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ABSTRACT 

Massively parallel processors (MPPs) hold the promise of extremely high performance 

that, if realized, could be used to study problems of unprecedented size and complexity. 

One of the primary stumbling blocks to this promise has been the lack of tools to 

translate application codes to MPP form. In this article we show how applications codes 

written in a subset of Furtran 77, called Fortran-P, can be translated to achieve good 

performance on several massively parallel machines. This subset can express codes that 

are self-similar, where the algorithm applied to the global data domain is also applied 

to each subdomain. We have found many codes that match the Fortran-P programming 

style and have converted them using our tools. We believe a self-similar coding style will 

accomplish what a vectorizable style has accomplished for vector machines by allowing 

the construction of robust, user-friendly, automatic translation systems that increase 

programmer productivity and generate fast, efficient code for MPPs. © 1995 John Wiley & 

Sons, Inc. 

1 INTRODUCTION 

Distributed memory massively parallel processors 

(YIPPs) consisting of many hundreds or even 

thousands of processors have become available 

and offer peak performance in the tens to hun

dreds of Gigaflops range [ 1, 2]. Achieving a signifi

cant fraction of this performance would allow the 

study of many important physical problems (com

pressible, turbulent flows [3], meso-scale weather 
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prediction [ 4], ocean circulation, etc.) that would 

otherwise be intractable. Unfortunately, recent 

published results [5] have suggested that these 

performance levels are not yet sustainable on 

complete applications codes. The goal of the work 

described here is to achieve very high performance 

on .\-IPPs while retaining portability and ease of 

programming for real applications codes. 

The approach we propose is to exploit certain 

characteristics of application codes that map well 

to YIPPs. These massively parallel applications 

are written in a subset of Fortran 77 we call For

tran-P and translated to a language suitable for 

MPP execution. There are many codes, including 

piecewise parabolic method [PP:\1: 6] and ad

vanced regional prediction system [ ARPS; 4], that 

naturally fit the definition of Fortran-P and can be 
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directly translated. The Fortran-P language was 

derived from the style used by Woodward [ 6 i in 

coding his hydrodynamics algorithms for a variety 

of high performance computers. (\1;-oodward first 

developed several of these ideas when implement

ing PPM on a Cray using solid-state disks.) We 

have refined this language and implemented tools 

that automatically translate Fortran-P programs 

into massively parallel codes running on the C.\I-

200, C.\1-5, and other parallel machines. These 

are complete codes used daily at our site to do 

large, state-of-the-art calculations. 

In the Fortran-P approach. the programmer is 

responsible for writing correct code that matches 

the Fortran-P model. In our current implementa

tion, this means that the programmer must use 

certain keywords and directives to guide the trans

lation process, and hence our approach is not 

purely automatic. However.. as our translation 

tools evolve and mature our ultimate goal is to 

reduce or remove altogether the need for these ad

ditionallexical constntcts to direct the translation. 

This article is organized as follow,.;: ,,. e first de

scribe why it can be difficult to sustain near-peak 

performance for .\IPPs e\·en on highly parallel 

codes. \';' e propose as a solution the Fortran- P 

model, where restricted forms of Fortran "77 code 

are translated to MPP form. The Fortran-P pro

gramming model and translation process are then 

presented in an informal way. In the final section 

the current Fortran-P translator implementations 

are described followed by performance results to 

date and conclusions. 

2 PERFORMANCE OF MPPs 

Currently, the high performance often advertised 

for MPPs is achieved primarily for small kernels 

and benchmark programs [?l. Recent perfor

mance studies comparing current .\lPPs to con

ventional vector supercomputers have shown that 

MPPs sustain a smaller fraction of their peak per

formance than vector machines [ .S ]. This seems 

especially true for applications requiring frequent 

global or irregular communication [8]. although 

this result is unsurprising given that the cost of 

fully connecting a large number of processing ele

ments is prohibitive. However.. even for highly 

parallel applications with locaL regular communi

cations current sustained .\IPP speeds .. although 

often impressive, often do not approach achieva

ble peak speeds. In this article, we focus on the 

problems attaining speedups on the highly paral

lel, regular applications that can be expressed in 

Fortran-P. 

The computing environment at .\Iinnesota in

cludes two large .\1PP machines, the CM-200, CM-

5,* and a variety of large Cray vector machines.t 

Our experience with the CM-200 and C.\1-5 run

ning compact applications codes (5K to 1 OK lines) 

such as PPM [6, 9, 10] is that these machines 

have often been unable to sustain a significant 

fraction of the peak speed except for very large 

problem sizes. For smaller problem sizes various 

overheads, including communication, tend to re

duce performance. Sustained performance is di

rectly related to how long it takes a calculation to 

run. Just as important is the time necessary for 

porting the code from a vector supercomputer or 

workstation to an .\IPP. The current lack of tools 

for this arduous process has slowed the accep

tance of .\1PP technology. 

The poor sustained performance (relative to 

peak) we have observed on highly parallel. regular 

applications is due primarily to three factors: 

1. Particular code idioms (or styles) are neces

sary to obtain best performance and devia

tions from these styles can degrade perfor

mance significantly (machine efficiency). 

2. In some cases,. the programming models 

and compilers offered by vendors do not 

match the model used in large applications 

codes (compiler efficiency). 

3. lt is currently difficult for programmers to 

modifv whole codes to match the restricted 

idioms that provide the best performance 

(programmer efficiency). 

The first two factors determine sustained machine 

performance: the third factor determines pro

grammer performance (i.e., how many lines of effi

cient code can be written and debugged each 

day). In the following paragraphs we expand on 

each factor. 

* The mac·hine configurations at the l~nivPrsity of \linne

sota were, for the C\1-200: 102"'1 procPssors. "'I Gbvtes main 

memorv. 7 Gflop/ speak speed: and for the C\1-5: .")44 nodes. 

2176 processors. 1 7 GbytPs main mPmorv. 65 Gflop/ s peak 

speed with vector units. 

T The CnivPrsity has a four-procPssor Crav X-\IP. a four

processor. full memorv ('f (~bytes mainJ Crav-2. aml an eight

processor Cray Y -"'1P C90 with 4 Gbvtes main memorv. 



2.1 Machine Efficiency 

MPP performance sensitivity is due to the large 

number of efficiency-critical features [ECFs~ 11] 

found in these machines: an ECF is any machine 

architecture or implementation feature that must 

be used efficiently to achieve good performance. 

Registers are a classic uniprocessor ECF: efficient 

use of registers can reduce program execution 

time significantly. (Good register allocation is a 

primary difference between ·'toy'' and production 

quality compilers.) Other uniprocessor ECFs in

clude cache management and pipeline schedul

ing, especially for deeply pipelined machines such 

as the DEC Alpha and MIPS/SCI R4000. 

MPPs have the same ECFs as uniprocessors 

(which are, after all, the YIPP building blocks) 

plus another class of ECFs, referred to as parallel 

ECFs, related to the interconnection network and 

distributed memory. Two key parallel ECFs are 

the network latencv and bandwidth. which deter

mine message start-up time and transfer rate. For 

programs that require frequent short bursts of 

communication between processors. network la

tency is most important: for infrequent communi

cation with large messages network bandwidth is 

key. In most cases, both factors are important and 

they dictate whether a particular problem map

ping to the machine will be efficient. ln addition .. 

network performance and processor performance 

should be balanced: faster processors require 

higher bandwidth, lower-latency networks. 

Speeding up one without the other is pointless (al

though in some cases slow networks can be com

pensated by larger processor memories). 

2.2 Compiler Efficiency 

Because there are more ECFs m .VlPPs than in 

uniprocessors, and because these ECFs interact 

in myriad and often unexpected ways, writing a 

good optimizing and parallelizing .VIPP compiler 

for a full language (such as Fortran 90 or a paral

lel C dialect) is a daunting task . .\IPP performance 

is often quite sensitive to program coding style. On 

the CYI-200 at Minnesota, we have seen order-of

magnitude differences in performance between 

loops coded in two different (but equivalent) 

styles. The coding styles that achieve good perfor

mance are often not obvious, resulting from idio

syncrasies of the compiler, run-time libraries. and 

the machine itself. For example, the C.\1 Fortran 

compiler for the CM-200 often has difficulty de-
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termining when local (and therefore cheap) com

munication is feasible: if it cannot. the compiler 

generates slow global router communications [12. 

13]. (During our PP.\1 performance studies on the 

CYI-200. we quickly learned that global router 

communication often reduced performance by at 

least one and in some cases two orders of magni

tude on certain loops.) The use of certain coding 

idioms can ensure that local (not global) commun

ications are generated [ 14 ~. 

The interface between the microsequencer and 

front end for the CYI-200 can also affect perfor

mance significantly.: Best performance is achieved 

when long (but not too long) sequences of confor

mant array operations are executed on the micro

sequencer. Currently the compiler does not try to 

optimize the C~-200 code to improve microse

quencer performance. so programmers who want 

this additional performance must hand-code large 

conformant blocks into their program. 

