groups of 10; they spent 8 hours on the first order, 2
hours on the second, and then about I hour on each of the
other 48. After checking a group of 10 orders, they forwarded
errors due to incorrect configuration knowledge to me and
errors due to inaccurate descriptions in the component data
base to Vaidis Mongirdas, the engineer who replaced Caruso
when Caruso moved to another job at Digital. The problems

were fixed and the incorrect orders rerun with tha next group
of 10.

The experts were extremely impressed with Rl’s perfor-
mance. RI made 12 mistakes (all of which were easily fixed) in
configuring the 50 orders All but two of the mistakes were at
a level of detail below that at which humans responsible for
configuring systems work out the configurations The team of
experts pointed out that in addition to providing more
detailed configurations than the human configurers, R 1 (even
with its still imperfect knowledge) was likely to do a better job
than the humans singe they are subject to lapses of attention.
The conclusion drawn from the validation process was that
Rl should begin to be used on a regular basis in at least one of
the Final Assembly and Test (FA&T) plants and that its use
should be extended to other FA&T plants as soon as this was
feasible.

With something less than a man-year’s effort, Rl had
developed to a point where it could begin to be used in place
of human experts. Though RI’s task domain was very narrow,
the configuration task has a considerable amount of complex-
ity and thus requires a significant amount of knowledge. It is
unlikely, I think, that a program using more traditional
software tools could be developed in anywhere near the same
time frame. Aside from the fact that the task is highly
conditional (there are, on the average, three possible paths
that could be followed on each of the typically 1000 steps in
the task), a program that can perform the task must
necessarily be developed incrementally. Given the amount of
knowledge required and the fact that the knowledge can
apparently be extracted from the experts only as they see from
mistakes the program makes what knowledge is lacking, it
would seem that any attempt to develop a program that is not
strongly recognition driven would be doomed to failure

Organizing to use Rl

The concern at Digital during the first year of RI’s
development was almost exclusively with whether and how
well Rl would be able to perform the configuration task.
Little attention was paid to the question of how RI would be
integrated into the system, configuration and assembly
process. At the end of the validation stage, this question
became prominent. There were two issues that had to be
attended to:

l It was important for Digital to find a way to begin to
use RI that would disrupt the existing process as little
as possible and that would provide a framework
within which Rl’s configuration expertise could
grow.

do It was important for Digital to establish a group able
to continue the development of Rl and to extend its
capabilities to other computer systems (eg, the PDP-

11).

The issue of use was relatively easy to deal with. In each of
Digital’s FA&T plants, people called technical editors confi-
gure each system to be built and give their configuration

diagrams to technicians who actually assemble the systems in
one of Digital’s FA&T plants The person who had been the
technical editor for VAX-I l/780 systems became Rl’s “super-
visor.” The role of the supervisor was to examine Rl’s
configuration diagrams for correctness. Correct output was
given to the technicians for use in assembly Data base
problems were reported to and fixed by Mongirdas; rule
problems were reported to and fixed by me during my
monthly visits to Digital

The issue of establishing a group to continue the develop-
ment of R 1 was more problematic. Several months were spent
in attempting to define the functions that the group would
perform, determining where the group should be located
within Digital’s organizational structure, and searching for a
set of individuals, particularly a manager, who could form the
nucleus of the group. It became clear that the group would
have three principal functions:

l data collection
. program maintenance and development

l process development

The data collection task would involve extending Rl’s data
base of component descriptions-the task that the engineers
assigned to help with Rl’s development had been doing all
along. the program maintenance and development task would
involve making modifications to Rl’s rules as inadequacies in
its knowledge were discovered and extending RI so that it
could configure systems other than the VAX-l l/780. The
people performing this task would essentially take over the
role that CMU played; to do this, it would be necessary for
them to have a solid understanding of the OPS language. The
third task, process development, was the least well defined. It
was clear that in order for RI to be an effective tool, it was
necessary that it be easily accessible to people in a number of
different Digital organizations (eg, manufacturing, engi-
neering, sales). The process development task was to invent
ways of facilitating information flow.

