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The Fourier Method for Nonsmooth Initial Data

By Andrew Majda,* James McDonough and Stanley Osher*

Abstract.   Application of the Fourier method to very general linear hyperbolic Cauchy
problems having nonsmooth initial data is considered, both theoretically and computa-

tionally.   In the absence of smoothing, the Fourier method will, in general, be globally

inaccurate, and perhaps unstable.   Two main results are proven: the first shows that

appropriate smoothing techniques applied to the equation gives stability; and the second

states that this smoothing combined with a certain smoothing of the initial data leads

to infinite order accuracy away from the set of discontinuities of the exact solution

modulo a very small easily characterized exceptional set.   A particular implementation

of the smoothing method is discussed; and the results of its application to several test

problems are presented, and compared with solutions obtained without smoothing.

Introduction.   In recent years the Fourier method for the numerical approxima-
tion of solutions to hyperbolic initial value problems has been used quite successfully.
In fact, if the initial function is C°° and the coefficients of the equation are constant
the method converges arbitrarily fast, i.e. is limited in practice only by the method of
time discretization which is chosen.  This is the reason that the Fourier method is
caled "infinite order" accurate.

However, the situation is drastically different when the initial function is not
smooth.  We take as a model the one space dimension scalar problem ut = ux to be
solved for 2ir periodic u on the interval - n < x < n with initial values <fix), having a
simple jump discontinuity at x = 0, but otherwise smooth and 2tt periodic.

In this simple example the rate of convergence is globally only second order.
(In fact, if any value for i^(0) except the average of the right and left limits is chosen
the method degenerates further to be globally only first order.)  This means that even
in regions where the exact solution is smooth, i.e. away from the line x = t, the
error is 0(h2), where h is the mesh width.  The analysis of this and related examples
is carried out in Section 1 of this paper.  There we show that such a large global error
occurs in general situations.   However, we note here that in certain constant coeffi-
cient problems special time discretizations may give better accuracy on mesh points
than predicted for the semidiscrete problem.  We analyze this phenomenon, which we
believe is limited to constant coefficient problems,in the next section.  Thus, even in
the simplest cases, discontinuous initial data causes a large error unless we modify the
Fourier method.
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1042 ANDREW MAJDA, JAMES McDONOUGH AND STANLEY OSHER

Even in the variable coefficient scalar one dimensional case ut = aix)ux numeri-
cal experiments indicate that the Fourier method is unstable for appropriate a(x)
when a(x) passes through zero.  Analytic examples of this phenomenon have also
been discussed by Kreiss and Öliger [5]. (However, the proof of instability given
there is incorrect.  They do give a valid procedure for stabilizing a certain class of
problems.)

In this paper we first discuss smoothing modifications of the Fourier method
using only the fast Fourier transform (FFT) which guarantee stability.  Similar
smoothing procedures to stabilize the Fourier method have been developed indepen-
dently and concurrently by Kreiss and Öliger in [15].  Unfortunately, these easily
implemented smoothing procedures, while guaranteed to be stable, give large regions
where the rate of convergence is still only second order.  For example, there is a
large region of low accuracy for the one dimensional problem

\u2)t=\0   - 1 j \u2 )x + (,- 1    o)\ul2)'

("2).=o = W
where <¿<x) has a jump discontinuity at x = 0 but is otherwise C°°. We define ip(0)
= ]/-(v5(0+) + ipiOT)). This is the problem which we approximated using a dissipative
finite difference method in [7]. We discuss this example in Section 2, showing there
that the Fourier method using the above mentioned smoothing gives, as in [7], an
error of OQi2), throughout most of the range of influence of the initial discontinuity
at x = 0. This simple smoothing does work well for the special case of a scalar, con-
stant coefficient equation ut = aux.

We show in Section 2 that in this case the rate of convergence is infinite off
the singular support of the exact solution under very general conditions on ip(x).
But whenever there is coupling—either through lower order terms, variable coefficients,
or multi-dimensions—we expect very restricted rates of convergence if we use this
type of smoothing.

In order to make the Fourier method a genuine infinite order method in regions
where the exact solution is smooth, a more severe smoothing technique must necessar-
ily be introduced.  We define the method in the preliminary section and prove in Sec-
tion 3 that away from the singular set this modified smoothing method has infinite
rate of convergence.

The techniques which we shall use to prove stability and convergence of the
Fourier method with smoothing are discrete analogues of standard methods in the
theory of linear hyperbolic equations.  These include pseudodifferential operators,
wave front sets, and Egorov's theorem.   Much of the technical work involves trans-
lating these methods to a grid.  This is implemented with the help of the Poisson
summation formula and the integration by parts procedure of the method of station-
ary phase.

Finally, our rate of convergence and stability results were verified when we per-

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



THE FOURIER METHOD FOR NONSMOOTH INITIAL DATA 1043

formed several numerical experiments on the IBM 360/91 computer at UCLA.  One
interesting aspect of this work is the construction of certain functions used to imple-
ment the smoothing method.  Theoretically, we required that they be C°°.  This is
too much to require realistically for computing purposes.  However, the results with
C2, C4 and C6 functions were very good numerically.  Moreover, even the Gibbs
phenomenon of large error near the discontinuity was reduced using our methods.

The authors would like to thank Michael Taylor for some interesting discussions
of the spurious singularity phenomenon discussed in the preliminary section and
analyzed in Section 4.

0.  Preliminary Section.  We shall consider the hyperbolic system

(0.1) f = ¿ Av(x) g- + B(x)u = Lu,
v=l v

where the Av and B are C°° square n x n matrices, the unknown u is an n vector

/*i\

u =|  • and   x =

xdl
For the stability result, Theorem 1, we require that (0.1) be symmetrizable hyper-
bolic.   However, for the propagation of error result, Theorem 2, we shall require
strict hyperbolicity in the usual sense.

For simplicity of exposition we have taken time independent coefficients.
The initial function is

(0.2) u(x, 0) = tfx),

where ip(x) is a distribution.
The problem is to be solved for t > 0 on the cube _"_d, i.e. the set of x such

that -7T <x(. < 7T, / = 1,2, ... ,d; with tfx), u(x, t), and the coefficient matrices
all periodic with period 27r in each x¡.

The Fourier method usually considered consists of replacing the xv derivatives
on a grid of uniform spacing h by the derivative of the interpolating trigonometric
polynomial at the grid points.  This can be implemented using two fast Fourier trans-
forms for each u,, j = 1, 2, . . , n, and each xv, v = 1, . . . , d.  This leads to a sys-
tem of differential-difference equations which can be solved numerically by introduc-
ing a time step k and using various possible time discretizations (specific examples are
shown in Section 4).

This method was originally suggested by Kreiss and Öliger [5], and Orszag [9],
[10], and was later considered by Fornberg [2], [3].

The usual initial function one takes for this method must have a discrete Four-
ier transform

(0.3) F(¿Kf) = 5l7) = W27t)d £ e-''Mx),
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1044 ANDREW MAJDA, JAMES McDONOUGH AND STANLEY OSHER

where Yd is the ».-dimensional lattice with spacing h: x G Yd if and only if x =
(x._,xd)T andxvG{ph^=_N,withi2N + l)h = 2-n. For j G Zd we define/   x =

^v=iivKv
For this discretization if>(x) should make sense on lattice points.  We shall show

below after introducing more general smoothing techniques that this restriction is un-
necessary.

In the standard Fourier method one uses the interpolating polynomial

(0.4) ¿\>= L îoy7'*
i"^Yd

as the initial function for the difference-differential equation defined for x G Yd, t >
0:

(0.5) uht = T f L4„(x)F-V + B(x) «* iV.

The first question is one of stability: Is the semidiscrete problem of (0.5) stable?
Precisely, we define the Hs norm of a lattice function w(x) to be

.1/2
(0.6) Hwll, = (   Z   lw(y')l2(l + l/l2)"2

\ih<SYd

This is just the standard H norm for the trigonometric interpolant of w(x).
We wish an estimate for all h sufficiently small:

(0.7) \\uH(; OH, < C,efciIMI,.

Here we introduce the convention that C, k, 8, e, with or without sub or super-
scripts, are universal positive constants which may differ from relation to relation.

We shall prove stability of a smoothing version of (0.5).  Let p(x) be a C°° func-
tion which vanishes identically when any xv is near ± n.  Let p(x) = 1 in some neigh-
borhood of the origin, and 0 < p < 1.  Such cutoff functions will be used throughout
this work.

In the Fourier method with smoothing we replace (0.5) with the following semi-
discrete problem to be solved on Yd for t > 0,

dc
v=l

We assume that the operator H,d=xAvix)jv is smoothly symmetrizable, i.e. that
there exists a smooth invertible matrix function Tix, f), homogeneous of degree zero
in f for |f | large, such that T^je, $)(£?,= xAvix)Çv)Tix, f) is symmetric.  This as-
sumption is satisfied by strictly hyperbolic and of course symmetric hyperbolic prob-
lems.

We shall prove the following stability theorem in Section 2.
Theorem 1.   The solution to (0.8) with initial data ^ satisfies, for any s and

h sufficiently small, the estimate:

(0.8) "? =     Z K(x)F~XiJv + Bix)F'x   p(jh)u(j) = Lh'*uh.
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THE FOURIER METHOD FOR NONSMOOTH INITIAL DATA 1045

(0.9) ||i»A(-, Oil, < Csekt\\IH<p\\s.

We also have:
Corollary 1. The error between the solutions u and uh to the Cauchy prob-

lems (0.1) and (0.8), respectively, when u(x, 0) = $x) on £ld and uhix, 0) = tpix) on
Yd with ¡pG C°° satisfies

\\ui; t) - uhi; t)\\s < CsXhx    Vs, X.

From now on we use the notation i> « 0 for a vector v obeying the estimates
satisfied by u - uh above.  We use similar notation for operators between any two
Sobolev spaces.

Next we address ourselves to the question of the convergence of this method.
Let a(x) be a cutoff function with the additional requirement that p(x)o(x) =

o(x).
A first attempt at getting optimal rates of convergence away from the singular

support of u(x, t) might be to replace the initial data (0.4) by:

(0.10) oihD)^1 =    Z  eiixo(jhyji(i).
>"^d

However, we have pointed out in the introduction the very restricted worth of
such an initial smoothing; and we give the details in Section 2.

Thus, we need a different initial function for the semidiscrete problem (0.8).
We proceed as follows.  Let the Fourier coefficients of a distribution u(x) be defined
as:

(0.11) ¿-CO = (F«)0) = ̂ YfnyxMx)dx.

We define

(0.12) oihD)* =   ¿ e^aijhypii),
.=_oo

and we solve (0.8) with this as our initial function.
Our main result concerns the error between the solution to (0.1), (0.2) and the

solution to (0.8) with initial function

(0.13) w(x, 0) = oihD)v.

