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Let S be a topological semigroup with a continuous in-
volution. We study a subalgebra F(S) of the algebra of
continuous weakly almost periodic functions on S. F(S) is
translation invariant, closed under conjugation and contains
constants. When S has an identity, then F(S) is the linear
span of the cone of continuous positive definite functions on
S. We show that there exists a norm ||-||p on F(S) such
that (F(S),|l-llg) is a commutative Banach algebra which
can be identified with the predual of a W#*-algebra W¥*(S).
When S is a locally compact group, then F(S) is precisely the
Fourier Stieltjes algebra of S. We also show that o(F(S)),
the spectrum of F(S), is a *-semigroup in W*(S), and study
the relation of ¢(F(S,)) and ¢(F'(S,)) when F(S, and F(S,)
are isometric isomorphic Banach algebras.

1. Introduction. Recently, Dunkl and Ramirez [5] defined a
subalgebra R(S) of the algebra WAP(S) of complex-valued continuous
weakly almost periodic functions on S. The algebra R(S), called the
representation algebra of S, is eonstructed by considering continuous
representations of S into the unit ball of L.(X, ) with the weak*-
topology, where (X, p¢) is some probability measure space. They
showed that R(S) is translation invariant, closed under conjugation
and contains all bounded continuous semi-characters on S. Further-
more R(S), with an appropriate norm, becomes a commutative Banach
algebra and the dual of R(S) can be identified with a weak*-closed
subalgebra of a commutative W*-algebra. If G is a commutative
locally compact group, then R(G) = M(@)A, the Fourier Stieltjes
transform of the measure algebra on the dual group G (see [6, D.
80]).

Our present work deals with the study of the subalgebra F(S)
of WAP(S) of a topological *-semigroup S (i.e., a topological semi-
group with a continuous involution)., If S has an identity, then
F(8S) is the linear span of continuous positive definite function on S.
Also if S is a commutative, then F(S) is contained in the representa-
tion algebra R(S). We show that F(S) can be identified with the
predual of a W*-algebra, W*(S). Furthermore F(S) with the predual
norm is a commutative Banach algebra, called the Fourier Stieltjes
algebra of S. The algebra F(S) is also translation invariant, closed
under conjugation and contains all continuous *-semi-characters of
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S. Also there exists an ultra-weakly continuous *-representation of
S into the unit ball of W*(S) “containing” all other ulira-weakly
continuous *-representations of S into the unit ball of a W*-algebra.
In particular, if G is a locally compact group (with involution
g — g7h), then W*(G) is the big group algebra defined by John Ernest
[9] (see also [8]). Furthermore, if S is commutative and has an
identity, then FY(S) is isometric and algebra isomorphic to a weak*-
dense subalgebra of the measure algebra of a compact topological
commutative semigroup.

This paper is organized in the following way: In §2 we list
some notations and preliminary properties of topological *-semigroups
S; definitions and properties of F(S) and W*(S) as stated in the
previous paragraph will be made precise in §3 and 4. Analysis of
the spectrum o(F(S)) of F(S) is taken up in §5. We show that
o(F(S)) is a *-semigroup in W*(S) and study the relation of o(F(S,))
and o(F(S,)) when S,, S, are topological *-semigroups, and F(S,) and
F(S,) are isometric isomorphic Banach algebras.

Continuous positive definite functions on topological *-semigroups
S have been studied by R. J. Lindahl and P. H. Maserick [15], and
more recently by C. Berg and J. Christensen [3] for commutative
S with involution on S given by the identity map. Our analysis of
the spectrum of FY(S) is inspired and motivated by the work of
Martin E. Walter in [18] and [19].

It is our pleasure to thank the referee of this paper. His many
valuable suggestions have much improved the contents of the original
version of our work.

2. Preliminaries and some notations. Let A4 be a subset of
a linear space FE, then (4> will denote the linear span of A. If E
is also a normed linear space, then the closure of A and the closed
linear span of A will be denoted by A and (A)~ respectively if the
closure is taken with respect to the norm topology, or by A° and
(A>~" respectively if the closure is taken with respect to a topology
= on E different from the norm topology.

The continuous dual of a normed linear space E will be denoted
by E*. If xeE and ¢ € E*, then the value of ¢ at & will be denoted
by ¢(x) or (¢, x>. Also if F < E*, then o(H, F) will denote the
locally convex topology on K determined by the semi-norms
{ps; 6 € F'}, where py(x) = |¢p(x)| for all x e E.