While Digital was concerning itself with organizational
matters, Rl was reimplemented at CMU. The impetus for the
reimplementation was the availability of OPS5, a new version
of OPS. OPS5 differs from OPS4 primarily in the way the
conditions of a rule can be expressed In OPS4, a condition
element is represented as a list of symbols; in OPS5, it may be
represented either as a list of symbols or as an object with
associated attribute/ value pairs. If an attribute name appears
in a condition element, it is interpreted by OPS5 as the name
of a working memory element field. A condition element is
instantiated by a working memory element if each value
(constant or variable) in the condition element is equal to or
can be bound to the symbol in the working memory element
in the specified field OPS5 is a significant improvement over
OPS4 both in ease of use and in the intelligibility of the rules.

Since the only difference between OPS4 and OPS5 is in the
way in which conditions are expressed, it would have been
possible, in a few weeks time, to simply translate the OPS4
rules into OPS5. However, during the course of developing
Rl, a great deal of knowledge was added that Rl was

Al MAGAZINE Summer 1981 25

unprepared for. Although Rl had been able to handle this
massive intrusion of new knowledge, it resulted in a consider-
able amount of redundancy, some cases of many rules where a
single general rule would do, and some cases of doing easy
things the hard way. Moreover, in the initial version of RI the
knowledge required to perform two subtasks was not repre-
sented in the form of rules; instead, LISP routines that could
do the subtasks were invoked by rules which recognized
situations in which the subtasks were germane. At the time,
since the experts swore (falsely, it turned out) that all of the
knowledge relevant to these subtasks was on the table, it
seemed appropriate to put the knowledge in an algorithmic
form. Given these problems, it appeared that a serious
reimplementation effort would be likely to have the effect of
making clearer precisely what knowledge Rl had, and thus
make the task of maintaining and extending Rl easier.

Brigham Bell, Barbara Chessler, and Tom Cooper worked
with me at CMU on the reimplementation of Rl; the effort
took about four man-months. The resulting program, though
it had some capabilities that the OPS4 version lacked,
consisted of about 500 rules (two-thirds the number that the
earlier version had). About 100 rules, those that tested to
determine whether a goal had been achieved, were simply
eliminated. Another 50 rules, those that accessed the data base
to gain further information about a component, could be
eliminated because OPSS’s attribute/ value representation
makes it possible to match against only part of a component
description; thus each relevant description could be accessed
once and stored as a single working memory element. Since
about 25 rules were added to the new version to provide
additional capabilities, and another 25 to replace the function-
ality of the LISP routines, about 150 rules were eliminated by
reducing redundancy, finding appropriate generalizations,
and simplifying configuration strategies.

I was surprised both by the length of time the reimplemen-
tation took and by the significantly smaller size of the new
version It appears necessary in domains such as the
configuration domain to develop programs incrementally. But
incremental addition of knowledge (given our current
ignorance of how to build programs that can learn) is likely to
result in a knowledge base that is convoluted and thus, from a
human maintainer’s point of view, less intelligible than it might
otherwise be. Once much of the knowledge relevant to a
domain has been extracted from experts, significant gains in
intelligibility can be achieved by reimplementing programs on
the basis of the more complete picture. It is not clear in Rl’s
case how many reimplementations will be necessary. But as
will become evident below, it is likely that the number is
greater than 1.

A Foundation to Build On

By May 1980, the functions and structure of the group that
was to be responsible for the development of RI had been
defined. Arnold Kraft was selected to manage the group
which was to consist, during its first year, of 12 people. In
addition to Kraft, there were to be three people responsible
for data collection, five responsible for program maintenance

and development, and three responsible for process develop-
ment. By August, seven of these people had been hired and the
rest were in place by December. The people responsible for
data collection and for process development needed no special
training. But the people responsible for program maintenance

and development had to become proficient in OPS5. These
people had a variety of backgrounds and amounts of
programming experience (from almost none to much); one of
them, John Ulrich, had a strong background in AI. On the
average, it took each one of them about three months to
become proficient in OPS5. Given three months of practice
with the language, they were able to make appropriate
modifications and extensions to the rules whenever inade-
quacies in RI’s knowledge manifested themselves. During this
period, Rl began to be used in all of Digital’s FA&T plants in
the United States. In October, two members of the group, Ed
Orcuich and Bill Brodie, extended Rl’s capabilities so that it
could configure VAX-l 1/750’s as well as VAX-I 1/780’s
Though much of the knowledge needed to configure the two
systems is the same, there are a number of significant
differences in the onfiguration constraints. Thus this exten-
sion to Rl demonstrated a solid grasp of knowledge
engineering techniques.

