
The Fortran-P Translator: Towards Automatic

Translation of Fortran 77 Programs for

Massively Parallel Processors

MATTHEW O'KEEFE, TERENCE PARR, B. KEVIN EDGAR, STEVE ANDERSON,

PAUL WOODWARD!, AND HANK DIETZ2

1Army High Performance Computing Research Center, University of Minnesota, Minneapolis, MN 55415
2School of Electrical Engineering, Purdue University, West Lafayette, IN 47907

ABSTRACT

Massively parallel processors (MPPs) hold the promise of extremely high performance

that, if realized, could be used to study problems of unprecedented size and complexity.

One of the primary stumbling blocks to this promise has been the lack of tools to

translate application codes to MPP form. In this article we show how applications codes

written in a subset of Furtran 77, called Fortran-P, can be translated to achieve good

performance on several massively parallel machines. This subset can express codes that

are self-similar, where the algorithm applied to the global data domain is also applied

to each subdomain. We have found many codes that match the Fortran-P programming

style and have converted them using our tools. We believe a self-similar coding style will

accomplish what a vectorizable style has accomplished for vector machines by allowing

the construction of robust, user-friendly, automatic translation systems that increase

programmer productivity and generate fast, efficient code for MPPs. © 1995 John Wiley &

Sons, Inc.

1 INTRODUCTION

Distributed memory massively parallel processors

(YIPPs) consisting of many hundreds or even

thousands of processors have become available

and offer peak performance in the tens to hun

dreds of Gigaflops range [1, 2]. Achieving a signifi

cant fraction of this performance would allow the

study of many important physical problems (com

pressible, turbulent flows [3], meso-scale weather

Received February 1994
Revised August 1994

e-mail: okeefe@ee.umn.edu

© 1995 by John Wiley & Sons, Inc.

Scientific Programming, Vol. 4, pp. 1-21 (199.';)

CCC 1058-9244/95/010001-21

prediction [4], ocean circulation, etc.) that would

otherwise be intractable. Unfortunately, recent

published results [5] have suggested that these

performance levels are not yet sustainable on

complete applications codes. The goal of the work

described here is to achieve very high performance

on .\-IPPs while retaining portability and ease of

programming for real applications codes.

The approach we propose is to exploit certain

characteristics of application codes that map well

to YIPPs. These massively parallel applications

are written in a subset of Fortran 77 we call For

tran-P and translated to a language suitable for

MPP execution. There are many codes, including

piecewise parabolic method [PP:\1: 6] and ad

vanced regional prediction system [ARPS; 4], that

naturally fit the definition of Fortran-P and can be

2 O'KEEFE ET AL.

directly translated. The Fortran-P language was

derived from the style used by Woodward [6 i in

coding his hydrodynamics algorithms for a variety

of high performance computers. (\1;-oodward first

developed several of these ideas when implement

ing PPM on a Cray using solid-state disks.) We

have refined this language and implemented tools

that automatically translate Fortran-P programs

into massively parallel codes running on the C.\I-

200, C.\1-5, and other parallel machines. These

are complete codes used daily at our site to do

large, state-of-the-art calculations.

In the Fortran-P approach. the programmer is

responsible for writing correct code that matches

the Fortran-P model. In our current implementa

tion, this means that the programmer must use

certain keywords and directives to guide the trans

lation process, and hence our approach is not

purely automatic. However.. as our translation

tools evolve and mature our ultimate goal is to

reduce or remove altogether the need for these ad

ditionallexical constntcts to direct the translation.

This article is organized as follow,.;: ,,. e first de

scribe why it can be difficult to sustain near-peak

performance for .\IPPs e\·en on highly parallel

codes. \';' e propose as a solution the Fortran- P

model, where restricted forms of Fortran "77 code

are translated to MPP form. The Fortran-P pro

gramming model and translation process are then

presented in an informal way. In the final section

the current Fortran-P translator implementations

are described followed by performance results to

date and conclusions.

2 PERFORMANCE OF MPPs

Currently, the high performance often advertised

for MPPs is achieved primarily for small kernels

and benchmark programs [?l. Recent perfor

mance studies comparing current .\lPPs to con

ventional vector supercomputers have shown that

MPPs sustain a smaller fraction of their peak per

formance than vector machines [.S]. This seems

especially true for applications requiring frequent

global or irregular communication [8]. although

this result is unsurprising given that the cost of

fully connecting a large number of processing ele

ments is prohibitive. However.. even for highly

parallel applications with locaL regular communi

cations current sustained .\IPP speeds .. although

often impressive, often do not approach achieva

ble peak speeds. In this article, we focus on the

problems attaining speedups on the highly paral

lel, regular applications that can be expressed in

Fortran-P.

The computing environment at .\Iinnesota in

cludes two large .\1PP machines, the CM-200, CM-

5,* and a variety of large Cray vector machines.t

Our experience with the CM-200 and C.\1-5 run

ning compact applications codes (5K to 1 OK lines)

such as PPM [6, 9, 10] is that these machines

have often been unable to sustain a significant

fraction of the peak speed except for very large

problem sizes. For smaller problem sizes various

overheads, including communication, tend to re

duce performance. Sustained performance is di

rectly related to how long it takes a calculation to

run. Just as important is the time necessary for

porting the code from a vector supercomputer or

workstation to an .\IPP. The current lack of tools

for this arduous process has slowed the accep

tance of .\1PP technology.

The poor sustained performance (relative to

peak) we have observed on highly parallel. regular

applications is due primarily to three factors:

1. Particular code idioms (or styles) are neces

sary to obtain best performance and devia

tions from these styles can degrade perfor

mance significantly (machine efficiency).

2. In some cases,. the programming models

and compilers offered by vendors do not

match the model used in large applications

codes (compiler efficiency).

3. lt is currently difficult for programmers to

modifv whole codes to match the restricted

idioms that provide the best performance

(programmer efficiency).

The first two factors determine sustained machine

performance: the third factor determines pro

grammer performance (i.e., how many lines of effi

cient code can be written and debugged each

day). In the following paragraphs we expand on

each factor.

* The mac·hine configurations at the l~nivPrsity of \linne

sota were, for the C\1-200: 102"'1 procPssors. "'I Gbvtes main

memorv. 7 Gflop/ speak speed: and for the C\1-5: .")44 nodes.

2176 processors. 1 7 GbytPs main mPmorv. 65 Gflop/ s peak

speed with vector units.

T The CnivPrsity has a four-procPssor Crav X-\IP. a four

processor. full memorv ('f (~bytes mainJ Crav-2. aml an eight

processor Cray Y -"'1P C90 with 4 Gbvtes main memorv.

2.1 Machine Efficiency

MPP performance sensitivity is due to the large

number of efficiency-critical features [ECFs~ 11]

found in these machines: an ECF is any machine

architecture or implementation feature that must

be used efficiently to achieve good performance.

Registers are a classic uniprocessor ECF: efficient

use of registers can reduce program execution

time significantly. (Good register allocation is a

primary difference between ·'toy'' and production

quality compilers.) Other uniprocessor ECFs in

clude cache management and pipeline schedul

ing, especially for deeply pipelined machines such

as the DEC Alpha and MIPS/SCI R4000.

MPPs have the same ECFs as uniprocessors

(which are, after all, the YIPP building blocks)

plus another class of ECFs, referred to as parallel

ECFs, related to the interconnection network and

distributed memory. Two key parallel ECFs are

the network latencv and bandwidth. which deter

mine message start-up time and transfer rate. For

programs that require frequent short bursts of

communication between processors. network la

tency is most important: for infrequent communi

cation with large messages network bandwidth is

key. In most cases, both factors are important and

they dictate whether a particular problem map

ping to the machine will be efficient. ln addition ..

network performance and processor performance

should be balanced: faster processors require

higher bandwidth, lower-latency networks.

Speeding up one without the other is pointless (al

though in some cases slow networks can be com

pensated by larger processor memories).

2.2 Compiler Efficiency

Because there are more ECFs m .VlPPs than in

uniprocessors, and because these ECFs interact

in myriad and often unexpected ways, writing a

good optimizing and parallelizing .VIPP compiler

for a full language (such as Fortran 90 or a paral

lel C dialect) is a daunting task . .\IPP performance

is often quite sensitive to program coding style. On

the CYI-200 at Minnesota, we have seen order-of

magnitude differences in performance between

loops coded in two different (but equivalent)

styles. The coding styles that achieve good perfor

mance are often not obvious, resulting from idio

syncrasies of the compiler, run-time libraries. and

the machine itself. For example, the C.\1 Fortran

compiler for the CM-200 often has difficulty de-

TIIE FORTRA:\"-P TRA~SLATOR 3

termining when local (and therefore cheap) com

munication is feasible: if it cannot. the compiler

generates slow global router communications [12.

13]. (During our PP.\1 performance studies on the

CYI-200. we quickly learned that global router

communication often reduced performance by at

least one and in some cases two orders of magni

tude on certain loops.) The use of certain coding

idioms can ensure that local (not global) commun

ications are generated [14 ~.

The interface between the microsequencer and

front end for the CYI-200 can also affect perfor

mance significantly.: Best performance is achieved

when long (but not too long) sequences of confor

mant array operations are executed on the micro

sequencer. Currently the compiler does not try to

optimize the C~-200 code to improve microse

quencer performance. so programmers who want

this additional performance must hand-code large

conformant blocks into their program.

Current compiler limitations resulting from ba

sic assumptions about how the machine should be

programmed can also reduce performance. For

example, version 2.0 of the C.\1 Fortran compiler

would not parallelize across dimensions declared

as local to a processor (: SERIAL).:j: We discuss

the implications of this limitation in Section 4.

2.3 Programmer Efficiency

Programmer efficiency is greatly reduced when

many manual program transformations are neces

sary both to port the code and to obtain perfor

mance. Often the porting process and perfor

mance-related transformations are so intricate

and involved that it would be reckless for a pro

grammer to attempt to implement them manually

for even a small section of code, much less the

whole program. Even if the whole program could

be transformed, it would be difficult to read and

maintain. In addition, these transformations are

usually compiler or machine specific: Each ma

chine would require a different coding style and

hence a different version of the code . .\laintaining

consistency between these versions would be a

very difficult task indeed.

