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Abstract In this paper we introduce two generalized convolutions for the Fourier cosine,
Fourier sine and Laplace integral transforms. Convolution properties and their applications
to solving integral equations and systems of integral equations are considered.
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1 Introduction

Convolutions for integral transforms are studied in the early years of the 20th century, such
as convolutions for the Fourier transform (see [2, 9, 13]), the Laplace transform (see [1, 2, 8,
13, 16–19]), the Mellin transform (see [8, 13]), the Hilbert transform (see [2, 3]), the Fourier
cosine and sine transforms (see [5, 7, 13, 14]), and so on. These convolutions have many
important applications in image processing, partial differential equations, integral equations,
inverse heat problems (see [2–4, 8, 11–13, 15–18]).
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In 1998, in [6] the authors introduced the general method for defining a generalized
convolution with a weight function γ for three arbitrary integral transforms K1,K2 and K3,
such that the following factorization identity holds:

K1

[
f

γ∗ g
]
(y) = γ (y)(K2f )(y)(K3g)(y).

This idea has opened up many new researches and new convolutions with interesting prop-
erties appearing in [7], but so far there is only one convolution for Laplace transform defined
as follows (see [2, 19]):

(
f ∗

L
g
)
(x) =

∫ x

0
f (x − t)g(t) dt, x > 0,

which satisfies the factorization identity

L
(
f ∗

L
g
)
(y) = (Lf )(y)(Lg)(y).

Here L denotes the Laplace transform

(Lf )(y) =
∫ ∞

0
f (x)e−yx dx, y > 0.

In this paper, we introduce and study two new generalized convolutions with a weight func-
tion for the Fourier cosine-Laplace and Fourier sine-Laplace transforms. We also obtain
some norm inequalities of these convolutions and algebraic properties of convolution op-
erators on L1(R+) and Lα,β

p (R+). In the last section, we apply these convolutions to solve
several classes of integral equations as well as systems of two integral equations.

2 Well-known Convolutions

The convolution of two functions f and g for the Fourier cosine transform is of the following
form (see [13]):

(
f ∗

Fc

g
)
(x) = 1√

2π

∫ ∞

0
f (y)

[
g(x + y) + g

(|x − y|)]dy, x > 0, (1)

which satisfies the following factorization identity:

Fc

(
f ∗

Fc

g
)
(y) = (Fcf )(y)(Fcg)(y) ∀y > 0. (2)

Here Fc is the Fourier cosine transform

(Fcf )(y) =
√

2

π

∫ ∞

0
f (x) cosxy dx, y > 0.

The generalized convolution for the Fourier sine and Fourier cosine transforms of f and g

is defined as follows (see [13]):

(
f ∗

1
g
)
(x) = 1√

2π

∫ ∞

0
f (u)

[
g
(|x − u|) − g(x + u)

]
du, x > 0, (3)
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which satisfies the following factorization identity:

Fs

(
f ∗

1
g
)
(y) = (Fsf )(y)(Fcg)(y) ∀y > 0. (4)

Here Fs is the Fourier sine transform

(Fsf )(y) =
√

2

π

∫ ∞

0
f (x) sinxy dx, y > 0.

The convolution of two functions f and g with a weight function for the Fourier sine trans-
form is of the following form (see [5]):

(
f

γ∗
Fs

g
)
(x) = 1

2
√

2π

∫ ∞

0
f (y)

[
sign(x + y − 1)g

(|x + y − 1|)

− g(x + y + 1) + sign(x − y + 1)g
(|x − y + 1|)

− sign(x − y − 1)g
(|x − y − 1|)]dy, x > 0, (5)

which satisfies the factorization equality

Fs

(
f

γ∗
Fs

g
)
(y) = siny(Fsf )(y)(Fsg)(y) ∀y > 0. (6)

The convolution of two functions f and g for the Fourier cosine and Fourier sine transform
is of the following form (see [7]):

(
f ∗

2
g
)
(x) = 1√

2π

∫ ∞

0
f (y)

[
g(x + y) + sign(y − x)g

(|y − x|)]dy, x > 0, (7)

which satisfies the following factorization identity:

Fc

(
f ∗

2
g
)
(y) = (Fsf )(y)(Fsg)(y) ∀y > 0.