Our propagation of error result is very close to the following statement-The
rate of convergence of uh to u is arbitrary in any compact region in which «(x, t) is
smooth.  It is not quite that-viz. the spurious singular set discussed below.  However,
for the reader who is unfamiliar with wave front sets and the propagation of singular-
ity results of Hormander [4], the statement above serves as a good basis for under-
standing the result in most cases.
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1046 ANDREW MAJDA, JAMES McDONOUGH AND STANLEY OSHER

We first recall the notion of singular support of a distribution t/(x).  To say
that a point x0 is not in the singular support means that u is C°° in a neighborhood
of x0.  Or, there exists a function u(x) with compact support which agrees with u in
a neighborhood of x0 and is C°°, i.e. its Fourier transform satisfies:

for any .V. (1 + IED^FuX?) « bounded as |g| -* °°.
We say that a point (x0, £°), £° G Rd\0, is not in the wave front set of u(x)

(denoted WF u) if there exists a function u(x) with compact support which agrees
with u(x) in a neighborhood of x0 and whose Fourier transform satisfies the follow-
ing: there is a cone R in £-space,

i.  A.
1*1    l*0lR: <e

such that for every N, (1 + IID^FuX?) is bounded in R as ||| —► °°.
Thus, WF u is a closed conical set in (x, |) space.
To make our results precise we consider the set WF $ which is the union of

the wave front sets of each component of

h\

The results of [4] indicate that WF u(x, t) is contained in the set obtained in
the following manner:

Take the scalar dth order differential operator which is the principal symbol of

(0.14) det[£>f - ZAvix)Dx ] = p(x, Dx, Dt).

Let(j»0,|0)GWF*.
By strict hyperbolicity the equation

(0.15) Pix0, ?, t) = 0

has the distinct roots, t = r(x0, £°), / = 1, . . . ,d\ and hence, there are d distinct
null bicharacteristics I\ / = 1, . . . ,d, associated with (x0, £°).

Bicharacteristics are the curves in (x, t, %, t) space satisfying the Hamilton-
Jacobi equations:

dxjlds = ô-p/dÇy,      / = 1, 2, . . . , d,

dt/ds  = 3p/9r,

dtyds = - dp/dXj,      j = 1, 2, . . . , d,

dr/ds = - dp/dt.

It turns out that p is constant on each of these curves; one on which p vanishes is
called a null bicharacteristic of p.
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THE FOURIER METHOD FOR NONSMOOTH INITIAL DATA 1047

Let the union of the set of all projections onto x space of all the null bicharac-
teristics of p through (x0, 0, |°, t{x0, £0)), / = 1, . . . , d, for fixed t be denoted by
Sit). Given 6 > 0, T> 0, define:

(0.16) Rs = {(x, t) G Sld x (0, T)\ distance (x, Sit)) > S}.

We can now state our convergence theorem which is proven in Section 3.
Theorem 2. For any X > 0, |s| > 0, la constant C6sX such that:

sup   ia&.-«*)i<cM>xA\

(Here and below 9*u'1 means the derivative of the trigonometric interpolant of
uh =/V.)

We notice that the set Sit) is, in general, only slightly larger than the singular
support of uix, t) = SSuix, t).  In fact, the total decoupling procedure of Taylor
[13] gives us the exact singular support of«.  However, we believe that the rate of
convergence is not good on the spurious singular set, SpSu(x, t) = Sit) - SSuix, t).
This was noticed by Smoller and Taylor [11] in a related problem. We, in fact, give
an alternate proof in Section 3 that the rate of convergence is not infinite for a term
similar to theirs on SpSuix, t).

1.  Examples of Large Regions of Low Accuracy for the Fourier Method.   In
this section we present simple examples to show that the Fourier method without
smoothing is of limited accuracy globally. We then show that for the time discretized
problem it is possible in special cases to do better than predicted for the semidiscrete
problem and improve the still limited accuracy by a power of h.  This phenomenon,
which we believe occurs only for constant coefficients, resembles the collocation
method used in finite element problems.

We approximate the Cauchy problem for the scalar differential equation

(1.1) bulôt = bulbx    on Í2.  x [0, T]

with

(1.2) uix, 0) = 3<x).

The semidiscrete approximation is a very simple version of (0.5).

(1.3) duh/dt = F-xijFuh

with initial function defined on the lattice Yx to be

(1.4) uix, 0) = iftx)-

We are interested in functions ip(x) of the type

(1.5) tpyix) = p(x)x\,      7>0, where x +
x,      x > 0,

0,      x < 0,
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1048 ANDREW MAJDA, JAMES McDONOUGH AND STANLEY OSHER

and p(x) is a cutoff function of the type discussed in the introduction.
We also define:

(1.6) *0(x) = pix)Hix),

where Hix) is the Heaviside function:

Hix)= 1, x>0,
HiO) = 1/2,
Hix) = 0, x < 0.

Each of these functions is in the class Fe(S~x~y).  This means that its Fourier
transform

(1.7) í(n = ¿f/{x*)A

has the property

fá)GSxx0-yiRx)

or

(1.8) i3?iß-)i < cao + irir1-^-»
and

^ífer1"")     ifp>7-

Recall the definition of R& in the previous section.   In this case:

(1.9) Rs = {(x, r) G nx x [0, t] I |x 4- t\ > 5}.

We now have:
Proposition 1.   Suppose that the initial function ip G Fe(5_1_T) for some y

> 0.   Then
(1)

(1.10) max     \uix, t)-u\x, f)\ < C.hx + y.

(2) The conclusion is sharp in the sense that we can find some ip G FeiS~x~y)
so that, with this initial data:

(1.11) lim       max
h\o (x,f)eR5ne

ujx, t) - uh(x, t)
hx+y

>c>o,

where d is any region with compact closure in R6.
An anomalous situation occurs for <p = ip0.  The rate of convergence is the same

as for <p G Fe(S~2) which is a class of functions less singular than <¿>0.   Hence, the
convergence is better than for the smoother functions ¡p G Fe(S~x~7) with 1 > y > 0.
This anomaly was noticed in our previous paper [7] in a similar connection.  It is
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THE FOURIER METHOD FOR NONSMOOTH INITIAL DATA 1Q49

explained by the fact that, although i0(f) behaves like C./lfl for f —► °°, the discrete
Fourier coefficient y(j) behaves like C2/j2 not C2/|/|, for |/'| —► n/h.

We have the following.
Proposition 2. Suppose that the initial data y = <p0.   Then
(1)

(1.12) max   \u(x, t) - uh(x, t)\ < Csh2.
(x,t)<ERs

(2)   This conclusion is sharp for <p0 in the same sense as in Proposition 1.
Moreover, if any value o/i£0(0) except <p0(0) = 112 is chosen, the statements

(1) and (2) above are valid with h2 replaced by h, i.e. the method is globally only
first order accurate.

Next we consider a fully discrete problem

(1.13) uh'\; t + k) = F-xqijk)FU"'\; t)

defined for t = vk, v = 0, 1, 2, . . .  .
Here X = k/h > 0 is fixed independent of t.
The function q(y) is C°° for \y\ < ttX + S1 for some 61 > 0, and not, in general,

periodic.
The difference scheme is assumed to be rth order accurate, which means

(1.14) q(jk)-eiik =0((jk)r+x)

as jk —► 0 and stable, which means

(1.15) sup   \q(y)\< 1.
\y\<it\

We also make a certain generic assumption about q(y) which we shall state pre-
cisely below.

Let

Yd,\ = ((*> t) G Sld x [0, t]\x G Yd, t = vM, v = 0, I, 2, . . .}

and

R6,\ = R5 n Yd,\-

We now have two propositions which are discrete analogs of Propositions 1 and
2, with the improved convergence rate on Rs x under certain circumstances.

Proposition 1'.   Suppose the initial data $ G FeiS~x~y) for some 7 > 0.  Then
(1)

(1.16) max     |M(x, t) - uh-\x, t)\ < Cs /in(1+v).
(*.t)£R6iX

(2) The conclusion (1.16) is sharp in the same sense as in Proposition 1 unless
qinX) = qi-nX) and q'iuX) = -/'(-..X) in which case the upper bound in il) may be
replaced by Csxhmin(2+y-r).

Proposition 2'.   Suppose the initial data <p = <p0.   Then
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1050 ANDREW MAJDA, JAMES McDONOUGH AND STANLEY OSHER

(1)

(1.17) max      |i»(x, i) - uH'\x, t)\ < C6/imin(2-r).

(2)   77ms conclusion is sharp for ¡p0 in the same sense as Proposition 2.
Finally, any choice of (¿?0(0) except </>0(0) = 1/2 will degrade the error by one

power of h unless .7(7.X) = <7(-.rX) and q'(irX) = qX-irX) in which case the estimate
in (1) is valid.

Proof of Propositions 1 and 2.  The key fact in the proof of Proposition 1 and
the second half of Proposition 2 is:

Lemma 1.   For <p G FeS~x~y

max
(x,t)(ERs

t. - uh + y(N) sin(,r(x 4- t)/h)
sin((x + r)/2)

<Ch2+y.

We have, if 7 > 0,

00

(1.18) ?(/) =   E  Ä/+/-(2/V + 1))

(see Kreiss and Öliger [6]); and, thus, it is easy to see that for such 7:

(1.19) \viN)\<Cxhx+y.

Moreover, for the function in FeiS~x~y)

(1.20)

it is easy to show that

Dix) =   Z  «**(! + If»-(1+7)

Um VSZl = r  * 0.

Thus, the proof of Proposition 1 is immediate.
We also have the above-mentioned anomaly:
Lemma 2.

(1.21)

in fact

««M = h [

lim —- =C>0,
ft-i-0      Ji2

1   cos(//i/2)   ! Q/        /ix
2.   sin(/7î/2) \(sin(//./2))*/J

VX>0.

The second part of Proposition 2 follows from the fact that if we add to i£0(x)
the trigonometric interpolant of a function which is 1 at x = 0 and zero on the other
mesh points, the associated finite Fourier transform changes by h.  This result together
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with the previous two lemmas gives us the desired result.

The first half of Proposition 2 follows from the previous two lemmas and the
following aesthetically annoying result.

Lemma 3.   For <p = <p0 we have

I t    -\      ht     s   ,   ~/»rt sin(7r(x 4- t)lh)max     Mx, t) - «"(x, t) + </>(/V)   .\/   ,   /'/
(x,t)eR5h\ V      sin((jf + f)/2)

J(N+l)(x + t)    ^ _
+ -n-:-iviN) - <PiN - 1))(e'(x + t) _ i)2vrv  '    rv "

(1.22)
.(-V+l)(x + r)

+ (i(x + t)_U2 (&-N)- *(-(N + 2)) -*(-(* + 0) + *(-(-V + 2)))

<C6>0/z3.

