The Fourier Transform and Its Applications

Third Edition

Ronald N. Bracewell

Lewis M. Terman Professor of Electrical Engineering Emeritus Stanford University

Boston Burr Ridge, IL Dubuque, IA Madison, WI New York San Francisco St. Louis Bangkok Bogotá Caracas Lisbon London Madrid Mexico City Milan New Delhi Seoul Singapore Sydney Taipei Toronto

CONTENTS

	Preface	xvii
1	Introduction	1
2	Groundwork	5
	The Fourier Transform and Fourier's Integral Theorem	5
	Conditions for the Existence of Fourier Transforms	8
	Transforms in the Limit	10
	Oddness and Evenness	11
	Significance of Oddness and Evenness	13
	Complex Conjugates	14
	Cosine and Sine Transforms	16
	Interpretation of the Formulas	18
3	Convolution	24
	Examples of Convolution	27
	Serial Products	30
	Inversion of serial multiplication / The serial product in matrix notation / Sequences as vectors	
	Convolution by Computer	39
	The Autocorrelation Function and Pentagram Notation	40
	The Triple Correlation	45
	The Cross Correlation	46
	The Energy Spectrum	47
4	Notation for Some Useful Functions	55
	Rectangle Function of Unit Height and Base, $\Pi(x)$	55
	Triangle Function of Unit Height and Area, $\Lambda(x)$	57
	Various Exponentials and Gaussian and Rayleigh Curves	57
	Heaviside's Unit Step Function, $H(x)$	61
	The Sign Function, sgn x	65
	The Filtering or Interpolating Function, sinc x	65
	Pictorial Representation	68
	Summary of Special Symbols	71

Contents	
Contento	

x		Contents
5	The Impulse Symbol	74
	The Sifting Property	78
	The Sampling or Replicating Symbol $III(x)$	81
	The Even and Odd Impulse Pairs $II(x)$ and $I_I(x)$	84
	Derivatives of the Impulse Symbol	85
	Null Functions	87
	Some Functions in Two or More Dimensions	89
	The Concept of Generalized Function	92
	Particularly well-behaved functions / Regular sequences / Generalized fun	ictions /
	Algebra of generalized functions / Differentiation of ordinary functions	
6	The Basic Theorems	105
	A Few Transforms for Illustration	105
	Similarity Theorem	108
	Addition Theorem	110
	Shift Theorem	111
	Modulation Theorem	113
	Convolution Theorem	115
	Rayleigh's Theorem	119
	Power Theorem	120
	Autocorrelation Theorem	122
	Derivative Theorem	124
	Derivative of a Convolution Integral	126
	The Transform of a Generalized Function	127
	Proofs of Theorems	128
	Similarity and shift theorems / Derivative theorem / Power theorem	
	Summary of Theorems	129
, 7	Obtaining Transforms	136
	Integration in Closed Form	137
	Numerical Fourier Transformation	140
	The Slow Fourier Transform Program	142
	Generation of Transforms by Theorems	145
	Application of the Derivative Theorem to Segmented Functions	145
	Measurement of Spectra	147
	Radiofrequency spectral analysis / Optical Fourier transform spectroscopy	
8	The Two Domains	151
	Definite Integral	152
	The First Moment	153
	Centroid	155
	Moment of Inertia (Second Moment)	156
	Moments	157
	Mean-Square Abscissa	158
	Radius of Gyration	159

Cor	ntents	xi
	Variance	159
	Smoothness and Compactness	160
	Smoothness under Convolution	162
	Asymptotic Behavior	163
	Equivalent Width	164
	Autocorrelation Width	170
	Mean Square Widths	171
	Sampling and Replication Commute	172
	Some Inequalities	174
	Upper limits to ordinate and slope / Schwarz's inequality	
	The Uncertainty Relation	177
	Proof of uncertainty relation / Example of uncertainty relation	
	The Finite Difference	180
	Running Means	184
	Central Limit Theorem	186
	Summary of Correspondences in the Two Domains	191
9	Waveforms, Spectra, Filters, and Linearity	198
	Electrical Waveforms and Spectra	198
	Filters	200
	Generality of Linear Filter Theory	203
	Digital Filtering	204
	Interpretation of Theorems	205
	Similarity theorem / Addition theorem / Shift theorem / Modulation theorem / Converse of modulation theorem	
	Linearity and Time Invariance	209
	Periodicity	209
	Tenodicity	211
10	Sampling and Series	219
	Sampling Theorem	219
	Interpolation	224
	Rectangular Filtering in Frequency Domain	224
	Smoothing by Running Means	226
	Undersampling	229
	Ordinate and Slope Sampling	230
	Interlaced Sampling	232
	Sampling in the Presence of Noise	234
	Fourier Series	235
	Gibbs phenomenon / Finite Fourier transforms / Fourier coefficients	
	Impulse Trains That Are Periodic	245
	The Shah Symbol Is Its Own Fourier Transform	246
11	The Discrete Fourier Transform and the FFT	258
	The Discrete Transform Formula	258
	Cyclic Convolution	264
	Examples of Discrete Fourier Transforms	265
		200