If M is a W*-algebra, then M, will denote its unique predual.
For each x € M, and ¢ M,, write L,$, R,6 and ¢* as the functionals
in M, defined by L.4(y) = ¢(xy), R.6(%) = ¢(yx) and ¢*(y) = 4(y™) for
each ye M. Also the ultraweak topology on M (i.e., the o(M, M,)-
topology) will often be written as the o-topology.
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By a topological semigroup S, we shall mean a semigroup S
with a Hausdorff topology such that for each a €S, the mappings
s —as and s — sa from S into S are continuous.

Let S be a topological semigroup and let C(S) be the space of
bounded continuous complex-valued functions on S. For each a ¢S,
define the left and right translation operators -, », on C(S) by:

(«.f)8) = flas)
(r.f)s) = f(sa)

for each seS. A function feC(S) is weakly almost periodic if
{#.f; a € 8} is relatively compact in the weak topology of C(S). Then,
as known, the space WAP(S) of continuous weakly almost periodic
functions on S is a translation invariant closed subalgebra of C(S)
containing constants.

By an tnvolution on a topological semigroup S we shall mean
a map from S into S, denoted by s — s*, such that

(1) (ab)* = b*a*
(2) a** =q

for all ae€S. A topological *-semigroup is a topological semigroup
with a fixd continuous involution.

ReEmMARK 2.1. (a) Not all topological semigroups admit an
involution (see [15, p. T71)).

(b) If S is commutative, then the identity map on S defines
an involution on S.

(e¢) If S has an identity u, then u* = w.

(d) If M is a W*-algebra, then the unit ball of M with the
o-topology is a compact topological *-semigroup with the multiplica-
tion and involution of M.

If S is a topological *-semigroup, fe C(S), define f*e C(S) by
F*(s) = f(s®) for all s€S. Then the map f — f* defines an involu-
tion on the Banach algebra C(S).

A complex-valued function f on a topological *-semigroup S is
called positive definite if for any complex numbers A, «--, N\, and
any s, -+, 8, in S, we have

ki

2 (sfs) 2 0.

k2
i=1 j=1

The collection of continuous positive definite functions on S will be
denoted by P(S). The next proposition can be proved by an argu-
ment similar to that in [12, 32.9] (see also [15, Theorem 3.4]).
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PROPOSITION 2.2. Let S be a topological *-semigroun. Then P(S)
is a cone in C(S) closed under comjugation, involution and point-
wise product.

When G is a group, then the involution on G, unless otherwise
specified, will be the one defined by the inversion map g — g%, geG.

3. The Fourier Stieltjes algebra F'(S). Throughout this section,
S will denote a topological *-semigroup.

By a representation of S we shall mean a pair (w, M), where
M is a W+*-algebra and @ is a homomorphism of S into M, =
{x e M; |lz}] < 1)} regarded as a semigroup with multiplication from
M i.e., w(ab) = w(a)w() for all a,beS. The representation (w, M)
is a *-representation if w(a*) = w(a)* for all a € S; it is o-continuous
if ®w is continuous when M, has the o-topology.

REMARK 8.1. If S has an identity u, and (@, M) is a *-representa-
tion of S, then w(u) = p is a projection in M, and @(S) is contained
in the W+*-algebra pMp for which p 1is the identity. Also if
(w(S)>™ = M, then w(u) is the identity of M.

If (w, M) is a o-continuous *-representation of S such that
{w(8S)) is o-dense in M, then card (M,) < ¢, where ¢ is the
cardinality of the real numbers. Hence we may form the collection
2(8S) of all g-continuous *-representations & = (w, M) of S such that
{w(8S))* = M. Let F(S) denote all complex-valued functions f such
that f = « for some we M, and some a = (w, M) in 2(S). For each
feF(S), let

If 1l = sup {If(s)]; s € S}
Iflle = inf {|ll; v € My, 4 = f and (0, M) e 2(S)} .

THEOREM 3.2. (a) F(S) is a subalgebra of WAP(S) containing
the constant functions. Furthermore, |||, 18 a norm on F(S) and
(F'(S), II+1lo) 18 a commutative normed algebra with unit.

(b) If feF(S) and acS, then the functions r.f, 2,f, f* f are
all in F(S) and ||7ufllo < I1fllor 4510 S 1fllar 1F*1le = [1Fllar [1Fllo =
1flle and |[flle < 110

Proof. That F(S) < WAP(S) follows from [14, Lemma 6.3].
The remainder of the theorem can be proved quite similarly to [6,
Theorem 2.1.6], we omit the details.

We shall call (F(S), ||-]|l;) the Fourier Stieltjes algebra of S.