For any fixed x, the three last functions above are linearly independent func-
tions of t.  Thus, using Lemmas 1 and 2 we have proven a sharpened version of
Proposition 2.

Proof of Lemmas 1 and 3. We have

(1.23)   uix, t) = £ w(x+t)>    uHix, t) « z ?oy/(*+i)-
J — -00 j=—N

Then, we write

(1.24)      «-«*=   Z   &/V/(* + r) + z (íw-?(/)y/(je + f).
l/l>iV+1 /=-/v

Next, we sum by parts in a standard fashion.  Let D±U(j) = ± [t/(/ ± 1) - £/(/)] •
We have in R<- :

z a,y(x+i)
|/l>Af+l

1
(e.(».+.) - j) .

(1.25)

Z [í(od+//(x+í) - Ä-/y>_/e-*(,e+*>]

- e'^+DC-. + O^ + e"w(* +'>&-(# + 1))

(cí(« + 0-i)/>JV+1
Z    [eil(x + ̂ ¿O) - e-'«x + f)D+jïi-j)]

and
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1052 ANDREW MAJDA, JAMES McDONOUGH AND STANLEY OSHER

Z   iÙ))-*ii))eii{x + t)
j=-N

(ei(x + t) _ 1}-1   £  Q^ -J0))D+¡¿>(x + t)Nz
j=-N

(1-26) = {ei(x + t) _ 1}-i [eUN+mx + t)^ _ ~m

_e-iN(x + t)(^r{N+l))_~i_(N+ m]

-(ei(x + t) _ ,)"-   £   JKx+t^fo _ fay
j=-N

Using the obvious fact that $(]) = $(]+ p(2N + 1)) for any integer p gives
us, after another summation by parts,

U-Uh= -?(A0 Sin^ + ff)  + ei(N+lHx + t)(ei(x + t) _ X)-2D    ~(jv)
v      sin((x 4- r)/2) '        ry  '

+ e-iN(x + t)^i(x + t) _ l)-2[£)+.$(-(/V +  1))

(1 27) + D_¡p\-iN + 1)) + D_¡ti-iN + 1))]

4- (/<* + f> - 1 r2 /    Z   ieii(x + ̂ Dlfpij) + e~'i(x + r)-0+Ä-/))
\/>-V+l

- z ¿Kx+t)Dlj$ij)
j=-N

The proofs of the lemmas now follow from the triangle inequality, Lemma 2,
the definition of the classes Fe(S~x~y), and (1.18).

Proof of Lemma 2.

i Of"* - ITX( ¿ihA+e-'^piph)) + |J.
(1.28)

h_
2tt

Here

hA±f(p.h) = ±(f((p ± l)h)-f(pJi))

= T- U-—-ie~i,H - O-1   £ eW/Mh^A_p(pii)
27r[2    (e-,,7,-1) ^ J

=  h_\l_  COS(/r,/2) +      / ft*        \1
2ti\2í   sin(Jhl2)        \v(sin(/-/i/2))vJ

VX> 1.
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Next, we treat the fully discrete problem.
The technical assumption we make on the function q(y) is:

,. ~~s inf
(1.29) |y|<ffX

ix + '-SMq(y) >0.

(x,t)(ER6

The proofs of Propositions 1' and 2' follow from discrete analogues of Lemmas 1
and 3.

First, we have:
Lemma l'. For <p G Fe(S~~x~y)

max
(*,f)€EÄ6  ,

u-uh+ &P-\&N+ » )x(q((N + l)k))t'k((eix(q(N + l)k)lq(N)ylk - 1)~ '

<Csh2 + y.

This result follows from summation by parts in the same way as in the proof
of Lemma 2.  We note that the coefficient of <piN) will be Oih) if and only if

(1.30) [qin\ + k/2)] *lk = [?(- ttX 4- jfc/2)] '/* + Oik)

or if and only if

(1.31) _7(7rX) = _7(-..X)    and   q\n\) = q'i~nX).

We also have a messy looking discrete analogue of Lemma 3 which we obtain
by summing by parts once more, as in the proof of that lemma.  We omit the de-
tails, except to say that the cancellation occurring in Lemma l' is impossible here.

2.   Stability of the Smoothed Fourier Method and the Necessity of the Proper
Initial Smoothing.   In this section we shall prove Theorem 1, stability of the smoothed
Fourier method (0.8).  It might then be thought that convergence in Rs follows for
initial data smoothed as follows:

(2.1) uix, 0) = a(MV =   Z  eiixa(jh)ip(j).
i^Yd

We present here a proof that the example mentioned in the introduction which
we discussed in detail in a related connection in [7] leads to a large region of low
accuracy.  In fact we have:

Proposition 3.   For (0.8) approximating the above-mentioned example with
initial data (2.1) for

0
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we have
(1)

(2 2) max      !"(*> r) ~ "*(*• OKCjft2,
(»t,f)ej.j1)

w/tere Ä^> = Ä6 n {(x, r)| - f < x < t).
(2)   77ie conclusion is sharp in the same sense as in Proposition 1.
We note that for more complicated examples having jump discontinuities in

higher dimensions it is likely that the error will be worse than second order in a large
region if we use this smoothing of the initial data.

Proof.   The proof is an easier version of that of the main theorem of [7] and is
typical of the approach used in this analysis.  We write

u-uh =   Z eilxe(Aii+B)\l - oifliñfá)

+   £ eHx(e(Aij+B)t _ e(Aij+B)pUh)t)a0-h):p(].)
l/K-V

-   Z ei'x(e^Aii+B)pah)t)a(jh) Z ÍQ + K2-V + 1))
l/'KJV \v\>l

(using (1.19))

= [EX] +[£„] +[Em]

but [Eu] = 0 since p(jh) = 1 on the support of a(jh).
Now Lemma 2.1 of [7] tells us

(2.4) max   |[ET(x, t, h)\ \<C8XhK   VX > 0,
(x,t)^Rs

while [E-ii] + 0(h3) = the solution of the Cauchy problem for this hyperbolic sys-
tem with initial data:

»     /5'(0)\
u(x, 0) = h2cJ   o

since

\-  . (cnh2ij + Oih3)\Z ^j + v(2N+l))= p    '
\v\>l \ 0 /

with c0 a nonzero constant and 6', the derivative of the Dirac measure.  The result is
immediate using (3.24) of [7].

For completeness we mention:
Proposition 4.   For the single scalar equation

(2.5) ut = cux

with uix, 0) = <p(x) G FeiS~x~y), y > 0 or <p = <p0ix) and the approximation (0.8)
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with initial data (2.1) we have

,~ ,, max    \uix, t) - u\x, t)\ <CSy xhx   VX > 0.
U-6) (x,t)<=Rs ,7'

The proof follows from the decomposition of (2.3), using a by now standard
summation of parts.

In order to prove Theorems 1 and 2 we need to introduce a class of pseudo-
differential operators defined on the lattice Yd.  For any lattice function u we define:

(2.7) Phix,D,h)u=    £  e"'xp(x, j, h)u(j),
i"^Yd

where p(x, £, h) is a C°° function with the usual 2ir period in each x¡, vanishing
identically if |£.| > n/h V., and having certain other properties discussed below.

Recall, on Rd, Psdops are defined by

(2.8) Pix, D)u = P*xpix, ?XF«)(?)-f?;

and an often used class of symbols (see [12]) is

s*0 = {p(x, di ia;3fp(x, |)| < ca/i + li-ir-"31}.
We shall define a related class of symbols to be used on lattice functions.  These

have the two properties:
(1) 3 ffij, m2 real numbers with m2> 0

\b^¡pix,ih)\<catí¡ii + m)mx'whm2.

(2) For each p(x, %, h) 3 e > 0 such that

Kb¡pix, |, h)\ < caßtXhx

VX>0if |y>(7T-e)/AVi.
m, ,m2

Call this class of symbols Sx 0      .
We also shall need a subclass of these symbols, which have the property p(x, %, h)

G570'm2and
'(3) \^pix,^,h)\<ca<ßhm2 + lßln+m)mx.
Call this subclass T™^™2.  Notice p(\h) G T\$.
We now list some of the basic properties of these operators.  We shall indicate

the proof of the main results in the appendix.  We merely remark here that the main
tool in the proof is the Poisson summation formula, which reduces the problem to a
standard one involving the usual pseudo-differential operator calculus on R"; modulo
a "smoothing" error discussed below.

Properties of the Psdops on Yd :
(1) P"(x, D, h) maps C°° functions into f)™=0Hs with a bound independent

of/i.
m ,,m*

(2)  The class of operators whose symbols are in |Jm        5, ¿'   2 form an
algebra as does the symbol subclass \Jm        Tx ¿ ''mx,m2» r-      _ Jm,,m^ _ „m \ ,m ~,     . , .... ,.u -j,   _    rn ,+m * ,m*, + m*lfpGSxx0    2,q£Sxx0    2, then the symbol of Q"^ G S, ¿      x    2      2
determined by Leibniz' formula

is

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1056 ANDREW MAJDA, JAMES McDONOUGH AND STANLEY OSHER

(3)  rix, Ç, h) ~ Xail/a\)[da(qix, %, A)] [D>(x, £ A)] (where Dx = 3x/i), the
series is asymptotic in the sense that:

Im I     ,
r{x, %,h)-   Z   ¿ [^(x, I h)] [Daxpix, i A)]

(2.10a)
lc.l = 0

<Cm(l + l?l)mi+m'lHm'"1Am2+m2.

If in addition q G Tx ¿      , then

Im I

(2.10b)

rix,%,h)-   Z  ^-[9^(x, ?,A)][D>(x, |,A)]
lal = Oa-

<Cm(l + |?|)mi+m,1Am2+m2 + lml + 1

Note that the second inequality implies that the Hs norm of the error goes to zero
as a power of A for |w| sufficiently large, and this power increases with |m|.

Remark 1.   As a consequence of (2.10a) we see that if the supports of the sym-
bols of P" and QH are disjoint, then Rh = QhP" is infinitely smoothing.  It maps any
function u for which |w(t;)| < C(l 4- |Tj|)fe for some fixed k, C> 0 independent of A,
into an element of fï^i^r  In fact> we then have

(2.11) \\ilh - phihD))Qhix, D, A)/*(x, D, h)u\\s < CsXhx    Vs, X.

(4)   For any Psdop P" 3 an "adjoint" Psdop iP")* satisfying

iP"u, v) = (u, i/*)*».)    for u, v G C°°

(we take ( , ) as the H0 inner product), and (P")* has symbol

p*(x,i,A)~z¿r9W*. ?>*)'•

Here t denotes the transpose if p(x, %, h) is a matrix.
Finally,
(5)   Suppose p(x, %, A) G Sx ¿'   2 has an asymptotic expansion of the type

BO

PÍX, t h) ~      Z     P-m(x< I «•
m=—m .