Current compiler limitations resulting from ba

sic assumptions about how the machine should be 

programmed can also reduce performance. For 

example, version 2.0 of the C.\1 Fortran compiler 

would not parallelize across dimensions declared 

as local to a processor (: SERIAL).:j: We discuss 

the implications of this limitation in Section 4. 

2.3 Programmer Efficiency 

Programmer efficiency is greatly reduced when 

many manual program transformations are neces

sary both to port the code and to obtain perfor

mance. Often the porting process and perfor

mance-related transformations are so intricate 

and involved that it would be reckless for a pro

grammer to attempt to implement them manually 

for even a small section of code, much less the 

whole program. Even if the whole program could 

be transformed, it would be difficult to read and 

maintain. In addition, these transformations are 

usually compiler or machine specific: Each ma

chine would require a different coding style and 

hence a different version of the code . .\laintaining 

consistency between these versions would be a 

very difficult task indeed. 

If the code must be translated from a seriallan

guage such as Fortran 77 to a data parallellan-

:j: This limitation was only r.,r.,ntly removed in version :2.1 

of the compiler :1.s:. 
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guage such as CM Fortran then significant effort is 

involved in getting the code to run on the parallel 

machine. Additional parallel indices and data lav

out directives must be added. and this can be. a 

tedious and highly error-prone process. Code 

must often be added to implement explicit com

munication (e.g., when updating fake zones): our 

experience has shown that this is often the most 

difficult code to write and debug. (The number of 

fake zones depends on the balance between net

work and processor speeds and hence should vary 

between machines to achieve best performance.) 

The resulting parallel program can often be less 

readable and more difficult to maintain and port. 

2.4 Summary 

From the previous discussion, it is clear that cur

rently there is a "catch-22'' in YIPP performance: 

Excessive time is spent either optimizing and par

allelizing codes (but codes run fast) or running the 

unoptimized slow code itself (but programming 

time is short). Once codes do run fast, 1/0 can 

become a serious bottleneck: 1/0 requirements for 

large fluid calculations are discussed bv Wood

ward [16]; an approach to meeting these. require

ments is proposed by Avneson et al. [ 42]. 

Some of these performance problems will be 

eased as the systems software matures and the 

architectures become more stable, but difficulties 

in porting codes from workstations and vector su

percomputers to distributed memory :VIPPs will 

remain. The fundamental issue is: What codes 

can exploit massive parallelism so that the MPP 

architecture actually does run fast? And for these 

codes, how can the programming be made simpler 

and less time-consuming? 

In the following sections we describe how inno

vative translation tools can be applied to help 

solve the problem of programming MPPs for a 

class of important applications. This problem 

clearly requires innovations in compilers, archi

tectures, and translation to achieve a complete so

lution. 

3 FORTRAN-P: TRANSLATION TOOLS 
FOR SELF-SIMILAR APPLICATION CODES 

Many large applications codes developed in "se

rial" languages such as Fortran T? have been re

sistant to good vectorizing and parallelizing com

piler technology simply because the underlying 

algorithms are inherently serial. There is a wide-

spread and to some extent justified view that pro

grammers will have to reconsider their basic algo

rithms for the new massively parallel environment. 

The result of this viewpoint has been a focus on 

language design rather than the translation of 

codes expressed in serial languages to :V1PP form 

[ 18]. The latter problem, especially the selection 

of an efficient data layout for a distributed mem

ory machine, has in general been considered too 

difficult to automate and has been left to the pro

grammer (see Gupta and Banerjee [19] for an ex

ception). 
We do not claim that all codes written in tradi

tionallanguages like Fortran T? can be automati

cally translated for efficient execution on an :VIPP. 

Rather, we argue that many programmers have, 

over the years, developed an understanding of 

how to express their parallel algorithms in serial 

programming languages. In fact, this is precisely 

what is done when writing in a '·vectorizable" 

style for a vector machine. Over time compiler 

technology, in the form of program analysis and 

recognition of common programming idioms, has 

matured to the point that vectorization is highly 

automated. We believe that a similar approach 

using a self-similar programming style can allow 

efficient automatic parallelization of serial code 

for MPPs. The language target for the translator 

could be data-parallel with data layout primitives 

(such as CM Fortran [20] or HPF [181), ames

sage-passing model, or message-passing com

bined with a native code compiler for a node. 

We have developed such a tool for a subset of 

Fortran 77 we call Fortran-P. (In fact, Fortran-P 

also includes several Fortran 90 array intrinsics.) 

Fortran-P codes are self-similar, allowing them to 

fully exploit the parallelism in an MPP, even as 

these machines scale up to ever larger sizes. Com

pilers can also exploit this property to generate 

efficient data layouts and communication code. 

The Fortran-P translator allows the MPP envi

ronment to mirror the typical vector supercompu

ter work environment in which codes are written 

and maintained in Fortran 77 and then vectorized 

(and often parallelized) as an integral part of the 

compilation process. In the Fortran-P environ

ment, the programmer develops and maintains 

codes on a workstation or a vector supercomputer 

and translates the program to YIPP form only as a 

final step before running a large calculation where 

the enormous memory and computing capacity of 

an MPP are required. Programmers can take ad

vantage of the mature and stable development en

vironments available on these machines, debug-



ging codes on smaller problems until the program 

is ready for a large production run on the YIPP. 

This approach takes advantage of the portability 

of Fortran 77 across a variety of machines, from 

PCs to vector supercomputers. 

Unlike other afproaches [21], we automati

cally generate the data distribution given the self

similar property of Fortran-P programs. These 

earlier approaches have required that explicit 

data layout directives be added by the program

mer; this is unnecessary in Fortran-P. In addition, 

we handle the overlap regions (what we call fake 

zones and what others often refer to as ghost 

zones) in a fundamentally different way than pre

vious efforts that are based on the "owner com

putes" rule. This rule requires that the processor 

that "owns" a particular data item must be the 

only processor to compute and write to it. 

We explicitly break the owner computes rule to 

increase performance; processors redundantly 

compute data "owned" by their neighbors" to 

avoid communication where possible and useful. 

An additional benefit of this approach is that mes

sage-passing calls transferring boundary data 

need not appear after most loops in the MPP code 

generated by the translator, as in the work of 

Hiranandani et al. [21 J; in fact, these calls can be 

collected and grouped into one routine called once 

per iteration (or time step for hyperbolic prob

lems). 

In the next two sections, we describe the For

tran-P programming model and the translation 

process. 

3.1 Fortran-P Programming Model 

Self-similar programs are written so that the com

putations applied to the whole domain are pre

cisely the same as those applied to each subdo

main. (This is analogous to the self-similarity of 

many fluid flows: Intuitively, self-similarity means 

that properties that are apparent globally are also 

found in small subregions of the flow; hence, if an 

observer could simultaneously examine both the 

complete domain and a small subdomain of the 

flow [without clues to the actual domain sizes] 

then he or she would be unable to tell them apart.) 

Programs written in Fortran-P perform computa

tions over a logically homogeneous grid of zones 

where (in two dimensions) the data domain ap

pears as shown in Figure 1. Here NX is the prob

lem size in the x dimension, NY is the problem size 

in the y dimension, and nbdy is the number of 
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nbdy nbdy 

FIGURE 1 A two-dimensional data domain with sur

rounding boundary zone. 

boundary (fake) zones. Boundary zones are em

ployed to implement several different kinds of 

boundary conditions [ 6]. Note that the current 

translator also supports one- and three-dimen

sional grids (higher dimension grids are possible). 

In general, a self-similar program has the fol

lowing properties: 

1. A logically regular computational grid. An 

irregular grid would not be self-similar as 

subdomains could have different grid topol

ogies. In Fortran-P, each subdomain grid 

must have a topology identical to that of the 

global grid. This means that the loops range 

over the full extent of real zones (and par

tially over the fake zones) and that each 

zone is computed in a loop iteration just like 

everv other zone. 

2. Dependence distances [22] are small con

stants independent of the problem size, 

which implies local communication opera

tions in the translated code. If dependence 

distances were a function of the grid size 

then when partitioning is performed nonlo

cal communication would be required. 

(There is an exception. For periodic bound

ary conditions the dependence distance is 

the equal to the extent of the particular di

mension. Boundary zone handling is dis

cussed in a following section.) In Fortran-P, 

updates of boundary zones impiy that inte

rior fake zones (to be described shortly) 

must be updated as well. 

3. Each subdomain requires nearly the same 

amount of computation. The same algo

rithm is applied to equal-sized subdomains 

so, in general, the amount of computation 

will be nearly the same. Some variance will 
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arise from data-dependent operations but 

this should be balanced out when subdo

mains are relatively large. 

4. Reduction operations are permitted, recur

rences are not. Reductions can be imple

mented in two steps: First, locally within 

each processor, followed by a global reduc

tion step using the result from the local 

computation. Recurrences are not self-simi

lar in the sense that each result depends on 

a different number of operations and the 

calculation is inherently sequential. 

