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THE FORMULATION AND ANALYSIS OF NUMERICAL METHODS
FOR INVERSE EIGENVALUE PROBLEMS*

S. FRIEDLAND’, J. NOCEDAL:I: AND M. L. OVERTON

Abstract. We consider the formulation and local analysis of various quadratically convergent methods
for solving the symmetric matrix inverse eigenvalue problem. One of these methods is new. We study the
case where multiple eigenvalues are given: we show how to state the problem so that it is not overdetermined,
and describe how to modify the numerical methods to retain quadratic convergence on the modified problem.
We give a general convergence analysis, which covers both the distinct and the multiple eigenvalue cases.
We also present numerical experiments which illustrate our results.
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1. Introduction. Let A(c) be the affine family

(1.1) A(c) Ao+ CkAk,
k=l

where c R" and {Ak} are real symmetric n x n matrices. Denote the eigenvalues of
A(c) by {Ai(c)} ’, where

I(C) <’" "1n(C ).

The following is called an inverse eigenvalue problem.
PROmEM 1. Given real numbers A 1" --<" "--< A *, find c e R" such that A(c) A *,

i=l,...,n.
There is a large literature on conditions for existence and uniqueness of solutions

to Problem 1 (or its variations) in many special cases. In this paper we are concerned
with the formulation and local analysis of various quadratically convergent methods
to solve the problem, assuming the existence of a solution. Extending our techniques
to give methods with good global behavior is an important task, which we shall not
explicitly address.

The paper is organized as follows. In 1.1 we discuss some of the important
motivating applications which arise in the physical and social sciences. Many of these
lead to closely related variations of the model problem given above. In 2 we confine
our attention to the case where the given eigenvalues {A *}’ are distinct, and describe
several numerical methods. Four of these are related to Newton’s method and are
generally locally quadratically convergent. Of these four methods, three are known in
the literature, and one is apparently new. In 3 we discuss the case where multiple
eigenvalues are present in the set {A *}’. It is well known that the eigenvalues are not
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differentiable functions at the points where they coalesce. Nonetheless, the behavior
of the numerical methods in these circumstances has received little attention. In 3.1
we discuss the case where the numerical methods of 2 are applied, without
modifications, to problems with multiple eigenvalues. Assuming Problem 1 has a
solution, we show that the methods retain local quadratic convergence, with little or
no modification, even though the eigenvalues are not differentiable at the solution. In
3.2 we argue that Problem 1 is generally overdetermined when multiple eigenvalues

are present, and show how to modify the problem so that it has the appropriate number
of parameters and target eigenvalues. We then explain how to modify the numerical
methods of 2 to retain quadratic convergence on the modified problem. In 3.3 we
give a general convergence analysis which covers both the distinct and the multiple
eigenvalue cases. In 4 we present numerical experiments which illustrate our results.

Before we proceed we must mention that in many applications the problem to be
solved is different from Problem 1. Sometimes A(c) is a nonlinear matrix function of
c. In 2.1 we briefly discuss how to adapt the numerical methods to this case. Other
applications lead to variations of Problem 1 that include the following: the number
of given eigenvalues is less than n, the order of the matrices; the number of parameters
is not the same as n; there are constraints on c; there is a functional to be minimized
subject to eigenvalue constraints of the form given by Problem 1; the constraints on
some of the eigenvalues are inequalities instead of equalities. (This last case seems to
be particularly common in practical applications.) In 1.1 we give a few examples to
illustrate how some of these applications arise. We think that it is not difficult to see
how the problem formulations, numerical methods and convergence analyses can be
extended to some of the variations of Problem 1. However we shall not give any details
here.

A special case of Problem 1, which is frequently encountered, is obtained when
the linear family (1.1) is defined by

Ak ekekT, k 1," ", n,

where ek is the kth unit vector, so that

(1.2) A(c)=Ao+D

where D- diag (Ck). This problem is known as the additive inverse eigenvalue problem.
Conditions for existence and uniqueness of solutions to this problem are well under-
stood. Friedland (1977) showed that the problem is always solvable over the complex
field, and it is easy to construct examples that show that it is not always solvable over
the reals.

1.1. Applications. We will now describe several inverse eigenvalue problems aris-

ing in various areas of application.
One classical example is the solution of inverse Sturm-Liouville problems. Con-

sider for example the boundary value problem

-u"(x) +p(x)u(x) Au(x),

u(0)= u() =0.

Suppose that the potential p(x) is unknown, but the spectrum {A*} is given. Can we
determine p(x)? This continuous problem has been studied by many authors; see Borg
(1946), Gelfand and Levitan (1955) and Hald (1972). We are mainly interested in the
discrete analogue of this problem. Let us use a uniform mesh, defining h 7r/(n + 1),
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Uk=u(kh), pk=p(kh), k= 1,.." ,n, and assume that {A*}]’ is given. Using finite
differences to approximate u" we obtain

1.3) uk+ -" 2 IIk IIk_

h2 +pktlk /Uk, k 1, , n, Uo Un+ ---0,

whereh is an eigenvalue in the set {h *}’. Thus we have an additive inverse eigenvalue
problem (1.2) with

1

-1

2 -1

(1.4) Ao 1/hE -1 2 -1

and D diag (Pk). Hald (1972) is a comprehensive reference for both the continuous
and discrete inverse Sturm-Liouville problem.

Another interesting inverse eigenvalue problem is obtained by studying a vibrating
string. Here the boundary value problem is

-u"(x)= x,(x)u(x),
(1.5)

u(0)= u()=0.

The question is whether we can determine the density function p(x)> 0 from the
i}1. Discretizing the problem as before, we obtaineigenvalues {A*

Au A* Du, i= 1,. , n

or equivalently

(1.6) D-1Au h* u, i= 1,. ., n,

where D- diag (p(kh))> 0 and A is given by the right-hand side of (1.4). This kind
ofproblem is called the multiplicative inverse eigenvalueproblem" given a real symmetric
matrix A and eigenvalues {h *}’, find a positive diagonal matrix V such that VA has
the given eigenvalues. We can write this problem in the form (1.1) where Ao=0,
Ak --eka, k 1,..., n, and where a is the kth row of A. The matrices Ak are not
symmetric in this case. Note, however, that a diagonal similarity transformation applied
to VA gives the symmetric matrix v1/EAV1/2.

Both the additive and multiplicative inverse eigenvalue problems were posed by
Downing and Householder (1956). In practical applications of the inverse Sturm-
Liouville and inverse vibrating string problems, only a few of the smallest eigenvalues
may be given. In order for the problem to be well posed, the number of parameters
must be reduced accordingly. This can be done by expressing the potential or density
function as a linear combination of a few given basis functions. See Osborne (1971)
and Hald (1972) for details.

Problem 1 also arises in nuclear spectroscopy (see Brussard and Glaudemans
(1977)). There A(c) is the Hamiltonian and the set {h *} is obtained from experimental
measurements. A similar problem occurs in molecular spectroscopy (see Pliva and
Toman (1966) and Friedland (1979)). Practical formulation of these problems often
involves a number ofparameters which is smaller than the number of given eigenvalues.
It is therefore appropriate to consider a least squares formulation:

(1.7) min (A,(c)-A*) 2.
cli i=1
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The methods that we shall discuss for solving (1.1) can be generalized to handle (1.7)
by using well-known techniques (see, for example, Dennis and Schnabel (1983, Chap.
10)).

The problem of communality, which arises in factor analysis (see Harman (1967,
Chap. 5)), is as follows. Let A0 be a given real symmetric matrix with zero diagonal
entries. The objective is to find a diagonal matrix D such that Ao+D has minimal
rank. In other words, the goal is to find D such that Ao+D has as many eigenvalues
equal to zero as possible. This problem is different from Problem 1, since neither the
rank nor the nonzero eigenvalues are known. However, we can guess the rank and
hence the number of eigenvalues which are equal to zero. In some cases this is enough
to locally determine a solution, as we shall explain in 3. For other related work on
the communality problem see Luk (1985).

In the educational testing problem (see Fletcher (1985)), we are given a symmetric
positive definite matrix Ao and want to know how much can be subtracted from the
diagonal of Ao, with the restriction that the resulting matrix is positive semidefinite.
The problem may be posed as follows:

max ck
k=l

(1.8) subject to A,(Ao- D) _-> 0, 1,. ., n,

D diag (Ck) >- O.

In this problem, as in the problem of communality, we can usually expect a
multiple zero eigenvalue at the solution. Fletcher (1985) also describes a problem that
has the same structure as (1.8), which he calls the matrix modification problem. We are

given a symmetric indefinite matrix Ao and want to add as little as possible to the
diagonal of Ao to obtain a positive semidefinite matrix.