REMARK 3.3. (a) The algebra F(S) cannot be enlarged and the
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norm on F(S) cannot be decreased by considering a collection & of
o-continuous *-representations of S containing 2(S). Indeed, if
feF(S) and @ = (w, M)e % such that f = + for some e M,, let
N = {w(S)>™° and +, be the restriction of « to N. Then (w, N)e
2(8), 4o = f and |jy]] = [|y]].

(b) If S is commutative, then F(S) & R(S), where R(S) is
the representation algebra of S defined by Dunkl and Ramirez [5].
To see this, let feF(S). Choose (w, M)e 2(S) such that ¢ = f
for some seM,. Let X be the spectrum of M. Then card (X) =<
c*r4S By the Riesz representation theorem, there exists a proba-

bility measure f, on X such that ¢(a) = S a(t)dps(t) for each a € M.
X

Consider the mapping @, from M into L.(X, y,) defined by &,a) = @,
where @ is the Gelfand transform of a. Then &, is a W*-homomor-
phism of M into L.(X, ¢,) (see [16, p. 46]). Define a presentation
(@4 Lo(X, 1)) of S by @,(S) = D,(@(s)). Then &(s) = (L, @y(s)) for
all se€S. Hence f = ¢ e R(S).

Note that the inclusion F(S) £ R(S) may be proper (see Example
4.2).

(e) If S is an idempotent commutative topological semigroup
with involution s* = s for all s€ S, then any representation (@, M)
of S, where M is a commutative W*-algebra, is a *-representation.
In particular F(S) = R(S). Indeed, we may assume that M = L.(X, 1)
for some measure space (X, ). Since w(s) = w(s*) = w(s) for all
se S, it follows that w(s) is a characteristic function on some subset
of 2. Hence w(s)* = w(s*).

(d) Let G be an abelian group. Then for any representation
(¢, M) where M is a commutative W*-algebra, is a *-representation
of G. Consequently F(G) = R(G). Indeed, write M = L.(X, ) for
some measure space (X, p¢). We may assume that @w(u) = 1, where
% is the identity of G. Then for each ge G, w(g)w(g™) = w(u) = 1.
Hence |w(g)| = 1 and w(g™") = w(g) = o(g)*.

(e) If S is the unit ball of a W*-algebra M, then the restrie-
tion map is a linear isometry from M, into F'(S).

(f) A function y: S — C is called a semi-character if |y(s)] <1
and y(s-t) = y(s)y(t) for all s,teS. A continuous semi-character
¥ is in F(S) if and only if y(s*) = %(s) for all s€S. In this case
yx € P(S) and ||x||o = 1 whenever y is nonzero, (see [6, Remark 2.1.8]).

The next proposition follows easily from [15, Theorem 3.2] and
Remark 3.3(a):

PROPOSITION 3.4. If S has an identity, then F(S) = (P(S)>.

REMARK 3.5. (a) Let S, denote the semigroup formed by ad-
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joining to S an identity u. Equip S, with the topology 7 that a
subset 0 £ S, is in % if and only if 0N S is open in S. Then (S,, )
is a topological semigroup. Also the involution on S can be extended
to an involution on S, by defining 4* = u. Let r denote the restric-
tion map from F(S,) into F(S). Then ¢ is norm decreasing, onto
and 7(P(S,)) = F(S) n P(S).

(b) The assumption that S has an identity cannot be removed
from Proposition 3.4. Indeed, let S be a set with at least two ele-
ments. Let z€ S be fixd. Define on S the multiplication ab = z for
all a,b¢S. Equip S with the discrete topology and involution ¢ = a*
for all e e S. Pick weS, w2 Let f be the characteristic funec-
tion on the set {w}. Then feP(S), but f¢ F(S). Indeed, there
exists no k& such that

k2 2 ”»
3 et )| £k 3 clif(sa?)

=1 si=
for any s, ---, s, in S and complex numbers ¢, ---, ¢,. Hence by
Corollary 1.2 in [15], f is not extendable to a function in P(S,). By

(a), feF(S).

4. The operator algebra W*(S). Let S be a topological *-semi-
group and write M, = >, P M,, the direct summand of the W*-
algebras M,, ac 2(S). (See [16, p. 2].) Define a *-homomorphism
of S into M, by: w.(s)@) = w,(s) for each a = (w,, M,) in 2(S).
Then

[@g(s)]] = sup {/lw.(s)|; e 2(S)} =1

for each seS. Also if s, is a net in S converging to some s€S,
then the net {(@y(s,)(@), ¥y = {Wa(s,), ¥) converges to {@.(s)(a), ¥>
for each ae 2(S) and e (M,),. Since the o-topology on M, agrees
with the topology determined by the semi-norms {P,; @< 2(S),
Jr € (M,),} on the unit ball, where

|Poy(@)] = [{@(a), 9]

for each x € M, it follows that (w,, M,) is a o-continuous *-represen-
tation of 8. Write

WH(S) = {@o(8S))™ .