These properties permit the data domain of self

similar Fortran-P programs to be automatically 

partitioned and then distributed equally across all 

processors. Each processor is given the same 

amount of work to perform. Fortran-P program

mers write code so that operations that apply lo

cally also apply globally. The translator can then 

exploit parallelism at multiple levels, both across 

the machine and within a node. 

Assuming a 3 X 3 processor grid the two-di

mensional domain is partitioned as shown in Fig

ure 2. N"ote how each interior subdomain (or sub

patch) is now surrounded by a picture frame of 

fake zones. These fake zones actually contain re

dundant data from neighboring processors as 

shown in Figure 3. 

Fake zones (also referred to as overlap regions 

[23]) allow computations to be performed using 

only local data; as the algorithm proceeds, the 

fake zones become corrupted and eventually must 

be updated using real zones from neighboring 

processors. In current Fortran-P codes fake zone 

updates are done simultaneously with boundary 

zone computation. No interprocessor communi-

nbdy 
.;.iF 

{nbdy 

E ~~' B T 
ny 

1 

G F R 
I ~,, E B 

FIGURE 2 Partitioning a two-dimensional domain 

into 3 X 3 patches. 

I 
I 

real zones 
I 

I 

. 

... ... 

fake zones 

FIGURE 3 Fake zones for an interior subdomain. 

cation is generated for loops that range over real 

(interior) as well as fake zones. This allows the 

zones just inside the boundaries to be updated 

properly without any special boundary treatment, 

so long as the values in the fake zones are properly 

set. 

Fake zones are indicated by the programmer 

when declaring arrays: Real zones extend from l to 

n; nbdy fake zones on either side are added, 

hence the full extent of the array becomes 

- nbdy + l to n + nbdy. The symbol n will vary for 

each parallel dimension. (A template program for 

Fortran-P-muscl16-is available via anonv

mous ftp from ftp. arc. umn. edu in the /pub 

directory. This program shows how boundary 

handling can be written properly in Fortran-P.) 

Another advantage of fake zones is that they 

allow the compiler to trade off memory with com

munication; larger overlap regions reduce the fre

quency of communication but require more mem

ory. Hence, the compiler could vary the overlap 

region size to obtain best performance on a given 

machine. (For example. the CYI-200 [24~, which 

has four megabytes of memory per node and rela

tively slow network speed, would perform better 

with more fake zones than the Yiaspar YIP-1 [25]. 

which has only 64 Kbytes of memory per node but 

a relatively fast network.) 

In the current Fortran-P model boundary code 

is written so that fake zone updates are generated 

when a loop is found that writes only the boundary 

array elements. Fortran-P currently recognizes 

four kinds of boundary conditions: reflecting, pe

riodic, continuation, and prescribed value [ 6]. 

More general boundary conditions could easily be 

supported within this Fortran-P framework. 

Global operations such as finding a global min

imum or maximum are sometimes required in 

Fortran-P programs; e.g., in PP.YL the Courant 

number must be calculated during each time step, 

which requires a global maximum. The current 

translator calls fast, vendor-supplied intrinsics 

(when available) to perform global operations effi

ciently. These kind of global reductions can most 



efficiently be performed in self-similar style: The 

reduction is performed locally on each processor 

and the same operation is then applied globally 

across processors using the local results. 

Certain kinds of elliptic equations requiring 

global information can be addressed with multi

grid relaxation schemes, which are made up en

tirely of local, self-similar operations applied in an 

iterative sequence. At each multigrid level the 

problem remains self-similar; refinements to the 

grid resolution can be incorporated naturally into 

the model. Hence Fortran-P can support these 

implicit difference schemes as well as the explicit 

schemes for which it is now used. 

Many algorithms can take advantage of com

press and decompress operations (available on 

certain vector machines directlv in hardware) on 

vectors. For example, certain multifluid calcula

tions requiring tracking of fluid interfaces [26] can 

be computed most efficiently this way. In the For

tran-P model, compress and decompress opera

tions on subdomain data can be effectively per

formed on each local node. Although operations 

on the compressed data might in principle pro

ceed faster if this work load were rebalanced, no 

such dynamic load balancing is currently imple

mented in our model. 

We note that some popular algorithms violate 

the exclusive use of local data that characterize 

self-similar algorithms. Such algorithms include 

standard spectral methods and implicit methods 

for partial differential equations that employ stan

dard linear algebraic techniques. These algo

rithms cannot be written in Fortran-P. However, 

as noted before implicit methods such as multigrid 

are self-similar. In addition, new implicit methods 

such as spectral elements, which use only local 

data within subdomains. are being developed to 

replace more traditional spectral techniques on 

MPPs. 

3.2 The Translation Process 

The Fortran-P translation process can be divided 

into two stages: (1) parallelization and data layout 

followed by (2) performance-enhancing optimiza

tions. In the following sections we show only the 

current translation for the CYI-200: the C.\1-5 

translation is described briefly in Section 4 and in 

Appendix 1. 

Parallelization and Data Layout 

In this stage the code is parallelized for .\1PP exe

cution. Data layout directives [20] are generated 

that partition the data domain equally among the 
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processors. Integer arrays, floating point scalars, 

and floating point arrays are promoted in dimen

sion and laid out across the processors; integer 

scalars are placed on the front end§ (CM-200 [1], 

Maspar .\fP-1 [25]). Current Fortran-P codes use 

integer scalars almost exclusively for index calcu

lations and these scalars are stored on the front 

end. The arrays are promoted in dimension to 

map onto either a two or three-dimensional pro

cessor grid, as specified by the programmer (gen

erally. two and three-dimensional data grids are 

mapped to two and three-dimensional processor 

grids). (The implementation can support other, 

more general, mappings; this will provide us with 

a mechanism to rapidly generate and benchmark 

several versions of the code with different data-to

processor grid mappings.) 

As an example, the following subroutine 

monslp was taken from the code muscl15, a two

dimensional hydrodynamics code developed by 

Woodward [38] (Fig. 4). The original Fortran 77 

version for this subroutine is converted by the 

translator to the code shown in Figure 5. 

Note that the CMF$ LAYOUT directive can be 

used to specify the layout of each array dimension 

as either parallel (: NEWS, across processor nodes) 

or serial (:SERIAL, within a single node). Other 

.\1PP languages have similar directives [18, 25, 

27]. This subroutine operates on one-dimen

sional arravs extracted from a two or three-dimen

sional subdomain. Kote that the array extent n 

must be adjusted to reflect the size of the two

dimensional subdomain allocated to each node. 

The parameters NODE_ X and NODE_ Y indicate the 

extent of the processor grid in the x andy dim en

sions. As can be seen in the translated code addi

tional parallel dimensions are added to each array 

reference to distribute subdomains among the 

processing elements. 

Code to implement and update fake zones is 

added during this phase in connection with the 

handling of boundary conditions. During the de

velopment of the C:.\1 Fortran version ofF ortran-P 

very close attention had to be paid to this portion 

of the code because it involved communication 

among nodes. For the C.\1-200, we were forced to 

use particular idioms and then check that the gen

erated code used the mesh interconnect (referred 

to as news) rather than the global router [24 j. 
which was slow relative to the mesh interconnect. 

Fake zones introduced by parallelization are 

set automatically by the Fortran-P translator 

§ The front end is called the partition manager on the 

C:\1-5 [1]. 
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subroutine rnonslp (a, da, dal, dalfac, darfac, n} 

dimension a(n), da(n), dal(n), dalfac{n), darfac(n) 

do 1000 i = 2,n 

1000 da1(i) =alii - a(i-1) 

do 2000 i = 2,n-1 

dda = dalfac(i) * dal(i) + darfac(i) * dal(i+l) 

s = sign (1., dda) 

thyng = 2. * aminl (s * dal(i), s * dal(i+l)) 

da(i) = s * arnaxl (0., arninl {s * dda, thyng}) 

2000 continue 

return 

end 

FIGURE 4 monslp subroutine taken from muscl15. 

when the programmer specifies boundary setting 

in the original program. Only boundary fake zones 

on the edges of the processor array must be ex

plicitly set by the programmer. For a reflecting 

boundary condition for a one-dimensional data 

array the Fortran-P program would be written as 

follows: 

10 

dimension a(-nbdy+1 : NX+nbdy+1) 

do 10 i = -nbdy+1, 0 

a (i) a (1-i) 

continue 

do 20 i = 1, nbdy 

a(nx+i) = a(nx+1-i) 

20 continue 

The two boundary code segments set the left and 

right fake zones of the array a as shown in Figure 

6. On a two-dimensional processor grid the For-

dimension a(-nbdy+1:NX+nbdy+1) 

FIGURE 6 

conditions. 