In this paper we are interested in the weighted space Lα,β
p (R+) ≡ Lp(R+, xαe−βxdx) with

the norm defined as follows:

∥
∥f (x)

∥
∥

L
α,β
p (R+)

=
(∫ ∞

0

∣
∣f (x)

∣
∣pxαe−βx dx

)1/p

, 1 ≤ p < ∞.

3 The Fourier–Laplace Generalized Convolutions

Definition 1 The generalized convolutions with a weight function γ (y) = e−μy, μ > 0 of
two functions f and g for the Fourier cosine-Laplace and Fourier sine-Laplace transforms
are defined by

(
f

γ∗ g
)
{ 1

2 }(x) = 1

π

∫ ∞

0

∫ ∞

0

[
v + μ

(v + μ)2 + (x − u)2

± v + μ

(v + μ)2 + (x + u)2

]
f (u)g(v) dudv, (8)

where x > 0.
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Theorem 1 For two arbitrary functions f (x) and g(x) in L1(R+), the generalized convolu-
tions (f ∗g){ 1

2 } belong to L1(R+). Moreover, the following norm estimates and factorization
identities hold:

∥∥(
f

γ∗ g
)
{ 1

2 }
∥∥

L1(R+)
≤ ‖f ‖L1(R+)‖g‖L1(R+),

F{ c
s }

(
f

γ∗ g
)
{ 1

2 }(y) = e−μy(F{ c
s }f )(y)(Lg)(y) ∀y > 0. (9)

Furthermore, the generalized convolutions (f
γ∗ g){ 1

2 } belong to C0(R+).

Proof We have

∫ ∞

0

∣∣∣
∣

v + μ

(v + μ)2 + (x − u)2
± v + μ

(v + μ)2 + (x + u)2

∣∣∣
∣dx

≤
∫ ∞

−u

v + μ

(v + μ)2 + t2
dt +

∫ ∞

u

v + μ

(v + μ)2 + t2
dt

=
∫ ∞

−∞

v + μ

(v + μ)2 + t2
dt = π. (10)

From (8) and (10), we have

∫ ∞

0

∣∣(f
γ∗ g

)
{ 1

2 }(x)
∣∣dx ≤

∫ ∞

0

∣∣f (u)
∣∣du

∫ ∞

0

∣∣g(v)
∣∣dv = ‖f ‖L1(R+)‖g‖L1(R+).

Therefore
∥
∥(

f
γ∗ g

)
{ 1

2 }
∥
∥

L1(R+)
≤ ‖f ‖L1(R+)‖g‖L1(R+) < ∞.

Thus

(
f

γ∗ g
)
{ 1

2 } ∈ L1(R+). (11)

From (8) and by applying formula
∫ ∞

0 e−αx cosxy dx = α

α2+y2 (α > 0) (see [2]), we obtain

(
f

γ∗ g
)
{ 1

2 }(x) = 1

π

∫

R
3+

f (u)g(v)e−(v+μ)y
[
cos(x − u)y ± cos(x + u)y

]
dudv dy

= 2

π

∫

R
3+

f (u)g(v)e−(v+μ)y

{
cosyx · cosyu

sinyx · sinyu

}
dudv dy

= 2

π

∫ ∞

0

[∫ ∞

0
f (u)

{
cosyu

sinyu

}
du

∫ ∞

0
g(v)e−vy dv

]
e−μy

{
cosxy

sinxy

}
dy

=
√

2

π

∫ ∞

0
(F{ c

s }f )(y)(Lg)(y)e−μy

{
cosxy

sinxy

}
dy. (12)

From (12) and (11), we get the factorization identities (9). From (12) and Riemann–

Lebesgue lemma, we obtain (f
γ∗ g){ 1

2 } ∈ C0(R+). Theorem 1 is proved. �
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Theorem 2 Suppose that p > 1, r ≥ 1,0 < β ≤ 1, f (x) ∈ Lp(R+), g(x) ∈ L1(R+).

Then the generalized convolutions (f
γ∗ g){ 1

2 } are well-defined, continuous and belong to

Lα,β
r (R+). Moreover, we get the following estimates:

∥∥(
f

γ∗ g
)
{ 1

2 }
∥∥

L
α,β
r (R+)

≤ C‖f ‖Lp(R+)‖g‖L1(R+), (13)

where C = ( 2
πμ

)1/pβ− α+1
r Γ 1/r (α + 1) and Γ (x) is Gamma–Euler function.