If the code must be translated from a seriallan

guage such as Fortran 77 to a data parallellan-

:j: This limitation was only r.,r.,ntly removed in version :2.1

of the compiler :1.s:.

4 O'KEEFE ET AL.

guage such as CM Fortran then significant effort is

involved in getting the code to run on the parallel

machine. Additional parallel indices and data lav

out directives must be added. and this can be. a

tedious and highly error-prone process. Code

must often be added to implement explicit com

munication (e.g., when updating fake zones): our

experience has shown that this is often the most

difficult code to write and debug. (The number of

fake zones depends on the balance between net

work and processor speeds and hence should vary

between machines to achieve best performance.)

The resulting parallel program can often be less

readable and more difficult to maintain and port.

2.4 Summary

From the previous discussion, it is clear that cur

rently there is a "catch-22'' in YIPP performance:

Excessive time is spent either optimizing and par

allelizing codes (but codes run fast) or running the

unoptimized slow code itself (but programming

time is short). Once codes do run fast, 1/0 can

become a serious bottleneck: 1/0 requirements for

large fluid calculations are discussed bv Wood

ward [16]; an approach to meeting these. require

ments is proposed by Avneson et al. [42].

Some of these performance problems will be

eased as the systems software matures and the

architectures become more stable, but difficulties

in porting codes from workstations and vector su

percomputers to distributed memory :VIPPs will

remain. The fundamental issue is: What codes

can exploit massive parallelism so that the MPP

architecture actually does run fast? And for these

codes, how can the programming be made simpler

and less time-consuming?

In the following sections we describe how inno

vative translation tools can be applied to help

solve the problem of programming MPPs for a

class of important applications. This problem

clearly requires innovations in compilers, archi

tectures, and translation to achieve a complete so

lution.

3 FORTRAN-P: TRANSLATION TOOLS
FOR SELF-SIMILAR APPLICATION CODES

Many large applications codes developed in "se

rial" languages such as Fortran T? have been re

sistant to good vectorizing and parallelizing com

piler technology simply because the underlying

algorithms are inherently serial. There is a wide-

spread and to some extent justified view that pro

grammers will have to reconsider their basic algo

rithms for the new massively parallel environment.

The result of this viewpoint has been a focus on

language design rather than the translation of

codes expressed in serial languages to :V1PP form

[18]. The latter problem, especially the selection

of an efficient data layout for a distributed mem

ory machine, has in general been considered too

difficult to automate and has been left to the pro

grammer (see Gupta and Banerjee [19] for an ex

ception).
We do not claim that all codes written in tradi

tionallanguages like Fortran T? can be automati

cally translated for efficient execution on an :VIPP.

Rather, we argue that many programmers have,

over the years, developed an understanding of

how to express their parallel algorithms in serial

programming languages. In fact, this is precisely

what is done when writing in a '·vectorizable"

style for a vector machine. Over time compiler

technology, in the form of program analysis and

recognition of common programming idioms, has

matured to the point that vectorization is highly

automated. We believe that a similar approach

using a self-similar programming style can allow

efficient automatic parallelization of serial code

for MPPs. The language target for the translator

could be data-parallel with data layout primitives

(such as CM Fortran [20] or HPF [181), ames

sage-passing model, or message-passing com

bined with a native code compiler for a node.

We have developed such a tool for a subset of

Fortran 77 we call Fortran-P. (In fact, Fortran-P

also includes several Fortran 90 array intrinsics.)

Fortran-P codes are self-similar, allowing them to

fully exploit the parallelism in an MPP, even as

these machines scale up to ever larger sizes. Com

pilers can also exploit this property to generate

efficient data layouts and communication code.

The Fortran-P translator allows the MPP envi

ronment to mirror the typical vector supercompu

ter work environment in which codes are written

and maintained in Fortran 77 and then vectorized

(and often parallelized) as an integral part of the

compilation process. In the Fortran-P environ

ment, the programmer develops and maintains

codes on a workstation or a vector supercomputer

and translates the program to YIPP form only as a

final step before running a large calculation where

the enormous memory and computing capacity of

an MPP are required. Programmers can take ad

vantage of the mature and stable development en

vironments available on these machines, debug-

ging codes on smaller problems until the program

is ready for a large production run on the YIPP.

This approach takes advantage of the portability

of Fortran 77 across a variety of machines, from

PCs to vector supercomputers.

Unlike other afproaches [21], we automati

cally generate the data distribution given the self

similar property of Fortran-P programs. These

earlier approaches have required that explicit

data layout directives be added by the program

mer; this is unnecessary in Fortran-P. In addition,

we handle the overlap regions (what we call fake

zones and what others often refer to as ghost

zones) in a fundamentally different way than pre

vious efforts that are based on the "owner com

putes" rule. This rule requires that the processor

that "owns" a particular data item must be the

only processor to compute and write to it.

We explicitly break the owner computes rule to

increase performance; processors redundantly

compute data "owned" by their neighbors" to

avoid communication where possible and useful.

An additional benefit of this approach is that mes

sage-passing calls transferring boundary data

need not appear after most loops in the MPP code

generated by the translator, as in the work of

Hiranandani et al. [21 J; in fact, these calls can be

collected and grouped into one routine called once

per iteration (or time step for hyperbolic prob

lems).

In the next two sections, we describe the For

tran-P programming model and the translation

process.

3.1 Fortran-P Programming Model

Self-similar programs are written so that the com

putations applied to the whole domain are pre

cisely the same as those applied to each subdo

main. (This is analogous to the self-similarity of

many fluid flows: Intuitively, self-similarity means

that properties that are apparent globally are also

found in small subregions of the flow; hence, if an

observer could simultaneously examine both the

complete domain and a small subdomain of the

flow [without clues to the actual domain sizes]

then he or she would be unable to tell them apart.)

Programs written in Fortran-P perform computa

tions over a logically homogeneous grid of zones

where (in two dimensions) the data domain ap

pears as shown in Figure 1. Here NX is the prob

lem size in the x dimension, NY is the problem size

in the y dimension, and nbdy is the number of

THE FORTRAN-P TRANSLATOR 5

T
NY

l
nbdy nbdy

FIGURE 1 A two-dimensional data domain with sur

rounding boundary zone.

boundary (fake) zones. Boundary zones are em

ployed to implement several different kinds of

boundary conditions [6]. Note that the current

translator also supports one- and three-dimen

sional grids (higher dimension grids are possible).

In general, a self-similar program has the fol

lowing properties:

1. A logically regular computational grid. An

irregular grid would not be self-similar as

subdomains could have different grid topol

ogies. In Fortran-P, each subdomain grid

must have a topology identical to that of the

global grid. This means that the loops range

over the full extent of real zones (and par

tially over the fake zones) and that each

zone is computed in a loop iteration just like

everv other zone.

2. Dependence distances [22] are small con

stants independent of the problem size,

which implies local communication opera

tions in the translated code. If dependence

distances were a function of the grid size

then when partitioning is performed nonlo

cal communication would be required.

(There is an exception. For periodic bound

ary conditions the dependence distance is

the equal to the extent of the particular di

mension. Boundary zone handling is dis

cussed in a following section.) In Fortran-P,

updates of boundary zones impiy that inte

rior fake zones (to be described shortly)

must be updated as well.

3. Each subdomain requires nearly the same

amount of computation. The same algo

rithm is applied to equal-sized subdomains

so, in general, the amount of computation

will be nearly the same. Some variance will

6 O'KEEFE ET AL.

arise from data-dependent operations but

this should be balanced out when subdo

mains are relatively large.

4. Reduction operations are permitted, recur

rences are not. Reductions can be imple

mented in two steps: First, locally within

each processor, followed by a global reduc

tion step using the result from the local

computation. Recurrences are not self-simi

lar in the sense that each result depends on

a different number of operations and the

calculation is inherently sequential.

These properties permit the data domain of self

similar Fortran-P programs to be automatically

partitioned and then distributed equally across all

processors. Each processor is given the same

amount of work to perform. Fortran-P program

mers write code so that operations that apply lo

cally also apply globally. The translator can then

exploit parallelism at multiple levels, both across

the machine and within a node.

Assuming a 3 X 3 processor grid the two-di

mensional domain is partitioned as shown in Fig

ure 2. N"ote how each interior subdomain (or sub

patch) is now surrounded by a picture frame of

fake zones. These fake zones actually contain re

dundant data from neighboring processors as

shown in Figure 3.

Fake zones (also referred to as overlap regions

[23]) allow computations to be performed using

only local data; as the algorithm proceeds, the

fake zones become corrupted and eventually must

be updated using real zones from neighboring

processors. In current Fortran-P codes fake zone

updates are done simultaneously with boundary

zone computation. No interprocessor communi-

nbdy
.;.iF

{nbdy

E ~~' B T
ny

1

G F R
I ~,, E B

FIGURE 2 Partitioning a two-dimensional domain

into 3 X 3 patches.

I
I

real zones
I

I

.

... ...

fake zones

FIGURE 3 Fake zones for an interior subdomain.

cation is generated for loops that range over real

(interior) as well as fake zones. This allows the

zones just inside the boundaries to be updated

properly without any special boundary treatment,

so long as the values in the fake zones are properly

set.

Fake zones are indicated by the programmer

when declaring arrays: Real zones extend from l to

n; nbdy fake zones on either side are added,

hence the full extent of the array becomes

- nbdy + l to n + nbdy. The symbol n will vary for

each parallel dimension. (A template program for

Fortran-P-muscl16-is available via anonv

mous ftp from ftp. arc. umn. edu in the /pub

directory. This program shows how boundary

handling can be written properly in Fortran-P.)

Another advantage of fake zones is that they

allow the compiler to trade off memory with com

munication; larger overlap regions reduce the fre

quency of communication but require more mem

ory. Hence, the compiler could vary the overlap

region size to obtain best performance on a given

machine. (For example. the CYI-200 [24~, which

has four megabytes of memory per node and rela

tively slow network speed, would perform better

with more fake zones than the Yiaspar YIP-1 [25].

which has only 64 Kbytes of memory per node but

a relatively fast network.)