One of the first actions of the people responsible for process
development was to formalize the reporting of problems with
Rl. A problem report form was developed. Whenever the
people in the FA&T plants responsible for supervising Rl
believed that a system had been incorrectly confiugred, they
would fill out this form and send it to the group responsible
for maintaining RI; during the period from May 1980
through the end of the year, report forms were generated for
about 40% of the orders processed. When a report form was
received, it was given to Mongirdas; his task was to determine
whether the configuration produced by Rl was in fact
incorrect and if so to determine the cause of the problem. The
problems encountered distributed themselves fairly evenly
among the following five classes:

l An incorrect component description in the data base.

l Incorrect configuration knowledge.
l Incomplete configuration knowledge.
l An error in the data input to Rl.
l A confusion on the part of the person reporting the

problem (ie, a non-problem).

When the problem had been categorized, it was given to one
of the members in the group for action. The data base
problems were fixed by the people responsible for data
collection. The problems of incorrect rules and missing

knowledge were addressed by the people responsible for
maintaining the program (working in conjunction with the
engineers responsible for data collection). The problems of
dealing with report forms that should not have been generated
and with errors in input were the responsibility of people in
charge of process development. Many people were disturbed
by the poor performance of Rl over this eight month period;
the expectation after the validation stage was that RI would
soon be configuring at least 90% of the orders correctly. But in

26 Al MAGAZINE Summer 1981

retrospect, it is clear that at the end of the validation stage Rl
was still a very inexperienced configurer. It had encountered
only a tiny fraction of the set of possible orders, and
consequently its knowledge was still very incomplete.

In July 1980, a manager at the FA&T plant using Rl
mentioned that Rl was a less helpful tool than it might be
because whenever it encountered an order that was incom-
plete, it added whatever components were necessary to make
the system complete. This complaint came as something of a
shock since one of the principal reasons for developing RI
was to provide this capability. The problem, it turned out, was
that when an FA&T plant receives an incomplete order, it
assembles whatever subset of components it can without
adding anything to the order and at the same time contacts the
customer to find out whether the remaining components
should be shipped as “spares” or the missing components
added. Since Rl always added missing components, its output
made evident which orders were incomplete (about 20% of the
orders received), but could not be used in their assembly. To
make Rl more helpful, it was modified so that whenever it

configured an incomplete order, it kept track of what
components on the order required other components to be
added and then configured the order a second time after
marking those components with missing prerequisites as not
to be configured. This extension, which I worked on with
John Barnwell and Ed Orciuch at Digital, took less than a
man-month.

After being provided with this two-pass version of RI, the
FA&T plant asked that Rl be modified so that it could handle
“project orders.” Most of the systems configured in the FA&T
plants are configured in the absence of any information about
how the customer intends to use his system. Thus Rl’s
configuration rules assume “typical use.” Some customers,
however, sometimes order a large number of almost identical
systems, and in such cases it is feasible to tailor the
configuration of these systems to fit the particular needs of the
customer. There is a group at Digital responsible for
generating a set of guidelines for configuring such systems,
but Rl was incapable of modifying the configurations it
produced on the basis of such guidelines. During October and
November 1980, work was done at CMU to provide RI with
that capability [McDermott 8la]. The strategy we adopted
was to leave untouched, for the most part, the rules
comprising Rl’s basic configuration capability. This left Rl
performing the configuration task, in the absence of cus-
tomer-specific constraints, in the same way it always had. We
simply added a set of rules that recognize situations in which
there is a customer-specific constraint and components or
partial configurations that indicate it is time to attend to that
customer-specific constraint. Each of these rules modifies
working memory elements in a way that insures the satisfac-
tion of the constraint. In a sense, these new rules are
disassociated from the main-stream configuration task; they
stand outside and allow customer-speicific constraints to step
in, change the world in some appropriate way, and then step
back out and let Rl continue about its business.