Furthermore, if f (x) ∈ L1(R+) ∩ Lp(R+) then the generalized convolutions (f
γ∗ g){ 1

2 }
belong to C0(R+), and satisfy the factorization identity (9).

Proof By applying Hölder’s inequality for q > 1, 1
p

+ 1
q

= 1 and (10), we have

∣∣(f
γ∗ g

)
{ 1

2 }
∣∣

≤ 1

π

{∫

R
2+

∣
∣f (u)

∣
∣p

[
v + μ

(v + μ)2 + (x − u)2
± v + μ

(v + μ)2 + (x + u)2

]∣
∣g(v)

∣
∣dudv

}1/p

×
{∫

R
2+

∣
∣g(v)

∣
∣
[

v + μ

(v + μ)2 + (x − u)2
± v + μ

(v + μ)2 + (x + u)2

]
dudv

}1/q

≤ 1

π

[∫

R
2+

∣∣f (u)
∣∣p∣∣g(v)

∣∣ 2

μ
dudv

]1/p[∫ ∞

0

∣∣g(v)
∣∣π dv

]1/q

=
(

2

πμ

)1/p

‖f ‖Lp(R+)‖g‖L1(R+).

Thus, convolutions (8) exist and are continuous. Combining with formula (3.225.3) in
[10, p. 115], we get

∫ ∞

0
xαe−βx

∣∣(f
γ∗ g

)
{ 1

2 }(x)
∣∣r dx ≤ Cr‖f ‖r

Lp(R+)‖g‖r
L1(R+).

Hence convolutions (8) are in Lα,β
r (R+) and identities (13) hold. From the hypothesis of

Theorem 2, and by similar argument as in Theorem 1, we get the factorization identities (9).

Combining with Riemann–Lebesgue lemma, we obtain (f
γ∗ g){ 1

2 }(x) ∈ C0(R+). Theorem 2
is proved. �

Theorem 3 Let α > −1,0 < β ≤ 1,p > 1, q > 1, r ≥ 1 be such that 1
p

+ 1
q

= 1. Then

for f (x) ∈ Lp(R+) and g(x) ∈ Lq(R+, (1 + x2)q−1), the convolutions (f
γ∗ g){ 1

2 } are well-

defined, continuous, bounded in Lα,β
r (R+) and

∥
∥(

f
γ∗ g

)
{ 1

2 }
∥
∥

L
α,β
r (R+)

≤ C‖f ‖Lp(R+)‖g‖Lq(R+,(1+x2)q−1), (14)

where C = μ
− 1

p π
− 1

q β− α+1
r Γ 1/r (α + 1). Moreover, if f (x) ∈ L1(R+) ∩ Lp(R+) and g(x) ∈

L1(R+) ∩ Lq(R+, (1 + x2)q−1) then convolutions (f
γ∗ g){ 1

2 } belong to C0(R+) and satisfy
factorization identities (9).
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Proof Applying Hölder’s inequality for p,q > 1 and combining with (10), we have

∣
∣(f

γ∗ g
)
{ 1

2 }
∣
∣

≤ 1

π

{∫

R
2+

∣∣f (u)
∣∣p

[
v + μ

(v + μ)2 + (x − u)2
± v + μ

(v + μ)2 + (x + u)2

]
1

1 + v2
dudv

}1/p

×
{∫

R
2+

∣∣g(v)
∣∣q

[
v + μ

(v + μ)2 + (x − u)2
± v + μ

(v + μ)2 + (x + u)2

]

×
(

1

1 + v2

)1−q

dudv

}1/q

≤ 1

π

[∫ ∞

0

∣∣f (u)
∣∣p du

∫ ∞

0

2

μ

1

1 + v2
dv

]1/p[∫ ∞

0

∣∣g(v)
∣∣q(1 + v2

)q−1
π dv

]1/q

= μ
− 1

p π
− 1

q ‖f ‖Lp(R+)‖g‖Lq(R+,(1+x2)q−1).

Therefore, the convolutions (8) are well-defined and continuous. From that and by applying
formula (3.225.3) in [10, p. 115], we obtain

∫ ∞

0
xαe−βx

∣∣(f
γ∗ g

)
{ 1

2 }(x)
∣∣r dx ≤ Cr‖f ‖r

Lp(R+)‖g‖r

Lq (R+,(1+x2)q−1)
.