An important class of problems frequently occurring in engineering applications
has the form

min f(c)
cR

(1.9)
subject to l_-< Ai(c) _-< u, 1, , n,

where f(c) is a real-valued objective function and and u are specified lower and
upper bounds on the eigenvalues of the matrix A(c) given by (1.1). If an optimization
method based on active sets of inequality constraints is used, i.e., where the inequalities
thought to be binding are replaced by equality constraints, one has a problem closely
related to Problem 1. (The same remark applies to the educational testing problem,
which has constraints of the form Ai(x)>-0.) It is interesting to note that multiple
eigenvalues will naturally tend to occur at a solution, since the minimization objective
may drive several eigenvalues to the same bound. It is therefore very important to
handle multiple eigenvalues correctly. We will explain how to do this in 3, in the
context of Problem 1. A closely related problem has the simple form

min u
(1.10)

subject to h(c)-<_ u, i=l,...,n,

i.e., the object is to minimize h,(c), the maximum eigenvalue of A(c). Again, multiple
eigenvalues generally occur at the solution. There is a large engineering literature on

problems of the form (1.9) and (1.10). See, for example, Polak and Wardi (1982) and
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Mayne and Polak (1982) for a discussion of problems from control theory involving
restrictions on singular values of a transfer matrix, and Olhoff and Taylor (1983) for
a discussion of problems from structural analysis and optimal design.

Another interesting variation is the graph partitioning problem, given by Cullum,
Donath and Wolfe (1975). The objective is to minimize the sum ofthe largest eigenvalues
of a symmetric matrix, as a function of its diagonal entries. More precisely, consider
the problem

minp(D)= hi(Ao+D)
D i=n-r

subject to trace (D) 0,

where the symmetric matrix Ao and the integer r are given, and D is diagonal. This
problem can be transformed into

subject to trace (D) 0,

hi(Ao+ D) _-< ui, n r -< <_- n.

One therefore has a problem closely related to (1.9).
There are several inverse eigenvalue problems with special structure that can be

solved by direct methods. An example of this is the reconstruction of Jacobi matrices
from spectral data; see de Boor and Golub (1978), Gragg and Harrod (1984) and
Boley and Golub (1986). We will not consider these types of problems.

1.2. Notation and definitions. We define h (c) [h (c)," ., h, (c)] T and A(c)
diag(hi(c)). A solution to Problem 1 will be denoted by c*, and we write h*=
[hl*, , h*] T and A* =diag (h*). Since A(c) is symmetric, it has an orthonormal set
of eigenvectors {qi(c)}’. We will speak of {qi} being a unique set in the case of distinct
eigenvalues, ignoring the choice of sign possible for each column. The orthogonal
matrix Q(c)=[ql(c),..., q.(c)] will be called a matrix of eigenvectors of A(c).
Throughout the paper [[. denotes the Euclidean vector norm (12-norm) or its corre-
sponding induced matrix norm, and [[. IIF the Frobenius matrix norm.

2. Distinct eigenvalues. We will now describe several methods for solving Problem
1 in the case where the given eigenvalues are distinct. In 3 we will see how to cope
with multiple eigenvalues. Assume there exists a solution c* to Problem 1. Then there
is a neighborhood of c* where the eigenvalues hi(c) are distinct and are differentiable
functions (see, for example, Ortega (1972, p. 54)). In this neighborhood we will consider
the nonlinear system of equations

(2.1) f(c) =0.

.(c)-.*

The first method we will describe consists of applying Newton’s method to (2.1).
Differentiating the relations

(2.2) qi(c) qi(c) 1,

(2.3) qi( c)A( c)qi( c) Ai(c),
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we find that

(2.4)
0A,(c) q,(c)TAkq,(c).
OCk

Thus the Jacobian off is

Jik(C) q,(c) TAkq,(c),
and one step of Newton’s method is defined by

(2.6) J(c’)(c"+1- c ’) -f(c’).

We will write (2.6) in a slightly different form. From (1.1) and (2.3) we have

qi(c) TAoq, (c) + E qi(c) TAkqi(C)Ck Ai(C),
k=l

and therefore (2.6) can be written as

(2.7) q,(c")TA(c’+l)q,(c ") A*
or equivalently,

(2.8) J( Cr’)C t’+l X * b(c’),

where

(2.9) b(c) = q(c)TAoq(c), i= 1,..’, n.

Thus Newton’s method for solving (2.1) is as follows.

Method I.
Choose a starting value c. Form A(c) and find its eigenvalues and eigenvectors.
For u=0, 1, 2,...

1) Stop if IIA(c )-A*II is sufficiently small.
2) Form J(c") (see (2.5)) and b(c") (see (2.9)) and compute c +,1 by solving (2.8).

Form A(c’+l).
3) Find the eigenvalues {Ai(c+l)} and eigenvectors {qi(c+l)} of A(c+l).

Method I has been studied by many authors. An early reference is Downing and
Householder (1956), where the method is proposed for solving the additive inverse
and multiplicative inverse eigenvalue problems. Physicists have used it for many years
in nuclear spectroscopy calculations (see Brussard and Glaudemans (1977).). Kublanov-
skaja (1970) has given a convergence analysis of this method.

Describing the iteration by means of (2.6) seems more natural than using (2.8).
However, the latter has the same form as the next two methods we will present below.
Also (2.8) shows that the direction produced by Newton’s method does not depend
explicitly on the eigenvalues h (c).

Instead of computing the eigenvectors of A(c) at each, step we may consider
approximating them. One possibility is to use inverse iteration. Suppose that c is our
current estimate of the parameters and Q< is an approximation to Q(c), the matrix
of eigenvectors of A(c). Let q’ be the ith column of Q). To compute a new estimate
c+1 we form

(2.10) J[= (qT)WAkqT, i, k= 1,..., n,

(2.11) b7 (qT)WAoqT, i= 1,..., n



640 S. FRIEDLAND, J. NOCEDAL AND M. L. OVERTON

and solve

(2.12) J’)c"+l=A*-b".

(Compare with (2.5), (2.9) and (2.8).) To update our approximations to the eigenvectors
we apply one step of inverse iteration: we compute yi, 1,..., n by solving

(2.13) [A(e"+)-A* I]yi=q, i= 1,..., n.

We then define

v+ i
q’ II2’,11’ i=l,...,n,

which determine the new matrix Q(’+I). Thus we are performing a Newton-like iteration
where instead of computing the exact eigenvectors of A(c) at each step we update an
approximation to them by performing one step of inverse iteration.

Method II.
Choose a starting value c. Form A(c) and compute its matrix of eigenvectors
Q(c).
Set Q(O)

__
Q(cO).

For v=0, 1, 2,...
1) If is sufficiently small, stop.
2) Form J() (see (2.110)) and b (see (2.11)) and compute c+1 by solving (2.12).

Form A(c+).
3) Compute the factorization

A(c "+1) UNU T,
where U is orthogonal and N is tridiagonal. Solve the n linear systems

N- A I]( UTy,) UTq, i= 1,’.., n

and compute

Method II is closely related to a method proposed by Osborne (1971); see also Hald
(1972). We have used a different right-hand side vector in (2.12) to take advantage of
the fact that A(c) is an affine function. As we will discuss below, the form of the
method proposed by Osborne can be useful when A(c) is a nonlinear function.

A different approach is based on the use of matrix exponentials and Cayley
transforms. A solution to Problem 1 can be described by c and Q, where Q is an
orthogonal matrix and

(2.14) QTA(c)Q= A*.

Suppose that Q) is our current estimate of Q. Let us write Q- Q)e Y, where Y is a
skew-symmetric matrix, i.e., Y=- Y. Then (2.14) can be written as

(Q))A(c)Q)= egA*e-g

=(i+ y+1/2y2+...)A*(I- y+1/2y2/...).
Thus

(2.15) (Q(’))TA(c)Q(’)= A* + YA*- A*Y+ o(11 YII).
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We now define a new estimate of the parameters c+l by neglecting second-order terms
in Y and equating the diagonal elements of (2.15). We obtain

(2.16) (q’f)TA(c"+’)q’f A* i= 1,’’’, n,

which is identical to (2.12) with J( and b( defined by (2.10) and (2.11). Thus the
new estimate of c+1 is obtained in the same way as in Methods I and II. Equating
the off-diagonal elements of (2.15), with second order terms neglected, we have

(2.17) yij(A A*) (q’f)7"A(c’+l)q, 1 <= <j <-_ n.

The matrix Y is completely determined by (2.17), since Y YT- and we are assuming
that {A *} are distinct. Now construct an orthogonal matrix P using the Cayley transform

(2.18) P (I +1/2 Y)(1-1/2 y)-i

and compute the new estimate of the matrix of eigenvectors by

(2.19) Q+I=Qp.
As we neglected second order terms, Q+ is only an approximation to the desired
matrix and we need to iterate.

Method III.
Choose a starting value c. Form A(c) and compute its matrix of eigenvectors
Q(c).
Set Q(O

_
Q(cO).

For v=0, 1, 2,...
1) If is sufficiently small, stop.
2) Form J< (see (2.10)) and b (see (2.11)) and compute c+1 by solving (2.12).

Form A(c+l).
3) Fori=l,...,n andj=i+l,...,n, compute

(q’)TA(c"+’)q.

4) (Note that (2.18) and (2.19) imply

(Q(.+,) 7" (I +1/2 y)-l(1-1/2 Y)(Q(’) r.)

Compute H=(I-1/2Y)(Q(")) r. Let hi be the ith column of H.
Factorize the matrix I +1/2 Y, and use this to solve the n linear systems

(I + 1/2 Y) vi hi, i=1," .,.n.

Set

(Q(.+I))T=[Vl,...,Vn].