THEOREM 4.1. Let S be a topological *-semigroup. Then:

(a) The mapping m: W*(S), — F(S) defined by zn(y) =+, ¥ €
W*(S),, s a linear isometry from W*(S), onto F(S). Consequently,
the normed algebra F(S) is complete. Furthermore, w(4)) is positive
definite if and only if + is positive.
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(b) If (0, M) is any c-continuous *-representation of S, then
there exists a W*-homomorphism h, from W*(S) into M such that
the diagram

S22, W*(S)

DN
M

1s commutative. Also if e M,, then {(x, ) = (h,(x), > for all
x € W*(S).

Proof of Theorem 4.1 is rather routine. We omit the details.

ExXAMPLE 4.2. Let Z be the group of integers with addition
and involution » — —xn. Then F(Z) = R(Z) = {P(Z)) (Remark 3.3(d)
and Proposition 3.4), and W*(Z) is the commutative W*-algebra
C(T)**, where T is circle group (see Remark 4.3(b)).

On the other hand, if Z has involution % — %, then F(Z) = C?,
W*(Z) = C* and hence F(Z) is a proper subset of R(Z) (see Remark
3.83(a)). To see this, consider any (w, M)e 2(Z). Then M is a com-
“mutative W*-algebra.’; Hence w(n) = @(n) = @(—n) by Remark 3.3
(d). Consequently w(n) = w(0) =1 for all neZ and w(Z) has at
most two elements. However, if M is the subalgebra of L.[0, 1]
generated by the functions 1, k, where

1 if O§t<%
h(t) = 1
-1 if E_S_tél

then w(0) = 1 and w(1) = w(—1) = h defines a representation of Z in
2(Z), and {(w(Z)) = M, which is two-dimensional. Hence W*(Z) = C*
and F(Z) = C.

REMARK 4.3. (a) Let S be a locally compact topological *-semi-
group. Let M(S) be the Banach algebra of complex, finite, regular
Borel measures on S with multiplication of two elements g, v in
M(S) defined by

| £apw = (| revaueae

for all feCyS), and total variation norm, where C,(S) is the space
of all functions f e C(S) vanishing at infinity (see [11]). For each
pe M(S), define p#* € M(S) to be the measure representing the func-
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tional f — S SH@)dp(t) on C(S). Then as observed in [14, Lemma 6.8],

the map p¢— y¢* is an involution on M(S) with ||y = ||#*]] and
(e,)* = &,. for each a €S, where ¢, is the point measure at a.
Define

@1, 9> = | Syt

for each pe M(S), and ¢ W*(S),. Clearly dye,) = w(a) for each
acS. Consequently @, defines a norm-decreasing *-homomorphism
of M(S) into W*(S) which is continuous when M(S) has the
o(M(S), F(S)) topology and W*(S) has the o-topology. Furthermore,
if B is any norm-decreasing *-homomorphism from M(S) into a W*-
algebra M which is continuous when M(S) has the o(M(S), F(S))
topology and M has the o-topology, then there exists a W*-homo-
morphism & from W*(S) into M such that the diagram

M(S) 22, w(S)

\ﬁ\ lh
M

is commutative.
(b) Let G be a locally compact group. Let C*(G) denote the
completion of L,(G) with the norm

hlle = sup {IITWll},  Rely(G),

where the suprenum is taken over all no-where trivial *-representa-
tion T of L,(G) as an algebra of bounded linear operators on a
Hilbert space. Then as well known (see [10, Chapter 2]), {P(G)}
can be identified with the dual of C*G), and P(G) is precisely the
positive linear functionals on the C*-algebra C*(G). In this case
F(G) = {(P(G)) (see Proposition 3.4) and [|f]l; is precisely the norm
of f regarded as a linear functional on C*(&) for each f e F(G).
Furthermore, W*(G) is isomorphic to the second conjugate algebra
of C*(G) with the Arens product. (See [8, Remark 2.6 and Proposi-
tion 2.8].)