Fake zone updates for reflecting boundary 

tran-P code segments are transformed as follows: 

do 10 i = -nbdy+1, o 
a(i, 1, :)= a(l-i, 1, :) 

10 continue 

do 15 i = -nbdy+1, 0 

a ( i , 2 : NODE_x, : ) 

= a(nx+i, 1:NODE_x-1, 

15 continue 

do 20 i = 1, nbdy 

a (nx+i, NODE_x, 

= a(nx+1-i, NODE_X, :) 

20 continue 

25 

do 25 i = 1, nbdy 

a(nx+i, 1:NODE_x-1, :) 

= a(i, 2:NODE_X, 

continue 

1\'ote that for version 2.1 of C:\1 Fortran the trans

lator generates Fortran 90 array sections instead 

of serial loops on the first dimension. The a ( i, 

1, : ) reference sets the i1h element of 

subroutine rnonslp(a,da,dal,dalfac,darfac,n) 

parameter ( NODE_X = 16, NODE_Y = 16) 

dimension darfac( n, NODE_X, NODE_Y), dalfac{ n, NODE_X, NODE_Y) 

&, dal( n, NODE_X, NODE_Y), da( n, NODE_X, NODE_Y), a( n, NODE_X, 

& NODE_Y) 

CMF$ T"AYOUT darfac (:SERIAL, :NEWS, :NEWS) 

CMF$ LAYOUT dalfac( :SERIAL, :NEWS, :NEWS) 

CMF$ LAYOUT dal(:SERIAL, :NEWS, :NEWS) 

CMF$ LAYOUT da(:SERIAL, :NEWS, :NEWS) 

CMF$ LAYOUT a I :SERIAL, :NEWS, :NEWS) 

dimension thyng(NODE_X, NODE_Y) 

CMF$ LAYOUT thyng(:NEWS, :NEWS) 

dimension s(NODE_XI NODE_Y) 

CMF$ LAYOUT s(:NEWS, :NEWS) 

dimension dda(NODE_X 1 NODE_Y) 

CMF$ LAYOUT dda(:NEWS, :NEWS) 

do 1000 i = 2, n 

1000 dal( i, :, :) =a( i, :, :) -a( i- 1, :, :) 

do 2000 i = 2, n - 1 

dda = dalfac ( i, : , :) * da1 ( i, . , :I + darfac ( i, :, :I * da1 ( 

& i + 1, :, :I 

s =sign( 1. 1 dda) 

thyng = 2. * amin1 I s * dal ( i, : , : I , s * dal I i + 1, : , : I I 

da ( i I : 1 : ) = s * arnaxl { 0. , aminl ( s * dda, thyng) ) 

2000 continue 

return 

end 

FIGURE 5 monslp subroutine after Fortran-P translation. 



array a on the first column of processors. Because 

of the range of i, we are explicitly setting the fake 

zones on the left edge of the processor grid. Simi

larly, a (nx+i, NODE_X, : ) = . sets the 

fake zones on the right edge of the processor grid. 

Loops labeled 15 and 25 are generated by the 

Fortran-P precompiler and dictate how the inte

rior fake zones are to be updated with data from 

neighboring processors. These interior fake zone 

operations are merely data transfers from neigh

boring processors. For example, statement 20 en

sures that references to fake zones on the left edge 

of a processor obtain data that are consistent with 

those on the left neighbor processor. 

Assuming NODE_)(=3, the loading of fake zones 

for the left edge, in one row of the grid. appears as 

shown in Figure 7, where the hatched faked zones 

are loaded by the code (appearing after the loop) 

inserted by the Fortran-P compiler. Similarly, the 

updating of fake zones on the right edge, in one 

row of the grid, appears as shown in Figure 8. 

For a two-dimensional data arrav, columns of 

data are moved into fake zones rath.er than single 

array elements. For example, the following code 

would set the boundary zones on the left edge of 

the processor array b (assuming a periodic reflec

tive boundary): 

do 30 i = -nbdy+1, 0 

do 30 j = -nbdy+1, ny+nbdy 

b(i,j) = b(i+nx,j) 

30 continue 

where the j loop iterates over an entire column of 

array b including the boundary zones on the top 

and bottom. In this case, the Fortran-P precompi

ler generates the following code: 

do 30 i = -nbdy+1, 0 

do 30 j = -nbdy+1, ny+nbdy 

b (i' j' 1,:) 

= b(i+nx,j,NODE_X,:) 

30 continue 

llbdy 
~ f.c 

~llb~y llbdy 
~ f.c 

I~ 
slice of a 

~ '"~':, "~"'" ~ 
i---ll~ i---ll~ i---ll~ 

FIGURE 7 Fake and boundary zone updates for left 

side of grid. 
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llbdy llbdy llbdy 
~ f.c ~ ~ ~ ~ 

slice of a /, slice of a l'l: /, slice of a 
l~:j::::flj I~ ~ ~~ 

FIGURE 8 Fake and boundary zone updates for right 

side of grid. 

do 35 i = 1, nbdy 

b(nx+i, 1:NODE_X-1, :) 

= b(i, :, 2:NODE_X, :) 

35 continue 

The Fortran-P programmer writes code to imple

ment the periodic boundary condition and the 

data movement for the Fortran-P loop appears as 

shown in Figure 9. 1'\otice that the boundary zones 

in the periodic case are being loaded from data 

residing on the opposite side of array b. After data 

layout and partitioning, these data reside on the 

opposite side of the processor grid in column 

NODE_X (columns are numbered 1 to NODE_x). 

As before, the statement following the loop is gen

erated by the precompiler to update the interior 

fake zones as shown in Figure 10. 

As mentioned previously, global reductions are 

done in a self-similar style. (1\'ote that Fortran-P 

could easily support most of the Fortran 90 array 

intrinsic functions; currently we support all For

tran 77 intrinsics [excluding character-related 

functions]). The reduction operation is first per

formed on a subdomain. then the same reduction 

is applied globally across subdomains to obtain 

the scalar result. On the CYI-200, code is gener-

'I I 

array b 

~ f-------- nx 
nbdy 

FIGURE 9 Periodic boundary condition. left edge of 

two-dimensional array b. 
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I 

FIGURE 10 Fortran-P partitioning of two-dimen
sional data array. 

ated to broadcast this result to all processors: for 

the CM-5, the scalar result is left on the control 

processor. As an example, PP.VI codes perform a 

Courant number calculation [ 6. 28 J every time 

step which requires a global maximum operation. 

(In order for the numerical method to be stable, 

the Courant number, courno, must be less than 

one in every zone. Effectively, this means that the 

numerical time step is limited by the zone with the 

largest Courant number in the entire grid.) The 

Fortran-P code from muscl15 uses the Fortran 90 

intrinsic maxval and the statement appears as: 

courmx = maxval(courno(l:n)) 

The precompiler adds two processor dimensions 

to courno and courmx and ~cales the value n to 

spread them across the machine. The global max

imum operation as generated by the Fortran-P 

precompiler (for the C.\1-200) is ~hown below. 

(Note that for the Fortran 90 intrinsic maxval 
(array, dim) an (optional) second argument indi

cates that the result arrav contains the maximum 

value along dimension dim of array: the rank of 

the result array is one less than array.) 

c 

c 
10 

find max value for each 2-D 
subdomain 

courmx maxval(courno(l:n, :) 

c now find global max, broadcast 
this result 

c 
20 courmx_global 

maxval(courmx(:, :)) 
courmx = courmx_global 

This two-step process is unnecessary if the com

piler performs it locally. then globally: it appears 

current and future versions of CYI Fortran will 

support this. Other reduction operations ex

pressed as Fortran 90 intrinsic array functions 

(ANY, ALL, COUNT. MAXVAL, MINVAL. PRODUCT) 

could be handled similarly. 

The translation of elemental intrinsic functions 

in Fortran-Pis transparent [20]. Recall that "for 

an elemental intrinsic function with one argu

ment, calling the function with an array argument 

causes the function to be applied to each element 

of that array, with each application yielding a cor

responding scalar result. This collection of result 

values is returned in the form of an array of the 

same shape as the argument" [29]. In other 

words, the elemental intrinsics are inherently self

similar. During Fortran-P translation, each ele

mental intrinsic is passed through unchanged. op

erating instead on all the elements in the 

promoted argument variable. 

The current Fortran-P implementation recog

nizes the cvmg familv of Crav Fortran intrinsics 

[30] for implementing merge .operations (the se

mantics are similar to the C condition expression 

with the ternary operator ·'? : ''). These cvmg in

trinsics are converted to the Fortran 90 MERGE 

intrinsic, which is recognized by the C.VI Fortran 

compiler. Compress and decompress operations 

on vectors can be performed using the Fortran 90 

PACK and UNPACK intrinsics. which could be 

translated to execute independently on each 

node. 

Once all these transformations are completed, 

the code can be compiled and executed on an 

MPP. However, additional transformations. de

scribed next, can improve performance con~ider

ably. 