This method is apparently new. Downing and Householder (1956) use the Cayley
transform to motivate the Newton step (2.6) in Method I. However, they do not suggest
updating approximations to the eigenvectors, but instead compute the exact eigenvec-
tors of A(c) at each step.

One can motivate Method III following a different reasoning. Suppose that we
are given an initial matrix B() whose eigenvalues coincide with the target eigenvalues
{h*}. If B() can be written in the form (1.1), the problem is solved. Otherwise we



642 S. FRIEDLAND, J. NOCEDAL AND M. L. OVERTON

generate a sequence {B()}, u= 1, 2,..., which converges to a matrix of the form
(1.1), and with the property that each matrix in the sequence has a spectrum that
coincides with the target spectrum. Given B(), we would like to find a skew-symmetric
matrix Z and a vector c+1 such that

e-ZB(")ez A(c+I).
Expanding ez and neglecting second order terms we obtain

B (’) + B(")Z ZB (’) A(c’+l).
The diagonal equations determine c(’+1), as before, and the off-diagonal equations
determine Z. We now let R=(I+1/2Z)(I-1/2Z) -1 and define B(’+1) RTB(’)R. To find
B() we may proceed as follows. Let co be our first estimate of the parameters. Compute
the eigenvectors {qi(co)} of A(c) and define

B() A*i qi(c)qi(c).
i=1

Then B() has the target spectrum and its eigenvectors coincide with those of A(c).
It is not difficult to see that this process is identical to Method III.

Let us now look at a different formulation of Problem 1. Consider the nonlinear
system

(2.20) g(c) =0.

det (A(c)-A*,I)

Note that the ith equation of (2.20) can be written as

(2.21) g,(c)= fi (Xk(C)--X*).
k=l

To apply Newton’s method to this new system we first need to compute the Jacobian.
From (2.4) and (2.21) it follows that

(2.22) Og,(c)_ . [q[Ajqk I (A/(c)-A*)].OCj k=l l=l
lk

Therefore the Jacobian of g is

11

(c)

(2.23)
I ql(c)TAlql(c)..
qn(c)TAlqn(c)

1

diag (g(c))
1

q’(c)TA"qI(c)

q,,(c)TA,,q,,(c)J

(c)
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(1)--diag(gi(c)).diag f() V(c)

where J(c) is given by (2.5) and V(c) is defined by

(2.24) V;(c)-
[qk(c)TA;qk(C)][Ai(C)--A*]

k=l /k(C) --/

The Newton iterate is therefore

c+l=c-V(c)-ldiag((c))diag( 1)gi(cv) g(c
c V(c’)-’f(c’).

Method IV.
Choose a starting value c. Form A(c) and compute its eigenvalues and
eigenvectors.
For u=0, 1,...

1) Stop if is sufficiently small.
2) Form V(c) (see (2.24)) and compute c+ by solving

V(c’)(cU+l-c’)---f(c’).
Form A(c"+).

3) Find the eigenvalues {A(c+l)} and eigenvectors {qi(c+)} of A(c+l).

This method was proposed by Biegler-KSnig (1981) and generalizes an algorithm of
Lancaster (1964a). To show its relation to Method I we note that V(c) can be written
as

V(c) W(c) J(c),

where the matrix W is defined by

(2.25) W(c)

A,(c)-t,* 1(c)- ,*_.11
A(c)- A*

A_..._(c)-A.* A.(c)-A*.... 1
LAI(c)-A.*

Thus Method IV differs from Method I in that J(c) has been replaced by W(c")J(c).
Since the given eigenvalues {A *}’ are distinct, W(c) - I as c c*, and so asymptotically
Methods I and IV coincide. Nevertheless, our numerical experience indicates that
Method I almost always requires fewer iterations and that Method IV suffers more
often from ill-conditioning. One can readily see the drawback of using formulation
(2.20) by noting that

(2.26) g,(c)=f(c) H (Ak(C)-A*).
k#i

One is thus complicating system (2.1) by multiplying each equation by a polynomial
of degree n- 1. Suppose, for example, that the problem is so simple that the functions
{A(c)}]’ are linear. Then (2.1) is a linear system of equations and Method I will find
the solution in one step. On the other hand, (2.20) represents a system of polynomial
equations of degree n, and Method IV will have to iterate to approach the solution.
It therefore seems that Method I is always to be preferred over Method IV.
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Let us now compare the computational requirements of Methods I, II and III.
We will first assume that A(c) is dense. The computation of the eigenvalues and
eigenvectors in Method I requires approximately 5n multiplication operations; see
Golub and Van Loan (1983). Method II requires approximately 3n multiplications
to update the qi, whereas Method III requires approximately 4n multiplications in
steps 3 and 4. Note that all the methods require 1’/4 multiplications to form the matrix
J in step 2. However, in the case of the additive inverse problem (1.2), forming J
requires only n 2 operations. If the matrix A(c) is sparse, Method III becomes less
competitive. For example, if A(c) is tridiagonal, Method I requires only about 14n 2

multiplications per iteration (9n 2 to compute the eigenvalues (Parlett (1980, p. 165))
plus 5n 2 to find the eigenvectors by inverse iteration), while Method II requires 5n -multiplications in step 3 and Method III requires about 3n 3 multiplications in steps
3 and 4. In 4 we will comment on the numerical behavior of the three methods.

Methods I-IV are locally quadratically convergent under some nonsingularity
assumptions. This will be shown in 3.3. There are, on the other hand, various methods
for solving Problem 1 that are only linearly convergent. One of these methods was
proposed by Downing and Householder (1956). The iteration is

c+’=c-(x(c)-x*),

and thus is obtained from Method I by replacing J(c ’) by the identity matrix. A
different method, specifically designed for solving the additive inverse eigenvalue
problem (1.2), was proposed by Hald (1972). Suppose that D() is our current estimate
of the desired diagonal matrix, and that Q() is the matrix of eigenvectors of Ao+D).
We define D+1) as the diagonal matrix that solves the problem

min II(Ao+ D)Q)-
D

Since

II(Ao/ D) Q(") Q(’)A* I1, D (Q()A*(Q(’)) T Ao)II,
it is clear that

(2.27) D(v+l) diag ((Q()A*(Q()) v Ao),,).

Thus in this method one computes the eigenvectors at each step and updates the
estimate of D by means of (2.27). Friedland (1977) generalized this method for more
general functions A(c).

A method closely related to (2.27) can be used for solving the problem of
communality. Recall that the problem is: given Ao, find a diagonal matrix D such that
Ao+D has as small rank as possible. We start by making a guess of the rank: say that
it is n- t. Thus eigenvalues will be zero at the solution. Suppose that D() is our
current estimate, and let Q() and A() be the matrices of eigenvectors and eigenvalues
of Ao+D(’). We define

D(’+’) diag ((Q(")(’)(Q()) r Ao),,)

where () is obtained from A() by setting the smallest diagonal elements (in absolute
value) to zero. Ideally we would like to use A* instead (), but only zero elements
of A* are known. This method is described in Holzinger and Harman (1941), and our
numerical experience indicates that it is robust but very slowly convergent.
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We will now discuss what changes are needed in the numerical methods described
so far, when A(c) is not affine, but is a nonlinear function of c. Note that (2.4) should
be replaced by

(2.28)
0A,(c) qi(c)rAk(C)q,(c)
OCk

where

(2.29) Ak(C) 0--A(c).
OCk

Method I is then defined by (2.6), where J(c") is formed by using (2.28). Note that
(2.8) cannot be used since it was derived under the assumption that A(c) is affine.
Similarly, for Method IV we need only replace Aj by Aj(c) in (2.24).

For Method II we do not wish to compute the eigenvalues Ai(c) required for (2.6).
A natural modification to Method II is to consider an iteration of the form (2.6), where
the vectors q are updated by using the inverse iteration (2.13), and the eigenvalues
A(c) are approximated by means of the Rayleigh quotient, i.e., A(c)- qA(c)qi. A
different approach was suggested by Osborne (1971) and does not require approximat-
ing the eigenvalues A(c) explicitly. He defines the function fl(c) [ill(C)," ", ft,(c)] r

by

fl,(c) (/q,)-’, i=l,...,n,

where {qi} ’ are our current approximations to the eigenvectors and the yi are given by

[A(c)-A* I]3,,= q,, i=l,...,n.

If we apply one step of Newton’s method to the system/3 (c) 0 we obtain an iteration
of the form

where

](cV)(cV+I--cV)= -- (cV),

,(c)
and Ak(C) is defined by (2.29). It is not difficult to see that/3(c) approximates A(c) A*;
see Hald (1972) for details.

Finally, consider Method III. Equation (2.16) is now a nonlinear equation in c.
We can, however, replace A(c "/1) in (2.16) by the first order approximation

A(c’)+Al(C")(Cl c’)+ +A,,(c’)(c,+1 c,,)

to obtain

where

](c)(c+’-c)=-(X-x*),

.ik C q ’ TAk C q

and .’= [1, ,,’]T is defined by

.’[ (q’{) TA(c")q’{,

the Rayleigh quotient. After c+1 has been computed we update the vectors q by
(2.17)-(2.19).
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3. Multiple eigenvalues. In this section we suppose that {A*} includes multiple
eigenvalues, and that a solution c* to Problem 1 exists. We first describe how the
methods of 2, without modifications, behave in this case, and then explain how the
problem formulation and methods should be changed when multiple eigenvalues are
present. For convenience we assume that only the first eigenvalue is multiple, with
multiplicity t, i.e.,

*

There is no difficulty in generalizing all our remarks to an arbitrary set of given
eigenvalues.