It shows that the convolutions (8) are in Lα,β
r (R+), and estimates (14) hold. From hypothesis

of Theorem 3, by similar argument as in Theorem 1, we get the factorization identities (9).

Combining with the Riemann–Lebesgue lemma, we obtain (f
γ∗ g){ 1

2 }(x) ∈ C0(R+). Theo-
rem 3 is proved. �

Corollary 1 Under the same hypothesis as in Theorem 3, the generalized convolutions (8)
are well-defined, continuous, belong to Lp(R+), and the following inequalities hold:

∥
∥(

f
γ∗ g

)
{ 1

2 }
∥
∥

Lp(R+)
≤

(
π

2

)1/p

‖f ‖Lp(R+)‖g‖Lq(R+,(1+x2)q−1). (15)

Furthermore, in the case p = 2, we get the following Parseval identity:

∫ ∞

0

∣
∣(f

γ∗ g
)
{ 1

2 }(x)
∣
∣2

dx =
∫ ∞

0

∣
∣e−μy(F{ c

s }f )(y)(Lg)(y)
∣
∣2

dy. (16)

Proof By applying Hölder’s inequality and (10), we have

∫ ∞

0

∣∣(f
γ∗ g

)
{ 1

2 }(x)
∣∣
p

dx

≤ 1

πp

∫ ∞

0

{[∫

R
2+

1

1 + v2

∣
∣f (u)

∣
∣p

∣∣
∣∣

v + μ

(v + μ)2 + (x − u)2

± v + μ

(v + μ)2 + (x + u)2

∣∣
∣∣

p

dudv

]1/p[∫

R
2+

(
1

1 + v2

)1−q ∣
∣g(v)

∣
∣q dudv

]1/q}p

dx
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≤ 1

πp

[∫

R
2+

1

1 + v2

∣
∣f (u)

∣
∣pπp dudv

][∫ ∞

0

(
1 + v2

)q−1∣∣g(v)
∣
∣q dv

]p/q

=
[∫ ∞

0

1

1 + v2
dv

∫ ∞

0

∣
∣f (u)

∣
∣p du

][∫ ∞

0

(
1 + v2

)q−1∣∣g(v)
∣
∣q dv

]p/q

= π

2
‖f ‖p

Lp(R+)‖g‖p

Lq (R+,(1+x2)q−1)
.

Therefore, the convolutions (f
γ∗ g){ 1

2 }(x) are continuous in Lp(R+) and (15) hold. On the
other hand, we get the following Parseval equalities in L2(R+):

‖F{ c
s }f ‖L2(R+) = ‖f ‖L2(R+).

Combining with factorization identities (9), we get the Fourier-type Parseval identity (16). �

Corollary 2

(a) Let f (x) ∈ L2(R+), g(x) ∈ L1(R+). Then the generalized convolutions (8) are well-
defined in Lα,β

r (R+) (r ≥ 1, β ≥ 0, α > −1), and the following estimates hold:

∥
∥(

f
γ∗ g

)
{ 1

2 }
∥
∥

L
α,β
r (R+)

≤
√

2

πμ
β− α+1

r Γ 1/r (α + 1)‖f ‖L2(R+)‖g‖L1(R+). (17)

(b) If f (x), g(x) ∈ L1(R+) then convolutions (8) are well-defined in Lα,β
r (R+) (r ≥ 1,

β ≥ 0, α > −1) and the following estimates hold:

∥
∥(

f
γ∗ g

)
{ 1

2 }
∥
∥

L
α,β
r (R+)

≤ 2

πμ
β− α+1

r Γ 1/r (α + 1)‖f ‖L1(R+)‖g‖L1(R+). (18)

Proof

(a) By applying Schwarz’s inequality and (10), we have

∣
∣(f

γ∗ g
)
{ 1

2 }(x)
∣
∣ ≤ 1

π

[∫ ∞

0
π

∣
∣g(v)

∣
∣dv

]1/2[∫

R
2+

∣
∣f (u)

∣
∣2∣∣g(v)

∣
∣ 2

μ
dudv

]1/2

=
√

2

πμ
‖f ‖L2(R+)‖g‖L1(R+).

