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Abstract. The Fourier transform of an unbounded spectral

distribution is studied: An explicit integral representation is ob-

tained; connections are drawn to the associated generalized scalar

operator. It is proved that every generalized pseudo-hermitian

operator is the infinitesimal generator of a temperate Ca group.

Introduction. In [6] the author introduced a theory of unbounded

spectral distributions in Banach spaces, and a corresponding theory of the

generalized scalar operators which they represent. Properties of these

objects were studied, culminating in a spectral mapping theorem [6,

Theorem 4]. In this paper we study the Fourier transform of an unbounded

spectral distribution, deriving an explicit integral representation, as well as

growth estimates at infinity. The case of real support is considered in some

detail, leading to the proof that every generalized pseudo-hermitian

operator (i.e., generalized scalar with real spectrum) is the infinitesimal

generator of a temperate group. This result generalizes the corresponding

result for bounded operators proved in [5].

In this paper, all definitions are as in [6].

Integral representation of the Courier transform.

Theorem 1 (Extension of spectral distributions). Let T be a

spectral distribution [6, Definition 2] in a Banach space X. Then

(a) for each function jfrom the space PH(R2) of'C°° functions with bounded

derivatives, and for each x e X, limit„ Tiipx exists, where {q>n} is a sequence

of test functions as in [6, Definition 2(c)].

(b) If we define Tfx = limit„ Tfq> x for all x e X, then Tf is in the space

y(X) of all bounded linear operators on X, and the correspondence f~*-Tf is a

continuous linear mapping of ¿ß(R2) into ¿£(X).

(c) Tf=TfTJorallf,gemR2).
(d) The operator Tf is independent of the sequence {<p„}.

Proof, (a) Define a double sequence of functions ynm=f(<i n — (pm).

Then \ip„J form a '4(R2)-boundtd subset of ¿/(R2) (cf. [3, p. 91] for the
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topology of ää(R2)). And inf{|A| : A e support y>nm}-+oo as n, m-->-oo.

Since T strongly vanishes to power 0 at infinity (cf. [6, Definition 1]),

Tifnx— TfVmx= TVn¿c->0.

(b) Tf is everywhere defined and linear on X, by (a). Since \\TfipJ are

bounded, Tt is bounded. It is clear that the correspondence/ *Tf is linear.

Let f bea bounded subset of ¿M(R2). Then the set {fnffe^} is a

^(R2)-boundtd subset of ¿¿>(R2). Thus \\Tf<pJ are bounded; i.e., there is an

M>0 such that || Tfll>nx\\ <JW||x|| for all x e X,fe JF, and n. Letting n-»oo,

we get \\T,\\^M for all/e SF. Since ^(K2) is bornological [3, p. 222], the

correspondence f-*Tf is continuous.

(c) !),,„* = limitmF/WriFVm.v = limit,,!),,,,,,,* = \im\tmTf9Tt9mx =

Tf,pTgx. Taking the limit as «-»-co, we get Tfgx—TfTgx for all x e X.

(d) If {y>n} is another such sequence, then T„x-TfVnx=Tf(9n_v%)x.

Since {f(<pn-y>J} is a ¿¿(/^-bounded subset of ^(iî2) for which the

supports tend to infinity, the conclusion follows from the fact that T

strongly vanishes to power 0 at infinity.

Remarks. For the function fe3fi(R2) which is identically 1, Tf=I,

the identity operator in X, by the normalization condition on T [6,

Definition 2(c)].

The extension of F to ^0(R2) (functions in 3I(R2) vanishing at infinity

together with all derivatives) is unique as a continuous extension of T;

and to ¿¡â(R2), unique as a multiplicative extension.

Since T is continuous with respect to the ¿M(R2) topology, it is

tempered. Thus T has a Fourier transform T defined by the formula

tv = T- for all q> e ,9'(R2)'=.^(R2).

Theorem 2.    Let T be a spectral distribution in X. For (f, r¡) e R2, define

(i)       /.,,(A) =exp(-/(ReA-| + Im A ■ 7/))   for all Ae R2 = C.

Then

(a)/*.,(•) e.¿(A*);

(b) the function F from R2 into &(X) defined by F(i,tj) = T, is

strongly continuous in (f, rj) e R2;

(c) F(0,0)=/;

(d) fvx= /«, y(f, r¡)F(Í, rj)x d£ dr¡ for all cr e rJ(R2). x e X;

(e) there is a C>0 and a positive integer N such that

\\F(i, r¡)\\ < C(l + |f + ¡V\f   fir all (f, r¡) e R2.

Proof,    (a) and (c) are clear.

(b) Since F(f, ^).v=lim„ T(Pnf( x, F is strongly Bochner measurable;

in fact, the functions F„(f, r/)=F„ /t are even analytic. Let G(f) =

F(f, 0). Then G(Çx + !;2) = G(£i)G(£2), and G is strongly measurable, so
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Lemma 3 of [1, p. 616] implies G is strongly continuous. Similarly, H(rj) =

F(0, r¡) is strongly continuous. Now F(£, rj) = G(^)H(r¡)=H(rf)G(Í); let

x e X, £„-*■£, r¡n-*r¡. Then H(-r¡„)x are bounded, so the Banach-Steinhaus

Theorem implies \\H(r]„)\\ are bounded by some number M. Thus

\\F(Çn, r¡n)x - F(S, rj)x\\

^ \\H(Vn)[G(Ín) - G(Í)]x\\ + \\[H(r¡n) - H(r¡)]G(í)x\\

¿ M \\[G(èJ - G(£)]x|| + \\[H(r¡n) - H(r))]G(Ç)x\\,

which implies the strong continuity of F.