3.1. Behavior of unmodified methods. Let us first consider Method I. When the
given eigenvalues are distinct it is straightforward to see that Method I is locally
quadratically convergent, under the assumption that the Jacobian (2.5) is nonsingular
at c*. The reason is that Method I consists of applying Newton’s method for finding
a zero of f, defined by (2.1), which is a smooth function. In fact, the first partial
derivatives of A(c) are given by (2.4), and it is not difficult to show that

02Ai
-2

, [ql(c)TAkqi(c)][ql(c)TAjqi(c)]
(3.1)

Ock Ocj 1=1 /i(c) -/l(C)
l#i

(see, for example, Lancaster (1964b)). Thus f satisfies the well-known conditions for
quadratic convergence of Newton’s method: (i) f is differentiable and J(c) is Lipschitz
continuous in a neighborhood of c*; (ii) J(c*) is nonsingular. (See Ortega and
Rheinboldt (1970, p. 312).)

However, we can see from (3.1) that as the separation of the eigenvalues decreases,
the Lipschitz constant generally grows, the problem becomes increasingly ill-condi-
tioned, and the neighborhood ofthe solution in which convergence takes place becomes
smaller. When the separation is zero, i.e., when multiple eigenvalues are present, the
eigenvalues are not, in general, differentiable at c*. Furthermore, the eigenvectors
{qi(c*)} are not unique, and they cannot generally be defined to be continuous functions
of c at c*. This can be seen by considering the example Ao 0,

[1 ] A2=[ 1] c*=A*A= 0 0’

Note that as long as the eigenvalues of A(c) are distinct for all iterates c, Method
I remains well defined. However, the matrix of eigenvectors 0(c), and consequently
the Jacobian J(c"), generally will not converge as c --> c*. Therefore one might expect
that in the multiple eigenvalue case the method is at best slowly convergent to c*. In
fact, however, the convergence is generally quadratic, both in theory and in practice.
This fact was apparently first established by Nocedal and Overton (1983), although
Bohte (1967-1968) had observed that the method experienced no difficulties in his
numerical tests with multiple eigenvalues. The quadratic convergence may be explained
in several ways. Nocedal and Overton (1983) base their analysis on a classical result
of Rellich (1969), which states that the eigenvalues can be defined to be analytic
functions of a single variable, along any line passing through the solution c*. By using
the mean value theorem in one variable it follows that, locally, every Newton step
produces a quadratic contraction in the error. The result is that, given a nonsingularity
assumption,, the iterates {c} converge quadratically although the sequence {J(c)}
does not converge. A completely different proof of this result will be given in 3.3.
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We comment further here on the nonsingularity assumption needed for quadratic
convergence. It is sufficient to assume that {A(c)} has distinct eigenvalues for all
and that {111(c)-11 I} is bounded. Even though this condition usually holds in practice,
it would be more desirable to state the nonsingularity assumption in terms of a matrix
evaluated at c*. Since the matrix of eigenvectors Q is not uniquely determined at c*,
let us define

{Q. QTQ= I and QT"A(c*)Q= A*}

and, for any Q f, define J*(Q) by

J(Q)

To obtain a useful nonsingularity assumption we may consider

sup

However, it turns out that, in general, this supremum does not exist. By solving a
system of n + 1 linear equations in n unknowns and doing an appropriate transforma-
tion, it is generally possible to choose the eigenvectors so that J*(Q) is singular. To
see this, let Q [ql, ", q,] be any set of eigenvectors of A(c*). Consider the system

( qfAk.qi) xt,=O,
k=l i=1

(qTiakqi)Xk=O, i= t+l,’’’, n,
k=l

where the unknown x Ix1, , x,] r e R". This homogeneous system is always solvable
for some x 0, assuming > 1. Let Q1 [ql," ", qt]. By construction,

tr(QTl(A(x)-Ao)Q)=O=qf(A(x)-Ao)q,, i= t+l,..., n.

It follows that Q1T(A(x) Ao)Q is orthogonally similar to a matrix with zero diagonal
(thisis readily proven by induction on n). Let U define this similarity transformation,
let Q1 Q u, and define ( [t, q,+, ., q,]. Then, by construction, J*(()x 0,
which implies that J*(() is singular.

The question then arises" does there exist a direction d such that A(c*+ ad) has
distinct eigenvalues for small a > 0 and such that the condition

(3.2) Q(A(c*+ad))-O asa0+

holds? The answer is, generically, yes, provided n >- t(t- 1)/2. To obtain such a vector
d, one solves

T(O aQ)d-diag (l,)=0,
k=l

When n > t(t-1)/2,a system of t(t+ 1)/2 equations in n+ unknowns d and {i}1.
distinct. In this case it is not difficult to showthere is generally a solution with {i}

that (3.2) holds.
The consequence of the discussion above is that generally there is a manifold

of dimension less than n for which J(c) approaches singularity when c and c c*.
By carrying out the construction described above, one is able to obtain a point c
with c near c*. Interestingly enough, however, even when Method I is started at such
a point, it has no difficulty with convergence. Typically the next iterate c is not in or
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near M, and subsequent iterates converge quadratically as usual. Because M has
dimension less than n, it is very unlikely that iterates in M will be generated. One
might well be concerned at the possibility that if iterates near M are generated,
convergence could be slow. However, one must remember that J(c) is not continuous
at c*, and that, for example, J(c) varies extremely rapidly on small spheres centered
at c*. Thus even at a point c lying near M, and near c*, J(c) may be far from singular.

So far we have explained the behavior of Method I in the presence of multiple
eigenvalues without making any modification to the method. In 3.2 we shall see that
when the problem is properly formulated, the method should be modified. In that case
J is replaced by a matrix which does not have the undesirable property that its
nonsingularity depends on the choice of the eigenvectors. The interesting conclusion
from the discussion just completed, however, is that even when no modifications are
made to Method I, it is generally locally quadratically convergent regardless of the
eigenvalue multiplicities, assuming the problem has a solution.

Let us now consider Method II. Difficulties may arise during the application of
the inverse iteration (2.13) due to the presence of the multiple eigenvalue AI*. To see
this, let us write

q’= ai)qk(c‘’+’), i= l, n,
k=l

and thus (2.13) gives

O (/ci)
cv+l),’)/i

k=l A(c‘’) A *.
q( 1,’’ n.

Now suppose, for example, that A* is much closer to Al(C‘’) than it is to
A2(c‘’),’’’ ,At(c"). Then all the vectors {%} will be nearly parallel to ql(c ‘’+1) and
will fail to approximate the invariant subspace. To avoid this difficulty each new vector
yi, 1 =< =< t, is orthogonalized with respect to the earlier computed vectors belonging
to the multiple eigenvalue. Thus we solve

[A(c+) X I]F Q
for Fe R"t, where Q‘’) [ql, qt ], and then compute the QR factorization

where T is upper triangular. If the orthogonalization produces a zero vector, we replace
the corresponding column of Q‘’ by a unit vector ej, trying the columns of the identity
matrix in turn until we succeed (see Peters and Wilkinson (1971, p. 418)). The vectors
corresponding to the distinct eigenvalues are updated by means of (2.13). It will be
shown in 3.3 that Method II, using this implementation of the inverse iteration, is
locally quadratically convergent. The same argument given for Method I shows that
{llJ<)-lll} may not be bounded. However, as in Method I, this is very unlikely to occur;
furthermore, this consideration will disappear when we modify the methods in 3.2.

We now turn our attention to Method III. The diagonal equations (2.16) define
c ‘’+1 just as Methods I and II do, regardless of the eigenvalue multiplicities. The
off-diagonal equations (2.17) are

yij(Xj*. -X*)=(q)TA(c‘’+)q, l<-i<j<=n.

The left-hand side of this equation is zero for 1 <-_i<j <-_ regardless of the value of
yi, and thus Yi is not determined. A reasonable course to take is to set

y 0, l<=i<j<--t.
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With this choice it will be shown in 3.3 that the iterates {c"} converge quadratically
to c* as in Methods I and II. Furthermore, it will be shown that {Q(")} converges
quadratically to a limit. It follows that {J()} converges. The remarks made for Methods
I and II, concerning the possible unboundedness of (llJ)-ll}, also apply to Method
III.

Now consider Method IV. Here the analysis is trivial. In the multiple eigenvalue
case, the function g(c) remains diiterentiable, but has multiple entries. The Jacobian
of g is thus necessarily singular. It is clear that the method must be reformulated.
However, since we do not consider this method computationally attractive, we will
not discuss it any further.

3.2. Modification to formulation and methods. Let us view the problem from a
slightly ditterent perspective. The relation

(3.3) A(c)=QA*QT

can be considered a system of n(n+ 1)/2 equations in n(n+ 1)/2 unknowns, namely
the parameters {Ck} and the orthogonal matrix Q which has n(n-1)/2 degrees of
freedom. However, when t> 1, s=t(t-1)/2 of these degrees of freedom are of no
help in solving problem (3.3), since they describe only the rotation of [ql," ", q,] to
a different choice of basis. It follows that when A* is completely specified and > 1,
Problem 1 is inherently overdetermined. This did not cause difficulties for our discussion
in 3.1 because we assumed throughout that a solution c* existed, i.e., that A* was
chosen so that (3.3) was solvable. However, in practice we must expect that if a multiple
eigenvalue is present, either s of the remaining eigenvalues are not specified, or an
additional s parameters are available. For convenience we shall make the former
assumption and, instead of Problem 1, consider the following problem.