(¢) Let S be a topological *-semigroup and let C%(S) = {@y(S))>~.
Then C*(S) is a C*-subalgebra of W*(S). For each f ¢ F(S), x € C4(S),
define f-xe W*(S) by

(fexyg) =L, fog)

for all g€ F(S). Then f-xeCi(S). Also if m e C*(S)* and x € C4(S),
then the element m,(x) in W*(S) defined by
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<mL(x)7 f> = <m: f'x>

for all fe F(S) is also in C%(S). Hence we may define on C%(S)* the
Arens product [1] by

{n-m, x) = {n, my(x))

for any n, m e C4(S), xc C4(S). Then C¥(S)* with product and the
dual norm is a commutative Banach algebra containing an isometric
copy of F'(S). Furthermore, multiplication in the unit ball of C}(S)*
is jointly continuous with respect to the weak*-topology. (This follows
from our [14, Theorem 6.11] when S has an identity; otherwise just
use an argument similar to the proof given there.)

(d) Let S be a topological *-semigroup and let S, denote S
with the discrete topology. For each m e Cji(S)*, define #i(s) =
m(wy(s)) for all s€S. Then clearly m € (P(S;)). Since (@, M) e 2(S),
where M is the enveloping W*-algebra of C#(S), it follows that
m e F(S,) and [|7||, £ |lm||. A simple computation shows that the
map 7: Ci(S)* — F(S,;) defined by #(m)= m, meCiS)*, is norm-
decreasing algebra isomorphism from C}(S)* into F(S,;). In particular
if S is diserete, then F(S) is isometric and algebra isomorphic to
CE(S)*.

(e) Let S be a commutative topological *-semigroup with an
identity u, and let §d (resp. §) denote the set of all (resp. continu-
ous) nonzero *-semi-characters on S i.e., semi-characters y on S such
that x(s*) = %x(s) for all seS. Note that y(u) = 1 for each xeSd
Equip S, with the topology of pointwise convergence. Then S,i with
pointwise multiplication is a compact togological semigroup. Let 4(S)
denote the spectrum of the commutative C*-algebra C}(S) and write
4(8)” = ®(A(S)) where T is as defined in (d) above. Then 4(S)" is a
compact subsemigroup of Sd containing S. Furthermore, it follows
from [14, Theorem 6.12] that there exists a linear isometry and
algebra homomorphism from F(S) into a weak*-dense subalgebra of
the measure algebra M(4(S)"). Also if S is a disecrete commutative
*_gsemigroup with an identity, then F(S) is isometric and algebra
isomorphic to M(§).

5. The spectrum of F(S). Throughout this section S will
denote a topological *-semigroup and ¢(F'(S)) will denote the spectrum
of F(S) i.e., the collection of all nonzero multiplicative linear funec-
tionals on F(S).

Recently Martin E. Walter [18] [19] has given detailed analysis
on the spectrum of the Fourier Stieltjes algebra of a locally compact
group. In this section, we shall generalize some of Walter’s results to
the spectrum of F'(S). We begin with the following simple observations.
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Let € W*(S) and f € F(S). Define a bounded complex-valued
function z,(f) on S by

2 (f)(8) = <&, LS

for each seS. Let ge W*(S), such that ¢ =f. Then (L,ys9)" =
l.f. Hence

2(f)8) = (&, Luys$)
= (R.¢, Wa(8))
= (R.9)"(s)
for all seS. Consequently x,f € F(S) and ||z.filo < ||2}l||f]le. Hence
if ye W*(S), we may define an element yox in W*(S) by
(You, ) =<y, 2
for all fe F(S).

LemMA 5.1. Ifx, ye W*(S), then yox = y-x, where y-x denotes
the product of y, x in W*(S). Consequently (x-y)(f) = y,(x,(f)) for
each f € F(S).

Proof. Let xe W*(S) be fixed. The equation yox = y-x clearly
holds for all y = wy(s), s€S. Hence it holds for all ye<{wy(S)).
Now if ye W*(S) and y, is a net in {@,(S)) converging to y in the
o-topology, then for each f e F(S),

{yom, ) =y, ()
= Iiam Yo ()

= lim {yq o2, )
= lim {y,x, f)
= Y-, f)

by [16, p. 18]. The final assertions from direct computation.

LeMMmA 5.2. (a) Ifxzeo(F(S)), then x, ts an algebra homomor-
phism from F(S) into F(S).

(b) If S has an identity, and x is & nonzero element in W*(S)
such that x, is an algebra homomorphism, then x < o(F(S)).

Proof. (a) If f, ge F(S), then
a,(f+9)(8) = (=, L(f-9)) = (=, (L.)L9)) = <z, L.f){x, L.g)

for all se€S. Hence x;, is an algebra homomorphism.
(b) follows simply by evaluation at the identity.
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REMARK 5.3. Note that Lemma 5.2 (b) is false when S does not
have an identity as the following example shows. Let S = {s,, s,, 8;}

with multiplication defined by
x ox. pommatd .
£ x, if 1#7.