Here each element of pm is a sum of terms of the form

ZA    2   'püfc'frmM)'
j=0

where the p^Jix, £) are homogeneous of degree j + k in % for |£| large, and each
ak (x) = 0 if xt is near ± n for any i.

We then say that the principal symbol of Ph is pm   and the principal symbol
of/*-/* is je.»     , etc.
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Moreover, given a sequence {pm} of the type above, 3p G Sx ¿'   2 such that

P~ 2m=-m.P-m(x, th)^
The subclass of 5, ¿'   2 having this expansion will be useful in the proof of

Theorem 2.
In order to prove Theorem 1 and Corollary 1 we shall need a lattice version of

Gliding's Inequality.
Lemma 4 iLattice Gàrding's Inequality).  Let p(x, %, A) G 5m0 have the proper-

ty that as a matrix, Re p(x, |, A) > c |£|m for % large.   Then for any real s and all A
sufficiently small

(2.12) Re(/*(x, D, h)p\hD)u, phihD)u) > CQ\\pHihD)u\\2m/2 - C. \\pHihD)u\\2.

with CQ, Cx independent of u.
Proof.   The proof is a simple modification of the standard one on Rd (see, e.g.

Taylor [12]).
We shall prove it for m = 0, the general case presents no new difficulties.
Following [12], we may construct a Psdop on Rd, ô(x, £, A) G 5° 0 such that

Re P(x, D, A) - B*ix, D, A)5(x, D, h) is infinitely smoothing.  Now let p.(x) be a
cutoff function with p.(x) = 1 on the support of p.  Then

(2.13) ReiP"phu, u) * Re(p./*p.pV p"»/)-

It is easy to see that the symbol of phx(hD)PH(x, D, h)phx(hD) G S°x'°0 as does the
symbol of phx(hD)Bh(x, D, h)phx(hD) and its adjoint.

Moreover, if p2(x) is a cutoff function with p.(x) = 1 on the support of p2(x),
we may use the functional calculus to show

[Rep?/*p? - (phxBhphx)*(phxB»phx)]ph2 = Sl„,

where S*M is an infinitely smoothing operator.
Thus:

(2.14) Re(Phphu, phu) = (phxBhphxphuh, phxBhphxphuh) + Re((5Í00)pft«, phu).

The rest of the proof is standard.
Proof of Theorem 1.   We shall again only prove it for s = 0, the general case

is similar.
We may rewrite the semidiscrete Cauchy problem (0.8) as

(a) uht = iPhix, D)phihD) + Bhix, D)phihD))uh with initial data on Yd

(2.15)
(b) u\x, 0) = ¿x).

Here pix, %) = Hdv=xAvix)itv.
We have assumed 3 a symmetric positive definite symbol M0(x, £) homogeneous

of degree zero in £ if |£| is large, so that

(2.16) Re M0ix, ?)p(x, %) = 0.

Using the functional calculus and the lattice Garding's Inequality, we may con-
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struct a pseudo-differential operator with symbol in 5°'q which differs from
px(%h)M0(x, %)px(%h) by an operator with symbol in -»¡"o'0-  The associated operator
p'¡(hD)Mh(x, D, A)p,(AZ)) is symmetric, and has the property

(2.17) (phxl^phxphuh, phuh) > C\\phu\2.

Then, as in the continuous case

£(phxM"phxpHuh, phuh) = 2 ReipXPiP?^" + Bh)phuh, phuh)

(2.18)
< C.HpVll2, < C2(phx^phxphuh, phuh).

Thus, it follows 3C3, k > 0, such that

(2.19) ||pV||0 < C3efc,||pVllo-

Next we multiply (2.15) by Ih - phx

(2.20) dilh -Phx)uhlót = (/* - p*X/* 4- Bh)phuH = T^pHuH,

where ||r*J|. < CsXhx Vs, X.   It thus follows that VX > 0

(2.21) ||(/" - p>*(r)ll0 < C^xektihx\\ph4\0 + ll(/" - phx)<p\\0).

Next, we multiply (2.15) a) by phx - ph obtaining:

(2.22) (p* - ph)uh =iP" + Bh)ph(phx - p")uh + Dphuh,

where D is an operator bounded on H0 with norm bounded independently of A.

Let p0 be a cutoff function with p0 = 1 on support of p..
We now multiply (2.22) by ph,Mhp!L], easily, obtaining

(2-23) \\(phx - ph)uhit)\\0 < C4ekt\\(pHx - pftVII0.

The theorem now follows from adding (2.19), (2.21), and (2.23), and using
the triangle inequality.

Proof of Corollary 1.   Since u G C°°, we know that

(2.24) \\u(x, t) - Ihu(x, Oil, < CsXhx    Vs, X.

Thus, we need only show that

(2.25) \\Ihu(x, t) - uh(x, t)\\s < Cs xhx.

We consider

(3f - Lh'pXu - uh) = (df - Lh'p)u = (I - Lh'p)u

(2.26) = (7*(x, D) + Bhix)\Ih - phihD))u

+ HPix, D) + Bix)) - iPhix, D) + Bhix)))u.

Both terms above obey an estimate like (2.25) because u G C°°.  Moreover,
Ihuix, t) and u"ix, t) agree at t = 0.  Thus, (2.25) follows from the previous theorem
and Duhamel's principle.
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3.   Proof of the Convergence Theorem.   In this section we shall prove the main
result of this paper—Theorem 2.

Recall u solves the strictly hyperbolic Cauchy problem (0.1), (0.2) on £ld x [0,
T] ;uh solves the Fourier approximation with smoothing (0.8) for smoothed initial
data (0.13) on the region Yd x [0, T].

Let Tt be the solution operator to the problem (0.1), (0.2), i.e. Tftix, 0) =
u(x, t).

Let Tih,p he the solution operator to (0.8) with initial data u"ix, 0), i.e.
T?'puhix, 0) = u\x, t).

We now have the expected decomposition:

u-uh = Tt<p ~T^'poihDip

(3.1) = Ttil - o(hD))<p + (Tt - TÏP)oihD)y
= [£,] +[£„].

Notice that the term

[EIH] = Tf-'oihDXJ1 - v),

which caused the large region of low accuracy in Section 2 and in [7] is not present
because of our initial smoothing.

We shall first obtain the estimate:

(3.2) , ««P   \*xi%\\<CtAXh\
' (x,t)GR8

In fact, the same estimate will hold on the wave front set level.  We shall discuss
this below.

For technical reasons we do the following: use a partition of unity to write the
initial function ¡p = <px + \p2, where i¿>. has support in |x.| < ti - e¡, e¡ > 0, i = 1,
. . . , d, <p2 has support near each x¡ ± tt, and both functions are periodic.

For the Cauchy problem corresponding to initial data \p2, we may translate each
x¡ by tt.  Thus, we need consider initial data with support of the same type as <px, and
we restrict t < tx to be small enough so that the support of «(x, 0 stays away from
x¡ = ±rr.  This obviously is no restriction, since for t = tx we just repeat this proce-
dure.  This has the effect of simplifying certain technical aspects of the proof.

In particular, it turns out that if the symbol of P(x, D, h) is in S^'7"2 and
p(x, X, A) = 0 near x- = ±7rV-, then the operator defined by:

(3.3) /*(,. A hyp =-~t fa/(X-X°W U hMx0)dx0
(Z7TJ     / — —oo

differs from the standard Psdop

(3.4) p(x, D, hyp = -4X1   rff/n eii(X~Xo)pix, f, hyp{x0)dx0
(270° d

by an infinitely smoothing operator.  Moreover, if p G Tx ¿'   2, the difference has
norm 0(A^)\/X between any two //„ spaces.
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The proof is a simple exercise in the Poisson summation formula and will be
carried out in the Appendix.

The operator o(hD) defined in (0.10) should be called (¿(hD). However, for
the class of functions that we are now dealing with

(3.5) oL(hD)<p = aL(hD)p3(xyp(x) « o(hD)p3(xyp(x) = oQiDyp,

where p3(x) is a cutoff function and p3<p = \p.
Proof of estimate 3.2.  Let p(x, £) G 5° 0 and have the property that p = 0 on

WF ip, p = 1 on a set whose distance from WF ip is bounded by 5. > 0, and 0 < p < 1.
In the rest of the paper we shall let S_„, S^ denote smoothing operators on

Í2d and Yd, respectively.  These may vary from relation to relation.
Taylor [13] has shown that 3 two zero order elliptic Psdops Mx(x, D), Af2(x, D)

having the properties

(3.6) MXM2 =1 + S_„,   M2MX =1+ S_„,   MXLM2 = zA(x, D) + 5_00,

where
jX.(x, Z>).     0--0\

A(x, D) =
\ 0 • • • 0      X„(x, D) )

and each X(x, D) is first order with real principal symbol.   Let

(3.7) ß(1)(x, D) = M2QMX + S_„,

where

¡Qxix, D)      0 • • • 0 \
/'

Qix, D) =

0 Ô„(x. D) j

and each qfx, Z)^SmQ.
Taylor in [14], which is as yet unpublished, has given a new proof of Egorov's

Theorem.  We shall need both his method of proof and the theorem itself in our
proof of Theorem 2.  A short discussion of this follows.

Let qix, %) be a scalar symbol of a Psdop on Rd in the class 5m 0 with principal
symbol c70(x, J). Let X(x, £) be in 5} 0 with real principal symbol X.(x, £). Define
Rt to be the solution operator to the Cauchy problem for ut = .X(x, D)u, and let
QXx, D, t) = RtQ(x, D)R_t. Egorov's theorem states: Q(x, D, t) is a smooth family
of Psdops defined for all t whose symbols belong to 5m0. The principal symbol of
Qix, D, t) at a point (x0, £°) is equal to q(y0, r¡°) where (y0, r¡°) is obtained from
(x0, Xo) by following the flow generated by the time dependent vector field
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Taylor's proof, which we mimic on a lattice in the proof of Lemma 5 in the
Appendix, gives an algorithm for computing all the succeeding symbols of Qix, D, t)
via integration along the above vector field.

It is easy to modify this scalar result to show that:

(3.8) T$ "\x, D)T_t = M2Qix, D, t)Mx + S_„it),

where the Psdops above depend smoothly on t. We have

¡Qxix,D, t) 0- ■    0   '
Qix,D,t)=\ *     . ;

\       0 ■ Qnix, D, t)j

and each Qix, D, t) is computed, as in [14], by solving the scalar operator O.D.E.

dQjldt = - [X/x, D), Qf] + S_„it),
(3.10)

Qfx, D, 0) = Qfx, D),
where [A, B] denotes the commutator of A and B.  We may now define:

(3.11) p(x, D, t) = TfM^ix, D)IM2T_t.