Combining with formula (3.225.3) in [10, p.115], we get

∥∥(
f

γ∗ g
)
{ 1

2 }
∥∥

L
α,β
r (R+)

≤
√

2

πμ
β− α+1

r Γ 1/r (α + 1)‖f ‖L2(R+)‖g‖L1(R+).

Thus, (17) is proved.
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(b) By applying Schwarz’s inequality, we have

∣∣(f
γ∗ g

)
{ 1

2 }(x)
∣∣ ≤ 1

π

[∫

R
2+

∣∣f (u)
∣∣∣∣g(v)

∣∣ 2

μ
dudv

]1/2[∫

R
2+

∣∣f (u)
∣∣∣∣g(v)

∣∣ 2

μ
dudv

]1/2

= 2

πμ
‖f ‖L1(R+)‖g‖L1(R+).

Combining with formula (3.225.3) in [10, p.115], we get (18). �

Theorem 4 (Titchmarch’s Type Theorem) Given two continuous functions g ∈ L1(R+),

f ∈ L1(R+, eγ x), γ > 0. If (f
γ∗g)1(x) = 0 ∀x > 0 then either f (x) = 0 ∀x > 0 or g(x) = 0

∀x > 0.

Proof We have
∣∣
∣∣

dn

dyn

(
cosyxf (x)

)
∣∣
∣∣ =

∣∣
∣∣f (x)xn cos

(
yx + n

π

2

)∣∣
∣∣

≤ ∣
∣e−γ xxn

∣
∣
∣
∣eγ xf (x)

∣
∣ ≤ n!

γ n

∣
∣eγ xf (x)

∣
∣. (19)

Here we used the following estimate:

0 ≤ e−γ xxn = e−γ x (γ x)n

n!
n!
γ n

≤ e−γ xeγ x n!
γ n

= n!
γ n

,

and f ∈ L1(R+, eγ x). Combining with (19) we get dn

dyn (cosyxf (x)) ∈ L1(R+).
Since L1(R+, eγ x) ⊂ L1(R+), (Fcf )(y) are analytic in R+. On the other hand, we find

that (Lg)(y) is analytic in R+. By using the factorization properties (9) for (f
γ∗ g)1(x) = 0

we have (Fcf )(y)(Lg)(y) = 0 ∀y > 0. It implies that either f (x) = 0 ∀x > 0 or g(x) = 0
∀x > 0. Theorem 4 is proved. �

Corollary 3 Under the same hypothesis as in Theorem 4, if (f
γ∗ g)2(x) = 0 ∀x > 0 then

either f (x) = 0 ∀x > 0 or g(x) = 0 ∀x > 0.

Proposition 1 Let f (x) and g(x) be two functions in L1(R+). Then

(
f

γ∗ g
)
{ 1

2 }(x) =
√

2

π

∫ ∞

0
g(v)

(
f (u) ∗

{ Fc
1 }

v + μ

(v + μ)2 + u2

)
(x) dv.

Here, the convolutions (· ∗
Fc

·), (· ∗
1
·) are defined by (1), (3), respectively.

Proof From (8), (1) and (3), we have

(
f

γ∗ g
)
{ 1

2 }(x)

= 1

π

∫ ∞

0

∫ ∞

0

[
v + μ

(v + μ)2 + (x − u)2
± v + μ

(v + μ)2 + (x + u)2

]
f (u)g(v) dudv
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= 1

π

∫ ∞

0
g(v)

{∫ ∞

0
f (u)

[
v + μ

(v + μ)2 + (x − u)2
± v + μ

(v + μ)2 + (x + u)2

]
du

}
dv

=
√

2

π

∫ ∞

0
g(v)

(
f (u) ∗

{ Fc
1 }

v + μ

(v + μ)2 + u2

)
(x) dv.

�

Proposition 2 Let f (x), g(x) and h(x) be functions in L1(R+). Then convolutions (8) are
not commutative and associative but satisfy the following equalities:

(a) f
γ∗
Fs

(g
γ∗ h)2 = ((

f
γ∗
Fs

g
) γ∗ h

)
2
,

(b) f ∗
Fc

(g
γ∗ h)1 = ((

f ∗
Fc

g
) γ∗ h

)
1
,

(c) f ∗
1
(g

γ∗ h)1 = ((
f ∗

1
g
) γ∗ h

)
2
,

(d) f ∗
2
(g

γ∗ h)2 = ((
f ∗

2
g
) γ∗ h

)
1
.