PERFORMANCE-ENHANCING 
OPTIMIZATIONS 

With immature. earlv-release compilers, restricted 

programming styles ~ust often be used to achieve 

efficient execution, and this seems especially true 

on MPPs. In certain cases we have seen a two-



order-of-magnitude difference in performance 

between two different but equivalent loop coding 

styles. For example, we found that in the bound

ary section code using Fortran 90 array notation. 

as in the following example 

rho( -nbdy+1: 0, -nbdy+ 1: ny+nbdy, 
1, :) 

& rho( nx-nbdy+1:nx, 
-nbdy+1: ny+nbdy, NODE_X, :) 

p ( -nbdy+1: 0, -nbdy+1:ny+nbdy, 
1, :) 

& p ( nx-nbdy+1:nx, 
-nbdy+1:ny+nbdy, NODE-X, :) 

UX( -nbdy+1: 0, -nbdy+1: ny+nbdy, 
1, :) 

& UX( nx-nbdy+1:nx, 
-nbdy+1:ny+nbdy, NODE_X, :) 

uy( -nbdy+1: 0, -nbdy+1:ny+nbdy, 
1, :) 

& uy( nx-nbdy+1:nx, 
-nbdy+1:ny+nbdy, NODE_X, :) 

instead of tightly-nested DO loops 

do 200 i nbdy + 1, 0 
do 200 k nbdy + 1, ny + nbdy 

rho( i, k, 1, :) =rho ( i + nx, 
k, NODE_X, :) 

p( i, k, 1, :) p ( i + nx, k, 
NODE_X, :) 

UX( i, k, 1, :) UX( i + nx, k, 
NODE_X, :) 

uy( i, k, 1, :) uy( i + nx, k, 
NODE_X, :) 

200 continue 

caused the compiler to generate general routing 

communication [ 14], slowing down the muscl15 

code by a factor of 100. The Fortran-P translator 

was modified to generate the faster loop form. 

In developing the Fortran-P translator, many 

similar timing experiments were performed on dif

ferent loops to determine source forms with the 

best performance. These forms have been incor

porated into the CYI Fortran code generated by 

the translator. This is an important advantage of 

automating the translation process; these kinds of 

source transformations can be extremely tedious 

and time-consuming to perform by hand. 

More traditional compiler source transforma

tions such as loop unrolling and forward substitu

tion are also applied to improve performance. 

Forward substitution is applied to vectorizable 
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do 9000 i = -j+6,n+j-4 

difusl = amaxl (difuse(i-1), difuse(i)) 

dwoll = dt * difusl 

courno(i) = amaxl (courno(i), ( (dwoll + dwoll)/ 

& aminl (dxnu(i-1), dxnu(i)))) 

ddmll = dwoll * rhonu(i-1) 

ddmrl = dwoll * rhonu(i) 

drnassllil = ddrnll- ddrnr1 

dmomtl(i) = ddmll * utnu(i-1) - ddmrl * utnu(i) 

dmoml ( i) = ddmll * unu { i -1) - ddmr l * unu ( i) 

denl ( i ) = ddmll * enu ( i -1 ) - ddmr l * enu ( i ) 

9000 continue 

FIGURE 11 Loop 9000 before forward substitution. 

loops: Floating-point scalar temporaries are sub

stituted directly into expressions, leaving only as

signments into array references. For example. for

ward substitution on the loop taken from muscl15 

(Fig. 11) would result in the loop shown in Figure 

12. In both the CM-5 and CM-200 [L 24] the 

front end processors broadcast instructions, ad

dresses, and other information as execution pro

ceeds; generally, a packet of such information 

must be sent whenever the size and/ or shape of 

the arrays being operated on changes, or when a 

transition from a scalar to arrav or arrav to scalar . . 
operation occurs [13]. This feature will likely be 

repeated on future MPPs with data-parallel com

pilers. Forward substitution results in larger se

quences of conformant array operations and per

formance improvements on the order of 10-50% 

due to the significant reduction in front end trans

fer overheads. Loop unrolling can give a similar 

effect for smaller loop bodies. 

On distributed memory MPPs it is important to 

reduce communication among processors to ob

tain good performance. Cnfortunately, current 

compilers often generate unnecessary communi

cation if they cannot determine that input or out

put data are local to a node [12, 13]. Compound-

do 9000 i = - j + 6, n + j - 4 

courno( i ) = arnaxl( courno( i ), (( dt *( amaxl( difus 

&e( i- 1 ) 
1 

difuse( i )))) +( dt *( amax1( difuse( i

& 1 I , di fuse 1 i I ) I ) I I amin1 ( dxnu ( i - 1 I , dxn 

&ul i I I I 
dmassl{ i ) =(( dt *( amax1( difuse( i- 1 l~ difuse{ 

&i ) ) ) ) * rhonu ( i - 1 ) ) - { ( dt * ( amax1 ( di fuse { i -

&1 ) 
1 

di fuse ( i ) ) ) ) * rhonu ( i } ) 

dmomtl( i ) ={( dt *( amax1{ difuse( i- 1 l~ difuse( 

&i ) ) ) ) * rhonu { i - 1 ) ) * utnu ( i - 1 ) - ( ( dt * 
&( amax1{ difuse( i- 1 l~ difuse{ i )))) * rhonu( i~ 

& ) ) * u tnu ( i ) 

dmoml{ i ) ={( dt *{ amax1( difuse{ i- 1 l~ difuse( i 

& ) 1 ) ) * rhonu 1 i - 1 I I * unu ( i - 1 ) - ( ( dt * ( 
&amax1 ( di fuse ( i - 1 ) 1 di fuse ( i ) ) ) ) * rhonu { i ) 

&) ) * unu ( i ) 

denl( i ) =(( dt *( amax1{ difuse( i- 1 ), difuse( i, 

& ) 1 1 I * rhonu 1 i - 1 ) I * enu ( i - 1 I - ( I dt * I a 

&max1( difuse( i- 1 ) 
1 

difuse{ i ))}) * rhonu( i 

&) ) * enu ( i ) 

9000 continue 

FIGURE 12 Loop 9000 after forward substitution. 
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ing this problem is that networb in current .VIPPs 

are often characterized by high latency and low 

bandwidths [ 5. ;j 1] resulting in performance deg

radation if employed frequently. 

\Ve have worked closely with the Fortran com

piler group at Thinking _\1achines to identify where 

this happens in typical Fortran-P codes: Thinking 

Machines has supplied us with severallihrarv rem

tines that allow our Fortran-P translator to r~move 
extraneous comrnunication in the transformed 

C-"1 Fortran codes. These routines include copy 

functions that copv data from one arrav into an

other without invc;king unnecPssary n;Jde com

munication (vector_move_olwa.rs). as well as rou

tines to equivalence arrays offset bv small 

constants to avoid communi~ation durin; the dif-
"' ferencing operations common in Fortran-P codes. 

The equiv_ld routine also effectivelv removes the 

subgrid ratio problem described in .the next sec

tion. 

4 CURRENT FORTRAN-P 
IMPLEMENTATION AND RESULTS 

The current Fortran-P translator (known as the 

alpha version) parses Fortran-P programs and 

generates intermediate representation (IR) trees: 

the back-end generates parallel versions of the 

code in C-"1 Fortran [20]: different translations 

are generated for the G\1-200 and the C:\1-5 be

cause the underlying machine architectures and 

their interactions with the compiler are different. 

The C-"1-5 and C-"1-200 share some phases of the 

CM Fortran compiler but the final code generation 

phases are distinct, as are the run-time libraries 

[13]. 

The alpha version of the translator was imple

mented using the Purdue compiler construction 

tool set [PCCTS: 32]: future versions will be im

plemented with PCCTS and SORCERER r33. 

34], a source-to-source translator generator. \\. e 

can retarget our translators for Cray .\IPP Fortran 

[35] and Maspar Fortran [25]: a straightforward 

translation to these dialects involves changing the 

data layout directives to match those used in each 

dialect. In addition. we intend to support a mes

sage-passing implementation. 

The Fortran-P translator has been employed to 

translate two PP:\1 codes, muscl15 and hppmfair 

14, and the shallow water version of ARPS. The 

computational approach used by PP.\1 and ARPS 

to exploit massively parallel processing is similar 

and these codes fit verv naturallv within the For-. . 

tran-P modeL forming the core of our current For

tran-P applications suite. Both PP.\1 and ARPS 

are inherently self-similar in design. 

PP_\1 codes have been used to studv a varietv of . . 
hydrodynamic phenomena. These codPs use a 

logically regular grid and treat every grid zone 

alike wherever possible. The cost of this approach 

is some small smearing of important flow struc

tures in such problems as multifluid calculations 

and flow around obstacles. Frequently. irrPgular. 

unstructured computational grids are used for 

these problems. However. given the large numeri

cal grids possible on modern computers combined 

with the sophisticated shock and contact discon

tinuity capturing of PP.\1. these disadvantages are 

kept to a minimum. This shifts thP difficuhit>,.; of 

massively parallel computation from the dynamic 

data layout and load balancing to the dt>sign of the 

algorithm on a logically regular mesh. Because of 

the very high efficiency which such algorithms can 

obtain on machines like the C.\1-5 and C.\I-200. 

such fine grid simulations may cost les:" than 

methods requiring elaborate. unstructured f!rids. 

The ARPS code for meso-scale weather predic

tion employs a regular grid and explicit finitP dif

ferencing to implement a hydrodynamic model 

that can capture and predict localized .. nonlinear 

weather phenomena [361. 