This gives us

p(x, D, t)[Ex] = 7yv/.p(x, D)IM2iI - oQiDyyp

* TtHl - aihD))pix, D) - Mx [M2(7 - oQiD)), p(x, D)] )<p.
Thus,
(3.13) \\pix,D, f)[Ei]ll,<C,(XAx

because v(x, Dyp G C°° if r<x, £) = 0 on WF v?.
Now any smoothing operator applied to (7 - o(hD))y «- 0.  This together with

(3.13) gives us estimate (3.2).
The algorithm for computing the symbol mentioned above (and outlined on a

lattice in the proof of Lemma 5) as well as the definition of Sit) tells us that the
symbol of p(x, D, t) is, for each r, essentially the identity on a set in (x, £) space,
which is in general bigger than the set whose projection onto Rd = R5.  Hence, the
justification of the remark after (3.2).

We now justify the remark we made after the statement of Theorem 2.   I.e., in
general, on the set of spurious singularities the rate of convergence of [E¡] to zero is
not infinite.  This part can be skipped for the reader who is only interested in the
main theorem.

Using the operators MX,M2, A, defined in (3.6), we can show that the Cauchy
problem (0.1), (0.2), is equivalent, modulo smoothing, to

(3.14) wt = /A(x, D)w,      wix, 0) = M.w(x, 0).

The wave front set of each component wv of w is found by following the Ham-,
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iltonian flow of the i»th scalar hyperbolic operator, passing through (x0, 0, £°,

\ix0, *0)). where (x0, £°) G WFwv(x, 0).
Let pv(x, £), v = 1, 2, ...,«, be a function of the same type as p(x, £) above,

with pv(x, £) = 0 on WFw„(x, 0), etc.
Now, consider the family of operators

ißiix, D) \
p(])(x, D, t) = 7yi/2(x, D)\ '. \Mxix, D)T_t.

\ 'Unix, D)j

It is again clear from [14] as above that the symbol of p^x\x, D, T) differs
from the identity by the symbol of an infinitely smoothing operator on a set close
to WFw.

Now

liV\x, D, DIE,] « 7yii2 (7 - a(AD)Mx, 0)

»■m

(3.15) + TtM2
^n

Mx[iI-oihD)),M2]wix,0)

T^l2
M„

Mx[iI-aihD)),M2]wix, 0).

I
This term is not « 0 because, in general, the symbol of the Psdop above need

not annihilate WFw(x, 0).
Thus, on the spurious singular set the rate of convergence of [Ex] to zero is

limited.
Now we consider [Exl].
The proof of the estimate involving [En] looks more complicated than it actu-

ally is because of the need to decouple Lh,p.
It follows from the discrete calculus of the previous section that Taylor's [13]

total decoupling construction can be simply modified to apply to LH'P.
We construct the two symbols Nxix, %, h), A/2(x, f, A) G S°x'° with Nfx, £, h)

= Ma[x, £), i = 1, 2, ... , for h% on the set in which p(h%) = 1.   Each N¡ has the
asymptotic expansion mentioned in (5), Section 2.  Thus, if p(x) is any of the usual
cutoff functions with pp = p, we have:

A*(x, D, h)Nh2(x, D, h)ph(hD) = ph(hD) + S"_x(x, D, A),

(3.16) M(*. D> *K(*. D< ft)Ph(hD) = Ph(hD) + Sh_„(x, D, A),

Nhxix, D, h)Lh'pN^ix, D, A) = «AAlp(x. D, A) + Sh_„ix, D, h)

where
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\h-pix, D, A) ■■

Xhx-Pix, D, h)

\ \hn>pix,D,h)\

Here, each Xf'p(x, %, A) « X,.(x, £) for %h in the set for which p(A£) s 1, \J,,P *
0 outside the support of p(A^), and X,-1'" has the asymptotic expansion mentioned
above, with real principal symbol.

We have

(3.17) [E„] = iTt - Tth'p)o(hD)* * iTt - 7*-')JV$a*.V*o*,

where a. is a cutoff function satisfying o(x)ox(x) = a(x) and pox = a..  This follows
because

(3.18) Nh2ohxNhxo * o +N^[ax, Nx]o**o.

Thus, we may write

[E„] * (F, - T^WyoWov + (ST, -7*'')»Vf [J* - /-*]o*.V*0*
= [EÍÍ>]+[E<2)].

Now the symbol modulo smoothing of the operator N2pha'x'N'¡ is the same as
that of the operator without the A superscript.  This operator N2poxNxy has symbol
which vanishes on WF y.  We can show easily since / - ax and a have disjoint supports:

(3.20) N2poxNxo<p<*N2pNx<pGC°°.

But under such circumstances it follows easily that:

(3.21) N2poxNxotp «- (N2paxNx)ho<p « Nf2'phohxNhxoip m N2pNx^p.

Thus, [E/f^] * 0 by Corollary 1.  Thus, we need only show that

(3.22)
sup   ia*[E<2)]l<cM)XA\

(X,.)¡ER6

For t = 7 < T fixed, we let x(x, t) — 1 in a neighborhood of a fixed point x
for which u(x, t) G C°°, and let x(x, f) = 0 for all x such that the symbol of / -
p(x, A t) is not asymptotic to zero.  We can arrange things so R& C union of all
such x, 1.

Regarding x(x, t) as a multiplication operator, and hence a Psdop, we consider

(3.23) Tt_t-M2xix, FWi T-t_t [E,(2)] = KO-

We shall show:

(3.24) IIKOH, < Cs xhx    Vs, X.

We may then use an elementary compactness argument to obtain (3.22) from

(3.24).
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Now

vit) = Tt_FM2xix, F)MX [7> - Tr_tT*><>]
(3.25)

• A* [/* - p"(x, A*/"] alihDy^laihDyp,
so u(0) = 0.  We have

(3.26) du/a. - ¿u = Tt_FM2xM1 Tt-_t[L - Lh'p] f}-pNl[Ih - phIh] o*A*<rç>.

We shall show

(3.27) Hdu/df - ¿u||4 < C„ XAA    Vs, X.

This will then complete the proof of the main theorem.
We obtain (3.27) from the following three results.

Lemma 5 iDiscrete Egorov 's Theorem). Let RH be the solution operator of
the scalar lattice hyperbolic equation on Yd x (- °°, °°)

(3.28) ut = ,XA(x, A h)u,

where X(x, %, A) 6 S\ '£ and has the asymptotic expansion mentioned in (5), Section 2.
Define

(3.29) Q\t) = RhtQ\x, A h)Rh_t,

where q"ix, if, A) G Sx ¿'   2, and has the above-mentioned asymptotic expansion.
Then Qhit) differs by a C°° family of smoothing operators from a lattice Psdop vvAose
symbol is in Sx ¿'   2 for all t.  Moreover, it can be constructed exactly as in [14] for
the usual scalar Psdops on Rd.

Corollary 2.   77ie family of operators

T*'p.V*[/* - p\x, D)Ih)ahxihD)NhxT%p

differs by a C°° family of smoothing operators from u"ix, D, A, 0. where i^it) is a
C°° family of lattice Psdops with symbol in Sj'q.  Moreover, the projection of the
support of these symbols onto x space is disjoint from that of the symbols of the
family Tt_TM2xMxTt-_t.

Lemma 6.   Let p(x, £) e S" 0, qix, \, h) G Sx x¿ 2.  Let m = Qnx, m2, . . . ,
md) with each m¡ an integer and m i= (0, 0, . . . ).   Suppose p(x, % + 2.rm/A) and
qix, |, A) Aave disjoint supports for all such m.   Then, for any u such that (F(9"-0Xt?)
= Oihx) VX, a if |rj| > (tt 4- e)/A Ve > 0, we have:

(3.30) \\P(x, D)[Q(x, A A) - Qh(x, D, A)]u\\s < CsXhx Vs, X.

(This lemma is more general than the one we need for the proof of the main
theorem.)

The proof of these results will be given in the Appendix.
Proof of estimate (3.27).   Using Corollary 2, we may write

(3.31) du/dt -Lv* Tt_FM2xMx Tf_t(L - LH'p)vh(t)T^po^p.
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We shall show below thatVa

(3.32) iH*%T?'ß°(hD>*Mv) = Oihx) VX    if \q\ > (w + e)/A Ve > 0.

Thus, we can invoke Lemma 6 and Corollary 2 to show

(3.33) öu/dt -Lv = Tt_FM2xMxTf_fL(l - p)vixx, D, h, t)T?'po"ihDyp.

Finally, we again notice that the supports of Tt_t-M2xMxT^_t and v(x, D, h, t) are
disjoint.  The result is now immediate.

Proof of (3.32).

(3.34) d^pa(hD)u =  ¿ uf'W'*
/=-«

with |t.ja>| < CXI + |/r/+lal for some fixed ß and C as A i 0.
Using a partition of unity lets us consider

(¿)d/n/-/l,x+//^W^

where \p is a C°° periodic function.  The result is immediate from the integration by
parts procedure of the method of stationary phase.

4.  Numerical Experiments.  In this section we discuss the results of a variety of
numerical experiments designed to demonstrate the above theory.  The principal aim
of the theoretical treatment was to show the utility, and indeed in most cases the
necessity, of using smoothing techniques when the Fourier method is applied to prob-
lems having discontinuous initial data.  We will present numerical results obtained both
with, and without, smoothing for the following Cauchy problems: (i) scalar, constant
coefficient, (ii) constant coefficient system of two equations in a single space variable,
(iii) scalar, variable coefficient in one space dimension, and (iv) scalar variable coeffi-
cient in two space dimensions.   In addition, we will provide a short discussion on the
computer implementation of smoothing techniques.

In all problems except the two space dimension problem, the initial function is

(4.1) $(*)={0;
x<0,
x>0;

calculations are for the interval [-3.2, 3.2] (approximately [-tt, tt]) in these cases.
We note that in all the following tables the numbers are written as exponentials,

e.g. 3.8894-3 = 3.8894 x 10~3.
Tables 1 and 2 show the results of solving ut =ux using the scheme

(4.2) u\t +k) = F-xieiwkFuhit)),

where F is the discrete Fourier transform (implemented as a fast Fourier transform),
co = TTJ/L, l/'l < N, with L being the half interval length, and 2/V 4- 1 is the number of
lattice points.   In the smoothed case uHiO) is the truncated Fourier series of <J>(x).

