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Abstract. We verify the Perfect-Mirsky Conjecture on the structure of the set
of eigenvalues for all n× n doubly stochastic matrices in the four-dimensional
case. The n = 1, 2, 3 cases have been established previously and the n = 5
case has been shown to be false. Our proof is direct and uses basic tools from
matrix theory and functional analysis. Based on this analysis we formulate
new conjectures for the general case.

For over a century, stochastic and doubly stochastic matrices have been amongst
the most well studied classes of matrices. Motivation has come from pure math-
ematics and from a wide variety of applications to fields such as economics, engi-
neering, and quantum information.

In 1946, Dmitriev and Dynkin [3] considered the problem of characterizing the
region, denoted by Θn, given by the subset of the complex plane containing all
eigenvalues of all n × n stochastic matrices. They reformulated the problem geo-
metrically, noting its equivalence to finding λ ∈ C such that multiplication by λ
preserves some polygon in the complex plane. A few years later, Karpelevich [6]
managed to completely solve the problem by expanding on Dmitriev and Dynkin’s
methods. He found implicit parametrizations of the boundary arcs for the regions
Θn. A detailed description of Karpelevich’s result along with diagrams of the re-
gions can be found in [8] or [1].

Sometime later, though almost fifty years ago still, Perfect and Mirsky [9] con-
sidered the analogous problem for doubly stochastic matrices; that is, they sought
to characterize the region ωn ⊂ C containing all eigenvalues of all n × n doubly
stochastic matrices. Let Πk denote the convex hull of the kth roots of unity;

Πk =
{ k∑

j=1

tje
2πij
k : tj ≥ 0,

∑
j

tj = 1
}
.

Perfect and Mirsky conjectured that ωn =
⋃n

k=1 Πk. They proved the conjecture
for n = 1, 2, 3, and left the cases n ≥ 4 open.
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More recently, in 2007 Mashreghi and Rivard [7] exhibited a counterexample for
n = 5; in fact, they showed the matrix⎛

⎜⎝
0 0 0 1 0
0 0 1

2 0 1
2

0 1
2

1
2 0 0

0 1
2 0 0 1

2
1 0 0 0 0

⎞
⎟⎠

has an eigenvalue that lies outside the 5 × 5 Perfect-Mirsky region. Thus, the
Perfect-Mirsky conjecture is known to be true for n = 3, and false for n = 5. As
the eigenvalues of the above matrix lie in ω6, the Perfect-Mirsky conjecture remains
open for n ≥ 6.

We note that the Karpelevich and Perfect-Mirsky regions coincide for n = 3 but
differ for all higher n. In particular, Θ3 =

⋃3
k=1 Πk but Θn �

⋃n
k=1Πk for n ≥ 4,

and hence the Karpelevich approach cannot be readily extended to the setting of
doubly stochastic matrices. It should be noted that Perfect and Mirsky’s proof that
ω3 =

⋃3
k=1Πk in [9, Theorem 12] works for stochastic matrices as well as doubly

stochastic matrices and hence provides another proof for the n = 3 Karpelevich

result that Θ3 =
⋃3

k=1 Πk.
We also note that while the Karpelevich and Perfect-Mirsky regions differ when

n ≥ 4, Karpelevich’s result shows us that the two line segments with one endpoint at

1 and the other at ±e
2πi
n form part of the boundary of Θn and hence are also part of

the boundary of ωn. Hence the Perfect-Mirsky conjecture always holds locally near
one. In [4], Johnson gives an improvement of this local result for doubly stochastic
matrices having certain zero patterns. The same author has also studied some
conditions under which certain stochastic matrices are similar to doubly stochastic
matrices [5], which gives further connections between the stochastic and doubly
stochastic eigenvalue problems. We will not use these results here, and so we refer
the interested reader to the original papers for details.

In this paper we verify the Perfect-Mirsky conjecture for n = 4. Our proof
uses basic tools from matrix theory and functional analysis. We have covered the
relevant background material above. The main result and preliminary results are
contained in the following section, as are new conjectures on the structure of these
fundamental eigenvalue sets.

We can identify C as a real vector space isomorphic to R2. We note that Π4

is the unit ball of the l1 vector norm on R2. We remind the reader of the well-
known formula for the l1 operator norm on the space of n × n matrices ‖A‖1 =
max1≤j≤n

∑n
i=1 |aij |.