One important capability that the initial version of Rl

lacked was that of designing the floor layout of cabinets and

other free-standing components Rl simply assumed an
indefinitely long room, and laid the components out in a
straight line. This made it impossible for RI to determine
precisely the lengths of some of the cables needed to connect
pairs of components. The reason for delaying the implementa-
tion of a more adequate floor layout capability is that nothing
of interest can be done without information about the room
or rooms that will house the system. But as plans began to be
developed to move RI out of the FA&T plants and into the
sales offices (where the user of the program has access to
information about the customer’s site), implementing a more
adequate floor layout capability became a reasonable goal.
About three months’ work by Brigham Bell and Barbara Steel
at CME during the Fall of 1980 resulted in such a capability.
Rl now allows a user to provide room information and
specify whatever constraints on component placement he
wishes. Then using a few general heuristics about busy doors
and component orientation and its knowledge of cabling
constraints, RI searches for a way of laying out the
components that satisfies whatever constraints the customer
has imposed.

The activity during this stage of RI’s development resulted
in a significant increase in the size of its knowledge base; in
June 1980, Rl’s knowledg consisted of about 500 rules. The
implementation of the two-pass capability added another 50
or so rules, the customer-specific constraint capability added
about 100 rules, and the floor layout capability another 100
The rules that were needed to supply the missing knowledge
brought to light by the problem reports added approximately
another 100 rules. Thus by December 1980, RI’s knowledge
base had grown to about 850 rules.

To this point, I have said nothing about the amount of time
Rl takes to configure an order. Since processing time has
continually been of some concern, it is worth attending to
briefly. at the end of the validation stage, the average timer
required to configure an order was about 2.5 cpu minutes on a
PDP-10 (version KL). By June 1980, the complexity of the
average order (number of components) had increased signifi-
cantly and the average time to process an order grew to about
4 minutes. When the two-pass capability was added, since
about a fifth of the orders had to be run a second time, the
average time grew to about 5 minutes In August, RI moved
from a PDP-10 to a VAX-11/780; this resulted in an
additional factor of 3 increase-to about 15 cpu minutes per
order. For a variety of reasons, the view at Digital since early
in RI’s development was that it was important that the
average time to configure an order be reduced to less than 2
minutes. To achieve that goal, Charles Forgy, the principal
designer of OPS, had begun working early in 1980 on a
BLISS version of the OPS5 interpreter. OPS has two distinct
parts, it consists of a rule compiler and an interpreter. Until
this point, all versions of OPS had been implemented in LISP
(MACLISP for the PDP-10 and FRANZLISP for the VAX-
11). Though a BLISS version of the interpreter was finished
by October 1980, Digital decided not to use this interpreter
until it had implemented a BLISS version of the rule
compiler Though the BLISS version of the compiler will not
be finished for a few more months, it appears from the timing

Al MAGAZINE Summer 1981 27

studies that have been done that it will take about 1.5 minutes
of cpu time of a VAX-l l/ 780 to configure an average order.

The fact that Rl’s knowledge grew at least as much during
this stage of its development as in any of the previous four
stages, points up how important it is for a knowledge-based
program to be open to new and often altogether unexpected
demands. One of the claims frequently made for rule-based
languages is that they support the incremental growth of
programs. This seems to be born out in Rl’s case. Both the
two-pass capability and the customer-specific constraint
capability placed demands on RI that had in no way been
planned for; yet both capabilities were easily accommmodated
with virtually no change to the rules already there. The
extensive growth of RI’s configuration knowledge (in the
second stage as well as the fifth) was likewise accomplished
without major modifications to existing knowledge. The error
reporting process proved to be an extremely valuable means
of spotting knowledge inadequacies. It essentially provides a
way of continuously testing R 1, and such continuous testing is
clearly particularly important during the early life of an expert
system when its knowledge base is nowhere near adequate and
while the task that it is supposed to do is being redefined and

enlarged.

Self-Sufficiency

During the two years from December 1978 to December
1980, almost all of the development work on RI was done at
CMU; the principal exceptions are the creation of the
component data base and the implementation of the version
of RI that configures VAX-11/750’s Until January 1981,
Digital did not really have the proficiency required to do more
than maintain the existing system. At that point, however, the
group was ready; it is planned that all further work on RI will
be done at Digital by Digital personnel. Given Rl’s newfound
reliability, the focus at Digital has turned to the problem of
.extending Rl so that it can configure PDP-11 systems.
Because the various PDP-I l’s are less constrained in certain
respects than the VAX-I l’s and because the number of
components supported on PDP-1 l’s is significantly greater
than the number currently supported on the VAX-11’s, the
task of extending RI so that it can configure PDP-1 l’s will be
challenging. (Another piece of work, started a few months ago
by John Ulrich and Kalman Reti at Digital, is a research
effort aimed at evaluating an alternative representation of
RI’s knowledge. Their program, which should be finished in a
few months, is essentially a frame-based representation of
configuration knowledge. It will be interesting to compare the
relative strengths and weaknesses of the rule-based and frame-
based approaches.)