PROBLEM 2. Find the parameters cl, , cn so that the n-s smallest eigenvalues
of A(c) have the values

where s t(t 1)/2.
It is clear that the numerical methods of 2 must now be modified, since s of the

rows of J have effectively been removed. Our goal is to obtain methods which are
quadratically convergent even though s of the eigenvalues are not specified. Let us
start by considering Method III, since in this case it is rather clear what should be
done. Consider again (2.15), with second order terms neglected,

(3.4) (Q()7"A(c)Q(= A* + YA* A* Y,

which appears to represent n(n + 1)/2 equations in the n(n + 1)/2 unknowns c and Y.
However, s= t(t-1)/2 of the Y0, namely those for which l<-i<j <- t, are of no help
in solving (3.4) and may be removed from the equation, since they are multiplied by
zero on the right-hand side of (3.4). Thus we see again that it is appropriate to specify
only n-s eigenvalues, and so we replace A* in (3.4) by diag () where h *,

1,..., n-s, and where the last s entries {h},-+l are free parameters. Equation
(3.4) then has n(n + 1)/2 unknowns, namely n parameters {Ck}, n(n 1)/2-- s param-
eters {Y0}, and s parameters {},"_+1. To solve this equation we separate the computa-
tions of c and Y, as before. There are n equations defining c alone, namely

v+l(3.5) ((q)7"Akq, )Ck A* -(q)Aoq, i= l, n-s
k=l
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and

(3.6) ((qT)TAkq)c+l _(qv,T,) oq, l<--i<j <--t.
k=l

Equations (3.6) were not previously imposed by Method III; they were not needed
since we had assumed existence of a solution to an overdetermined problem. We
denote the combined system (3.5), (3.6) by

(3.7) K(c+l=h .
Having thus defined c+, the remaining unknowns {y} and {} are defined by

(3.8) X=(q)rA(c+l)q, n-s<i<-_n,

(q/)rA(c+l)q]
l <-_i<j<-_n, j> t.(3.9) Yij Xj-Xi

Finally, we set

(3.10) Yi 0, 1 _--< <j --<_

since these parameters describe the rotation of the eigenvectors corresponding to the
multiple eigenvalue, and therefore can be set to zero. The convergence analysis of the
next section will show that zero is, in fact, the best choice for these parameters.

One difficulty remains: suppose that at the solution one of the eigenvalues that
was not specified is actually multiple, i.e., for some j> n-s, h(c*)= hi(c*), with
i-j + 1. Then if the modified method is applied we will normally have that lYi[ - oe
as c-* c*, since {-i} will generally converge to zero. This can be avoided by
introducing a tolerance parameter and setting Yij to zero if [-i[ drops below this
parameter.

A more formal description of the modified Method III will be given below. Let
us first go back to Method I and modify it so that it solves Problem 2. To compute
the new estimate of the parameters, the n s equations (3.5) for the distinct eigenvalues
are combined with the s equations (3.6) for the multiple eigenvalue h 1", to give a system
identical to (3.7), except that Q refers to the computed eigenvectors Q(c), rather than
the approximations updated by Method III. With hindsight we can show that this is
asymptotically equivalent to applying Newton’s method to a reformulation of (2.1).
Note that (3.5) and (3.6) can be written as

(Q))rA(c"+I)Q")= 11"1,,
(3.11)

(q)rA(c+l)q=A*, i=t+l,. .,n-s,

where Q= [q’, , q’]. Consider the Newton iteration on the nonlinear system

fl(c) Ql(C)rA(c)Ql(C)-A*lI,=O,
(3.12)

(fE(c))=q,(c)rA(c)q,(c)-A* =O, i=t+l,. .,n-s,

where Ql(C)=[ql(c),..., q,(c)]. Note that fl represents t(t+l)/2 equations and f2
consists of some of the components off in (2.1). Differentiating fl with respect to c,
one obtains

(3.13) f(c)-- OI(c)TA(c)QI(C)d Ql(c)T,t(C)Ql(C)d Ql(c)TA(c)Ol(C).
Differentiating QI(c)TQI(C) I and using the relation A(c)= Q(c)A(c)Q(c) r (3.13)
simplifies to become

(3.14) jl(C) Ql(c)Tfi(C)Ql(C)+ BA(c)-A(c)B,
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where B QI(c)TQI(C) and A,(c) =diag (;tl(C), ", ,,(c)). Assuming that B remains
bounded, the last two terms in the right-hand side of (3.14) cancel in the limit since
A,(c) AI*L. Thus from (2.4) and (3.14) we see that (3.11) is essentially a Newton
step on (3.12). Although a true Newton step would include the last two terms on the
right-hand side of (3.14), quadratic convergence is not impeded by dropping them. To
prove quadratic convergence, one must take into account the lack of continuity of
Ql(c), and this can be done by applying Rellich’s theorem as discussed in 3.1.
However, in the next section we will present a more direct proof.

Let us now modify Method II. Using the implementation of inverse iteration
described in 3.1 we compute approximations {q’,..., q-s} to the eigenvectors
corresponding to the n s given eigenvalues {, *}’-s. The new estimate of the param-
eters is obtained, as in Methods I and III, by solving (3.7), where the q’ are the vectors
obtained by inverse iteration.

Thus the Modified Methods I, II and III have the same forrn; with differences
only in the way of computing the q’. We will obtain quadratic convergence for the
three methods ifwe assume that the matrix K defined by (3.5)-(3.7), with {q’} replaced
by a set of eigenvectors of A(c*), is nonsingular. Note that this condition is independent
of the choice of the basis Q(c*), a much more satisfactory situation than in 3.1.

We now describe in detail the modified versions of Methods I, II and III designed
for solving Problem 2.

Modified Method I.
Choose c. Form A(c) and compute its eigenvalues and eigenvectors.
For v=0, 1, 2,...

1) Stop if [i- (’i(c)-A*)2]/2 is sufficiently small.
2) Form K() and h (see (3.5)-(3.7)), using q’ qi(c"). Compute c+ by solving

(3.7). Form A(V+l).
3) Find the eigenvalues {Ai(c+l)} and eigenvectors {q(c+l)} ofA(c"+l). (Actually

only the first n-s eigenvalues and eigenvectors are needed.)

Modified Method II.
Choose c. Form A(c) and compute its matrix of eigenvectors Q(c). Set
Q(o) Q(cO). (As in Method I only the first n-s eigenvectors are needed.)
For , 0, 1, 2,

1) Stop if

I1(Q) TA(c")Q(,,")--A*-
is sufficiently small, where Q( [q’, ., q,_] and A,*_s
diag (A *,..., A,*_s).

2) Form K () and h (see (3.5)-(3.7)), and compute c+1 by solving (3.7). Form
A(c"+).

3) Compute the factorization

m(c+l) UNU T,
where U is orthogonal and N is tridiagonal. Solve

N- , I]( UrF) UTQ?")

for F e __1/, where Q) [q’, q’[], and compute the "QR" factorization

r Q/’)T,
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where T is upper triangular (if necessary modify Q), as described in 3.1,
to ensure that T has full column rank). Next solve

[N-A* I](UrT,) UrqT, i= t+ l, n-s

and compute

+1_ )’i
i= t+ l n-s.

Modified Method III.
Choose c() and set Q(O)_ Q(cO). Choose a tolerance parameter Neglig.
For v=0,1,2,...

1) Stop if

II(Q A *-s
is sufficiently small.

2) Form K() and h (see (3.5)-(3.7)), and compute c+1 by solving (3.7). Form
A(+1).

3) For 1 <_- <j <- n, compute

(qT)TA(c+I)q
Yo As hi

0

if Ii- sl > Neglig,

otherwise,

where

=I A* ifl<--i<-n-s,
Ai

[(q)rA(c+)q[ otherwise.

4) Compute H=(I-1/2Y)(Q()) r, factorize (I+1/2Y) and use this to solve the n
linear systems

(I+1/2Y) vi hi, i= 1,..., n,

where hi is the ith column of H, and set

(Q(.+I)) T [/)1, /.)n ]"

To our knowledge, the modified methods are new. Indeed, we are not aware of
any discussion of the correct general formulation of the inverse eigenvalue problem
in the multiple eigenvalue case, where the dimension of the parameter space is chosen
as in Problem 2. However, the principles on which these ideas rest are well known
from the perturbation theory of multiple eigenvalues; see Davis and Kahan (1970),
Friedland (1978) or Kato (1966). The dimension argument is essentially the same as
the phenomenon known in quantum mechanics as the "crossing rule" of von Neuman
and Wigner (1929); see also Friedland, Robbin and Sylvester (1984).