We begin by representing vectors in Cn as convex polygons in the complex plane.

Definition 1. Let v = (v1, . . . , vn) ∈ Cn. Let Ki(v) ⊆ C, i = 1, 2, be the convex
hulls:

K1(v) = conv{vi}ni=1, K2(v) = conv{vj + vk}1≤j<k≤n.

The set of all eigenvalues of n× n row stochastic matrices corresponding to the
eigenvector v can be described in terms of K1(v) in a natural way.

Proposition 1. Let v ∈ Cn and let λ ∈ C. Then there exists an n×n row stochastic
matrix A such that Av = λv if and only if λK1(v) ⊆ K1(v).

Proof. We note that if Av = λv, then for all j, λvj =
∑n

k=1 ajkvk and hence λvj ∈
K1(v). Since all extreme points of λK1(v) lie in K1(v), we have λK1(v) ⊆ K1(v).
The converse direction follows from reversing these steps. �
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Corollary 1. Let K ⊆ C be a convex m-gon. Let λ ∈ C with λK ⊆ K. Then λ is
the eigenvalue of an m×m stochastic matrix.

We require Birkhoff’s theorem [2], which we now state for completeness.

Theorem 1 (Birkhoff). The set of n× n doubly stochastic matrices is the convex
hull of the n× n permutation matrices.

Birkhoff’s theorem can be used to show the relationship between doubly stochas-
tic matrices and K2.

Corollary 2. Let v ∈ Cn and let A be an n × n doubly stochastic matrix. Then
K2(Av) ⊆ K2(v).

Proof. Let w = Av. The extreme points ofK2(w) are of the form wj+wk, where j, k
are integers with 1 ≤ j < k ≤ n. Hence it is enough to show that wj +wk ∈ K2(v).
Since A is in the convex hull of the permutation matrices, wj +wk is in the convex
hull of the set {[Pv]j + [Pv]k : P is a permutation matrix}, which is K2(v). �

Before proving the next result, we need a definition and a preliminary geometric
lemma.

Definition 2. Let v = {v1, v2, . . . , vn} ∈ Cn. If no vi is in the convex hull of the
other {vj}j �=i, we say that the entries of v are convexly independent.

Lemma 1. Let C be a convex polygon, let v be one of its vertices and let l be a
line that runs though v. Let H be one of the open half-planes whose boundary is l.
If H contains any vertices of C, it must contain at least one vertex of C adjacent
to v.

We note that if v is an eigenvector of a doubly stochastic matrix corresponding
to an eigenvalue other than one, then the sum of the entries of the eigenvector is
zero. We now show that K2(v) is a convex n-gon when v ∈ Cn and the entries of
v are convexly independent and

∑n
k=1 vk = 0.

Proposition 2. Let v ∈ Cn and suppose the entries of v are convexly independent
and

∑n
k=1 vk = 0. Without loss of generality, we list them in clockwise order:

v1, v2, . . . , vn. Then we have

K2(v) = conv{vj + vj+1}nj=1,

where we have set vn+1 = v1.

Proof. We will show that z is an extreme point of K2(v) if and only if z = vj+vj+1.
Let vj and vj+1 be two adjacent vertices of K1(v). Then [vj , vj+1] is a face of

K1(v) and lies on a supporting hyperplane L. Let L be defined by the equation
f(x) = b, where b is a positive real number and f(z) is a real linear functional
f(z) = Re(az). Then f(vj) = f(vj+1) = b > 0. All other vertices of the polygon lie
on the same side of L as 0, and so f(vk) < b for k �= j, j + 1. Then f(vj + vj+1) =
2b > f(vk + vm) for any (k,m) �= (j, j +1), and so vj + vj+1 is an extreme point of
K2(v).

Next we show the converse. Suppose vj + vk is an extreme point of K2(v); then
let f be a real linear functional on C which achieves its maximum on K2(v) at
vj + vk. If f(vj) = f(vk), then the two vertices lie on the same proper face of
K1(v) and hence must be adjacent. So suppose f(vj) �= f(vk), and without loss
of generality let f(vj) > f(vk). Since vj is the only vertex of K contained in the

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1954 J. LEVICK, R. PEREIRA, AND D. W. KRIBS

open half-plane {z : f(z) > f(vk)}, vj must be adjacent to vk by Lemma 1 and the
result follows. �

Let e = (1, 1, 1, 1)T and A be a four-by-four doubly stochastic matrix. If v is
an eigenvector of A corresponding to an eigenvalue other than one, then eT v =
(eTA)v = eT (Av) = λeT v. Therefore eT v, which is also the sum of the entries of
the eigenvector v, is zero. In this case

K2(v) = conv{z1, z2,−z1,−z2},

where z1 = v1 + v2 = −v3 − v4 and z2 = v2 + v3 = −v4 − v1.