Though CMU is no longer directly involved with the
development of Rl, we will be working on two tasks that lie
adjacent to the configuration domain. One of these tasks is
assisting salespeople with component selection. XSEL, the
program being developed, will interact with a salesperson to
obtain the information required in order to tailor a system to
fit the customer’s needs. After obtaining this information, it
will select a CPU, some amount of primary memory, some

software, and whatever devices (eg, disk drives, tape drives,
terminals, printers) the customer needs; this skeletal order will
then be passed to Rl to be fleshed out (with cabinets, boxes,
backplanes, controllers, cables, etc) and configured. During
the interaction with the customer, it may become evident to
XSEL that the particular needs of the customer imply special
configuration constraints; if so, XSEL will inform Rl of those
constraints [McDermott 81b]. The other task is that of
managing the scheduling of orders. When ISA, the program
which will perform this task, is ready for use, XSEL will be
able to take into account the effect that its choice of
components has on the date on which the system can be
delivered.

Though Rl is still in its adolescence, its palce in Digital not
only looks secure, but it appears that complementary know-
ledge-based systems may spring up on all sides. The group
responsible for RI has demonstrated that it can provide a
useful service. Early in Rl’s development, few at Digital
believed that Rl would ever amount to anything. As it
developed, a scattering of individuals became convinced of its
potential. But it was not until recently that a significant
number of people at Digital have given much credence to
knowledge-based systems. Within the past six months,
however, the number of people at Digital with confidence in
knowledge-based techniques has increased dramatically.

How Rl Didn’t Sink

I understand much more clearly now than I did two and a
half years ago what must happen in order for an AI
application to be “successful.” When 1 was introduced to
Digital’s configuration problem, I was sure that it would not
be to difficult to develop a knowledge-based program to solve
be too difficult to develop a knowledge-based program to
solve the problem. When I shared this insight with people at
Digital and encountered skepticism, I was not terribly
surprised. Having never encountered the rhetoric of the
knowledge engineer, they could scarcely be expected to
appreciate knowledge’s potential. But after developing the
demonstration version of RI, I was surprised when the
skepticism was replaced, not with belief, but with caution At
each stage in Rl’s development, I looked for the caution to
disappear. And at each stage a few individuals became less
cautious. But only recently have a significant number of
people begun to believe that knowledge-based programs have
a future at Digital. In retrospect, what is surprising is that Rl
managed to stay afloat in such a sea of caution. That it did is,
I think, due to two, partly fortuitous circumstances: (I) At
each stage in its development, RI convinced a few people who
were in a position to assist in its development that it had real
promise. (2) Only occasionally, and very locally, did Rl do
less than was expected of it; thus it never made any enemies.

The first person to assist in RI’s development was Sam Ful-
ler. He brought the production system group at CMU into
contact with the configuration problem. But more impor-
tantly, he brought us into contact with a problem that was
causing a large number of people a large amount of grief. I
think it is clear that part of the reason Rl convinced some

28 Al MAGAZINE Summer 1981

people that it had promise is that they wanted so badly to
believe the configuration problem could be solved. Yet despite
the seriousness of the problem, no one at Digital was prepared
to fund the development of a knowledge-based configurer
until after the demonstration version of RI had been
implemented. Thus if the CMU Computer Science research
environment were not structured in a way that permits
speculative efforts, such as the initial version of Rl, to be
supported, work on Rl would never have begun. Once the
demonstration took place, a number of people at Digital
committed themselves to making Rl a success. Besides being
directly concerned with the configuration problem, these
people, in general, believed that it was important to explore
the potential of new software technologies; thus these people
were predisposed to believe that the new and unfamiliar might
be good. Finally, as Rl became increasinly expert at the
configuration task, people more firmly tied to the present (ie,
people who believed that a bird in the hand, no matter what, is
worth two in the bush) began to believe that Rl had real
promise.