In the current Fortran-P model boundary code

is written so that fake zone updates are generated

when a loop is found that writes only the boundary

array elements. Fortran-P currently recognizes

four kinds of boundary conditions: reflecting, pe

riodic, continuation, and prescribed value [6].

More general boundary conditions could easily be

supported within this Fortran-P framework.

Global operations such as finding a global min

imum or maximum are sometimes required in

Fortran-P programs; e.g., in PP.YL the Courant

number must be calculated during each time step,

which requires a global maximum. The current

translator calls fast, vendor-supplied intrinsics

(when available) to perform global operations effi

ciently. These kind of global reductions can most

efficiently be performed in self-similar style: The

reduction is performed locally on each processor

and the same operation is then applied globally

across processors using the local results.

Certain kinds of elliptic equations requiring

global information can be addressed with multi

grid relaxation schemes, which are made up en

tirely of local, self-similar operations applied in an

iterative sequence. At each multigrid level the

problem remains self-similar; refinements to the

grid resolution can be incorporated naturally into

the model. Hence Fortran-P can support these

implicit difference schemes as well as the explicit

schemes for which it is now used.

Many algorithms can take advantage of com

press and decompress operations (available on

certain vector machines directlv in hardware) on

vectors. For example, certain multifluid calcula

tions requiring tracking of fluid interfaces [26] can

be computed most efficiently this way. In the For

tran-P model, compress and decompress opera

tions on subdomain data can be effectively per

formed on each local node. Although operations

on the compressed data might in principle pro

ceed faster if this work load were rebalanced, no

such dynamic load balancing is currently imple

mented in our model.

We note that some popular algorithms violate

the exclusive use of local data that characterize

self-similar algorithms. Such algorithms include

standard spectral methods and implicit methods

for partial differential equations that employ stan

dard linear algebraic techniques. These algo

rithms cannot be written in Fortran-P. However,

as noted before implicit methods such as multigrid

are self-similar. In addition, new implicit methods

such as spectral elements, which use only local

data within subdomains. are being developed to

replace more traditional spectral techniques on

MPPs.

3.2 The Translation Process

The Fortran-P translation process can be divided

into two stages: (1) parallelization and data layout

followed by (2) performance-enhancing optimiza

tions. In the following sections we show only the

current translation for the CYI-200: the C.\1-5

translation is described briefly in Section 4 and in

Appendix 1.

Parallelization and Data Layout

In this stage the code is parallelized for .\1PP exe

cution. Data layout directives [20] are generated

that partition the data domain equally among the

THE FORTRAl"-P TRANSLATOR 7

processors. Integer arrays, floating point scalars,

and floating point arrays are promoted in dimen

sion and laid out across the processors; integer

scalars are placed on the front end§ (CM-200 [1],

Maspar .\fP-1 [25]). Current Fortran-P codes use

integer scalars almost exclusively for index calcu

lations and these scalars are stored on the front

end. The arrays are promoted in dimension to

map onto either a two or three-dimensional pro

cessor grid, as specified by the programmer (gen

erally. two and three-dimensional data grids are

mapped to two and three-dimensional processor

grids). (The implementation can support other,

more general, mappings; this will provide us with

a mechanism to rapidly generate and benchmark

several versions of the code with different data-to

processor grid mappings.)

As an example, the following subroutine

monslp was taken from the code muscl15, a two

dimensional hydrodynamics code developed by

Woodward [38] (Fig. 4). The original Fortran 77

version for this subroutine is converted by the

translator to the code shown in Figure 5.

Note that the CMF$ LAYOUT directive can be

used to specify the layout of each array dimension

as either parallel (: NEWS, across processor nodes)

or serial (:SERIAL, within a single node). Other

.\1PP languages have similar directives [18, 25,

27]. This subroutine operates on one-dimen

sional arravs extracted from a two or three-dimen

sional subdomain. Kote that the array extent n

must be adjusted to reflect the size of the two

dimensional subdomain allocated to each node.

The parameters NODE_ X and NODE_ Y indicate the

extent of the processor grid in the x andy dim en

sions. As can be seen in the translated code addi

tional parallel dimensions are added to each array

reference to distribute subdomains among the

processing elements.

Code to implement and update fake zones is

added during this phase in connection with the

handling of boundary conditions. During the de

velopment of the C:.\1 Fortran version ofF ortran-P

very close attention had to be paid to this portion

of the code because it involved communication

among nodes. For the C.\1-200, we were forced to

use particular idioms and then check that the gen

erated code used the mesh interconnect (referred

to as news) rather than the global router [24 j.
which was slow relative to the mesh interconnect.

Fake zones introduced by parallelization are

set automatically by the Fortran-P translator

§ The front end is called the partition manager on the

C:\1-5 [1].

8 O'KEEFE ET AL.

subroutine rnonslp (a, da, dal, dalfac, darfac, n}

dimension a(n), da(n), dal(n), dalfac{n), darfac(n)

do 1000 i = 2,n

1000 da1(i) =alii - a(i-1)

do 2000 i = 2,n-1

dda = dalfac(i) * dal(i) + darfac(i) * dal(i+l)

s = sign (1., dda)

thyng = 2. * aminl (s * dal(i), s * dal(i+l))

da(i) = s * arnaxl (0., arninl {s * dda, thyng})

2000 continue

return

end

FIGURE 4 monslp subroutine taken from muscl15.

when the programmer specifies boundary setting

in the original program. Only boundary fake zones

on the edges of the processor array must be ex

plicitly set by the programmer. For a reflecting

boundary condition for a one-dimensional data

array the Fortran-P program would be written as

follows:

10

dimension a(-nbdy+1 : NX+nbdy+1)

do 10 i = -nbdy+1, 0

a (i) a (1-i)

continue

do 20 i = 1, nbdy

a(nx+i) = a(nx+1-i)

20 continue

The two boundary code segments set the left and

right fake zones of the array a as shown in Figure

6. On a two-dimensional processor grid the For-

dimension a(-nbdy+1:NX+nbdy+1)

FIGURE 6

conditions.

Fake zone updates for reflecting boundary

tran-P code segments are transformed as follows:

do 10 i = -nbdy+1, o
a(i, 1, :)= a(l-i, 1, :)

10 continue

do 15 i = -nbdy+1, 0

a (i , 2 : NODE_x, :)

= a(nx+i, 1:NODE_x-1,

15 continue

do 20 i = 1, nbdy

a (nx+i, NODE_x,

= a(nx+1-i, NODE_X, :)

20 continue

25

do 25 i = 1, nbdy

a(nx+i, 1:NODE_x-1, :)

= a(i, 2:NODE_X,

continue

1\'ote that for version 2.1 of C:\1 Fortran the trans

lator generates Fortran 90 array sections instead

of serial loops on the first dimension. The a (i,

1, :) reference sets the i1h element of

subroutine rnonslp(a,da,dal,dalfac,darfac,n)

parameter (NODE_X = 16, NODE_Y = 16)

dimension darfac(n, NODE_X, NODE_Y), dalfac{ n, NODE_X, NODE_Y)

&, dal(n, NODE_X, NODE_Y), da(n, NODE_X, NODE_Y), a(n, NODE_X,

& NODE_Y)

CMF$ T"AYOUT darfac (:SERIAL, :NEWS, :NEWS)

CMF$ LAYOUT dalfac(:SERIAL, :NEWS, :NEWS)

CMF$ LAYOUT dal(:SERIAL, :NEWS, :NEWS)

CMF$ LAYOUT da(:SERIAL, :NEWS, :NEWS)

CMF$ LAYOUT a I :SERIAL, :NEWS, :NEWS)

dimension thyng(NODE_X, NODE_Y)

CMF$ LAYOUT thyng(:NEWS, :NEWS)

dimension s(NODE_XI NODE_Y)

CMF$ LAYOUT s(:NEWS, :NEWS)

dimension dda(NODE_X 1 NODE_Y)

CMF$ LAYOUT dda(:NEWS, :NEWS)

do 1000 i = 2, n

1000 dal(i, :, :) =a(i, :, :) -a(i- 1, :, :)

do 2000 i = 2, n - 1

dda = dalfac (i, : , :) * da1 (i, . , :I + darfac (i, :, :I * da1 (

& i + 1, :, :I

s =sign(1. 1 dda)

thyng = 2. * amin1 I s * dal (i, : , : I , s * dal I i + 1, : , : I I

da (i I : 1 :) = s * arnaxl { 0. , aminl (s * dda, thyng))

2000 continue

return

end

FIGURE 5 monslp subroutine after Fortran-P translation.

array a on the first column of processors. Because

of the range of i, we are explicitly setting the fake

zones on the left edge of the processor grid. Simi

larly, a (nx+i, NODE_X, :) = . sets the

fake zones on the right edge of the processor grid.

Loops labeled 15 and 25 are generated by the

Fortran-P precompiler and dictate how the inte

rior fake zones are to be updated with data from

neighboring processors. These interior fake zone

operations are merely data transfers from neigh

boring processors. For example, statement 20 en

sures that references to fake zones on the left edge

of a processor obtain data that are consistent with

those on the left neighbor processor.

Assuming NODE_)(=3, the loading of fake zones

for the left edge, in one row of the grid. appears as

shown in Figure 7, where the hatched faked zones

are loaded by the code (appearing after the loop)

inserted by the Fortran-P compiler. Similarly, the

updating of fake zones on the right edge, in one

row of the grid, appears as shown in Figure 8.