The fact that the number ofparameters must be increased in the multiple eigenvalue
case is well known in the structural engineering literature; see Olhott and Taylor (1983,
p. 1147). The dimension argument has also been discussed in connection with the
problem of communality (see Harman (1967)) and the educational testing problem
(see Fletcher (1985)).
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Since the problem of communality, described in 1.1, is an important special case
that has received much attention, we will discuss it in more detail.

If the minimum rank is known to be n- t, then of the eigenvalues A * are zero,
but no other eigenvalues are given. Following our remarks at the beginning of this
section, we know that the problem will be well posed in general if n-s eigenvalues
are specified, where, as before, s t(t-1)/2. Thus the problem of communality will
be well posed if n-s t, or

t(t+l)
(3.15) n=.

2

This equation is solvable only for certain values of n. In particular, when n 6 we can
expect to be able to set 3, and the modified methods will be locally quadratically
convergent. However, for n 7 there is no value of that will satisfy (3.15). When

3 the problem is underdetermined, and a natural course to take is to consider
instead a minimization problem subject to the constraints A 1" A 2" A 3" 0. The objec-
tive function could be, for example, the sum of the diagonal elements of the matrix.
The formula (3.15) is well known and can be derived in several different ways; see
Harman (1967, pp. 69-70) and Fletcher (1985, p. 502).

Harman describes various methods for solving the communality problem and
other related problems, but none of them seems to be quadratically convergent. To
our knowledge, the only algorithm for solving general minimal rank problems, which
is known to be quadratically convergent, is that of Fletcher (1985). The spirit of
Fletcher’s algorithm is similar to that of our modified methods, since it makes the
correct count of the number of equations and is also related to Newton’s method. The
algorithm is based on differentiating the block Cholesky factor corresponding to the
null space of Ao/ D; it is actually derived for problems where Ao/D is constrained
to be positive semi-definite. The method does not coincide with any of our modified
methods, and it does not seem to be possible to generalize it to handle other inverse
eigenvalue problems.

There are various numerical methods, especially in the engineering literature, that
are designed to handle optimization problems where multiple eigenvalues arise, either
in the objective function or in the constraints (see for example Polak and Wardi (1982)
and Cullum, Donath and Wolfe (1975)). Most of these are first-order methods, i.e.
they are not quadratically convergent. Choi and Haug (1981), however, give a quadrati-
cally convergent method for solving a specific design problem involving one double
eigenvalue.

We complete this section with a discussion of local existence and uniqueness
results for Problem 2. In the following theorem we will consider small perturbations
which preserve eigenvalue multiplicities.

THEOREM 3.1. Assume that c* is a solution to Problem 2. Suppose that K(c*),
defined by (3.5)-(3.7) replacing {q’} by any orthonormal set of eigenvectors ofA(c*), is
nonsingular. Then there exists e > 0 such that, for all {/z*} ,-s satisfying

* ,*<,*/<... <*_

and

l/x/*- A/*I_-< e, l<=i<=n-s,

Problem 2, with {A/*} ,-s replaced by {/z/*} ,-s, has a locally unique solution d (Ix*) with

c* d (* *) O( e ).
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Proof. Solving the perturbed problem is equivalent to solving

F(d, X, M*) e-"QA(d)Qe" M* =0,

where 0 is an orthogonal matrix of eigenvectors of A(c*), M* diag (/x*) and X is
a skew-symmetric matrix with the restriction that xij=0 for 1 =< i<j=< t. When
/Xl*,’’’,/x,*_s are fixed, this is an analytic system of n(n + 1)/2 equations in n(n + 1)/2
unknowns, since s of the {xij} are set to zero and s of the {/x*} are free. By expanding
ex and neglecting second-order terms, one sees that the Jacobian of F with respect
to d, X and {/x*},_s/l is nonsingular at d c*, X =0 and M* =A* if and only if
K (c*) is nonsingular. The result therefore follows from the implicit function theorem;
see Ortega and Rheinboldt (1970, p. 128).

This theorem shows that Problem 2 is numerically well posed. If the perturbation
does not preserve multiplicities, the perturbed problem is in general ill posed. In
particular, some of the components xi may change from zero to arbitrarily large values.

3.3. Convergence analysis. In this section we present convergence results for
Methods I-III. For convenience, we first assume that all the eigenvalues

(3.16) AI*
are specified, and analyze the methods in their unmodified form. When > 1, this
means that the problem is overdetermined as already explained, but this causes no
difficulty for the convergence analysis since we assume existence of a solution. After-
wards, we explain how to adapt the proofs to apply to the modified methods, when
only A 1", ", A*,_ are specified.

To start, we make the following assumptions.
Assumption 3.1. (i) There exists c* such that A(c*) has eigenvalues given by

(3.16).
(ii) The matrices J(c") used in Method I satisfy lim sup_ {llJ(c )-’ll$ < and

the matrices J(") of Methods II and III satisfy lim sup_ {[IJ()-’ll} < c.
When we analyze the modified methods, the second part, namely (ii), will be

replaced by an assumption on the nonsingularity of K(c*).
We will now present several preliminary results that will be needed for the

convergence proofs. Let p,..., Pt be any orthonormal set of eigenvectors of A(c*)
corresponding to the multiple eigenvalue hi*, and let P [Pl"’" Pt]. Denote the
eigenprojection of A(c*) for hi* by H; we have

(3.17) II= P,P.

Let P2 [P,+I" P,] be the matrix of orthonormal eigenvectors corresponding to
A,*+,..., A*. Given any orthogonal matrix Q=[Q Q2], consider the problem of
constructing an orthogonal matrix of eigenvectors of A(c*),

(3.18) P [P1 P2],

which is, in some sense, close to 0. Note that there is freedom only in the way P1 is
chosen; specifically/31 is of the form PB, where B is an orthogonal matrix of order
t. We ignore the sign freedom in P2 as mentioned in 1.2. To find P1 we start by
considering the matrix HQ1 whose columns are eigenvectors for A*, but are not
orthonormal. Then we form the "OR" factorization of H0"

(3.19) HQI=P1R,
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where R is a x nonsingular upper triangular matrix and P1 is an n x matrix whose
columns are orthonormal. Clearly the columns of/31 are eigenvectors of A(c*). Let us
define the error matrices

(3.20) E1 Q1 II Q1, E2 Q2 P2.

LEMMA 3.1. Let P P1 P2] be an orthogonal matrix ofeigenvectors ofA(c*). Then
there exist constants e > 0 and C > 0 such that, for any orthogonal matrix Q Q1 Q_]
with IIEll , the matrix P defined by (3.17) and (3.19) satisfies

where FII <- C E, 2.
Proof.

I- F -QE2 1P] E’ I- OEJ’

OP ,(- E) -OF_,,
Q ".1 E2+ .P2)TI E T

2 1,
QP. Q(Q.- EL) I Q2 E2.

(3.21)

and

Let us now consider the remaining block. Since II/31 =/31 we obtain from (3.19)

R= IIQI=Q1

(3.22)

Now

and therefore (3.22) gives

R rR (1-I Q1) r (I-I Q1)

=(Q1-E1)r(Q1-E1)

I- QT1E1-EQI + ET1E1.

ETI Q1-- E(E1 + rtQ,)= EE1,

RTR I EE1
By doing a Cholesky factorization to obtain R we see that, provided e is small enough,

(3.23) U I F

where IIFII _-< CIIE, . The result then follows from (3.21).
COROLLARY 3.1. There exist constants C > 0, e > 0 such that, for any orthogonal

matrix Q with ]1E IllE1 E2] < e, the skew-symmetric matrix X defined by

e" Q
satisfies

x -< c E II, Xll --< c IIE =.
Here Xll is the x leading block of X.

Proof. It follows immediately from Lemma 3.1 since ex I +X + o(llxll=),
These results show that, given an approximate matrix of eigenvectors Q, the

eigenvectors at the solution may be chosen in the form/3, so that X, which describes
to first order the rotation from the basis Q to the basis P, is O([IEI[), and furthermore
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Xll which describes the rotation of Q1 to/31, is O(IIE 112). This last fact will be needed
for the analysis of Method III.

For the following Theorem we define the error matrix

E(c)=[EI(C) E2(c)]=[Ql(C)-IlQl(c) Q2(c)-P2].

Since (I-II)Q(c) is a Lipschitz continuous function of c (see for example Kato
(1966)), E(c) is also Lipschitz continuous and

(3.24) IIE(c)ll < tllc- c*ll
holds for all c near c* where L is some constant.

THEOREM 3.2. There exists e > 0 such that, if II- *ll = , the iterates {c} of
Method I converge quadratically to c*.

Proof. Let c=c, =c+1, Q=Q(c) and define /3 by (3.17)-(3.19) where P-
[P1 Pa] is any orthogonal matrix of eigenvectors of A(c*). Define X by ex- Qr.
From Corollary 3.1, Ilxll O(IIEII). Thus from (3.24) we see that IIEII a.nd IlXll can
be made as small as we like by making IIc-c*ll small enough. Since P is a matrix
of eigenvectors of A(c*), we have

eXA*e-X= QrA(c*)Q

and thus

(3.25) A*+XA*-A*X=QTA(c*)Q+O(IIXII).

The diagonal equations of (3.25) are

A qSA( c*)q, + o(llxll=),
and therefore

(3.26) A* =.(c)c* + b(c)+ O(llX I1=).
The new iterate is defined by

and so it follows that

i-1,...,n,

h*=J(c)5+b(c)

J(c)(- c*) o(llxIl=).