Table 2 requires some explanation.  The first three columns of this table show
the anomalously accurate results which occur due to collocation effects, as discussed
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Table 1
Smoothed initial data; k/h = 0.75, t = 0.3

ERROR

k = 0.075 k = 0.0375 k = 0.01875 k = O.OO9375

-0.5

-0A

-O.3

-0.2

-0.1

0.0

0.1

0.2

O.3

0.4

O.5

-4.9890 -2

5.3OIO -2

5.OOOO -1

-5.3OIO -2

4.989O -2

2.8426-3

-4.3736-3

7.6252 -4

6.1409 -5

-6.5268-5

2.6429 -5

3.8894 -3
-4.8936 -2

5.0000 -1

4.8936 -2

-3.8890 -3

-1.0497 -5

I.2167 -5

I.4673 -6

1.9813 - 6

2.6122 -6

3.6611 -6

-7.0314 -6

3.6401-3

5.0000 -1

-3.6407 -3

7.2624 -6

-3.1571-6

-2.0758-6

-I.3210 -6

-4.3396-7

I.OO54 -7

9.35M) -7

3.6030 -6
-5.5788-6

5.0000 -l

4.8070 -6

-3-4742 -6

-3.1001 -6

-1.8599 -6

-I.2600 -6

-6.1489 -7

-3-3954-7

2.5505 -7

in Section 1.   Notice that the accuracy is independent of k/h for the chosen sequence
of fc's until kjh =£ integer.   Then the unsmoothed case shows an extreme decrease in
accuracy.  Only the last column of Table 2 should be compared with Table 1, since
these are the only unsmoothed results free of the collocation effects.   A direct com-
parison cannot be made; but in terms of time step sizes, the last column of Table 2
lies between the third and fourth columns of Table 1.  The increased accuracy due to
smoothing is obvious.   One other feature to be noticed in Table 1 is the localization of
the region of high error in the smoothed case.   In the last column, only the point of
discontinuity, itself, exhibits a significant error.

We note that (4.2) is an infinite order, unconditionally stable scheme.   It is gen-
erally not possible to develop such methods for variable coefficient problems. However,

high-order, unconditionally stable schemes can be constructed in such cases by replac-
ing elwk with an appropriate Padé approximant.

We next consider the constant coefficient system given earlier in the introduc-
tion:

(4.3)

with initial data

0     l\   u
1    0 \u

(4.4)
"2/f=0

<K(x)

0

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



THE FOURIER METHOD FOR NONSMOOTH INITIAL DATA 1067

Table 2
Unsmoothed initial data; h = 0.025, t = 0.3

k = 0.1

ERROR

k = 0.05 k = 0.025 k = 0.0125

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

1.1009 -8

-4.3282 -7

-1.0124 -7

8.8447 -8

3-3105 -7
-2.4569-7

4.5625 -8

-9.1595 -8

-2.3477 -8

-5-5973 -8

-3.5402 -13

1.1009 -8

-4.3282 -7

-1.0124 -7

8.8447 -8

3.3105 -7
-2.4569 -7

4.5625 -8

-9.1595 -8

-2.3478-8

-5-5973 -8

-5-9459 -13

I.1009 -8

-4.3281-7

-1.0124 -7

8.8447 -8

3-3105 -7
-2.4569 -7

4.5625 -8

-9.1595 -8

-2.3478-8

-5.5974 -8

-9.8428-13

7.8125 -3

7.8121 - 3

7.8124 -3

7.8126 - 3

7.8128-3

7.8123 -3

7.8125 -3

7.8124 -3

7.8125 - 3

7.8124 - 3

7.8125 -3

Table 3
Exact solution to Eq. (4.3) at t = 0.3

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

9.553365 -1

9.553365 -1

9.553365 -1
-3.095798-2

-I.98OO69 -2

-1.114488-2

-4.962601 - 3

-1.244540 - 3

0.0

0.0

0.0

-2.955202 -1 I

-2.955202 -.L

-2.955202 -1

-2.458528-I

-I.966826 - 1

-I.4776OI -1

-9.883758-2

-4.966739 -2

0.0

0.0

0.0
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Table 4
Error in solution of (43) with smoothed initial data k/h = 0.75, t = 0.3

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

0-3

0.4

0.5

ERROR

k = 0.0375

3.8858-3
-4.8791-2

4.9847 -1

4.9082 -2

-3.8922 -3

-I.1217 -5

I.2318 -5

1.6040 - 6

2.1666-6

2.3108-6

3.3841-6

k = O.OI875

-7.0348-6

3.6388-3

4.9924 -1

-3-6418-3

7.2428-6

-3.1485 -6

-2.0788-6

-I.2606-6

-4.1114 -7

3.7681-8

9.3247 -7

k = O.O375

-I.O983 -5

4.8614-4

-5.IIO3 -3

4.8625 -4

-I.0908-5

I.3332-7

I.0895 -6

-4.8618-4

5.IIO3-3

-4.8603 -4

I.0986 -5

k = O.OI875

1.6484 -8

-3.8571-6

-2.5356-3

-3.8439 -6

-2.9210 -8

1.7460 -7

9.7857 -8

3-9963-6

2.5357 -3

4.0194 -6

2.7831-8

We express (4.3) in matrix form:

Ut =AUX +BU;
then the Fourier method takes the form
(4.5) [fit + k)= F~x(e(iu}A +B)kFU"(t)).

Again, for the smoothed case U"(0) is the truncated Fourier series of (4.4).
The exact solution to (4.3) with initial data (4.4) is given by Apelkrans [ 1 ].

Table 3 contains the exact values needed for the comparisons we will make here.
Table 4 gives the results obtained with smoothed initial data.  These contrast

sharply with the unsmoothed case shown in Table 5, both in terms of absolute accu-
racy, and the convergence rate.  Table 6 provides data computed using the incorrect
smoothing technique discussed in Section 2.  Notice that outside the characteristics,
this method of smoothing does, in fact, give good results; but inside the region Rs the
results are only slightly better than for the unsmoothed case (for the second component
they are actually worse than the unsmoothed case). Thus, we see that smoothing is a
very effective technique for improving the accuracy of the solution, but only when ap-
plied properly.

We now discuss the variable coefficient problem results.  We note at the outset
that the implementation of smoothing in this case differs somewhat from the constant
coefficient cases.  In particular, a frequency cutoff function p(coA) must be applied at
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every time step, rather than just to the initial data, since the variable coefficients may
cause a regeneration of the undesirable high frequencies; and these must be eliminated
before the succeeding time step.

We first consider the problem

(4-6) ut + (a(x)u)x = 0,

with initial data (4.1).  For the calculations reported here
, .      ,   2tta(x) = sin — x.

We notice that a(0) = 0, and a(±¿/2) = 0; and in light of discussions in [2] and [5],
this might be expected to lead to numerical instability of the Fourier method, unless
some precaution is taken.  In [5] it is shown, for the semidiscrete problem, that sta-
bility can be maintained by rearranging (4.6) to a specific form before spatial discreti-
zation. But the required form leads to a significant increase in the numerical operation
count, and so is not a very effective remedy.  However, we have shown in Theorem 1
that the stability problem can be easily overcome by applying smoothing operators.
We remark that the technique requires only a small amount of extra computation, the
amount being dependent on the particular time discretization employed.  (For the
method we give below, no additional computation is required after the second time
step, since the smoothed Fourier frequencies can be stored in place of the original ones
at this time, and used thereafter.)

Table 5
Error in solution o/(4.3) with unsmoothed initial data; k/h = 0.75, t = 0.3

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

ERROR

k = 0.0375

7.4078-3

7.4677-3

7.7710 -3

1.0263 -2

4.7501-3

9.1654-3

8.5679-3

7.9631-3

7.3550 -3

7.3045 -3

7.3078-3

k = O.OI875

3.9030 -3

3.9317 -3

4.1147 -3

5.4049 -3

5-1Ï71. -3

4.8146-3

4.5112-3

4.2055 -3

3.8984 -3

3.8852 -3

3.8865 -3

k = 0.0375

1.4928-4

3.3999 -h

1.3470 -3

1.1446-2

I.1708-2

I.175O -2

I.1753-2

I.I674 -2

I.O823 - 2

5.9360 -4

2.1888-4

k = O.OI875

5.5809 -5

I.1686-4

7-2482 -4

5 .9699 - 3

6.0059 -3

6.0060 -3

6.0107 -3

6.0005 - 3

5.4700 -3

1.5328-4

6.4966-5
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Table 6
Error in solution o/(4.3) with "incorrectly" smoothed

initial data; k/h = 0.75, t = 0.3

ERROR

\

k = 0.0375 k 0.01&75 k = 0.0375 k = O.OI875

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

O.3

0.4

0.5

-I.O502 -4

-2.2265 -2

2.2479 - 1

5.7923 - 2

-5.2143-3

2.35V.-3

1.3255 -3

6.8014 -4

9.9985 -5
-3.5457-8

8.6983 -6

1.4224 -5

-2.8466-4

2.2264 -1

-6.1195 -3

I.2876 -3

9.4844-4

6.3860 -4

3.2921-4

2.7527 -5

4.5456-6

4.4958-6

I.9388-5

-4.3262 -5

-4.3989 -5

I.3536-2

I.2179 -2

1.2220 -2

I.2227 -2

I.2379 -2

I.2506 -2

-I.I756-3

7.7666-5

-4

9
-4

6

6

6

6

6

6

3
-5

8778-9

6793 - 6

2684 -6

1389-3

1269 -3

.1103 -3

1244 -3

.1600 -3

2448 - 3

5951-5

2321 - 8

Table 7a, b presents results obtained for the smoothed and unsmoothed cases,
respectively.  The time discretization used is a two-level, second order scheme, analo-
gous to Heun's method for ordinary differential equations, due to Gottlieb and Türkei
[16].   It is given by the following.   Let

fxiuhit))=-F-1

fx(uH(t + k*)) = -F-x

p(u>h)
,iuu>k _

F(auh(t))I
1 _ e-iito3k

p(coA) ( -——-) F(auh(t + k*))

where

and

Then

(4.7)

p>       max     |a(x)|;
xel-L.L]

u"(t + k*) = -A0 + kfx(u"(t)).

u\t + k) = u\t) + ^\fxiu\t)) + fxiu\t + k*))]

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



THE FOURIER METHOD FOR NONSMOOTH INITIAL DATA 1071

Table 7
Solutions to (4.7) at t = 0.1 (A = 0.025)

SOLUTIONS

( a)    Smoothed

k = 0.05 It = 0.025 k = 0.0125

(b)    Unsmoothed

k = 0.05 k = 0.025 0.0125

-1.0 1.0611+60-0 I.O6O923-O I.O6O796-O 1.0601+07-0 1.05971*9-0 I.O59687-O

-0.8 9.808670-1 9.809521*-! 9.809878-1 9.809856-1 9.809232-1 9.809962-1
-0.6 9.108518-1 9.113701-1 9.111*987-1 9.12731*3-1 9.130233-1 9.132257-1