For a two-dimensional data arrav, columns of

data are moved into fake zones rath.er than single

array elements. For example, the following code

would set the boundary zones on the left edge of

the processor array b (assuming a periodic reflec

tive boundary):

do 30 i = -nbdy+1, 0

do 30 j = -nbdy+1, ny+nbdy

b(i,j) = b(i+nx,j)

30 continue

where the j loop iterates over an entire column of

array b including the boundary zones on the top

and bottom. In this case, the Fortran-P precompi

ler generates the following code:

do 30 i = -nbdy+1, 0

do 30 j = -nbdy+1, ny+nbdy

b (i' j' 1,:)

= b(i+nx,j,NODE_X,:)

30 continue

llbdy
~ f.c

~llb~y llbdy
~ f.c

I~
slice of a

~ '"~':, "~"'" ~
i---ll~ i---ll~ i---ll~

FIGURE 7 Fake and boundary zone updates for left

side of grid.

THE FORTRAN-P TRAJ\'SLATOR 9

llbdy llbdy llbdy
~ f.c ~ ~ ~ ~

slice of a /, slice of a l'l: /, slice of a
l~:j::::flj I~ ~ ~~

FIGURE 8 Fake and boundary zone updates for right

side of grid.

do 35 i = 1, nbdy

b(nx+i, 1:NODE_X-1, :)

= b(i, :, 2:NODE_X, :)

35 continue

The Fortran-P programmer writes code to imple

ment the periodic boundary condition and the

data movement for the Fortran-P loop appears as

shown in Figure 9. 1'\otice that the boundary zones

in the periodic case are being loaded from data

residing on the opposite side of array b. After data

layout and partitioning, these data reside on the

opposite side of the processor grid in column

NODE_X (columns are numbered 1 to NODE_x).

As before, the statement following the loop is gen

erated by the precompiler to update the interior

fake zones as shown in Figure 10.

As mentioned previously, global reductions are

done in a self-similar style. (1\'ote that Fortran-P

could easily support most of the Fortran 90 array

intrinsic functions; currently we support all For

tran 77 intrinsics [excluding character-related

functions]). The reduction operation is first per

formed on a subdomain. then the same reduction

is applied globally across subdomains to obtain

the scalar result. On the CYI-200, code is gener-

'I I

array b

~ f-------- nx
nbdy

FIGURE 9 Periodic boundary condition. left edge of

two-dimensional array b.

10 O'KEEFE ET AL.

1
Yj nbd

I
n

;

1

n

!

l

I
n

I

1

I

""'i 1->
nbd y

IJ

·~:,o:bll i

patch ofb

pe 1.2

I

patch ofb

pe 1,3

~

--

I
I

patch ofb patch ofb

pe2.1 pe3.

1------

patch ofb patch ofb

pe2.2 pe3,2

patch ofb patch ofb

pe 2.3 pe3,3

I::=_
I-----nx ------1 I-----nx -----1 1-------nx ------1

r I

I

FIGURE 10 Fortran-P partitioning of two-dimen
sional data array.

ated to broadcast this result to all processors: for

the CM-5, the scalar result is left on the control

processor. As an example, PP.VI codes perform a

Courant number calculation [6. 28 J every time

step which requires a global maximum operation.

(In order for the numerical method to be stable,

the Courant number, courno, must be less than

one in every zone. Effectively, this means that the

numerical time step is limited by the zone with the

largest Courant number in the entire grid.) The

Fortran-P code from muscl15 uses the Fortran 90

intrinsic maxval and the statement appears as:

courmx = maxval(courno(l:n))

The precompiler adds two processor dimensions

to courno and courmx and ~cales the value n to

spread them across the machine. The global max

imum operation as generated by the Fortran-P

precompiler (for the C.\1-200) is ~hown below.

(Note that for the Fortran 90 intrinsic maxval
(array, dim) an (optional) second argument indi

cates that the result arrav contains the maximum

value along dimension dim of array: the rank of

the result array is one less than array.)

c

c
10

find max value for each 2-D
subdomain

courmx maxval(courno(l:n, :)

c now find global max, broadcast
this result

c
20 courmx_global

maxval(courmx(:, :))
courmx = courmx_global

This two-step process is unnecessary if the com

piler performs it locally. then globally: it appears

current and future versions of CYI Fortran will

support this. Other reduction operations ex

pressed as Fortran 90 intrinsic array functions

(ANY, ALL, COUNT. MAXVAL, MINVAL. PRODUCT)

could be handled similarly.

The translation of elemental intrinsic functions

in Fortran-Pis transparent [20]. Recall that "for

an elemental intrinsic function with one argu

ment, calling the function with an array argument

causes the function to be applied to each element

of that array, with each application yielding a cor

responding scalar result. This collection of result

values is returned in the form of an array of the

same shape as the argument" [29]. In other

words, the elemental intrinsics are inherently self

similar. During Fortran-P translation, each ele

mental intrinsic is passed through unchanged. op

erating instead on all the elements in the

promoted argument variable.

The current Fortran-P implementation recog

nizes the cvmg familv of Crav Fortran intrinsics

[30] for implementing merge .operations (the se

mantics are similar to the C condition expression

with the ternary operator ·'? : ''). These cvmg in

trinsics are converted to the Fortran 90 MERGE

intrinsic, which is recognized by the C.VI Fortran

compiler. Compress and decompress operations

on vectors can be performed using the Fortran 90

PACK and UNPACK intrinsics. which could be

translated to execute independently on each

node.

Once all these transformations are completed,

the code can be compiled and executed on an

MPP. However, additional transformations. de

scribed next, can improve performance con~ider

ably.

PERFORMANCE-ENHANCING
OPTIMIZATIONS

With immature. earlv-release compilers, restricted

programming styles ~ust often be used to achieve

efficient execution, and this seems especially true

on MPPs. In certain cases we have seen a two-

order-of-magnitude difference in performance

between two different but equivalent loop coding

styles. For example, we found that in the bound

ary section code using Fortran 90 array notation.

as in the following example

rho(-nbdy+1: 0, -nbdy+ 1: ny+nbdy,
1, :)

& rho(nx-nbdy+1:nx,
-nbdy+1: ny+nbdy, NODE_X, :)

p (-nbdy+1: 0, -nbdy+1:ny+nbdy,
1, :)

& p (nx-nbdy+1:nx,
-nbdy+1:ny+nbdy, NODE-X, :)

UX(-nbdy+1: 0, -nbdy+1: ny+nbdy,
1, :)

& UX(nx-nbdy+1:nx,
-nbdy+1:ny+nbdy, NODE_X, :)

uy(-nbdy+1: 0, -nbdy+1:ny+nbdy,
1, :)

& uy(nx-nbdy+1:nx,
-nbdy+1:ny+nbdy, NODE_X, :)

instead of tightly-nested DO loops

do 200 i nbdy + 1, 0
do 200 k nbdy + 1, ny + nbdy

rho(i, k, 1, :) =rho (i + nx,
k, NODE_X, :)

p(i, k, 1, :) p (i + nx, k,
NODE_X, :)

UX(i, k, 1, :) UX(i + nx, k,
NODE_X, :)

uy(i, k, 1, :) uy(i + nx, k,
NODE_X, :)

200 continue

caused the compiler to generate general routing

communication [14], slowing down the muscl15

code by a factor of 100. The Fortran-P translator

was modified to generate the faster loop form.

In developing the Fortran-P translator, many

similar timing experiments were performed on dif

ferent loops to determine source forms with the

best performance. These forms have been incor

porated into the CYI Fortran code generated by

the translator. This is an important advantage of

automating the translation process; these kinds of

source transformations can be extremely tedious

and time-consuming to perform by hand.

More traditional compiler source transforma

tions such as loop unrolling and forward substitu

tion are also applied to improve performance.

Forward substitution is applied to vectorizable

THE FOHTHA'\-P TRA:--ISLATOH 11

do 9000 i = -j+6,n+j-4

difusl = amaxl (difuse(i-1), difuse(i))

dwoll = dt * difusl

courno(i) = amaxl (courno(i), ((dwoll + dwoll)/

& aminl (dxnu(i-1), dxnu(i))))

ddmll = dwoll * rhonu(i-1)

ddmrl = dwoll * rhonu(i)

drnassllil = ddrnll- ddrnr1

dmomtl(i) = ddmll * utnu(i-1) - ddmrl * utnu(i)

dmoml (i) = ddmll * unu { i -1) - ddmr l * unu (i)

denl (i) = ddmll * enu (i -1) - ddmr l * enu (i)

9000 continue

FIGURE 11 Loop 9000 before forward substitution.

loops: Floating-point scalar temporaries are sub

stituted directly into expressions, leaving only as

signments into array references. For example. for

ward substitution on the loop taken from muscl15

(Fig. 11) would result in the loop shown in Figure

12. In both the CM-5 and CM-200 [L 24] the

front end processors broadcast instructions, ad

dresses, and other information as execution pro

ceeds; generally, a packet of such information

must be sent whenever the size and/ or shape of

the arrays being operated on changes, or when a

transition from a scalar to arrav or arrav to scalar . .
operation occurs [13]. This feature will likely be

repeated on future MPPs with data-parallel com

pilers. Forward substitution results in larger se

quences of conformant array operations and per

formance improvements on the order of 10-50%

due to the significant reduction in front end trans

fer overheads. Loop unrolling can give a similar

effect for smaller loop bodies.

On distributed memory MPPs it is important to

reduce communication among processors to ob

tain good performance. Cnfortunately, current

compilers often generate unnecessary communi

cation if they cannot determine that input or out

put data are local to a node [12, 13]. Compound-

do 9000 i = - j + 6, n + j - 4

courno(i) = arnaxl(courno(i), ((dt *(amaxl(difus

&e(i- 1)
1

difuse(i)))) +(dt *(amax1(difuse(i

& 1 I , di fuse 1 i I) I) I I amin1 (dxnu (i - 1 I , dxn

&ul i I I I
dmassl{ i) =((dt *(amax1(difuse(i- 1 l~ difuse{

&i)))) * rhonu (i - 1)) - { (dt * (amax1 (di fuse { i -

&1)
1

di fuse (i)))) * rhonu (i })

dmomtl(i) ={(dt *(amax1{ difuse(i- 1 l~ difuse(

&i)))) * rhonu { i - 1)) * utnu (i - 1) - ((dt *
&(amax1{ difuse(i- 1 l~ difuse{ i)))) * rhonu(i~

&)) * u tnu (i)

dmoml{ i) ={(dt *{ amax1(difuse{ i- 1 l~ difuse(i

&) 1)) * rhonu 1 i - 1 I I * unu (i - 1) - ((dt * (
&amax1 (di fuse (i - 1) 1 di fuse (i)))) * rhonu { i)

&)) * unu (i)

denl(i) =((dt *(amax1{ difuse(i- 1), difuse(i,

&) 1 1 I * rhonu 1 i - 1) I * enu (i - 1 I - (I dt * I a

&max1(difuse(i- 1)
1

difuse{ i))}) * rhonu(i

&)) * enu (i)

9000 continue

FIGURE 12 Loop 9000 after forward substitution.