Finally, by the nonsingularity assumption (see Assumption (3.1)(i)),

I1- c*ll-- o(llxll =)

O(llEII =)

O(llc-

Note that there is no need to invoke Rellich’s theorem, as is done in the proof of
Nocedal and Overton (1983). Instead we have made use of the fact that the eigenprojec-
tion, and consequently E(c), are Lipschitz continuous.

For the convergence proofs of Methods II and III we define the error E () by

(3.27)
[(I-II)Q") Q")-P2].



INVERSE EIGENVALUE PROBLEMS 657

Since all eigenvalues, and the eigenvectors corresponding to distinct eigenvalues, are
Lipschitz continuous functions in a neighborhood of c*, there exist constants N1 and
N2 such that

(3.28) A (c) A * -<N c c*

and

(3.29) Q=(c)- P_II--< N=llc-c*ll
hold for all c near c*. Let us define

min {]A*- A]}.
ij,j>t

Then for i# k, k > t, we have

(3.30)
IAk(C)- A/l A k A/1- IAk(C)- A kl

>--Nllc-c*ll.
Since the inverse iteration (2.13) is not defined when an eigenvalue Ai(c) coincides
with a target eigenvalue, we will assume that, for all , and for all 1 =< i,j < n, Ai(c) A.
This is not a restriction in practice, since it is known that inverse iteration will work
even when a target eigenvalue coincides with an eigenvalue Ai(c) to machine accuracy;
see Peters and Wilkinson (1971).

THEOREM 3.3. There exists e > 0 such that, if co- c*ll--< , the iterates {c} gener-
ated by Method II converge quadratically to c*.

Proof. Let Q Q<), ( Q<+I), E E),/ E <+1) and define/3 by (3.17)-(3.19)
with Q Q ). Let the skew-symmetric matrix X be defined by ex Q 7/3. By Corollary
3.1, Ilxll- O(llEII). Following the same reasoning as in the proof of Theorem 3.2 we
see that (3.25) holds, and its diagonal equations give

(3.31) A* Jc* + b + o(llxl[=),
where J J() and b b y. The new iterate of Method II is defined by

t* JC’+ b,

and thus

j(- c*) o(llxll=),
By the nonsingularity assumption on J

(3.32) II- c*ll- O(IIE I1=).
From (3.24) IIEll-< tile- c*ll. Let us assume inductively that

(3.33) IIEII- O(llc- c*ll),
and thus, if we can show that

(3.34) I111- o(lle- c*ll),
then interlacing (3.32) and (3.34) completes the proof. We analyse the two components
of the error, E1 and E2, separately. Note that while Q Q1 q,/ q,] denotes the
matrix iterate
eigenvectors of A(ci.

Q(c)=[Ql(C) Q2(c)]=[Ql(C) q,+l(C)’" q,(c)] denotes the

Part I (bound on I111). From (3.32) and (3.33) we have

(3.35) I1- c*ll- o(llc-
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Let

so that

(3.36)

U ] Q()TQU=
U

Q1 Q() U, + Q() U,
where U1 is a x matrix and U2 is an (n- t)x matrix. Moreover, U1 is invertible,
as the following argument shows. We have

UUI Q(QI()QI()TQ

(3.37) Q([I- Q2(?)Q2(?.)T]QI
=I--fT’,

where

Taking norms

P Q2() TQ1.

II/311 I102() T (i l-I) Q1 / Q=()nQ,

From (3.33), (3.29) and (3.35), and since the last term is zero, we conclude that

(3.38) IIll o(llc- c*ll).
Therefore UU1 I+ o(llc-c*ll=). Provided IIc-c*ll is small enough UIU1, and
hence U1, are nonsingular. Let M be a constant such that

(3.39) u-i’ll <- M1.
The vectors corresponding to the multiple eigenvalue are updated by

(3.40) [A(e)-,X*I]F=Q,, F (IT.
To simplify the analysis we will assume that T is nonsingular, i.e., there is no need to
replace columns of Q by columns of the identity matrix (see the discussion in 3.1).
From (3.36) and (3.40)

r [A(e)- x,*]-’a,
(3.41) Q()[A()-A*II]-IQ()TQ1

Ql(e) Q2(e)
[A,(e)-A*I]-1 0

0 [A(e)-;*t]-’ U
where A =diag (Zl," , Z,) and A_ diag (A,+I, , An). Therefore,

(3.42) F=

From (3.40) it follows that TTT FT1, and thus (3.42) gives

TTT U[A,(?)-A* I]-2U1 + U[A2()-A* I]-U2
(3.43)

U[AI(?)-A*II]-(I+ BTB)[AI(?)-A*I]-1U1,
where

B [A2(’)-AI*I]-1U2U-I[AI(?.)-A*II].
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Using (3.28), (3.39) and (3.30) we obtain

IIBII--< MINI
Provided c-c*[] is small enough, the denominator in this relation is bounded away
from zero and we can write

Ilull--O(ll-c*ll).
Consider the Cholesky factorization of (I + BB), i.e., let / be an upper triangular
matrix such that

(3.44) T=(I+BTB).
As with (3.23) it follows that

(3.45)

We now substitute (3.44) into (3.43) to obtain

(3.46) T=/[Al(g)- A 1"I]-1U1.
Thus from (3.28) and (3.45)

(3.47)
T-11I- U-IEAI(’) A 1"I3/-111

Now

(3.48) /=

We can now estimate the error E. From (3.40) ( FT-, and thus from (3.42) and
(3.48) we obtain

i1(I rl)0111 -< II(I II)(?,( e)[Al(e) A ,i]-1 U1 T-1I[
+ (I- II)O=(e)[A2(’)- A 1"I]-1UT-111

(3.49)
--< II(I-rI)()ll I1-111

/

Finally, from (3.24), (3.45), (3.30) and (3.47) we conclude that

(3.50) 11111- II(i-II)01ll- o(11 -c*ll).
Part II (bound on ][/1[). The vectors {q} corresponding to the distinct eigenvalues

are updated by

(3.51)
[A(C’)- A*I]T, q,,

q,- %/II y, 11, i-- t+ 1,’’’, n.

In what follows denotes an integer with < =< n. We can write

(3.52) q,= akqt:(g),
k=l

for some scalars {a}. From (3.51) we have

(3.53) y,
k=l A(C)-A*

q’(e)"
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We will now show that if c-c*ll is small enough, ai # 0. The inequality

Ilq,- qi()II =< Ilq,- qi(c*)ll + ]lqi(,)- q,(c*) II,
together with (3.33) and (3.29), gives

(3.54) Ilq,- qi(e)ll- O(llc-
(Note that qi(c*) is one of the columns of P2.) Thus

C:+(i--1)2= [[qi-q,()[]
k=l
ki

and consequently

(3.55)

o(llc-

,, l + O(llc- c*ll).
We will now show that q() and t] are nearly parallel. From (3.51) and (3.53) we have

qi( ?. rEli

[ (,(e)-,*) ]-’/

Using (3.28), (3.30) and (3.55) we obtain

We can now estimate =, omponentwise. Equations (3.56) and (3.29) gie

(.) [2 2()3=+ o(ll e-

The proof is completed by combining (3.50) and (3.57).
Tnon 3.4. ere exisls 0 such thai, i [[(o)[[ , lhen lhe norms olhe error

me {ll()ll}oeo III converge uagralicall? o zero.

Proo Let Q Q("), Q("+’), ("), ("+); define by (3.17)-(3.19)
with Q= Q("), and define X by ex= Q. As for ethods I and II we obtain (3.25),
provided [[[[ is small enough. oreover, from Corollary 3.1 we hae both

(3.58) X O(IIE II), Xll o()lE I1=).
The matrix Y and vector of Method Ill are defined by

(3.59) A*+ YA*-A*Y= QTA()Q
and Y=O, i.e.

y =0, 1 <j t.

Subtracting (3.59) from (3.25) we get

(3.60) (x- Y)A*- A*(X- Y)= OT(A(*)--A(e))Q+ O(IIXII=).
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The diagonal equations give

J(e- c*) o(llxll=),
where J J(). By the nonsingularity assumption and (3.58) we have

(3.61) I1- c*ll O(IIE I1=).
The off-diagonal equations of (3.60) give, for i<j, j>

1
xij Yij A A

qf(A(c*) a(g))cb + o(llx 11=)

It follows that

(3.62) Ix,- y,l O(llEIl=), <j, j> t.

Since Xll o(llEII =) and Yll =0 by definition of the algorithm, (3.62) holds also for
<j _-< t. Therefore

(3.63) IIx- Eli- O(llE =)
and consequently, from (3.58)

(3.64) Eli- O(IIE II).
Let us now look at the updated matrix

O=Q(I+1/2Y)(I-1/2Y)-.
We have

0- [= Q[(I +1/2 Y)(I-1/2 Y)-’ ex]
([(Z +1/2Y)-(Z +X + O(llX II=))(Z-- Y)](Z-- y)-i
([Y-X / O(llxYII / Ilxll=)](z-Y) -’.

Thus from (3.63) and (3.64)

(3.65)

Since (I II)P 0 we have

and

II0- 11 O(llE I1=)-

EI (I-II)Q,

(I n)(Q, P1 + P,)

O(lltll)

E: (2:- P:
o(11E I1=).