Here the convolutions
(·γ∗·

Fs

)
, (· ∗

Fc

·), (· ∗
1

·) and (· ∗
2

·) are defined by (5), (1), (3) and (7),

respectively.

Proof From (6) and (9), we have

Fs

(
f

γ∗
Fs

(
g

γ∗ h
)

2

)
(y) = siny(Fsf )(y)Fs

(
g

γ∗ h
)

2
(y)

= e−μy siny(Fsf )(y)(Fsg)(y)(Lh)(y)

= e−μyFs

(
f

γ∗
Fs

g
)
(y)(Lh)(y) = Fs

((
f

γ∗
Fs

g
)

γ∗ h
)

2
(y).

Hence f
γ∗
Fs

(g
γ∗ h)2 = ((

f
γ∗
Fs

g
) γ∗ h

)
2
.

The proofs of (b), (c), and (d) are similar. �

4 Integral Equations and Systems of Integral Equations

In this section we introduce several classes of integral equations and systems of two integral
equations related to convolutions (8) which can be solved in a closed form.

(a) Consider integral equations of the first kind

∫ ∞

0
θ{ 1

2 }(x,u)f (u)du = g(x), x > 0, (20)

where

θ{ 1
2 }(x,u) = 1

π

∫ ∞

0
ϕ(v)

[
v + μ

(v + μ)2 + (x − u)2
± v + μ

(v + μ)2 + (x + u)2

]
dv, μ > 0.

Put H(R+) = {h ∈ L1(R+), h = (F{ c
s }f )(y)}. We consider the restriction mapping F{ c

s } :
H(R+) → L1(R+).
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Theorem 5 Let g(x),ϕ(x) ∈ L1(R+) and suppose that g1(x), g2(x) be such that g(x) =
(g1

γ∗ g2){ 1
2 }(x). Then the necessary and sufficient condition to ensure that the equations

(20) have solutions in L1(R+) is that
(F{ c

s }g1)(y)(Lg2)(y)

(Lϕ)(y)
∈ H(R+). Moreover, the solutions are

given in the following closed form:

f (x) =
∫ ∞

0

(F{ c
s }g1)(y)(Lg2)(y)

(Lϕ)(y)

{
cosxy

sinxy

}
dy. (21)

Proof Necessity. By the hypothesis, equations (20) has solutions in L1(R+) given by (21).

Since g(x) ∈ L1(R+) therefore (f
γ∗ ϕ){ 1

2 }(x) ∈ L1(R+). From that, by applying the factor-
ization properties (9) for (20), we have

e−μy(F{ c
s }f )(y)(Lϕ)(y) = e−μy(F{ c

s }g1)(y)(Lg2)(y),

therefore

(F{ c
s }f )(y) = (F{ c

s }g1)(y)(Lg2)(y)

(Lϕ)(y)
. (22)

Since (F{ c
s }f )(y) ∈ L1(R+) hence (F{ c

s }f )(y) ∈ H(R+). From that and (22) we get
(F{ c

s }g1)(y)(Lg2)(y)

(Lϕ)(y)
∈ H(R+).

Sufficiency. By the hypothesis
(F{ c

s }g1)(y)(Lg2)(y)

(Lϕ)(y)
∈ H(R+), therefore there exists f (x) ∈

L1(R+) satisfying (F{ c
s }f )(y) = (F{ c

s }g1)(y)(Lg2)(y)

(Lϕ)(y)
, hence

(F{ c
s }f )(y)(Lϕ)(y) = (F{ c

s }g1)(y)(Lg2)(y).