12 O'KEEFE ET AL.

ing this problem is that networb in current .VIPPs

are often characterized by high latency and low

bandwidths [5. ;j 1] resulting in performance deg

radation if employed frequently.

\Ve have worked closely with the Fortran com

piler group at Thinking _\1achines to identify where

this happens in typical Fortran-P codes: Thinking

Machines has supplied us with severallihrarv rem

tines that allow our Fortran-P translator to r~move
extraneous comrnunication in the transformed

C-"1 Fortran codes. These routines include copy

functions that copv data from one arrav into an

other without invc;king unnecPssary n;Jde com

munication (vector_move_olwa.rs). as well as rou

tines to equivalence arrays offset bv small

constants to avoid communi~ation durin; the dif-
"' ferencing operations common in Fortran-P codes.

The equiv_ld routine also effectivelv removes the

subgrid ratio problem described in .the next sec

tion.

4 CURRENT FORTRAN-P
IMPLEMENTATION AND RESULTS

The current Fortran-P translator (known as the

alpha version) parses Fortran-P programs and

generates intermediate representation (IR) trees:

the back-end generates parallel versions of the

code in C-"1 Fortran [20]: different translations

are generated for the G\1-200 and the C:\1-5 be

cause the underlying machine architectures and

their interactions with the compiler are different.

The C-"1-5 and C-"1-200 share some phases of the

CM Fortran compiler but the final code generation

phases are distinct, as are the run-time libraries

[13].

The alpha version of the translator was imple

mented using the Purdue compiler construction

tool set [PCCTS: 32]: future versions will be im

plemented with PCCTS and SORCERER r33.

34], a source-to-source translator generator. \\. e

can retarget our translators for Cray .\IPP Fortran

[35] and Maspar Fortran [25]: a straightforward

translation to these dialects involves changing the

data layout directives to match those used in each

dialect. In addition. we intend to support a mes

sage-passing implementation.

The Fortran-P translator has been employed to

translate two PP:\1 codes, muscl15 and hppmfair

14, and the shallow water version of ARPS. The

computational approach used by PP.\1 and ARPS

to exploit massively parallel processing is similar

and these codes fit verv naturallv within the For-. .

tran-P modeL forming the core of our current For

tran-P applications suite. Both PP.\1 and ARPS

are inherently self-similar in design.

PP_\1 codes have been used to studv a varietv of . .
hydrodynamic phenomena. These codPs use a

logically regular grid and treat every grid zone

alike wherever possible. The cost of this approach

is some small smearing of important flow struc

tures in such problems as multifluid calculations

and flow around obstacles. Frequently. irrPgular.

unstructured computational grids are used for

these problems. However. given the large numeri

cal grids possible on modern computers combined

with the sophisticated shock and contact discon

tinuity capturing of PP.\1. these disadvantages are

kept to a minimum. This shifts thP difficuhit>,.; of

massively parallel computation from the dynamic

data layout and load balancing to the dt>sign of the

algorithm on a logically regular mesh. Because of

the very high efficiency which such algorithms can

obtain on machines like the C.\1-5 and C.\I-200.

such fine grid simulations may cost les:" than

methods requiring elaborate. unstructured f!rids.

The ARPS code for meso-scale weather predic

tion employs a regular grid and explicit finitP dif

ferencing to implement a hydrodynamic model

that can capture and predict localized .. nonlinear

weather phenomena [361.

In the following two sections we describe pt>r

formance results obtained for these translated

versions of PP.\1 and ARPS on the C.\I-200 and

CYI-5. In generaL applications employing explicit.

finite difference and finite volume numerical tech

niques [281 are good candidates for self-:"irnilar

implementation.

4.1 CM-200

For the C.\1-200 results described in this >'iection~

we used a single quad that contains 236 \\~t>itek

floating point units (all arithmetic wa,.; 64-bit) and

1 Gbyte of memory: only ::\"E\\~S communication

was required in the finaL optimized. Fortran-P

generated versions. The slicewise Fortran com

piler (version 1.2) was employed: runs were per

formed in dedicated mode. All timing data wert>

obtained from cmtimer library routines [191.

These results do not include anv time for 1/0.

A Case Study in PPM Translation:
musc/15

The Fortran-P tool has successfullv translated

muscl15, a two-dimensional hydrodynamics pro

gram consisting of nearly 5000 lines of code. from

Fortran-P to CM Fortran. The muscl15 program

uses a MCSCL algorithm developed by van Leer

and Woodward [37, 38]. The original MCSCL

scheme was one-dimensional Lagrangian:

muscl15 represents extensions by Woodward to

perform two-dimensional Eulerian calculations by

adding a remap step and by applying operator

splitting to treat gradients in the x- and y-direc

tions independently. The muscl15 code is almost

completely vectorizable. The Fortran-P transla

tion of muscl15 was fully automatic once the code

was modified to fit the Fortran-P model; the

translated code has been tested and executed on

the CM-200. We performed both performance

and correctness debugging while testing the For

tran-P translator with muscl15.

As in most PP:VI codes, muscl15 proceeds ac

cording to the directional-splitting algorithm of

Strang [39] by performing an x-pass, where gra

dients are applied to each row of the data domain,

followed by a y-pass where gradients are applied

to each column: these passes are then applied

again in reverse order. The sequence x-y y-x

makes up a pair of time steps. The operations are

performed on temporary one-dimensional arrays

loaded with data copied from the original two-di

mensional arrays (representing pressure, density,

and x- and y-velocities): the overhead for these

data copies is trivial because many floating point

operations are performed on each row or column.

Each pass is preceded by an update of the

boundary zones; the Fortran-P compiler recog

nizes that in this code section only boundary re

gions are accessed and generates the necessary

fake zone updates. The width of the boundary

zones in muscl15 is fixed at five zones, just

enough to obviate the need for any communica

tion during a single pass. During each pass a se

ries of differencing operations. implemented as

vector loops, is applied to each data strip: as this

differencing proceeds the values within fake zones

become invalid and no longer represent the true

value of the corresponding zones in neighboring

THE FORTRA!';-P TRANSLATOR 13

processors; loop bounds become progressively

"narrower" as the pass over a single strip is per

formed and the valid strip of fake zones moves in

towards the real zones. We consider computations

over boundarv zones as overhead but include

them in the total flop/ s count; real flop/ s include

only operations on real zones. This distinction will

become important when we examine the subgrid

ratio issue.

We counted the total flop/ s per two-dimen

sional subdomain (nxn real zones) per time step in

muscl15 as 2308n2 + 4n*nbdy- 10168n where

nbdy is the width of the fake zones on each side.

The real flop/ s per two-dimensional subdomain

equaled 2308n2 . The resulting Mflop/s (mea

sured per time step) for varying sub domain size on

the CM-200 are given in Table 1; the problem size

was fixed at 2 20 zones. l\"ote that we show the total

and real Ylflop/ s and their ratio (which we refer to

as the real zone ratio) for increasing subgrid sizes.

In Table 1 we see that performance is tied to the

subgrid ratio, which is the number of subdomains

per physical processor. The CM Fortran compiler

version 2. 0 parallelizes across sub grids assigned

to a single physical processor. The subgrid ratio,

in effect, becomes the vector length executed by

each processor and to get the best performance

this ratio must be high [14]. This, in turn, sug

gests that each piece of an array assigned to a

physical processor be small so that there are many

small pieces that can then be overlapped upon the

physical processors to create many subgrids per

node. A drawback of such an approach is that

communication is required each time an expres

sion is calculated using arrays offset from each

other (as is tvpical in finite difference and finite

volume numerical techniques): if communication

is slow relative to computation. this approach can

degrade performance. (Conversations with other

CM-200 users who employ this strictly data paral

lel approach suggests that even on highly parallel

codes this effect does limit the speed to less than

300 Mflop/ s per quadrant of the C.\1-200.) In

Table 1. muscl15 Speed and Time on CM-200 for Fixed Problem Size (220 Zones, 256 Floating Point
Nodes, 8K Processors, 1 Gbyte Memory)

Processor Subgrid Real Zone Total Total Real
Grid Ratio Ratio \lflop/ ~ Time(s) \lflop/ s

16 X 16 0.90 1.'>2 34.5 138
32 X 32 4 0.8.S .S30 10.3 468
64 X 64 16 0.?4 866 ?.9 612

128 X 128 64 O . .S9 8H 10.1 480

14 O'KEEFE ET AL.

contrast, the Fortran-P approach is to partltwn

the data domain directly. assigning each proces

sor a contiguous subdomain to compute. The For

tran-P approach exploits the fact that each node

in both the C:\1.-200 and C.\1.-.5 implements either

pipeline or vector parallelism. These nodes can

exploit such parallelism available in each subdo

main to run at maximum speed. Communication

with neighboring processors is required occasion

ally, when fake zones become stale, and to imple

m~nt boundary conditions. Exploiting this node

parallelism is important because the interconnec

tion networks are slow relative to processing ele

ments: Fast processors need not overwhelm a slow

network if they compute primarily with local data.

In muscl15 the real zone ratio drops as the sub

grid ratio increases because the fake zone width

remains constant as the subgrids become smaller.

For muscl15 a sub grid ratio of 16 works best for

the version 2.0 compiler, which does not support

parallel execution across array elements located

within a single, physical processor (i.e., declared

as : SERIAL). Without this restriction, the results

in Table 1 suggest that muscl15 could run at

nearly 800 real Mflop/ s per quad.