Then S is commutative and has no identity. Let S have the discrete
topology and involution defined by the identity map. Then F(S)
separate points. In fact, let M = L.[0, 1] and define a *-representa-
tion w of S into M by w(s) =0, @(8,) = L1, and o(s;) = ;.4
Then F,(S) clearly separate points and contained in F(S). Hence
o(F(S)) = wy(S) consists of three distinct points, and the identity e
of W*(S) is not in o(F(S)). However ¢;, being the identity operator
on F(S), is an algebra homomorphism.

PROPOSITION 5.4. If =z, yeo(F(S)), then z* and xz-y are in
o(F(S)).

Proof. Let f,geP(S)N F(S). Then f-ge P(S)N F(S) by Prop-
osition 2.2. Hence if 2 € o(F(S)), then z* == 0 and
{a*, frg) = (&, [-9) =<z, [z, g0 = {x*, [H*, 90

by Theorem 4.1 (b). Since {(P(S)N F(S)) = F(S), it follows that
x* e o(F(S)).
If z, yeo(F(S)) and f, g € F(S), then

ey, 9> = <z, Yl f+9)) = <&, y(NHn9)) = {x, w.(F))<{x, 4.(9))
= <x'y, f><x'y, g>

using Lemmas 5.1 and 5.2. To see that x-y = 0, we observe that
if 1 is the constant one function on S, then {x, 1> = 1. Hence

(-9, L) =<, (1)) = (&, 1) = 1

using Lemma 5.1 again. Hence xz-y € o(F(S)).

If (w,, M_), =1,2, are o—conm%s *-representations of S, let
(w0, ® w,, M, ® M,) denote the os-continuous representation of S into
the W*-tensor product M, ® M, by

(0, @ @,)(s) = @,(s) & Wy(s)

for each seS.

PROPOSITION 5.5. Let x be a nonzero element in W*(S). Then
the followings are equivalent:
(a) zea(F(S)).
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(D) Poge,(®) = o (&) @ ho,(x) for any o-continuous *-representa-
t’l:O’nS (0)“ Mi)’ /': = 1, 2, Of S-
(e) h’mg@w_q(x) =2 ®.

Proof. (a)= (b). Let ¢,e(M).. Then (¢, R ¢,)" = q?l-@. Hence

<hw1®w2(x): 6 R o) = &, (6, D #,))
= (&, §,* o)
= (&, S$1><mr b.
= (ho(®), 60 <{P0,(®), ¢2)
= (1o (®) @ ha,(®), . Q 62)

using Theorem 4.1 (b). Since {¢;, R &,, 8; € (M)} is total in (M, ® M,),,
(b) follows.

(b) = (c) is clear.

(¢) = (a). Let f, f,€ F(S) and 4, 9, be the unique elements in
W*(S), such that +; = f;. Then

(S 83y ) = gy )y %)
= (P Q v Q)
= <"/’1 ® gy hw;@fug(x»
= (i, @ 4y)”, 2 (by Theorem 4.1(b))
= (Yt Az, T
={fiSu ).

Since x = 0, z € o(F(S)).

REMARK b5.6. (a) Both Propositions 5.4 and 5.5 are due to
Martin E. Walter ([18, Theorem 1(ii) and (iii)] and [19; Corollary to
Theorem 2]) when S is a locally compact group. Our proof of
Proposition 5.4 is completely different from that of Walter. How-
ever, using Proposition 5.5 and an argument similar to that in [18,
Theorem 1(iii)] we can also obtain a part of Proposition 5.4, i.e., if
z, y € 0(F(8S)), then z* € ¢(F(S)) and z-y € o(F(S)) U {0}.

(b) It follows from Proposition 5.5 that ¢(F(S)) with the o-
topology is a compact topological *-semigroup. Also, @wy(S)° is a
*-gubsemigroup of o(F(S)); w,(S)° is precisely the largest *-compacti-
fication of S as defined in [15, Theorem 5.1].