Therefore
(
f

γ∗ ϕ
)
{ 1

2 }(x) = g(x),

and we obtain (21). Theorem 5 is proved. �

(b) Consider integral equations of the second kind

f (x) +
∫ ∞

0
f (t)θ{ 1

2 }(x, t) dt = g(x), x > 0, (23)

where

θ{ 1
2 }(x,u) =

∫

R
+
2

H{ 1
2 }(x,u, v)

[
ψ

(|u − x|) ± ψ(u + x)
]
ϕ(v)dudv,

and

H{ 1
2 }(x,u, v) = 1

π
√

2π

[
v + μ

(v + μ)2 + (x − u)2
± v + μ

(v + μ)2 + (x + u)2

]
. (24)

Theorem 6 Let ϕ(x),ψ(x) ∈ L1(R+). Then the necessary and sufficient condition to ensure
that the equations (23) have unique solutions in L1(R+) for all g(x) in L1(R+) is that
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1 + Fc(ψ
γ∗ ϕ)1(y) �= 0 ∀y > 0. Moreover, the solutions can be presented in closed form as

follows:

f (x) = g(x) − (
g ∗

{ Fc
1 }

q
)
(x), (25)

where the convolutions (· ∗
Fc

·), (· ∗
1
·) are defined by (1), (3), respectively, and q ∈ L1(R+) is

defined by

(Fcq)(y) = Fc(ψ
γ∗ ϕ)1(y)

1 + Fc(ψ
γ∗ ϕ)1(y)

. (26)

Proof Necessity. We can rewrite equation (23) in the form

f (x) + ((
f ∗

{ Fc
1 }

ψ
) γ∗ ϕ

)
{ 1

2 }(x) = g(x). (27)

Assume that the integral equation (23) have unique solutions in L1(R+) for all g in L1(R+).
Therefore, there exists g ∈ L1(R+) such that

(F{ c
s }g)(y) �= 0 ∀y > 0. (28)

By using factorization properties (9), (2), and (4) for (27), we get

(F{ c
s }f )(y) + e−μy(F{ c

s }f )(y)(Fcψ)(y)(Lϕ)(y) = (F{ c
s }g)(y).

Combining with (9), we obtain

(F{ c
s }f )(y)

[
1 + Fc

(
ψ

γ∗ ϕ
)

1
(y)

] = (F{ c
s }g)(y). (29)

Using feedback evidence, assume that there exists y0 > 0 such that 1 + Fc(ψ
γ∗ ϕ)1(y0) = 0.

Combining with (29), we get

(F{ c
s }g)(y0) = 0 ∀g ∈ L1(R+).

It is a contradiction to (28). Hence 1 + Fc(ψ
γ∗ ϕ)1(y) �= 0 ∀y > 0.

Sufficiency. From (28) and the assumption of Theorem 6, we have

(F{ c
s }f )(y) = (F{ c

s }g)(y)

1 + Fc(ψ
γ∗ ϕ)1(y)

= (F{ c
s }g)(y)

[
1 − Fc(ψ

γ∗ ϕ)1(y)

1 + Fc(ψ
γ∗ ϕ)1(y)

]

= (F{ c
s }g)(y) − (F{ c

s }g)(y)
Fc(ψ

γ∗ ϕ)1(y)

1 + Fc(ψ
γ∗ ϕ)1(y)

. (30)

With the condition 1 + Fc(ψ
γ∗ ϕ)1(y) �= 0 ∀y > 0, due to Wiener–Levy theorem (in

[9, p. 63]), there exists a function q ∈ L1(R+) satisfying (26). Combining with (30), we
have

(F{ c
s }f )(y) = (F{ c

s }g)(y) − (F{ c
s }g)(y)(Fcq)(y)

= (F{ c
s }g)(y) − F{ c

s }
(
g ∗

{ Fc
1 }

q
)
(y).
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Therefore we get (25). Theorem 6 is proved. �

(c) We consider the system of two integral equations

f (x) +
∫ ∞

0
g(t)M(x, t) dt = p(x),

g(x) +
∫ ∞

0
f (t)N(x, t) dt = q(x), x > 0.

(31)

Here

M(x, t) =
∫

R
+
2

H1(x,u, v)
[
k
(|u − x|) + k(u + t)

]
ϕ(v)dudv,

N(x, t) =
∫

R
+
2

H1(x,u, v)
[
l
(|u − x|) + l(u + t)

]
ψ(v)dudv

and H1 is defined by (24).