Subdomain partitioning to increase subgrid ra

tios would be unnecessary if the CM Fortran com

piler would allow parallel execution along serial

dimensions; in fact, partly in response to our re

quests this support has become available in the

CM Fortran compiler version 2. 1.

Table 2 shows the performance of muscl15 for

increasing problem sizes. For these runs the two

dimensional subdomain size was fixed at 64 X 64

zones and the processor grid was increased incre

mentally from 16 X 16 to 64 X 32. It can be seen

that the real zone ratio remains nearly constant

and the speed increases to about 760 Mflop/ s for

the largest grid (over 8 million zones). This con

firms the result from Table 1 concerning the per

formance attainable for muscl15 on the CM-200.

ARPS Weather Code

Prior to working with the actual ARPS code [4],

which is fully compressible and three dimen

sional, we translated a simpler, two-dimensional

shallow water code which, although incompressi

ble, embodies the nonlinear dynamics of the full

ARPS code. The shallow code neglects the vertical

structure of the atmosphere as well as moist and

turbulent processes. Because the structures used

to map the atmosphere to the processing elements

work in horizontal patches, there is a close corre

spondence between the shallow water model and

the full ARPS code. The Fortran-P translator con

verted the shallow water model after appropriate

programmer modifications to meet the Fortran-P

model. Working with code developers we added

additional code to indicate boundary updates

were necessary (by writing only into fake zones)

and extended array dimensions and loop bounds

by nbdy on each side. The converted code con

sists of approximately 900 lines of C.\1. Fortran.

The two-dimensional shallow code data domain

was decomposed into equal-sized patches that

were then mapped to the physical processing ele

ments.

Table 3 presents performance results for the

shallow code runs and is similar to Table 1 for

muscl15: The subgrid ratio is varied between 1, 4,

16, and 64 but the problem size remains fixed at

2 20 zones. The subdomain size for subgrid ratio of

one was 64 X 64; the computation included 100

time steps.

We do not show the real zone ratio for the shal

low code. The shallow code uses a simpler bound

ary zone treatment than muscl15, requiring only

two fake zones on a side; within the time step al

most no fake zone updates are calculated (except

for the actual boundary-handling code itself).

Hence, almost all zone updates are to real zones.

In addition, the shallow model uses simpler dif-

Table 2. muscl15 Speed and Time on CM-200 for Increasing Problem Size (64 X 64 Zones/Subdomain,

256 Floating Point Nodes, 8K Processors, 1 Gbyte Memory)

Processor Sub grid Real Zone Total Total Real
Grid Ratio Ratio .\1flop/ s Time(s) .\1flop/ s

16 X 16 1 0.90 152 34 .. 5 138
32 X 16 2 0.91 308 34.3 282
32 X 32 4 0.92 602 34.9 554
64 X 32 8 0.92 828 .50.8 762

THE FORTRA:\'-P TRAl\"SLATOR 15

Table 3. ARPS Shallow Code Performance with Fixed Problem Size (256 Floating Point Nodes

8K Processors, 1 Gbyte Memory) '

Processor Subgrid Subgrid Shallow Shallow

Time(s) Grid Size Ratio "fl I .n op s

16 X 16

32 X 32

64 X 64

128 X 128

64 X 64

32 X 32

16 X 16

8 X 8

ferencing than the full ARPS because it contains

less "physical" detail; more fake zones would

likely be required on the full code. There are ap

proximately 229 flop/ s per zone update per time

step (vs. 2308 flop/ s per zone update for

muscl15).
It is evident again from Table 3 that the subgrid

ratio is the key to performance; 1275 Ylflop/s is

achieved on a single quad with a subgrid ratio of

64 on a million zone calculation. A subgrid ratio

of 4 yielded 380 :\iflop/s.

In Table 4 the problem size was not fixed but

varied with the subgrid ratio, which varied from 1

to 8. Two subdomain sizes were employed: 64 X

64 (2048 zones) and 64 X 32 (4096 zones) while

the number of subgrids varied from 256 (subgrid

ratio of one) to 2048 (subgrid ratio of 8). Hence

the problem size varied from 1 I 2 million zones to

over 8 million zones.

As in previous results, it is clear in Table 3 that

performance is linked directly to the subgrid ratio

and increases to a maximum of 780 Mflop/ s with

a subgrid ratio of 8. This represents a large prob

lem size: over 8 million zones on a grid with di

mensions 4096 X 2048. Because the speed in

creases nearly linearly with the problem size the

execution time stayed nearly constant for these

runs as the problem size increased. Performance

results with the full ARPS code using the Fortran

P translator can be found in O'Keefe and Sawdey
[40]. .

1

4

16

64

4.2 CM-5

122

380

950

1275

198

6.3

2.5

19

As mentioned earlier, the CYI-5 at :\iinnesota has

544 nodes (2176 vector units) and 17 Gigabytes

of main memory (32 Ylbytes per node). Each node

has four vector units that were installed on the

machine in late 1992. For the timings described

here, a 128-node partition was employed. We

used version 2.0 of the CM Fortran compiler with

64-bit arithmetic; timings were performed with

exclusive access to the partition. As with the CM-

200 all timing data were obtained using cmtimer

library routines [20]. Timings on a 512-node par

tition show a factor of 4 speedup over 128 nodes if

the problem size is also increased bv factor of 4.

This is to be expected as node com~unication is

minimal due to the characteristics of Fortran-P

algorithms (and in particular PPYI) and special

run-time routines called by the Fortran-P pre

compiler, that we describe in the following section

Another Case Study in PPM Translation:
hppmlairl4

We translated hppmfair14, a recently developed

PPM code with an improved boundarv treatment

for irregular shapes. The hppmfair14 ~ode is over

5000 lines of Fortran-P. We brieflv describe the

boundary treatment in this new cocle.

As an example, consider the flow around an

object in a wind tunnel. A simplistic way of repre

senting the boundary interface between the object

Table 4. ARPS Shallow Code Performance with Increasing Problem Size (256 Floating Point Nodes

8K Processors, 1 Gbyte Memory) '

Patch Size Patch Size

Sub grid 64X64 64 X 32

Processor Grid Ratio Mflop/s (sec) Mflop/s (sec)

16 X 16 1 120 (186) 110 (99)
32 X 16 2 250 (180) 225 (95)
32 X 32 4 440 (191) 440 (98)
64 X 32 8 780 (217) 765 (114)

16 O'KEEFE ET AL.

and the moving gas on a regular grid would be as

an impenetrable series of "stair steps." This ap

proach is workable because of the large computa

tional grids (typically a million zones) possible on

modern supercomputers. Because PPM uses solu

tions to the Rieinann shock tube problem to deter

mine fluxes at zone interfaces, the simple solution

to a Riemann problem at a reflecting wall (either

moving or stationary) may be used to provide well

defined pressures at the edges of those zones bor

dering on an object.

This boundary treatment has been improved

and implemented in the hppm14fair code. The

improvement is based on the simple line interface

calculation (SLIC) method [26], allowing "frac

tional" steps that produce a smoother boundary

for a given computational grid [41]. This retains

the computational ease inherent with uniform

grids while permitting the freedom necessary for

the description of complex shaped objects. The

flux at a zone interface is constructed using the

fractional volume of the object in that zone and its

neighboring zone by blending the solution to a

Riemann problem at a reflecting wall with the so

lution to the Riemann problem due to the dis con

tinuities in the fluid states on either side of the

zone interface.

The Fortran-P translation for the CM-5 was

different from that for the CM-200. The Fortran

p translator performed two major tasks to produce

CMF from the source code. FirsL it translated se

rial DO-loops into Fortran-90 style array expres

sions. The necessary array declarations and lay

out directives were also generated, both for

explicit array variables and scalar temporary vari

ables within loops. These scalar temporaries were

promoted to temporary arrays. Second, it created

aliases where needed to remove unnecessary com

munication between processors.

The beta (version 2.0) CMF compiler does not

vectorize across explicitly local (: SERIAL) axes so

we declared local axes as special (:NEWS) axes.

Operations on the extracted one-dimensional

strips in hppmfair14 used arrays offset in the pro-

cessor local axes by small constants: the compiler

generates unnecessary communication in this

case. We needed a way to "convince" the com

piler that no communication was required. This

was accomplished by a library routine furnished

by Thinking Machines that created aliases for ar

rays indexed by small constant offsets. The alias

was then used in place of the actual offset array

reference. The Fortran-P translator proved in

valuable for creating these aliases because there

were many. For example, everywhere there was a

reference such as dx (i-1) in a DO-loop indexed

bv i. an alias such as dx_ml and dx itself was

s~pplied in the calling argument list. For the worst

case routine in hppmfair14 this required 220 pa

rameters. The use of aliases saves memory and

reduces unnecessary floating point operations as

the subgrid ratio can be one. :Kote that no new

temporary arrays are created, merely temporary

array names that are aliases for array sections

from the one-dimensional strips.

Several other performance enhancements were

performed by hand as they were in very localized

areas of the code and were considered likely to

change radically very soon. These included the

use of another run-time library routine, vector_

move_always, to perform data movement local to

a processor; without this special routine we found

that code that extracts one-dimensional strips

from the two-dimensional data arrays generates

unnecessary communication, slowing the calcula

tion significantly, vector_move_always also

proved useful in reducing communicating in the

boundarv section and fake zone code. In addition,

special t~chniques related to obtaining high per

formance communication between processors

were employed. Note that the need for vector_

move_always and aliases was removed in version

2.1 of CM Fortran. Performance was approxi

mately equivalent between version 2.1 and ver

sion 2.0 with these special calls.

Table 5 summarizes current CYI-5 perfor

mance results for the translated version of

hppmfair14. The processor grid was set to 32x

Table 5. hppmfair14 Performance with Increasing Problem Size (128 :\lodes, 512 Vector Units, 32 X 16

Processor Grid)

Problem Sub grid

Size Size

512 X 256 32 X .32

1536 X 768 64 X 64

3584 X 1792 128 X 128

Real Zone

Size

16 X 16

48 X 48

112 X 112

Total

Mflop/ s

1160

1773

2011

Real

Mflop/ s

580
1330

1760

16, yielding one subdomain for each vector unit.