Contents

	Reciprocal Property	266
	Oddness and Evenness	266
	Examples with Special Symmetry	267
	Complex Conjugates	268
	Reversal Property	268
	Addition Theorem	268
	Shift Theorem	268
	Convolution Theorem	269
	Product Theorem	269
	Cross-Correlation	270
	Autocorrelation	270
	Sum of Sequence	270
	First Value	270
	Generalized Parseval-Rayleigh Theorem	271
	Packing Theorem	271
	Similarity Theorem	272
	Examples Using MATLAB	272
	The Fast Fourier Transform	275
	Practical Considerations	278
	Is the Discrete Fourier Transform Correct?	280
	Applications of the FFT	281
	Timing Diagrams	282
	When N Is Not a Power of 2	283
	Two-Dimensional Data	284
	Power Spectra	285
		557.5
12	The Discrete Hartley Transform	293
	A Strictly Reciprocal Real Transform	293
	Notation and Example	294
	The Discrete Hartley Transform	295
	Examples of DHT	297
	Discussion	298
	A Convolution of Algorithm in One and Two Dimensions	298
	Two Dimensions	299
	The Cas-Cas Transform	300
	Theorems	300
	The Discrete Sine and Cosine transforms	301
	Boundary value problems / Data compression application	
	Computing	305
	Getting a Feel for Numerical Transforms	305
	The Complex Hartley Transform	306
	Physical Aspect of the Hartley Transformation	307
	The Fast Hartley Transform	308
	The Fast Algorithm	309
	Running Time	314
	Tranting Time	013

xii

Cor	ntents	xiii
	Timing via the Stripe Diagram	315
	Matrix Formulation	317
	Convolution	320
	Permutation	321
	A Fast Hartley Subroutine	322
13	Relatives of the Fourier Transform	329
	The Two-Dimensional Fourier Transform	329
	Two-Dimensional Convolution	331
	The Hankel Transform	335
	Fourier Kernels	339
	The Three-Dimensional Fourier Transform	340
	The Hankel Transform in <i>n</i> Dimensions	343
	The Mellin Transform	343
	The z Transform	347
	The Abel Transform	351
	The Radon Transform and Tomography	356
	The Abel-Fourier-Hankel ring of transforms / Projection-slice theorem /	000
	Reconstruction by modified back projection	
	The Hilbert Transform	359
	The analytic signal / Instantaneous frequency and envelope / Causality	557
	Computing the Hilbert Transform	364
	The Fractional Fourier Transform	367
	Shift theorem / Derivative theorems / Fractional convolution theorem /	507
	Examples of transforms	
	Examples of transforms	
14	The Laplace Transform	380
	Convergence of the Laplace Integral	382
	Theorems for the Laplace Transform	383
	Transient-Response Problems	385
	Laplace Transform Pairs	386
	Natural Behavior	389
	Impulse Response and Transfer Function	390
	Initial-Value Problems	392
	Setting Out Initial-Value Problems	396
	Switching Problems	396
15	Antennas and Optics	406
	One-Dimensional Apertures	407
	Analogy with Waveforms and Spectra	410
	Beam Width and Aperture Width	411
	Beam Swinging	412
	Arrays of Arrays	413
	Interferometers	414
	Spectral Sensitivity Function	415

Contents

	Modulation Transfer Function	416
	Physical Aspects of the Angular Spectrum	417
	Two-Dimensional Theory	417
	Optical Diffraction	419
	Fresnel Diffraction	420
	Other Applications of Fourier Analysis	422
	outer representations of router reactions	
16	Applications in Statistics	428
	Distribution of a Sum	429
	Consequences of the Convolution Relation	434
	The Characteristic Function	435
	The Truncated Exponential Distribution	436
	The Poisson Distribution	438
17	Random Waveforms and Noise	446
17	Discrete Representation by Random Digits	447
	Filtering a Random Input: Effect on Amplitude Distribution	
	Digression on independence / The convolution relation	
	Effect on Autocorrelation	455
	Effect on Spectrum	458
	Spectrum of random input / The output spectrum	450
	Some Noise Records	462
	Envelope of Bandpass Noise	465
	Detection of a Noise Waveform	466
	Measurement of Noise Power	466
18	Heat Conduction and Diffusion	475
	One-Dimensional Diffusion	475
	Gaussian Diffusion from a Point	480
	Diffusion of a Spatial Sinusoid	481
	Sinusoidal Time Variation	485
19	Dynamic Power Spectra	489
	The Concept of Dynamic Spectrum	489
	The Dynamic Spectrograph	491
	Computing the Dynamic Power Spectrum	494
	Frequency division / Time division / Presentation	
	Equivalence Theorem	497
	Envelope and Phase	498
	Using log f instead of f	499
	The Wavelet Transform	500
	Adaptive Cell Placement	502
	Elementary Chirp Signals (Chirplets)	502
	The Wigner Distribution	502
	The tranci Distribution	504

Contents	xv
20 Tables of sinc <i>x</i> , sinc ² <i>x</i> , and exp $(-\pi x^2)$	508
21 Solutions to Selected Problems	513
Chapter 2 Groundwork	513
Chapter 3 Convolution	514
Chapter 4 Notation for Some Useful Functions	516
Chapter 5 The Impulse Symbol	517
Chapter 6 The Basic Theorems	522
Chapter 7 Obtaining Transforms	524
Chapter 8 The Two Domains	526
Chapter 9 Waveforms, Spectra, Filters, and Linearity	530
Chapter 10 Sampling and Series	532
Chapter 11 The Discrete Fourier Transform and the FFT	534
Chapter 12 The Hartley Transform	537
Chapter 13 Relatives of the Fourier Transform	538
Chapter 14 The Laplace Transform	539
Chapter 15 Antennas and Optics	545
Chapter 16 Applications in Statistics	555
Chapter 17 Random Waveforms and Noise	557
Chapter 18 Heat Conduction and Diffusion	565
Chapter 19 Dynamic Spectra and Wavelets	571
22 Pictorial Dictionary of Fourier Transforms	573
Hartley Transforms of Some Functions without Symmetry	592
23 The Life of Joseph Fourier	594
Index	597

۰. .