The proof indicates clearly why it is appropriate to set YI 0, namely to obtain
(3.62). It also follows that YI, can have any value satisfying Y O(IIEII=). It is easy
to modify this proof so as to show that the parameters {c} converge quadratically to
c*. However, we have analyzed the behavior of the matrices {Q)} because one can
view Method III essentially as a procedure for generating these matrices (the computa-
tion of {c} being only an intermediate step). Moreover, we will now show that the
matrices Q) of Method III converge to a limit, which is not the case for Methods I
and II.
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COROLLARY 3.2. Suppose that IIE()II <-_ e, where e is given by Theorem 3.4. Then
the matrices { Q()} generated by Method III converge quadratically to a limit Q*.

Proof. Note that - Q Q((I/ Y)(I-1/2 y)-l_ I)

(3.66) Q( Y+ o(11 rll=))

O(llEII),

where the last step follows from (3.64). By Theorem 3.4 {Q} is a Cauchy sequence
and therefore has a limit Q*= QI* Q2*]. (Observe that Q2* is equal to P2.) Moreover,
by the quadratic convergence of (IIEII), and (3.66), we have

O- Q* _, Q(k)_ Q(k+l))
k=u+l

(3.67)

O(IIE<)II
Also

EI I II) Q1

(Q,- Q*) + [(Q* (,) + (1- ill) / (ill II Q,)].

Using (3.67), (3.65), (3.19) and (3.23) we have

(3.68)

Since Q2* P2 we also have

E, (Q,- QI*) + O(IIE

(3.69) E2 Q2 Q2*.

Combining (3.68) and (3.69)

Therefore

E=[(Q,-Q*I) (Q-Q*)]+o(IIEII)

(Q- Q*)+ O(IIE I1).

E=o(IIQ-Q*II),

which together with (3.67) completes the proof.
Now we show how to adapt the proofs so that they apply to the modified algorithms

designed for solving Problem 2. We are given only the n- s smallest eigenvalues

(3.70)

We replace Assumption 3.1 by the following.
Assumption 3.2. (i) There exists c* such that A(c*) has eigenvalues given by (3.70).
(ii) The matrix K(c*), defined by (3.5)-(3.7) using any orthonormal set of eigen-

vectors of A(c*), is nonsingular.
THEOREM 3.5. There exists e > 0 such that, if IIc-c*ll <_-, the iterates {c} of

Modified Method I converge quadratically to c*.
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Proof. It follows the proof of Theorem 3.2 very closely. The only difference is
that the new iterate is defined by (3.5)-(3.7), where q[ refers to the computed
eigenvector qi(c). Using the first n-s diagonal equations in (3.25) plus the equations
corresponding to 1 =< <j_-< we obtain

K(c)(, c*) O(llxll:’).
The rest of the proof follows as before.

THEOREM 3.6. There exists e > 0 such that, if IIc- c*ll -< e, the iterates {c} of
Modified Method II converge quadratically to c*.

Proof. Again, this follows the proof of Theorem 3.3 very closely, differing just as
described for Theorem 3.5. Now the q[ refer to the vectors updated by inverse iteration.

THEOREM 3.7. There exists e >0 such that, if IlE(ll _-< e, the norms of the error
matrices {IIE(>II} of Modified Method III converge quadratically to zero.

Proof. As in the proofs of the two previous theorems, replacing the matrix J by
K allows us to obtain

a-* o(11E lib.
For the second part we need to consider the unspecified eigenvalues. From (3.25) and
(3.8)

i- A* qA( ? c*)qi-b O(IIEII=), n-s<i<--n.

The off-diagonal equations not included in K give

1 q,A(c*-e)e+o(llEll=), i<j, j> t.Xij Yij
Aj hi

It follows that xij- Yij O([[E l[2), provided the unspecified eigenvalues at the solution
are each distinct from all other eigenvalues. As explained before, this last condition
can be removed by introducing a tolerance parameter Neglig (see Step 3 of Modified
Method III).

4. Numerical results. We have tested Methods I-IV on various types of problems.
In our experience, Method IV almost always requires more iterations for convergence
than the other methods, and also encounters difficulties more often. On the other hand,
the local behavior of Methods I, II and III is very similar, as is illustrated by the three
examples we present below. The tests were made on VAX 11/780s, at the Courant
Mathematics and Computing Laboratory and at Northwestern University. Double
precision arithmetic was used throughout, i.e., approximately 14 decimal digits of
accuracy. The eigenvalues and eigenvectors were computed using the EISPACK sub-
routines; see Smith et al. (1967). The starting points were chosen close to the solution,
so that few iterations were required for convergence. A line search (or a trust region
strategy) would be essential to make the algorithms convergent in practical applications.
However, we have not included these features and have concentrated on the local
behavior of the methods. In particular, we were interested in verifying that quadratic
convergence takes place in practice, in both the distinct and the multiple eigenvalue
cases.

We programmed the Modified Methods I, II and III as described in 3. The
iterations were stopped when the residual, defined in Step 1 of each method, was less
than 10-8. The parameter Neglig required by Method III was set to 10-12. For
convenience, all vectors will be written as row-vectors. When specifying a symmetric
matrix we will only write its lower triangular part.
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Example 1. This is an additive inverse problem with distinct eigenvalues. Here

0

4 0

-1 -1

1 2

1 1

5 4

-1 -1

1

0

Ao Ak eke[, k 1 8,
1 1 0

3 2 1 0

-1 -1 -1 -1 0

2 3 4 5 6 7

h * (10, 20, 30, 40, 50, 60, 70, 80),

c= (10, 20, 30, 40, 50, 60, 70, 80),

c* (11.90788, 19.70552, 30.54550, 40.06266,

51.58714, 64.70213, 70.17068, 71.31850).

Table 1 displays the values of the residual, for each method.
Example 2. We define a problem with multiple eigenvalues and n-8. First

consider the 8 x 5 matrix

1 -1 -3 -5 -6

1 1 -2 -5 -17

1 -1 -1 5 18

1 1 1 2 0
V=

1 -1 2 0 1

1 1 3 0 -1

2.5 .2 .3 .5 .6
2 -.2 .3 .5 .8

and define B I +W. Now define the matrices {Ak} from B as follows" let Ao 0
and for k- 1,..., n

k-1

Ak bk ee+ ee[) + bkkeke [.
j=l

Now consider (1, 1, 1, 1, 1, 1, 1, 1); by construction,

A() S I + VV.
TABLE

0 6.40E +00 6.40E +00 6.40E +00
8.93E-01 1.51E +00 1.23E +00

2 1.03E -01 9.74E -02 1.45E -01
3 2.72E 03 1.97E 03 3.48E 03
4 2.32E 06 1.14E 06 2.58E 06
5 1.69E 12 4.04E 13 1.50E 12

Iteration Method Method II Method III
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It follows that 1 is a multiple eigenvalue of A() with multiplicity 3. In fact, the
eigenvalues of A() are

(1, 1, 1, 2.12075, 9.21887, 17.2814, 35.7082, 722.681).

Now let us choose the target eigenvalues A*. A suitable choice is

A* (1, 1, 1, 2.1, 9.0),

i.e., specifying one eigenvalue of multiplicity 3 and 2 distinct eigenvalues. Then 3,
s 3 and n-s 5, and the dimensions are properly chosen for the formulation of
Problem 2. We could use t as a starting point for the methods, but instead we choose

co= (.99, .99, .99, .99, 1.01, 1.01, 1.01, 1.01).

The locally unique solution found by all three modified methods is

c* (.9833610, .9743705, .9753132, 1.054523,

.8554860, .9117770, .9283310, .8880013).

Table 2 displays the residual for the three methods.
Example 3. This is an additive inverse problem with multiple eigenvalues. Here

n=6,

0

6.3 0

-1 -3.7

-2 -6

3
12

0

.3 0

-1 -2.7

-4 4.0

Ak eke, k l, 6.

x* (0,0,0),

co= (3, 14, 3, 14, 1, 18),

c*= (3.308477, 14.17183, 2.225671, 13.54877, .9512727, 17.67949).

Note that the problem is well posed by specifying only one eigenvalue of multiplicity
three. The residual values are given in Table 3.

These examples, and our overall numerical experience with the three methods,
indicate that quadratic convergence indeed occurs in practice., and that the three
methods have very similar local behavior.

TABLE 2

0 2.09E -01 2.09E -01 2.09E -01
1.92E -01 2.26E -01 2.79E -01

2 2.04E -01 1.54E -01 1.99E -02
3 3.23E 02 2.03E 02 1.26E 02
4 7.11E 03 2.45E 03 2.67E 04
5 1.44E -04 2.19E -05 3.18E -07
6 7.89E-08 1.85E-09 3.55E 13
7 3.66E 14

Iteration Method Method II Method III
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TABLE 3

Iteration Method Method II Method III

0 2.47E 01 2.47E -01 2.47E 01
1.50E -01 1.48E -01 1,47E -01

2 1.43E 02 2.29E 02 2.58E 02
3 2.89E 04 5.71E 04 6.58E 04
4 9.63E 08 3.76E 07 4.97E 07
5 1.22E 14 1.86E 13 3.21E 13
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