Proposition 3. Let z1 and z2 be complex numbers with z1 �= 0 and let K =
conv{z1, z2,−z1,−z2}. If λ is a complex number such that λK ⊂ K, then λ ∈ Π4.

Proof. Let K be as above and let λ be a complex number such that λK ⊂ K. If
K is a line segment, then λ must be a real number in [−1, 1]. So suppose K is a
quadrilateral. Similarly if λ is a real number, λ ∈ [−1, 1]. So suppose λ = a+bi with
b �= 0. Let M =

(
a −b
b a

)
be the multiplication operator by λ. We note that λ ∈ Π4

if and only if ‖M‖1 ≤ 1. Let S be the invertible real linear transformation which
maps Π4 to K (by mapping e1 to z1 and e2 to z2). Then ‖S−1MS‖1 ≤ 1 since M
maps K to K. We now complete the proof by showing that ‖M‖1 ≤ ‖S−1MS‖1
for all invertible two-by-two real matrices S. Since S−1MS is a real matrix with
the same trace as M , there exists x, y, x ∈ R such that

M =
(
a+x y
z a−x

)
.

Since a2−x2−yz = det(S−1MS) = det(M) = a2+b2 it follows that −yz = x2+b2.
Therefore we get

‖S−1MS‖1 = max{|a+ x|+ |z|, |y|+ |a− x|}

≥ 1

2
(|a+ x|+ |a− x|+ |y|+ |z|)

≥ |a|+
√

|yz| = |a|+
√
x2 + b2

≥ |a|+ |b| = ‖M‖1. �

We now verify the Perfect-Mirsky conjecture for n = 4.

Theorem 2. The set of all eigenvalues of 4 × 4 doubly stochastic matrices is⋃4
k=1Πk.

Proof. Let λ be the eigenvalue of a 4× 4 doubly stochastic matrix and let v be the
corresponding eigenvector. If the entries of v are convexly dependent, then v is the

eigenvalue of a 3× 3 stochastic matrix by Corollary 1 and we have λ ∈
⋃3

k=1Πk. If
the entries of v are convexly independent, then λK2(v) ⊆ K2(v) by Corollary 2. In
this case, K2(v) is of the form conv{z1, z2,−z1,−z2} by Proposition 2, and hence
λ ∈ Π4, and this completes the proof. �

The considerations above lead us to formulate the following conjecture on the
regions ωn.

Conjecture 1. The region ωn = Θn−1 ∪Πn.
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This conjecture is identical to the Perfect-Mirsky conjecture when n ≤ 4; ex-
actly the cases for which the Perfect-Mirsky conjecture is known to be true. This
conjecture is also compatible with Mashreghi and Rivard’s counterexample; the
eigenvalue they present is well within the relevant region of the 4 × 4 Karpelevich
region, as our conjecture would suggest.

We note that if the entries of the eigenvector are not convexly independent, then
Corollary 1 implies that the corresponding eigenvector lies in Θn−1. This is the
case with the Mashreghi-Rivard counterexample, where the eigenvector associated
with the eigenvalue outside Π5 is not convexly independent. We suspect that all
counterexamples to the Perfect-Mirsky Conjecture are eigenvalues which correspond
to eigenvectors having convexly dependent entries; we also state this as a conjecture
in its own right.

Conjecture 2. Let A be an n×n doubly stochastic matrix. Let λ be an eigenvalue
of A. If the entries of an eigenvector corresponding to λ are convexly independent,
then λ ∈

⋃n
k=1Πk.

Finally, we give a conjecture relating the eigenvalue regions of the stochastic and
doubly stochastic matrices.

Conjecture 3. Any eigenvalue of an n − 1 × n − 1 stochastic matrix is also the
eigenvalue of some n× n doubly stochastic matrix.

We note that one can prove Conjecture 1 by proving both Conjecture 2 and
Conjecture 3.
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