If Rl’s various supporters had not emerged when they did,
RI could have easily just sunk out of sight. But for RI to
survive, not having enemies was as important as having some
strong supporters. RI’s place in Digital was tenuous enough
that if a few people had believed that exploring RI’s potential
was a serious mistake, the exploration would have stopped.
Three factors kept the all-pervasive caution for turning to
hostility. (1) The task of developing a program that could
configure VAX-l 1/780’s was, as mentioned, of just the right
degree of difficulty. RI was able to devleop at a reasonable
rate and so anyone who looked could see progress. (2) The
number of people immediately involved with Rl was quite
small at first and grew very gradually. Those closest to RI
were for the most part those who believed it had promise, and
thus were willing to shut their eyes when RI stumbled. (3)
Finally, the people who were spokesmen for the project,
Kraft, McNaughton, and O’Connor, worked hard to manage
people’s expectations to insure that no one would count on
more from Rl than it could deliver.

Though Rl now has a large number of strong supporters at
Digital and the extreme caution toward knowledge-based
programs is waning, I have one remaining, quite general
concern. It is not clear that all (or even most) of Rl’s
supporters realize that Rl will always make mistakes. The
problem is that at least some of RI’s supporters think of it as a
program rather than as an expert. There is, of course, a big
difference between programs and experts. Finished programs,
by definition, have no bugs. When experts are finished, on the
other hand, they’re dead. During the last two years, I have
hammered on the theme that a knowledge-based program
must pass through a relatively lengthy apprenticeship stage
and that even after it has become an expert, it will, like all
experts, occasionally make mistakes. The first part of this
message got through, but I suspect that the second has not.
My concern, then, is whether, as this characteristic of expert
programs is recognized, Digital (or any large corporation) will
be emotionally prepared to give a significant amount of
responsibility to programs that are known to be fallible. n

Acknowledgements

Many people, in addition to those mentioned above, helped with
RI’s development The people who have provided significant
assistance include Jim Baratz, Jon Bentley, Andrea Crowe, John
Dennis, Lou Gaviglia, Caroline Hayes, Betsy Herk, John Holman,
Dave Kiernan, Allan Kent, Linda Marshall, Paul McManus, Allen
Newell, Mike Powell, Mike Renda, Mary Sack, Diane Secatore, Ed
Siegmann, Mark Stevenson, and Peter Zotto

References

Feigenhaum 77. Feigenbaum, E A., The art of artificial intelligence
In Proceedings of the 5th International Joint Conference on

Art$cial Intelligence, pp 1014-1029 MIT, 1977

Forgv 77. Forgy, C. L. and J McDermott, OPS, A domain-
independent production system language. In Proceedings of the 5th

International Joint Corlference on Artificial Intelligence, pp 933-
939. MIT, 1977.

Forgv 81. Forgy, C. L., The OPS5 user’s manual. Technical Report,
Carnegie-Mellon University, Department of Computer Science,
1981.

McDermott 80~ McDermott, J., Rl: a based configurer of compu-
ter systems Technical Report, Carnegie-Mellon University, Depart-
ment of Computer Science, 1980

McDermott 80b McDermott, J , RI an expert in the computer
systems domain In Proceedings qf the 1st Annual National
Conference on Art$cial Intelligence, pp 269-271 Stanford Univer-
sity.

MrDerrnott 81a. McDermott, J and B Steele, Extending a know-
ledge-based system to deal with ad hoc constraints. In Proceedings of
the 7th International Joint Collfkrence ou Art<ficial Intelligence
University of British Columbia, Vancouver, British Columbia,
Canada, 198 1.

McDermott 8Zb McDermott, J., XSEL a computer salesperson’s
assistant In J. Hayes and D Michie (editors), Machine Intelligence
IO, forthcoming, 1981.

Newell 69. Newell, A, Heuristic programming: ill-structured prob-
lems. In J S Aronofsky (editor), Progress in Operations Rerearch,
pp 361-414 John Wiley and Sons, 1969

Rvchener 79 Rychener, W., A semantic network of production rules
in a system for describing computer structures. Technical Report,
Carnegie-Mellon University, Department of Computer Science,
1979

Al MAGAZINE Summer 1981 29