PROPOSITION 5.7. Let T = wo(S)’. Then there exists a linear
tsometry and algebra isomorphism U from F(T) onto F(S) such
that U* is a W*-isomorphism from W*(S) onto W*(T).
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Proof. Let w, denote the *-representation of T into W*(T) and
let @'(s) = wy{wy(s)) for all s€S. Then (@', W*(T)) is a o-continuous
*-representation of S, and (@'(S))™ = W*(T). Let h = h, (Theorem
4.1). Then h is onto and

h(wq(s)) = wy(wy(s))

for all seS. Consequently A(t) = wy(t) for all teT. On the other
hand, if & = h,, where w_ is the injection map of T into W*(S), then

k(wy(t) = ¢

for all teT. Hence k(h(t)) =t for all teT. Since (T)™° = W*(S),
it follows that k(h(x)) = x for all e W*(S). Consequently h is a
W+*-isomorphism. Define U(4") = (h*¥)~ for all e W*(T),. Then
U(f)(s8) = f(w'(s)) for all se S, f e F(T). Hence U is a linear isometry
and algebra homomorphism from F(T) onto F(S), and U* =4 is a
W*-isomorphism from W*(S) onto W*(T).

Martin Walter proved in [18] the following beautiful duality
theorem: If the Fourier algebras of two locally ecompact groups G,
and G, are isometric isomorphie, then G, and G, are topologically
isomorphic. This result, as pointed out in [18, p. 18] is equivalent
to B. E. Johnson’s isomorphism theorem for the measure algebras
of the locally compact groups when G, and G, are abelian. It is
easy to see from Proposition 5.7 that Walter’s result is no longer
valid when G,, G, are topological *-semigroups. However we shall
show in the next theorem that if S, and S, are topological *-semi-
groups with identity and F(S,) and FY(S,) are isometric isomorphic,
then the compact topological *-semigroups o(F'(S,)) and o(F'(S,)) are
strongly related.

Let o,(F(S)) denote all unitary elements in ¢(F(S)) and let
o (F(S)) denote the centre of the semigroup o(F(S)), i.e., all x € a(F(S))
such that z-y = y-x for all yeo(F(S)). Then o, (F(S)) is a group
and o,(F(S)) is a closed *-subsemigroup of o(F(S)).

THEOREM 5.8. Let S,, S, be topological *-semigroups with identi-
ty. If the Banach algebras F(S,) and F(S,) are isometric isomorphic,
then there exists a homeomorphism ¢ from o(F(S,) onto o(F(S,)) such
that

(a) ¢(x*) = ¢(x)* for all xeo(F(S).

(b) For each x, y € 6(F(S)), either ¢(x-y) = ¢(&)¢(y) or ¢(x-y) =
o(Y)p(x)-

(e) ¢ is a *-isomorphism from o, (F(S)) onto a,(F(S,)).

(d) ¢ is either a *-isomorphism or a *-anti-isomorphism from
o (F(S)) onto 0, (F(S,).
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Furthermore, if for each x < o(F(S)),

H, = {y e o(F(S)); (z-¥) = $(y)g(@)} ;
K, = {y e a(F(8)); ¢(x-y) = s(x)$()}

and tf
H= n{H;xe0,F(S)}; K= N{K,;xea,(F(Sy))

then

(e) H,, K, are og-closed subsemigroups of o(F(S)) such that
ye H, (resp.y € K,) if and only if y* e K, (resp. y* € K,+).

(f) H and K are o-closed *-subsemigroups of o(F(S)) such
that H U K = a(F(S)).

Proof. We follow an idea Martin Walter in the proof of Theorem
2 in [18]. Let U be the isomorphism from F(S,) onto F(S,). Since
S, has an identity, it follows that e, the identity of W*(S,), is in
o(F(S)). Hence w = U*(e) and v = u* are in ¢(F(S,)) (by Proposition
5.4) and v, is an algebra homomorphism from F(S,) into F(S,) (Lemma
5.1) such that [[v,(/)lle = [WIlIflle = l[flle for all feF(S,). On the

other hand, since % is unitary [13, Lemma 12], it follows that

MO = v = H(w-w) (O = 111

for each feF(S, by Lemma 5.1, i.e., v is an isometry. Also if
FeF(S,), then v,(w,(f)) = f. Hence v, is onto. Consequently Us v,
is also an isometric isomorphism from F(S,) onto F(S,). Let & =
(Uow))*. Then @ is an isometry from W*(S,) onto W*(S,). Also

<¢(el)’ f> = <U*(61), vl(f)> = <u” ,vl(f)> = <62; f>

for all f e F(S,), where ¢, is the identity of W*(S,), by Lemma 5.1.
Hence @(e,) = ¢,. By Theorem 7 in [13], @ is a Jordan *-isomorphism
from W*(S,) onto W*(S,). Let ¢ be the restriction of @ to ¢(F(S))).
Then clearly ¢ is a homomorphism from ¢(F(S,))) onto o(F(S,)). We
shall show that ¢ has all desired properties.

That (a) and (¢) hold follow from Theorem 5 and Lemma 8 in
[13].