From Table 5 it is clear that performance depends

on problem size, varying from 580 Mflop/ s for

131,000 zones to 1760 Mflop/ s for 6.4 million

zones. Scaling the larger problem size by a factor

of 4 would yield almost 6.5 Gflop/s on the full

512-node CM-5.

These results are preliminary and will improve

as the CM-5 compiler improves and in particular

as more optimization passes are implemented and

tuned. Our initial studies have shown that over

heads related to the run-time svstem seem to be

significant.

4.3 Summary

We have described performance results for three

Fortran-P codes, all translated by the Fortran-P

translator for the C.\1-200 and C.\1-5. Perfor

mance on the CM-200 is directlv related to the

subgrid ratio; for Fortran-P codes a wider fake

zone boundary reduces the frequency of com

munication required. Cnfortunately, this conflicts

with the need for partitioning subdomains further

to increase the subgrid ratio and results in wasted

memory and floating point operations. For the

muscl15 code this ultimately limited performance

to 600 Mflop/ s. Given the simple differencing and

narrow fake zone width in the shallow code, in

creasing the subgrid ratio is not as much a prob

lem, and over 1200 .Vlflop/ s is achieved on this

code. This problem has been removed in version

2. 1 of CM Fortran. We used special run- time rou

tines from Thinking Machines to reduce commun

ication and avoid large subgrid ratios on the CM-

5; on large problems we have been able to show

good performance.

The results in this section have shown that For

tran-P codes can be translated to execute at very

high speed on both the C.VI-200 and C.\1-5. We

plan to use the translator as a powerful tool for

translating codes and executing large calculations

on MPPs and in understanding the performance

of these machines on real Fortran-P application

codes.

5 CONCLUSIONS

In this article we have described the Fortran-P

approach to programming MPPs. We have shown

that it is possible to translate self-similar codes

automatically and achieve good performance. Fu-

THE FORTRA~-P TRANSLATOR 17

ture work includes further refinement of the pro

gramming model and improvements to the For

tran-P translator to achieve even better

performance on the CM-5. The Fortran-P trans

lator will serve a dual role as a translation engine

for converting codes and performing real calcula

tions as well as a tool to experiment with different

source translations to isolate compiler, machine,

and application code bottlenecks in the .\1PP envi

ronment.

ACKNOWLEDGMENTS

We would like to thank several people at Thinking

Machines for their crucial assistance and expert

guidance during the translator development, in

particular Woody Lichtenstein, Tony Kimball,

and Paul Fink. We would like to thank the For

tran-P group at Minnesota, including Steve Soltis,

Aaron Sawdey, Olivier .VIeirhaeghe, and Due

1\"guyen for their help with translator development

and performance measurements. Kurt Fickie and

Tim Rohaly at the Army Research Lab (ARL) pro

vided early support and input on the first versions

of the translator. Bob Numrich at Crav Research

helped us understand the Cray MPP Fortran

model and how to target it for Fortran-P. Kelvin

Droegemeier helped us understand and translate

the ARPS shallow code. The staff at the Minne

sota Supercomputer Center kept the machines

running and were there to assist us with many

problems: we thank Steve Saroff. Barbara Bryan,

Alan Klietz, Jeff Kays, Barb Kraft, and Gary Han

sen.

We would like to thank the funding agencies

that have generously supported this effort. Paul

Woodward was supported by the C.S. Depart

ment of Energy grant DOE DE-FG02-

87ER25035 as was Steve Anderson. .\1atthew

O'Keefe was supported by a 1\"ational Science

Foundation Research Initiation Award, by the

lJ.S. Army Ballistics Research Lab (now the ARL),

and by travel support from the Center for the

Analysis and Prediction of Storms. an 1\"SF Sci

ence and Technology Center at the University of

Oklahoma. Hank Dietz was supported by the Of

fice of Naval Research and the National Science

Foundation. Paul Woodward, B. Kevin Edgar,

and T. Parr were supported through the Army

High Performance Computing Research Center,

which also generously provided machine time on

the C.\1-200 and CM-5 and the infrastructure and

environment to make it all happen.

18 O'KEEFE ET AL.

REFERENCES

[1] Thinking Ylachines Corporation. '·Connection

Ylachine ~1odel CM-5.·' Technical Summary, Oc

tober 1991.

[2] M. WalkeL "The Cray ~1PP,'' talk given at

ECMWF Conference on Parallel Processors in

Meterology, Reading. England, l\"ovember 1992.

[3] D. Porter, A. Pouquet, and P. Woodward,

"Kolmogorov-like spectra in decaying three-di

mensional supersonic flows.'' submitted to Phys

ics of Fluids.

[4] K. DroegemeieL K. Johnson, K . .\'fills, and M.

O'Keefe, Proceedings of the 5th Workshop on the

Use of Parallel Processors in Jleteorology. Read

ing, England: ECMWF, 1992.
[5] 0. Lubeck, M. Simmons, and H. Wasserman, Su

percomputing '92. ,Vlinneapolis, Ml\": IEEE Press,

1992, pp. 40:3-412.

[6] P. R. Woodward, Astrophysical Radiation Hy

drodynamics. D. Reidel Publishing Co., 1986,

pp. 245-326.

[7] M. Bromley, S. Heller, T. ,Vlc"'erney, and G.

Steele, Jr., Proceedings of the SIGPLAN 1991

Conference on Programming Language Design

and Implementation. Toronto, Canada: Associa

tion for Computing Machinery, 1991, pp. 145-

156.

[8] D. Bailey, E. Barsczc, L. Dagum, and H. Simon,

Supercomputing '92. Minneapolis, Yl"': 1992,

pp. 386-393.

[9] P.R. Woodward and P. Colella, "The numerical

solution of two-dimensional fluid flow with strong

shocks,"]. Camp. Phys., vol. 54, pp. 115-17.3.

[10] P. Colella and P. R. Woodward, "The piecewise

parabolic method (PPM) for gas-dynamical simu

lations,"]. Comp. Phys., vol. 54, pp. 174-201,

1984.

[11] H. Dietz, "The refined-language approGch to

compiling for parallel supercomputers,"' Ph.D.

thesis, Polytechnic Lniversity, August 1986.

[12] W. Lichtenstein, How CMF Works. Cambridge,

MA: Thinking Ylachines Corp., 1992.

[13] G. SaboL 1992 Conference on Frontiers of Mas

sively Parallel Proceedings. McLean, VA: IEEE

Press, 1992, pp. 12-20.

[14] G. Sabot, "CM Fortran optimization notes: slice

wise model,"' Cambridge, MA: Thinking ~fa

chines Corp., Technical Report TMC-184, March

1991.

[15] Thinking ,\'Iachine Corporation, CH Fortran Re

lease Notes, Preliminary Documentation for ver

sion 2.1 Beta 1. Cambridge, MA: Thinking Ma

chine Corporation, April 1993.

[16] P. Woodward, "Interactive scientific visualization

of fluid flow," IEEE Computer vol. 26, pp. 13-

26, 1993.

[17] D. Arneson, S. Beth, T. Ruwart, and R. Tavakley,

"A testbed for a high performance file server,"

Proc. 1993 IEEE Symposium on Mass Storage

Systems." Monterey. CA, 1993.

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32j

[33]

[34]

High Performance Fortran Language Specifica

tion, version 1. 0, High Performance Fortran Fo

rum. Mav 1993.

M. Gupta and P. Banerjee, '·Demonstration of

automatic data partitioning techniques for paral

lelizing compilers on multicomputers," IEEE

Trans. Parallel Distributed Systems, vol. 3, pp.

179-193, 1992.

Thinking Machine Corporation, CM Fortran Ref

erence Manual. Thinking Machine Corporation.

1991.

S. Hiranandani, K. Kennedy, and C.-W. Tseng.

"Compiling Fortran D for MIMD distributed

memory machines," Communications A Cl\1, vol.

35, pp. 66-78, 1992.
M. J. Wolfe, Optimizing Supercompilers for Su

percomputers. Cambridge, MA: ,\'IIT Press, 1989,

P· 6.

M. Gerndt, "Updating distributed variables in lo

cal computations,'' Concurrency Practice Exp ..

vol. 2 .. pp. 171-193, 1990.

Thinking Machines Corporation, "Connection
Machine Model CM-2 Technical Summary.,.

T,VIC Technical Report TR89-1.

T. Blank, 35th IEEE Computer Society Interna

tional Conference (COMPCON). 1990, pp. 20-

24.
W. l\'oh and P. Woodward. ·'SLIC (simple line

interface calculation)." Lecture "'ot~s Phys., vol.

59, 1976.
G. Fox, S. Hiranandani. K. Kennedy, C. KoebeL

L. Kremer, C. Tseng, and M. Wu, "Fortran D

language specification," Technical Report TR

90-141, Department of Computer Science, Rice

University, December 1990.

W. Press: B. Flannery. S. Teukolsh, and W. Vet

terling, Numerical R~cipes: The A~·t of Scientific

Computing. Cambridge, MA: Cambridge Lniver

sityPress, 1989.
J. Adams, W. Brainerd, J. Martin, B. Smith, andJ.

Wagener. Fortran 90 Handbook. :\'ew York. ?\Y:

McGraw-Hill, 1992.
Cray Research, Inc .. CF77 Compiling System,

Volume 1: Fortran Reference A1anual. Eagan,

MN: Cray Research, Inc., version 4.0, 1990.

Z. Bozkus. S. Ranka, and G. Fox, 1992 Confer

ence on Frontiers of /Hassive(r Parallel Proceed

ings. McLean, VA: 1992.

T. Parr and H. Dietz. ··Purdue compiler con

struction tool set (PCCTS) reference manual.'·

SIGPLAN Notices, vol. 27. 1992.

T. J. Parr, ''Sorcerer-a source-to-source trans

lator generator," AHPCRC Preprint 93-094,

University of Minnesota, September 1993. Inter

national Conference on Compiler Construction.