In the following two sections we describe pt>r

formance results obtained for these translated 

versions of PP.\1 and ARPS on the C.\I-200 and 

CYI-5. In generaL applications employing explicit. 

finite difference and finite volume numerical tech

niques [281 are good candidates for self-:"irnilar 

implementation. 

4.1 CM-200 

For the C.\1-200 results described in this >'iection~ 

we used a single quad that contains 236 \\~t>itek 

floating point units (all arithmetic wa,.; 64-bit) and 

1 Gbyte of memory: only ::\"E\\~S communication 

was required in the finaL optimized. Fortran-P

generated versions. The slicewise Fortran com

piler (version 1.2) was employed: runs were per

formed in dedicated mode. All timing data wert> 

obtained from cmtimer library routines [191. 

These results do not include anv time for 1/0. 

A Case Study in PPM Translation: 
musc/15 

The Fortran-P tool has successfullv translated 

muscl15, a two-dimensional hydrodynamics pro

gram consisting of nearly 5000 lines of code. from 



Fortran-P to CM Fortran. The muscl15 program 

uses a MCSCL algorithm developed by van Leer 

and Woodward [37, 38]. The original MCSCL 

scheme was one-dimensional Lagrangian: 

muscl15 represents extensions by Woodward to 

perform two-dimensional Eulerian calculations by 

adding a remap step and by applying operator 

splitting to treat gradients in the x- and y-direc

tions independently. The muscl15 code is almost 

completely vectorizable. The Fortran-P transla

tion of muscl15 was fully automatic once the code 

was modified to fit the Fortran-P model; the 

translated code has been tested and executed on 

the CM-200. We performed both performance 

and correctness debugging while testing the For

tran-P translator with muscl15. 

As in most PP:VI codes, muscl15 proceeds ac

cording to the directional-splitting algorithm of 

Strang [39] by performing an x-pass, where gra

dients are applied to each row of the data domain, 

followed by a y-pass where gradients are applied 

to each column: these passes are then applied 

again in reverse order. The sequence x-y y-x 

makes up a pair of time steps. The operations are 

performed on temporary one-dimensional arrays 

loaded with data copied from the original two-di

mensional arrays (representing pressure, density, 

and x- and y-velocities): the overhead for these 

data copies is trivial because many floating point 

operations are performed on each row or column. 

Each pass is preceded by an update of the 

boundary zones; the Fortran-P compiler recog

nizes that in this code section only boundary re

gions are accessed and generates the necessary 

fake zone updates. The width of the boundary 

zones in muscl15 is fixed at five zones, just 

enough to obviate the need for any communica

tion during a single pass. During each pass a se

ries of differencing operations. implemented as 

vector loops, is applied to each data strip: as this 

differencing proceeds the values within fake zones 

become invalid and no longer represent the true 

value of the corresponding zones in neighboring 
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processors; loop bounds become progressively 

"narrower" as the pass over a single strip is per

formed and the valid strip of fake zones moves in 

towards the real zones. We consider computations 

over boundarv zones as overhead but include 

them in the total flop/ s count; real flop/ s include 

only operations on real zones. This distinction will 

become important when we examine the subgrid 

ratio issue. 

We counted the total flop/ s per two-dimen

sional subdomain (nxn real zones) per time step in 

muscl15 as 2308n2 + 4n*nbdy- 10168n where 

nbdy is the width of the fake zones on each side. 

The real flop/ s per two-dimensional subdomain 

equaled 2308n2 . The resulting Mflop/s (mea

sured per time step) for varying sub domain size on 

the CM-200 are given in Table 1; the problem size 

was fixed at 2 20 zones. l\"ote that we show the total 

and real Ylflop/ s and their ratio (which we refer to 

as the real zone ratio) for increasing subgrid sizes. 

In Table 1 we see that performance is tied to the 

subgrid ratio, which is the number of subdomains 

per physical processor. The CM Fortran compiler 

version 2. 0 parallelizes across sub grids assigned 

to a single physical processor. The subgrid ratio, 

in effect, becomes the vector length executed by 

each processor and to get the best performance 

this ratio must be high [ 14]. This, in turn, sug

gests that each piece of an array assigned to a 

physical processor be small so that there are many 

small pieces that can then be overlapped upon the 

physical processors to create many subgrids per 

node. A drawback of such an approach is that 

communication is required each time an expres

sion is calculated using arrays offset from each 

other (as is tvpical in finite difference and finite 

volume numerical techniques): if communication 

is slow relative to computation. this approach can 

degrade performance. (Conversations with other 

CM-200 users who employ this strictly data paral

lel approach suggests that even on highly parallel 

codes this effect does limit the speed to less than 

300 Mflop/ s per quadrant of the C.\1-200.) In 

Table 1. muscl15 Speed and Time on CM-200 for Fixed Problem Size (220 Zones, 256 Floating Point 
Nodes, 8K Processors, 1 Gbyte Memory) 

Processor Subgrid Real Zone Total Total Real 
Grid Ratio Ratio \lflop/ ~ Time(s) \lflop/ s 

16 X 16 0.90 1.'>2 34.5 138 
32 X 32 4 0.8.S .S30 10.3 468 
64 X 64 16 0.?4 866 ?.9 612 

128 X 128 64 O . .S9 8H 10.1 480 
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contrast, the Fortran-P approach is to partltwn 

the data domain directly. assigning each proces

sor a contiguous subdomain to compute. The For

tran-P approach exploits the fact that each node 

in both the C:\1.-200 and C.\1.-.5 implements either 

pipeline or vector parallelism. These nodes can 

exploit such parallelism available in each subdo

main to run at maximum speed. Communication 

with neighboring processors is required occasion

ally, when fake zones become stale, and to imple

m~nt boundary conditions. Exploiting this node 

parallelism is important because the interconnec

tion networks are slow relative to processing ele

ments: Fast processors need not overwhelm a slow 

network if they compute primarily with local data. 

In muscl15 the real zone ratio drops as the sub

grid ratio increases because the fake zone width 

remains constant as the subgrids become smaller. 

For muscl15 a sub grid ratio of 16 works best for 

the version 2.0 compiler, which does not support 

parallel execution across array elements located 

within a single, physical processor (i.e., declared 

as : SERIAL). Without this restriction, the results 

in Table 1 suggest that muscl15 could run at 

nearly 800 real Mflop/ s per quad. 

Subdomain partitioning to increase subgrid ra

tios would be unnecessary if the CM Fortran com

piler would allow parallel execution along serial 

dimensions; in fact, partly in response to our re

quests this support has become available in the 

CM Fortran compiler version 2. 1. 

Table 2 shows the performance of muscl15 for 

increasing problem sizes. For these runs the two

dimensional subdomain size was fixed at 64 X 64 

zones and the processor grid was increased incre

mentally from 16 X 16 to 64 X 32. It can be seen 

that the real zone ratio remains nearly constant 

and the speed increases to about 760 Mflop/ s for 

the largest grid (over 8 million zones). This con

firms the result from Table 1 concerning the per

formance attainable for muscl15 on the CM-200. 

ARPS Weather Code 

Prior to working with the actual ARPS code [ 4], 

which is fully compressible and three dimen

sional, we translated a simpler, two-dimensional 

shallow water code which, although incompressi

ble, embodies the nonlinear dynamics of the full 

ARPS code. The shallow code neglects the vertical 

structure of the atmosphere as well as moist and 

turbulent processes. Because the structures used 

to map the atmosphere to the processing elements 

work in horizontal patches, there is a close corre

spondence between the shallow water model and 

the full ARPS code. The Fortran-P translator con

verted the shallow water model after appropriate 

programmer modifications to meet the Fortran-P 

model. Working with code developers we added 

additional code to indicate boundary updates 

were necessary (by writing only into fake zones) 

and extended array dimensions and loop bounds 

by nbdy on each side. The converted code con

sists of approximately 900 lines of C.\1. Fortran. 

The two-dimensional shallow code data domain 

was decomposed into equal-sized patches that 

were then mapped to the physical processing ele

ments. 

Table 3 presents performance results for the 

shallow code runs and is similar to Table 1 for 

muscl15: The subgrid ratio is varied between 1, 4, 

16, and 64 but the problem size remains fixed at 

2 20 zones. The subdomain size for subgrid ratio of 

one was 64 X 64; the computation included 100 

time steps. 

We do not show the real zone ratio for the shal

low code. The shallow code uses a simpler bound

ary zone treatment than muscl15, requiring only 

two fake zones on a side; within the time step al

most no fake zone updates are calculated (except 

for the actual boundary-handling code itself). 

Hence, almost all zone updates are to real zones. 