Theorem 7 Suppose that ϕ(x),ψ(x),p(x), q(x) ∈ L1(R+) are such that 1 −Fc((k
γ∗ϕ)1 ∗

Fc

(l
γ∗ψ)1)(y) �= 0 ∀y > 0. Then system (31) has a unique solution (f, g) in (L1(R+),L1(R+))

given by formulas

f (x) = p(x) − (
q ∗

Fc

(
k

γ∗ ϕ
)

1

)
(x) + (

p ∗
Fc

ξ
)
(x) − ((

q ∗
Fc

(
k

γ∗ ϕ
)

1

) ∗
Fc

ξ
)
(x), (32)

g(x) = q(x) − (
p ∗

Fc

(
l

γ∗ ψ
)

1

)
(x) + (

q ∗
Fc

ξ
)
(x) − ((

p ∗
Fc

(
l

γ∗ ψ
)

1

) ∗
Fc

ξ
)
(x). (33)

Here ξ ∈ L1(R+) is such that

(Fcξ)(y) =
Fc((k

γ∗ ϕ)1 ∗
Fc

(l
γ∗ ψ)1)(y)

1 − Fc((k
γ∗ ϕ)1 ∗

Fc

(l
γ∗ ψ)1)(y)

. (34)

Proof We can rewrite system of two equations (31) in the following form:

f (x) + ((
g ∗

Fc

k
) γ∗ ϕ

)
1
(x) = p(x),

g(x) + ((
f ∗

Fc

l
) γ∗ ψ

)
1
(x) = q(x).

(35)

By using factorization properties (9), (2) for (35), we get

(Fcf )(y) + e−μy(Fcg)(y)(Fck)(y)(Lϕ)(y) = (Fcp)(y),

(Fcg)(y) + e−μy(Fcf )(y)(Fcl)(y)(Lψ)(y) = (Fcq)(y).

Therefore

(Fcf )(y) + (Fcg)(y)Fc(k
γ∗ ϕ)1(y) = (Fcp)(y),

(Fcg)(y) + (Fcf )(y)Fc(l
γ∗ ψ)1(y) = (Fcq)(y).

(36)
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Solving the system of two linear equations (36), we get

(Fcf )(y) =
(Fcp)(y) − Fc(q ∗

Fc

(k
γ∗ ϕ)1)(y)

1 − Fc((k
γ∗ ϕ)1 ∗

Fc

(l
γ∗ ψ)1)(y)

= [
(Fcp)(y) − Fc

(
q ∗

Fc

(k
γ∗ ϕ)1

)
(y)

]

×
[

1 +
Fc

(
(k

γ∗ ϕ)1 ∗
Fc

(l
γ∗ ψ)1

)
(y)

1 − Fc

(
(k

γ∗ ϕ)1 ∗
Fc

(l
γ∗ ψ)1

)
(y)

]

. (37)

In virtue of Wiener–Levy theorem, there exists a function ξ ∈ L1(R+) satisfying (34). Com-
bining with (37), we have

(Fcf )(y) = [
(Fcp)(y) − Fc

(
q ∗

Fc

(
k

γ∗ ϕ
)

1

)
(y)

][
1 + (Fcξ)(y)

]

= (Fcp)(y) − Fc

(
q ∗

Fc

(
k

γ∗ ϕ
)

1

)
(y) + Fc(p ∗

Fc

ξ)(y)

− Fc

((
q ∗

Fc

(
k

γ∗ ϕ
)

1

) ∗
Fc

ξ
)
(y).

Therefore we obtain (32). Similarly, we get (33). Theorem 7 is proved. �

We now consider the system (31) with

M(x, t) =
∫

R
+
2

H2(x,u, v)
[
k
(|u − x|) − k(u + t)

]
ϕ(v)dudv,

N(x, t) =
∫

R
+
2

H2(x,u, v)
[
l
(|u − x|) − l(u + t)

]
ψ(v)dudv,

where H2 is defined by (24).

Corollary 4 Under the same hypothesis as in Theorem 7, the system (31) has unique solu-
tion (f, g) in (L1(R+),L1(R+)) given by formulas

f (x) = p(x) − (
q ∗

1

(
k

γ∗ ϕ
)

1

)
(x) + (

p ∗
1
ξ
)
(x) − ((

q ∗
1

(
k

γ∗ ϕ
)

1

) ∗
1
ξ
)
(x),

g(x) = q(x) − (
p ∗

1

(
l

γ∗ ψ
)

1

)
(x) + (

q ∗
1
ξ
)
(x) − ((

p ∗
1

(
l

γ∗ ψ
)

1

) ∗
1
ξ
)
(x).

Here ξ ∈ L1(R+) is defined by (34).
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