-0.1» 8.576136-1 8.580321-1 8.581253-1 8.62-1822-1 8.621*770-1 8.6275'*9-l

-0.2 8.202939-1 8.203211-1 8.203238-1 8.326650-1 8.315115-1 8.322071-1

0.0 l*. 137983-1 4.116699-1 1+.11069>*-1 -8.1*35581-2 8.6951*30-2 -8.73723**-2

0.2 I.17506O-2 I.170288-2 1.169012-2 -5.71*7359-!* 2.510335-1* 3.065230-5

0.4 1*. 604301-3 4.601*535-3 1*.604539-3 -2.397436-1* 3.5001*02-5 3.78631*3-5

0.6 1.732821-3 1.732797-3 1.732781-3 -1.311246-1* 6.779353-6 2.31+3121+-5

0.8 2.651869-5 2.649095-5 2.6477^7-5 -7.835093-5 2.02l*90l*-6 -1*. 192288-6

1.0 -1.112882-3 -1.112900-3 -1.112912-3 -5.005815-5 6.23701*9-6 -1*. 613823-6

As usual, for the smoothed case, we use u"i0) equal to the truncated Fourier series
of <I>(x).  Results obtained using (4.7) both with, and without, smoothing are given in
Table 7.  The main point to observe regarding Table 7 is the degree of consistency of
the convergence rate, from point to point, exhibited by the results obtained with
smoothing, and the corresponding lack of such consistency for the results computed
without smoothing.   In particular, nearly all of the points computed by the smoothed
method show roughly a second order convergence rate, while the unsmoothed method
produces results which do not appear to converge at all, at certain grid points.
Although this erratic behavior (which continued, even for further mesh refinements) of
the unsmoothed calculations would seem to be indicative of possible instabilities, this
was not borne out by long time integrations.   It should also be noted that with further
mesh refinement, second order convergence was not maintained, even for the smoothed
case near the point of discontinuity.

As a final example, we show that the theoretical results of the earlier sections
also apply in higher space dimensions by considering a second order splitting method
for the two space variable problem

(4.8)
where

ut = (a(x, y)u)x + ibix, y)u)        on [-1.6, 1.6] x [-1.6, 1.6],

,      -, 2ir    .   2ira(x, y) = -sin —x sin —y and bix,y) = -ey(x2 + y2),

with 7 = -7.5 for the results displayed in Table 8.   For initial data we use the checker-
board pattern, shown in Figure 1, and given by

(4.9) *(x, y) = *(x)<D0;) 4- (1 - <I>(x))(l - <I>0)).
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Table 8
Solutions to (4.8) at t = 0.1 (A = 0.05)

SOLUTIONS

k m 0.05 k = 0.025 k = 0.0125

y = -0.3 0.3 -0.3 0.3 y = -0.3 0.3

-0.5 9.699919-1 2.362806-3 9.701*543-1 2.771*1*79.3 9.706911-1 2-999335-3

-0.1* 9.73W57-I 5.895654-3 9.745015-1 6.720165-3 9.75021*2-1 7.159855-3

-0.3 9.721103-I 1.188208-2 9.731*723-1 1.287873-2 9.71*1895-1 1.31*01*68-2

-0.2 9.61*1*197-1 2.393817-2 9.6631*1*4-1 2.536328-2 9.673653-I 2.6OII67-2

-0.1 9.3521*08-1 1*.765 305-2 9.387540-1 5.037910-2 9.405873-1 5.176501-2

0.0 1*.947608-1 5.063481-1 1*.91*61*18-1 5.063733-1 •t.9^5939-1 5.0637l*6-l

0.1 5.1*71994-2 9.61*1620-1 5.103118-2 9.615326-1 1*.913242-2 9.601736-I

0.2 2.5801*17-2 9.865281*-! 2.381*192-2 9.853471-1 2.282085-2 9.81*7137-1

0.3 I.6OI895-2 9.995212-1 1.1*72681-2 9.9875i*i*-l 1.405752-2 9.983327-1

0.1* 8.8571*57-3 1.010681-0 7.930383-3 I.O10063-O 7.460291-3 1.009720-0

0.5 3.61161*7-3 1.023265-0 3.1971*25-3 1.022997-0 2.990576-3 1.022839-0

Splitting of (4.8) was done in the following way, to maintain second order
accuracy (cf. Marchuk [8]).  Denote the right side of (4.7) by LJJk, x)uhit). We then
compute uhit + k) from

(4.10) uhit + k)= Laik¡2, x) - Lb(k, y) ° Lfl(/c/2, x)u\t).

For the particular problem considered, (4.10) was stable for both smoothed and un-
smoothed cases; the former is shown in Table 8.

To this point, we have treated the smoothing procedure theoretically; and we
have also shown numerical results of applying it to specific examples. We now give a
brief discussion concerning implementational details. The basic idea is, of course,
elimination of the high Fourier frequencies which arise from discontinuous data. In
the past, this has been accomplished by merely setting to zero all of the frequency
spectrum beyond some prescribed magnitude. With such a procedure, the frequency
cutoff function is, itself discontinuous, making precise mathematical treatment difficult,
as one might infer from the nature of the various proofs given above. Moreover, as is
proven in Section 1, and demonstrated by the numerical solution of (4.3) (see Table 6),
simply cutting off frequencies, even in a smooth manner, is not sufficient for maintaining
the order of accuracy of the numerical method on the whole grid, except in special
cases (see Proposition 4). In general, two smoothing operations must be utilized: one for
the initial data, and one at subsequent time steps. Before treating each of these, we
make the following general remarks.

It seems likely that the precise behavior of an optimal smoothing procedure
must be very problem-dependent.  Thus, in practice, we should be content to imple-
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Figure 1
Initial data for the two space dimension problem

ment a procedure which works well, but which may be slightly suboptimal with re-
spect to accuracy, and possibly convergence rate. The following would appear to be
requisite qualities of such a smoothing method: the method should

(1) produce results in substantial agreement (with respect to theoretical accura-
cy and stability) with theoretical predictions;

(2) work well over a wide range of problems;
(3) be easily programmed, and inexpensive to compute.
Smoothing of initial data is accomplished by first replacing the original (discon-

tinuous) data by its Fourier series, truncated after a certain number of terms.  We
emphasize that the true Fourier series, and not the discrete Fourier transform, must
be used at this step, as indicated by Proposition 3.  The number of terms to be used
in the truncated Fourier series is related to the mesh size, A, of the spatial discretiza-
tion in the following way.   We associate this initial smoothing with the smoothing
operator o, discussed above, and identify p with smoothing at subsequent time steps.
We will show below how p is related to mesh size through the discrete Fourier fre-
quencies.   But in the proof of Theorem 2 we must have supp a C supp p.  Thus, the
number of terms carried in the truncated Fourier series of the initial data must be
less than the number of frequencies arising from the use of the discrete Fourier trans-
form in the spatial discretization.  All results presented herein were obtained using 2N
terms, where 2/V 4- 1 is the number of points in the spatial grid (= number of discrete
Fourier frequencies).

In Figure 2 we show a sketch of the initial smoothing of (4.1).  The main pur-
pose of this figure is to provide a clear indication of the cause of the large error
exactly at the point(s) of discontinuity of the smoothed solutions.
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•(*),

Initial Data

Truncated Fourier Series
of Initial Data

J3-2

Figure 2
Truncated Fourier series representation of initial data

The difference between the Fourier series and the actual initial data at the points
of discontinuity is, in this case, exactly 0.5; and this difference propagates in time.
But as the tabulated results show, when smoothing is used the error is localized to a
small neighborhood of the discontinuity; whereas, with no smoothing, the errors may
be quite large over the entire grid (e.g., compare Tables 4 and 5).

In the second step in smoothing, we employed partitions of unity to obtain the
theoretical results.  Thus, frequencies are multiplied by functions of the type depicted
in Figure 3, rather than brutally chopped off.  It is easy to construct such functions,
analytically, by using tails of the general form

exp [rL eXP(^o)] '      ̂ <5<Ço=

but computationally, this can lead to difficulties.  If the tails of the cutoff function
drop off too sharply, the computer is unable to distinguish such a C°°-function from a
discontinuous one.  Thus, a more controllable characteristic decay is necessary.  For
this reason we chose to use "generalized" Gaussians, centered at ±cc0, to form the
tails of the cutoff functions used in the numerical studies.  That is, the smoothing
functions were of the form

-a(-j + cj0) 2m
co<-cj0,

P(w)= ] 1.

-a(to-»ün) 2m

-c-i0 < CO < »o0,

Wo <a>>

where m is a positive integer.  In the work described here m = 1, 2, or 3; and we
shall refer to the corresponding functions p as the 2nd, 4th, or 6th-order cutoff func-
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tions, respectively.   It is clear that these functions are not C°° ; moreover, as the
order of continuous differentiability is increased, the tail decays to zero more slowly
for a fixed value of a. It was found that the 4th-order cutoff function gave the best
results overall, although they were not significantly different from those obtained for
2nd and 6th-order cutoff functions.  To obtain the most accurate results near discon-
tinuities it was found that co0 = 0 (i.e., an actual Gaussian) should be used.  However,
higher accuracy could be obtained away from discontinuities with co0 = 0.3comax for
the problems tested.  Here comax = I/A. The value of a was chosen so that P07->-max)
= 10~4, with 7} in the range 0.5 to 0.9.

These are not claimed to be optimal parameter values for the particular cutoff
functions used, nor is the form of the cutoff function necessarily optimal.  But the
numerical results of the preceding tables indicate excellent agreement with theoretical
predictions; the same form of smoothing was used in all problems; and the method is
easily implemented, and inexpensively computed.  Thus, all criteria proposed earlier
have been satisfied.

pW1

Figure 3
Typical Cg-frequency cutoff function

Appendix.  We begin by verifying the properties 1 to 5 of the discrete pseudo-
differential calculus of Section 2.

If u G C°°, it is easy to show that VX > 0 |«(/')l < Cxil + |/|)~\  Thus

(A.l) IDjAx, D,h)u\<CaXhm2  £   (1 + l/l)"

and property (1) is immediate if we take X sufficiently large.
We also have Q\x, DfT^ix, D) = R\x, D) for

(A.2)
N

Rhix,D)u= Z   e"xKx,/>(/")
f=-N

(supressing the h dependence in thisargument), where

(A.3) r*(x, T?) = (fV    Z     Z    ¿lx-*™-*>q{x, ft*-.. ■?)•
\Z7r/     z<=Yd $h&Yd
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By means of a partition of unity we may write p(z, r\) = px(z, 17) 4-
p2(z, q), where p. = 0 near z(- = ± tt V., p2(z, 77) = 0 near z- = 0 V., and p. and p2
are still each in 5^0'   2.  Moreover, by periodicity in z and the fact that we are work-
ing on a lattice z, x, %h, r\h G Yd, we can change the region of summation for the sum
involving p2 to

tk r*(x, Tj) = (¿Y Z Z   e«x-^-^qix, %)p2iz, 77).
(A.4) \¿7r/   zi-NheYd ShGYd

i=l,...,d

Thus, without loss of generality we may assume that in what follows, p(z, q) =
0 near each z¡ = ± rr.