Edinburgh, Scotland: ACM. April 1994.

A. Sawdey, :Vl. O'Keefe. and T. ParL "Imple

menting a Fortran 77 to CM Fortran Translator

Using the Sorcerer Source-to-Source Translator

Generator.'' AHPCRC Preprint 93-102, Lniver

sity of ~1innesota. October 1993.

[35] D. Pase, T. :VIacDonald, and A. :Vleltzer. J1PP

Fortran Programming /Wadel. Cray Research,

Inc., November 24, 1992.

[36] ARPS Version 3.0 [;~~cr's Guide, Center for the

Analysis and Prediction of Storms, Lniversity of

Oklahoma. Norman. OK. October 1992.

[37] B. van Leer, "Towards the ultimate Conservative

Difference Scheme. V. A Second-order sequel to

Godunov's ~ethod,"]. Camp. Phys., vol. 32, pp.

101-136, 1979.

[38] B. van Leer and P. Woodward, Proceedings of the

International Conference on Computing Methods

in Nonlinear lV!echanics. Austin. TX: 1979.

[39] W. G. Strang. "On the construction and compari

son of difference schemes." S!Ai'vf]. ;Vumerical

Ana(ysis, vol. 5, pp .. 506, 1968.

APPENDIX 1

In this appendix we show the corresponding CM-5

translation for the monslp subroutine. Note that

THE FORTRA~-P TRA;'IISLATOR 19

[40] .VI. T. O'Keefe and A. C. Sawdey, Proceedings of

the Les Houches Workshop on HPC in the Ceo

sciences. Boston: Kluwer. Les Houches, France,

1993.

[41] B. K. Edgar and P.R. Woodward. "Diffraction of

a shock wave by a wedge: comparison of PP:VI

simulations with experiment.'' Int. Video]. Eng.

Res., 1994 (in press).

[42] D. Arneson, S. Beth, T. Ruwart, and R. Tavakley,

Proceedings of the 1993 IEEE Symposium on

Mass Storage S,ystems. Anaheim, CA: IEEE

Press, pp. 169-176, 1993.
[43] C. Fischer and R. LeBlanc, Crafting a Compiler.

Menlo Park, CA: Benjamin/Cummings, 1988.

[44] S. McCormick, ed., Multigrid Methods: Theory,

Applications, and Supercomputing. :\ew York,

l\"Y: Dekker. 1988.

the CM-200 translation for monslp was given in

Section 3 of this article. The translated code for

the CM-5 is:

subroutine monslp(a,da,dal,dalfac,darfac,n)

include 'defs.h'
include '/usr/include/cm/CMF_defs.h'
parameter (NODE_X =64,NODE_Y =16)
real, array(NODE_X,NODE_Y,SUB_G,SUB_L:SUB_R):: darfac,dalfac,dal,da,a

CMF$LAYOUT darfac(:block=1:procs=NODE_X, :block=1:procs=NODE_Y,
:block=SUB_G:procs=1, :block=SUB_XY:procs=1)
CMF$LAYOUT dalfac(:block=1:procs=NODE_x, :block=1:procs=NODE_Y,
:block=SUB_G:procs=1, :block=SUB_XY:procs=1)
CMF$LAYOUT dal(:block=1:procs=NODE_X, :block=1:procs=NODE_Y,
:block=SUB_G:procs=1, :block=SUB_XY:procs=1)
CMF$LAYOUT da(:block=1:procs=NODE_X, :block=1:procs=NODE_Y,
:block=SUB_G:procs=1, :block=SUB_XY:procs=1)
CMF$LAYOUT a(:block=1:procs=NODE_X, :block=1:procs=NODE_Y,
:block=SUB_G:procs=1, :block=SUB_XY:procs=1)

integer,save, array(CMF_SIZEOF_DESCRIPTOR)
integer,save, array(CMF_SIZEOF_DESCRIPTOR)
call equiv1d(dal_p1,dal,1)
call equiv1d(a_m1,a,-1)

a_m1

daLp1

call x_monslp(da,dal_p1,darfac,dalfac,a_m1,a,dal)

return
end

subroutine x_rnonslp(da,dal_p1,darfac,dalfac,a_m1,a,dal)
real, array(NODE_X,NODE_Y,SUB_G,SUB_L:SUB_R)::
da,dal_p1,darfac,dalfac,a_m1,a,dal

CMF$LAYOUT da(:block=1:procs=NODE_X, :block=1:procs=NODE_Y,
:block=SUB_G:procs=1, :block=SUB_XY:procs=1)
CMF$LAYOUT dal_p1(:block=1:procs=NODE_X, :block=1:procs=NODE_Y,
:block=SUB_G:procs=1, :block=SUB_XY:procs=1)

20 O'KEEFE ET AL.

CMF$LAYOUT darfac(:block=1:procs=NODE_x, :block=1:procs=NODE_Y,
:block=SUB_G:procs=1, :block=SUB_XY:procs=1)
CMF$LAYOUT dalfac(:block=1:procs=NODE_x, :block=1:procs=NODE_Y,
:block=SUB_G:procs=1, :block=SUB_XY:procs=1)
CMF$LAYOUT a_m1(:block=1:procs=NODE_x, :block=1:procs=NODE_Y,
:block=SUB_G:procs=1, :block=SUB_XY:procs=1)
CMF$LAYOUT a(:block=1:procs=NODE_X, :block=1:procs=NODE_Y,
:block=SUB_G:procs=1, :block=SUB_XY:procs=1)
CMF$LAYOUT dal(:block=1:procs=NODE_X, :block=1:procs=NODE_Y,
:block=SUB_G:procs=1, :block=SUB_XY:procs=1)

real, save, array(NODE_x,NQDE_Y,SUB_G,SUB_L:SUB_R):: thyng,s,dda
CMF$LAYOUT thyng(:block=1:procs=NODE_x, :block=1:procs=NODE_Y,
:block=SUB_G:procs=1, :block=SUB_XY:procs=1)
CMF$LAYOUT s(:block=1:procs=NODE_X, :block=1:procs=NODE_Y,
:block=SUB_G:procs=1, :block=SUB_XY:procs=1)
CMF$LAYOUT dda(:block=1:procs=NODE_X, :block=1:procs=NODE_Y,
:block=SUB_G:procs=1, :block=SUB_XY:procs=1)

dal (: , : , : , 2: n) = a (: , : , : , 2: n) n - a_m1 (: , : , : , 2: n)
1000 continue

dda (: , : , : , 2: n-1) = dal f ac (: , : , : , 2: n-1) * dal (: , : , : , 2 : n-1) +
darfac(:,:,: ,2:n-1)* dal_p1(:,:,: ,2:n-1)
s(:,:,: ,2:n-1) = sign(l., dda(:,:,: ,2:n-1))
thyng(:,:,: ,2:n-1) =2.* amin1(s(:,:,: ,2:n-1)* dal(:,:,: ,2:n-1),
s (:,:,:, 2: n-1) * dal_p1 (:,:,:, 2: n-1))
da(:,:,:,2:n-1) = s(:,:,:,2:n-1)* amax1(0., amin1(s(:,:,:,2:n-1)*

dda (: , : , : , 2 : n-1) ,
& thyng(:,:,: ,2:n-1)))

2000 continue

return
end

which was translated from the following Fortran-P version:

subroutine monslp (a, da, dal, dalfac, darfac, n)
parameter(NODE_X=64, NODE_Y=16)
dimension a(n), da(n), dal(n), dalfac(n), darfac(n)
do 1000 i = 2,n
dal(i) = a(i) - a(i-1) 1000 continue
do 2000 i = 2,n-1
dda = dalfac(i) * dal(i) + darfac(i) * dal(i+1)
s = sign (1., dda)
thyng = 2. * amin1 (s * dal (i), s * dal (i+1))
da(i) = s * amax1 (0., amin1 (s * dda, thyng)) 2000 continue
return
end

We see in the translated code the variables
dal_p1 and a_m1 to dal (i+1) and a (i-1). re
spectively. The alias is established by a function
call to equi v1d which itself is called within the
"wrapper" function monslp; the original routine
is called by the wrapper function and is renamed
as x_monslp. All equivalencing occurs within the
wrapper function.

The CMF$ LAYOUT directives employ the de
tailed array layout capability now available in ver
sion 2. 0 of C.\1 Fortran. These directives allow
more precise control of data layout. l\ote that un
like the C.\1-200 Fortran-P translation the parallel
dimensions now come first, before the local array
dimensions.

APPENDIX 2

The following code is a program fragment consist

ing of a series of loops that perform differencing

operations. A possible program context is inside

the time step of a finite difference algorithm,

where the arrays are computed successively, each

a function of a previously calculated, lower-order

quantity. For this program fragment, the bound-

c

THE FORTRAI\'-P TRAl\.'SLATOR 21

ary zones move in by two zones on each side. The

correct value of nbdy for the whole program will

depend on the differencing used in the rest of the

program.

For example, when solving hyperbolic PDEs

these differencing loops occur in the context of an

outer time step loop. The high-order array vari

ables ultimately are used to calculate a state vari

able array (perhaps pressure or density) for the

next discrete time unit, which is computed with

these higher order variables.

c Incomplete program fragment representing boundary handling.

c In these arrays, real zones extend from 1 to n; fake zones

c extend nbdy zones on a side.

c

c Move in one zone from the right.

c
do 100 i = -nbdy+1,n+nbdy-1

dx(i) = xl(i+1) - xl(i)

1000 continue

c
c Move in one zone from the left.

c

do 200 i -nbdy+2,n+nbdy-1

u (i) = dx (i) - dx (i-1)

200 continue

c

c Move in another zone from the left

c

do 300

dul (i)

300 continue

c

i = -nbdy+3,n+nbdy-1

u(i) - u(i-1)

c Move in another zone from the right.

c

do 400

ddul (i)

400 continue

i = -nbdy+3,n+nbdy-2

dul (i+1) - dul (i)

Submit your manuscripts at

http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable

Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