To prove (b), we first note that if xy = yz, then (b) holds by
[13, Theorem 5]. Otherwise, using [13, Lemma 6], we have

d(@)p(y) + s(Y)g(x) = s(@y) + s(yx) .

If g(ay) # ¢(y)p(x) and g(xy) + ¢(x)¢(y), then g(xy), s(yx), ¢(x)¢(y) and
#(y)é(x) are pairwise distinct elements in o(F¥(S,)). However, elements
in o(F(S,)) are linearly independent [4, p. 93], which is impossible.
Hence (b) holds.
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If (e) holds, then clearly H and K are *-subsemigroups of
o(F(S)). Also, if xea(F(S), then H, N o, (F(S)) and K, N ¢, (F(S))
are subgroups of ¢,(F(S,)) with union equal to ¢,(F(S,)) by (b). Hence
either ¢,(¥(S,)) & H, or ¢,(F(S)) S K,. Hence HU K = a(F(S,)) and
(f) holds. Also a similar argument shows that either ¢, (F(S)) S H
or ¢,(F(S)) & K. Hence (d) follows readily from [13, Lemma 12].

It remains to prove (e). By Theorem 10 in [13], there exists a
central projections z, € W*(S,), such that @ is a *-isomorphism from
W*(S)z, onto W*(S,)z, and a *-anti-isomorphism from W*(S)(e, — 2,
onto W*(S,)(e,—2;). Then P(xz,) = P(x)z, and O(x(e,—2z)) = ®(x)e,—2,)
for all x e W*(S,). Also observe that

(1) ye H, if and only if (zy — yx)z, =0
and
(2) ye K, if and only if (xy — yx)z, = 0.

To prove (1), let ye H,. Then

O((wy — yx)z,) = O(xy — Y2)2,
= O(Y)0(x)z, — O(y2,)P(x2,)
=0.

Hence (zy — yx)z, = 0. Conversely, if (xy — yx)z, = 0 and y ¢ K,, then
ye H, by (b). If ye K,, then (zy — yx)(e, — 2,) = 0. Hence zy = yx.
So ye H, by [13, Theorem 5]. (2) can be proved similarly.

Now if y, v,€ H,, then

(Y )2 = (@Y )2y, = (Y)Y, = V(@)% = (YY.)22, .

Hence y,9,¢ H, by (1). Similarly we show that ye H, if and only
if y*e H,» and that H, is o-closed. The assertions on K, can be
proved by using (2).

REMARK 5.9. (a) Martin Walter {18, Theorem 1(i)] proved that
if G is a loecally compact group, then o, (F(G)) is topologically
isomorphic to G.

{(b) Let S be a topological *-semigroup and T = wy(S). It
follows from Proposition 5.7 and its proof that there exists a
homeomorphism and *-isomorphism ¢ from ¢(F(S)) onto ¢(F(T)) such
that ¢(wy(s)) = wp(wy(s)) for all s€S, where w, and ®’, denote the
*_.representations of S, T into W*(S) and W*(T) respectively.

PropOSITION 5.10. Let S,, S, be topological *-semigroups with
identity. If there exists a Bamnach algebra isomorphism U from
F(S,) onto F(S,) such that U maps P(S,) onto P(S,) and [|Uf|l. = ||f]le
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Jor all f e F(S,), then there exists a homeomorphism ¢ from @y(S,)’
onto ®o(S,)” such that (1) ¢x*) = ¢(x)* for all x e wy(S)’ and (ii) for
any @, ¥ € 0y(S,), either ¢(x-y) = ¢(x)-9(y) or 4(2-y) = (¥)- ().

Proof. The assumption implies that U* takes the identity of
W*(S,) to the identity of W*(S,). Hence if ¢ is the restriction of
U* to @4(S,)°, then it follows from the proof of Theorem 5.8 that ¢
has properties (i) and (ii). Also an argument similar to that in [7,
p. 99] shows that the @, (S}’ = {& e a(F(S.)); IKF, 2| = |fll. for all
feF(S)). Hence ¢ is a homeomorphism mapping w,(S,)’ onto w(S,).

REMARK 5.11. (a) Theorem 5.8 remains valid when either S, or
S, has identity. Do the conclusions of Theorem 5.8 still hold when
both S, and S, are assumed not to have an identity?

(b) The following questions are posted to us by the referee:
Do the hypotheses of Theorem 5.8 imply anything about a sup-norm
isometry between F'(S,) and F(S,)? (It is true for groups by Walter’s
result.) Also can one deduce any relationship between w,(S,)’ and
,(S,)’? (See Proposition 5.10.)
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