By the Poisson sum formula we have

(A.5)    r*(x, 77) = (f Y     Z       Z Pndz-e^x-^-^ + 2nimzq(x, &<*, 77).
yml    %h<EYdm=-°°

For »i i= 0 the z gradient of the phase functions in the above integrands vanish-
es if and only if p. - £. = -2-nmJh.  This is impossible if any \m¡\ > 1.   However, if
Iwi-I < 1 for all /', Eq. (2.9) shows us that the contribution of these integrals for %¡h
near ± 77 » 0.

Thus, we may integrate by parts on all the m =£ 0 integrals, sum over m, and
get a contribution « 0.

The m = 0 integral is treated by applying the Poisson sum formula in £, obtain-
ing

(A.6)    Ax, 77) * (£) d    ¿   fdïpndzel<x-z)<S-r>)+2''imtqix, &*?, 77).
m=—-°

We note that the £ gradient of the phase function vanishes when z - x = 2-nm ;
hence, only the m = 0 integral is critical.

Now we write

qix, 8 = qix, 77) 4- "I! ■ ' ¿T(9^(x, vM - v)a
lc.l=0

(A.7)

+ ¿-/„(l - 0k d")%(x, %t + 7,(1 - Í)) A

For the m =£ 0 integrals we need only consider, modulo harmless constants,

Jl^JI  Z ß-7?)V<*-2>«-''>+2'ri'»*
(A.8) "*'=*

J^l-O^x,?) ? = Ç.+r,(l-f)P(^ Tí)*-

First integrate by parts in each z¡ a total of a,- times.  Next integrate by parts a
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large number of times in £, each time picking up a factor (x - z 4- 2nm¡)~x.  Sum
over m ¥= 0.  It is clear that we can take k large enough so that we obtain a converg-
ing series of operators in s"1'"1-   m2 for any m

For m = 0, we are concerned with

(A.9) (¿)7-°l^J!jr*e,<^)«-")t7(x, %)piz, 77).

We now use (A.7).  The composition formula of Leibniz follows in the standard
fashion.

The result if q is in the subclass T^l'™2 follows as above, using a slightly re-
fined analysis of the remainder in the Taylor series expansion (A.7).

The only nontrivial thing left to prove is the adjoint formula.   It is easy to
show that

(A. 10)     (Ax, D, h))*u = (j-Y    Z     Z    p(x0, /, A)V"'-<*-*o>u(x0).
V    ' i"^Ydxo^Yd

This result now follows in an analogous fashion to the previous one, i.e. only
one critical integral arises when we Poisson sum in /'.

We now prove the remark corresponding to (3.3). We have

pLix,D,hyP= (¿)d Z {y^-'o)p(x, i hyp(xQ)dx0

( 1 \ d       ~      f    ,      f°° it,(x-xn) + 2nmit.   .     ,.,»,.= fe)     £ J-^oJ _„,*;*       0> p(x,?,AMx0)
m?-0

4- Pix, D, hyp

by the Poisson summation formula.
For each integral corresponding to m ¥= 0, we may integrate by parts arbitrarily

often in £, and because p(x, j-, A) = 0 near x¡ = ± tt, none of these integrals are criti-
cal.  We then add over m ¥= 0.  The result follows.

Proof of Lemma 5 (Discrete Egorov's Theorem).  Our proof is just a copy of
Taylor's [14] in the continuous case with a few simple modifications.  However, it is
so fundamental to this work that we include it for completeness.

We note that Q"it) solves the operator differential equation

9ß"(0/a. =i[X*(jc,D,A),ô*],
(A-12)

ß» = ß"(x, D, h).

We are looking for a solution to

dN"/dt = i[Xhix, D, A), N"] + 5^(0,
(A-13)

-V*(0) = ß*(x, D, A),
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where, here and below, 5^œ(0 is a C°° family of smoothing operators on Yd.
We will obtain a lattice Psdop solution NH(t) with symbol in -?7¿'m2, and then

show A^ÍO - ßft(0 is a smoothing operator «0.
We shall assume mx = 0 = m2.  The general case presents no difficulties.
Following [14] we write:

nix, & A, 0 ~ "o(*' & A, t) + nxix, %, h, t) + • • • ,
(A. 14)

X(x, t h, t) ~ X.(x, %, h, 0 + X0(x, I, A, 0 + • • • •
The symbol of i[\h, A7*] is asymptotic to

(A.15) Hxn + {X0, "} + ( Z2 ^(X(a)«(«)-«(a)X(a)),

where X0 = X-X1=X0+X_1 +•■■,{,  } denotes Poisson brackets, and Hx   is
the Hamiltonian vector field which depends on A

We thus define n0(x, £, A, 0 by tne equation

(A. 16)        id/it-HXi)n0ix, I A, f) = 0,      n0{x. & A, 0) = «/0(x, fc A).

We can solve this for all t.  nQ is constant on the integral curves of d/dt - Hx .
We determine the other nfx, %, A, 0, recursively, as follows.  If -V*(0 =

A/£(x, D, A, 0, then from (A.15) we have

„       K({)symbol of i[\ «2(0] - —^-i'{X0, n0}

(A17> +   Z   — fX<a>n        -n<a>X    )
ilc-l-1

l«l>2

= a0(x, l h, t) G S-Xx/.

In view of this, we let «_.(x, £, A, 0 solve

(A.18)     idldt-HXi)n_xix,bh,t) = -a0ix,Z,h,t),    n_,(x, fc A, 0) = 0.

It follows that n_.(x, £, A, 0 G ^7 o'°-  We continue in this fashion obtaining
n_fx, |, A, 0 e 5o7ó°> and we have found "ix, I A, 0 e $1$ such that

w(x, I A, 0 ~ Z »-/*' & A' r)-
/=o

Our assertion that N"it) - Qhit) is smoothing is equivalent to showing that

||y(0lls is bounded independently of A, where

(A. 19) v(t) = (RhtQh(x, D) - A/^OK?)"

for any u defined on Yd.  Now n(0) = 0 and
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(A.20) ^ = .X"(x, D, h)v + S^ityu.

The result now follows from a simple modification of Theorem 1.
Proof of Corollary 2.  As above, we let v"it) solve the differential equation

dv"it)ldt = i[Lh'p, v"] +SÍU0,
(A.21)

vhiÖ) = N2'[Ih -P^oÏN».

Let N\vhN12l = y".  Then y" satisfies:

byhit)l<it = i[\h-p,yh] +S"_„it),

(A.22)
Ao)«ff? -phohx.

Since this problem is essentially decoupled, we can solve it modulo smoothing as in
the previous lemma and obtain, again modulo smoothing, v*1 = A^yWj.

Taylor's construction shows us that the symbol of each component of 7*(0 is
constant along the Hamiltonian flow associated with the corresponding component of
AH,P.  But this is the same as that for A if at t = 0 (x, £) is in the set for which
p(A£) =■ 1. The symbol of ax - phat[ vanishes outside this set. Thus, the symbol of
// is the same as that of

pix, D, t) = 7VM2 [/ - p(x, D)I] axMx T_t.

At t = t the symbol of p(x, D, t) has projection on x space disjoint from that
of M2xMx. This means, again by Taylor's construction, that these sets stay disjoint
for all time.

Proof of Lemma 6. We have

N

(A.23)

Here

Pix, D)Qhix, D,h)u=   £ e'xr>uiq)rix, t?, A),
v=-n

Pix, D)Qix, D, h)u =       tdq e'x M-. Mx, t?, A).
J —ir/n

rix, q, A) = (¿)7-°> Z e'(*-zH*-*>p(x, ̂(z, % A),
(A.24) \¿7r/ zsyd

six, t,, A) = (¿)X°l^Jí2(í*^"z)'a"T!)P(^ M?, n, h).

We shall show

(A.25) rix, q, A) - s(x, 7?, A) « 0.

Having done this, it follows from the composition formula that both symbols
« 0 for tí. near ±tt Vi.
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By (A.23), (A.25), and the Poisson sum formula, we need only show

Cn/h      t—•      C i(x— xn)n + 2nim xn/h   . .   „(A.26)       J Z   P        ° °   Kx)î?)A)-»(xo)dxo»fp = 0.
m^O

m=-°°

For each m we apply the method of stationary phase in x0 and we may, when
\m¡\ < 1, for all i, consider the integrand as vanishing near t?,- = ±tt.  Then using the
fact that (F(3»)(t?) = cXA*) VX if |t?| > (tt 4- e)/A Ve > 0, we sum over m; we can
thus show that the term in (A.26) «- 0.

Proof of (A.25).   By the Poisson sum formula we have

\d
r - s

m*0
(¿)      Z f-„dèPddz ei«x-*)(t-v) + 2„mzlh)p(Xi ?)t/(z> n> h)

(A.27)

=    Z   Im-
m*0

We notice that each of these integrals is critical in z because % — r\ = 2-nmjh in
this range of integration.  (This is the only time in this entire paper that we ever have
to deal with an infinite number of critical integrals.)

Take a particular integral and make a simple change of variables, arriving at

(A.28)   lm = (£fe2nmtxth P^Pddz e^-'Mt-n) .p(x,% + 2j^)q(x, V, A).

Now we apply Taylor's theorem on p(x, £ 4- 2Trm/h), expanding it at % = 77.
By the disjoint support hypothesis, we arrive at (modulo harmless constants)

Pndtil-tT^p(xA+^\ qiz.r,)

iA29) + (¿Z e2nmÍXlhí-^L  (I-o(h(t-qm-qf+x¿x-^-^dz

.pon-trdp(x,t + 2f)

= 27 + I?.
t=n + ti^(*>*)

For 1™ we choose |cy| sufficiently large so that when we integrate by parts in z
we get

19^ I?! < CKßyhx\mfx    for X arbitrary and fixed.

For Jm we may integrate by parts in z, dividing by (£. - 77,.) which is now non-
vanishing.  Do this sufficiently often, and we wind up with an estimate
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\r\ßWTm\<r       C *.      /,   ,   v    27rw|V^ 2tt/7.j-^p*^Ia,<c^*Jit-«.i>«w)/*fi^L\J+ l-~n]  + *-"¡rl
Ax

< C^ g    -    for X arbitrary.

We now sum over 777 and the result follows.
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