In addition, the shallow model uses simpler dif-

Table 2. muscl15 Speed and Time on CM-200 for Increasing Problem Size (64 X 64 Zones/Subdomain, 

256 Floating Point Nodes, 8K Processors, 1 Gbyte Memory) 

Processor Sub grid Real Zone Total Total Real 
Grid Ratio Ratio .\1flop/ s Time(s) .\1flop/ s 

16 X 16 1 0.90 152 34 .. 5 138 
32 X 16 2 0.91 308 34.3 282 
32 X 32 4 0.92 602 34.9 554 
64 X 32 8 0.92 828 .50.8 762 
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Table 3. ARPS Shallow Code Performance with Fixed Problem Size (256 Floating Point Nodes 

8K Processors, 1 Gbyte Memory) ' 

Processor Subgrid Subgrid Shallow Shallow 

Time(s) Grid Size Ratio "fl I .n op s 

16 X 16 

32 X 32 

64 X 64 

128 X 128 

64 X 64 

32 X 32 

16 X 16 

8 X 8 

ferencing than the full ARPS because it contains 

less "physical" detail; more fake zones would 

likely be required on the full code. There are ap

proximately 229 flop/ s per zone update per time 

step (vs. 2308 flop/ s per zone update for 

muscl15). 
It is evident again from Table 3 that the subgrid 

ratio is the key to performance; 1275 Ylflop/s is 

achieved on a single quad with a subgrid ratio of 

64 on a million zone calculation. A subgrid ratio 

of 4 yielded 380 :\iflop/s. 

In Table 4 the problem size was not fixed but 

varied with the subgrid ratio, which varied from 1 

to 8. Two subdomain sizes were employed: 64 X 

64 (2048 zones) and 64 X 32 (4096 zones) while 

the number of subgrids varied from 256 (subgrid 

ratio of one) to 2048 (subgrid ratio of 8). Hence 

the problem size varied from 1 I 2 million zones to 

over 8 million zones. 

As in previous results, it is clear in Table 3 that 

performance is linked directly to the subgrid ratio 

and increases to a maximum of 780 Mflop/ s with 

a subgrid ratio of 8. This represents a large prob

lem size: over 8 million zones on a grid with di

mensions 4096 X 2048. Because the speed in

creases nearly linearly with the problem size the 

execution time stayed nearly constant for these 

runs as the problem size increased. Performance 

results with the full ARPS code using the Fortran

P translator can be found in O'Keefe and Sawdey 
[40]. . 

1 

4 

16 

64 

4.2 CM-5 

122 

380 

950 

1275 

198 

6.3 

2.5 

19 

As mentioned earlier, the CYI-5 at :\iinnesota has 

544 nodes (2176 vector units) and 17 Gigabytes 

of main memory (32 Ylbytes per node). Each node 

has four vector units that were installed on the 

machine in late 1992. For the timings described 

here, a 128-node partition was employed. We 

used version 2.0 of the CM Fortran compiler with 

64-bit arithmetic; timings were performed with 

exclusive access to the partition. As with the CM-

200 all timing data were obtained using cmtimer 

library routines [20]. Timings on a 512-node par

tition show a factor of 4 speedup over 128 nodes if 

the problem size is also increased bv factor of 4. 

This is to be expected as node com~unication is 

minimal due to the characteristics of Fortran-P 

algorithms (and in particular PPYI) and special 

run-time routines called by the Fortran-P pre

compiler, that we describe in the following section 

Another Case Study in PPM Translation: 
hppmlairl4 

We translated hppmfair14, a recently developed 

PPM code with an improved boundarv treatment 

for irregular shapes. The hppmfair14 ~ode is over 

5000 lines of Fortran-P. We brieflv describe the 

boundary treatment in this new cocle. 

As an example, consider the flow around an 

object in a wind tunnel. A simplistic way of repre

senting the boundary interface between the object 

Table 4. ARPS Shallow Code Performance with Increasing Problem Size (256 Floating Point Nodes 

8K Processors, 1 Gbyte Memory) ' 

Patch Size Patch Size 

Sub grid 64X64 64 X 32 

Processor Grid Ratio Mflop/s (sec) Mflop/s (sec) 

16 X 16 1 120 (186) 110 (99) 
32 X 16 2 250 (180) 225 (95) 
32 X 32 4 440 (191) 440 (98) 
64 X 32 8 780 (217) 765 (114) 
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and the moving gas on a regular grid would be as 

an impenetrable series of "stair steps." This ap

proach is workable because of the large computa

tional grids (typically a million zones) possible on 

modern supercomputers. Because PPM uses solu

tions to the Rieinann shock tube problem to deter

mine fluxes at zone interfaces, the simple solution 

to a Riemann problem at a reflecting wall (either 

moving or stationary) may be used to provide well

defined pressures at the edges of those zones bor

dering on an object. 

This boundary treatment has been improved 

and implemented in the hppm14fair code. The 

improvement is based on the simple line interface 

calculation (SLIC) method [26], allowing "frac

tional" steps that produce a smoother boundary 

for a given computational grid [ 41]. This retains 

the computational ease inherent with uniform 

grids while permitting the freedom necessary for 

the description of complex shaped objects. The 

flux at a zone interface is constructed using the 

fractional volume of the object in that zone and its 

neighboring zone by blending the solution to a 

Riemann problem at a reflecting wall with the so

lution to the Riemann problem due to the dis con

tinuities in the fluid states on either side of the 

zone interface. 

The Fortran-P translation for the CM-5 was 

different from that for the CM-200. The Fortran

p translator performed two major tasks to produce 

CMF from the source code. FirsL it translated se

rial DO-loops into Fortran-90 style array expres

sions. The necessary array declarations and lay

out directives were also generated, both for 

explicit array variables and scalar temporary vari

ables within loops. These scalar temporaries were 

promoted to temporary arrays. Second, it created 

aliases where needed to remove unnecessary com

munication between processors. 

The beta (version 2.0) CMF compiler does not 

vectorize across explicitly local (: SERIAL) axes so 

we declared local axes as special (:NEWS) axes. 

Operations on the extracted one-dimensional 

strips in hppmfair14 used arrays offset in the pro-

cessor local axes by small constants: the compiler 

generates unnecessary communication in this 

case. We needed a way to "convince" the com

piler that no communication was required. This 

was accomplished by a library routine furnished 

by Thinking Machines that created aliases for ar

rays indexed by small constant offsets. The alias 

was then used in place of the actual offset array 

reference. The Fortran-P translator proved in

valuable for creating these aliases because there 

were many. For example, everywhere there was a 

reference such as dx (i-1) in a DO-loop indexed 

bv i. an alias such as dx_ml and dx itself was 

s~pplied in the calling argument list. For the worst 

case routine in hppmfair14 this required 220 pa

rameters. The use of aliases saves memory and 

reduces unnecessary floating point operations as 

the subgrid ratio can be one. :Kote that no new 

temporary arrays are created, merely temporary 

array names that are aliases for array sections 

from the one-dimensional strips. 

Several other performance enhancements were 

performed by hand as they were in very localized 

areas of the code and were considered likely to 

change radically very soon. These included the 

use of another run-time library routine, vector_ 

move_always, to perform data movement local to 

a processor; without this special routine we found 

that code that extracts one-dimensional strips 

from the two-dimensional data arrays generates 

unnecessary communication, slowing the calcula

tion significantly, vector_move_always also 

proved useful in reducing communicating in the 

boundarv section and fake zone code. In addition, 

special t~chniques related to obtaining high per

formance communication between processors 

were employed. Note that the need for vector_ 

move_always and aliases was removed in version 

2.1 of CM Fortran. Performance was approxi

mately equivalent between version 2.1 and ver

sion 2.0 with these special calls. 

Table 5 summarizes current CYI-5 perfor

mance results for the translated version of 

hppmfair14. The processor grid was set to 32x 

Table 5. hppmfair14 Performance with Increasing Problem Size (128 :\lodes, 512 Vector Units, 32 X 16 

Processor Grid) 

Problem Sub grid 

Size Size 

512 X 256 32 X .32 

1536 X 768 64 X 64 

3584 X 1792 128 X 128 

Real Zone 

Size 

16 X 16 

48 X 48 

112 X 112 

Total 

Mflop/ s 

1160 

1773 

2011 

Real 

Mflop/ s 

580 
1330 

1760 



16, yielding one subdomain for each vector unit. 

From Table 5 it is clear that performance depends 

on problem size, varying from 580 Mflop/ s for 

131,000 zones to 1760 Mflop/ s for 6.4 million 

zones. Scaling the larger problem size by a factor 

of 4 would yield almost 6.5 Gflop/s on the full 

512-node CM-5. 

These results are preliminary and will improve 

as the CM-5 compiler improves and in particular 

as more optimization passes are implemented and 

tuned. Our initial studies have shown that over

heads related to the run-time svstem seem to be 

significant. 

4.3 Summary 

We have described performance results for three 

Fortran-P codes, all translated by the Fortran-P 

translator for the C.\1-200 and C.\1-5. Perfor

mance on the CM-200 is directlv related to the 

subgrid ratio; for Fortran-P codes a wider fake 

zone boundary reduces the frequency of com

munication required. Cnfortunately, this conflicts 

with the need for partitioning subdomains further 

to increase the subgrid ratio and results in wasted 

memory and floating point operations. For the 

muscl15 code this ultimately limited performance 

to 600 Mflop/ s. Given the simple differencing and 

narrow fake zone width in the shallow code, in

creasing the subgrid ratio is not as much a prob

lem, and over 1200 .Vlflop/ s is achieved on this 

code. This problem has been removed in version 

2. 1 of CM Fortran. We used special run- time rou

tines from Thinking Machines to reduce commun

ication and avoid large subgrid ratios on the CM-

5; on large problems we have been able to show 

good performance. 

The results in this section have shown that For

tran-P codes can be translated to execute at very 

high speed on both the C.VI-200 and C.\1-5. We 

plan to use the translator as a powerful tool for 

translating codes and executing large calculations 

on MPPs and in understanding the performance 

of these machines on real Fortran-P application 

codes. 

5 CONCLUSIONS 

In this article we have described the Fortran-P 

approach to programming MPPs. We have shown 

that it is possible to translate self-similar codes 

automatically and achieve good performance. Fu-
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ture work includes further refinement of the pro

gramming model and improvements to the For

tran-P translator to achieve even better 

performance on the CM-5. The Fortran-P trans

lator will serve a dual role as a translation engine 

for converting codes and performing real calcula

tions as well as a tool to experiment with different 

source translations to isolate compiler, machine, 

and application code bottlenecks in the .\1PP envi

ronment. 
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the CM-200 translation for monslp was given in 

Section 3 of this article. The translated code for 

the CM-5 is: 

subroutine monslp(a,da,dal,dalfac,darfac,n) 

include 'defs.h' 
include '/usr/include/cm/CMF_defs.h' 
parameter (NODE_X =64,NODE_Y =16) 
real, array(NODE_X,NODE_Y,SUB_G,SUB_L:SUB_R):: darfac,dalfac,dal,da,a 

CMF$LAYOUT darfac(:block=1:procs=NODE_X, :block=1:procs=NODE_Y, 
:block=SUB_G:procs=1, :block=SUB_XY:procs=1) 
CMF$LAYOUT dalfac(:block=1:procs=NODE_x, :block=1:procs=NODE_Y, 
:block=SUB_G:procs=1, :block=SUB_XY:procs=1) 
CMF$LAYOUT dal(:block=1:procs=NODE_X, :block=1:procs=NODE_Y, 
:block=SUB_G:procs=1, :block=SUB_XY:procs=1) 
CMF$LAYOUT da(:block=1:procs=NODE_X, :block=1:procs=NODE_Y, 
:block=SUB_G:procs=1, :block=SUB_XY:procs=1) 
CMF$LAYOUT a(:block=1:procs=NODE_X, :block=1:procs=NODE_Y, 
:block=SUB_G:procs=1, :block=SUB_XY:procs=1) 

integer,save, array(CMF_SIZEOF_DESCRIPTOR) 
integer,save, array(CMF_SIZEOF_DESCRIPTOR) 
call equiv1d(dal_p1,dal,1) 
call equiv1d(a_m1,a,-1) 

a_m1 

daLp1 

call x_monslp(da,dal_p1,darfac,dalfac,a_m1,a,dal) 

return 
end 

subroutine x_rnonslp(da,dal_p1,darfac,dalfac,a_m1,a,dal) 
real, array(NODE_X,NODE_Y,SUB_G,SUB_L:SUB_R):: 
da,dal_p1,darfac,dalfac,a_m1,a,dal 

CMF$LAYOUT da(:block=1:procs=NODE_X, :block=1:procs=NODE_Y, 
:block=SUB_G:procs=1, :block=SUB_XY:procs=1) 
CMF$LAYOUT dal_p1(:block=1:procs=NODE_X, :block=1:procs=NODE_Y, 
:block=SUB_G:procs=1, :block=SUB_XY:procs=1) 
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CMF$LAYOUT darfac(:block=1:procs=NODE_x, :block=1:procs=NODE_Y, 
:block=SUB_G:procs=1, :block=SUB_XY:procs=1) 
CMF$LAYOUT dalfac(:block=1:procs=NODE_x, :block=1:procs=NODE_Y, 
:block=SUB_G:procs=1, :block=SUB_XY:procs=1) 
CMF$LAYOUT a_m1(:block=1:procs=NODE_x, :block=1:procs=NODE_Y, 
:block=SUB_G:procs=1, :block=SUB_XY:procs=1) 
CMF$LAYOUT a(:block=1:procs=NODE_X, :block=1:procs=NODE_Y, 
:block=SUB_G:procs=1, :block=SUB_XY:procs=1) 
CMF$LAYOUT dal(:block=1:procs=NODE_X, :block=1:procs=NODE_Y, 
:block=SUB_G:procs=1, :block=SUB_XY:procs=1) 

real, save, array(NODE_x,NQDE_Y,SUB_G,SUB_L:SUB_R):: thyng,s,dda 
CMF$LAYOUT thyng(:block=1:procs=NODE_x, :block=1:procs=NODE_Y, 
:block=SUB_G:procs=1, :block=SUB_XY:procs=1) 
CMF$LAYOUT s(:block=1:procs=NODE_X, :block=1:procs=NODE_Y, 
:block=SUB_G:procs=1, :block=SUB_XY:procs=1) 
CMF$LAYOUT dda(:block=1:procs=NODE_X, :block=1:procs=NODE_Y, 
:block=SUB_G:procs=1, :block=SUB_XY:procs=1) 

dal (: , : , : , 2: n) = a (: , : , : , 2: n) n - a_m1 (: , : , : , 2: n) 
1000 continue 

dda ( : , : , : , 2: n-1) = dal f ac ( : , : , : , 2: n-1) * dal ( : , : , : , 2 : n-1) + 
darfac(:,:,: ,2:n-1)* dal_p1(:,:,: ,2:n-1) 
s(:,:,: ,2:n-1) = sign(l., dda(:,:,: ,2:n-1)) 
thyng(:,:,: ,2:n-1) =2.* amin1( s(:,:,: ,2:n-1)* dal(:,:,: ,2:n-1), 
s (:,:,:, 2: n-1) * dal_p1 (:,:,:, 2: n-1)) 
da(:,:,:,2:n-1) = s(:,:,:,2:n-1)* amax1(0., amin1( s(:,:,:,2:n-1)* 

dda ( : , : , : , 2 : n-1) , 
& thyng(:,:,: ,2:n-1))) 

2000 continue 

return 
end 

which was translated from the following Fortran-P version: 

subroutine monslp (a, da, dal, dalfac, darfac, n) 
parameter( NODE_X=64, NODE_Y=16) 
dimension a(n), da(n), dal(n), dalfac(n), darfac(n) 
do 1000 i = 2,n 
dal(i) = a(i) - a(i-1) 1000 continue 
do 2000 i = 2,n-1 
dda = dalfac(i) * dal(i) + darfac(i) * dal(i+1) 
s = sign (1., dda) 
thyng = 2. * amin1 (s * dal (i), s * dal (i+1)) 
da(i) = s * amax1 (0., amin1 (s * dda, thyng)) 2000 continue 
return 
end 

We see in the translated code the variables 
dal_p1 and a_m1 to dal (i+1) and a (i-1). re
spectively. The alias is established by a function 
call to equi v1d which itself is called within the 
"wrapper" function monslp; the original routine 
is called by the wrapper function and is renamed 
as x_monslp. All equivalencing occurs within the 
wrapper function. 

The CMF$ LAYOUT directives employ the de
tailed array layout capability now available in ver
sion 2. 0 of C.\1 Fortran. These directives allow 
more precise control of data layout. l\ote that un
like the C.\1-200 Fortran-P translation the parallel 
dimensions now come first, before the local array 
dimensions. 



APPENDIX 2 

The following code is a program fragment consist

ing of a series of loops that perform differencing 

operations. A possible program context is inside 

the time step of a finite difference algorithm, 

where the arrays are computed successively, each 

a function of a previously calculated, lower-order 

quantity. For this program fragment, the bound-

c 
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ary zones move in by two zones on each side. The 

correct value of nbdy for the whole program will 

depend on the differencing used in the rest of the 

program. 

For example, when solving hyperbolic PDEs 

these differencing loops occur in the context of an 

outer time step loop. The high-order array vari

ables ultimately are used to calculate a state vari

able array (perhaps pressure or density) for the 

next discrete time unit, which is computed with 

these higher order variables. 

c Incomplete program fragment representing boundary handling. 

c In these arrays, real zones extend from 1 to n; fake zones 

c extend nbdy zones on a side. 

c 

c Move in one zone from the right. 

c 
do 100 i = -nbdy+1,n+nbdy-1 

dx(i) = xl(i+1) - xl(i) 

1000 continue 

c 
c Move in one zone from the left. 

c 

do 200 i -nbdy+2,n+nbdy-1 

u (i) = dx (i) - dx (i-1) 

200 continue 

c 

c Move in another zone from the left 

c 

do 300 

dul (i) 

300 continue 

c 

i = -nbdy+3,n+nbdy-1 

u(i) - u(i-1) 

c Move in another zone from the right. 

c 

do 400 

ddul (i) 

400 continue 

i = -nbdy+3,n+nbdy-2 

dul (i+1) - dul (i) 
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