(d) Fix x e X, x* 6 X* (dual of A'). Let {«„} be the distributions defined

by un(<p)=x*T(Pn</lx for all cp e ty(R2), where ç?,, are as usual. Then un has

compact support, and [2, Theorem 1.7.5] implies

"Á<P) =    M^V)uAfi.v)d¡dri
Jr

= í tf((,V)lx*Fn(S,v)x]dSdr¡

>   ,?<í. v)x*F& v)x d£ dV
Jir

by the Dominated Convergence Theorem, since ||F„(|, ?i)x||^C||F(£, í?);t||

(where C=sup„ || T9J). Of course ||F(|, rj)x\\ is bounded on the support of

q> by (b). On the other hand û„(<p) = un((p)=x*T(pjx^>- n x*T-x. Thus

x*T¿x = í  *(f, >l)x*F(£, V)x di dr¡ = x*Í   «<f, n)F(i, rj)x dÇ dn
v      Jir Jit2

from which (d) is an immediate consequence.

(e) By the continuity of Ton .JÀ(R2) there is a constant C and a positive

integer/? such that

(ii) || 7; ! : ^ C ■ 2 |0>L    for all tp e 3(R2),

where a=(a,, a2) is a bi-index, lal^a,-!-^, and Z)a=3l°'l/(9x1)°I1(5x2)a2.

(Here x, = Re A, v.Hlm X.)

Now

||F(í,0)|¡ = ||7>   1 ̂ C 2 |D*4oL
l«|áp

- C2 iaai/^ïlexP[-/|xJL - CP(III),

where P(t)=^ „ f"'.  Similarly  ||F(0, i?)||^CPd5|).  Thus  ||F(£, ^)||^
CV'flf-f-fyl), from which (e) follows.
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Remark. As a corollary of (e), we can replace the space $(R2) by the

space Sf(R2) in part (d).

The next theorem shows that the analysis can be carried to complex

values of r¡ if the support of T is real, or equivalents/, if F represents an

operator with real spectrum (cf. [6, Theorem 4]).

Theorem 3. Let The a spectral distribution in X which has real support.

Then

(a) For (£, rf) e RxC (i.e., f real, r¡ complex] there is a function

/i.ir(') e &(R2) satisfying equation (i) near supp T.

(b) The function F(f, r¡)=.Tf is independent of the choice off^n in (a),

and is a strongly continuous function of (£, r¡) e Rx C.

(c) There is a number C>0 and a positive integer N such that

\\F(£,r})\\ <: C(l + |f + iRe»?|)A'(l + \lmr¡\f

forall(C,r¡)eRxC.

Proof, (a) Let cp e ^(R1) be a test function which is identically 1 near

the origin in R1. Define f?,n(xx, x2)=exp[—i(xx$+x2r¡)] ■ <p(x2) for all

(xx, x2) 6 R2.

(b) The strong continuity is proved analogously to Theorem 2(b).

(c) With 93 as above, define a mapping w.é^R1) +~t'(X) as follows. For

X in the space ¿'(R1), let %v(xx, x2)=x(x2) ■ <p(x2). Then ive@(R2), so

that we can define u(%)=Tx . The correspondence x~*uix) 's clearly con-

tinuous with respect to the usual topology of ¿(R1). Furthermore, if

0 <£ supp x, then the real axis does not intersect supp %„, so u(x)—Tx =0.

Thus supp«c:{0}. Setting /=Im r\, define x0(x2) = (tx2)"n, where q is the

order of u. Then Xo vanishes, with all derivatives of order ^q, on {0}=>

supp«. By the operator-valued analogy of [2, Theorem 1.5.4] F(Zo) =

M(Zo)=°; ie-> 7,(Uj)«+v=0- Since (f*s),+Vs=('-'W)*+1 near the real axis

(x2=0), we have (TtXi<p)"+l = Titx^

exp(F^) = f (:

0, so that

)"ixitp'

n\

On the other hand, the series for exp(tx2(p) converges

exp(F(IaV)=FPxp((Xsv). But Ti.xpUx^) = F(0,it), so

in  M(R2),   so

||F(0, /OH = ||exp(F(tx%(p?

(iii)

'I

2(W

iK 'x¡ip\\ ^ C'(l + |/j)'

for all t e R1 and for some C>0.
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Now F(Ç, r]) = F(Ç, Re r¡)F(0, it), so the desired estimate follows from

(iii) and Theorem 2(e).

The domain of the associated generalized scalar.

Theorem 4. Let A be a generalized scalar operator in X [6, Definition

3] with spectral distribution T. Then for a vector x e X, xis in the domain DA

of A if and only if(dld£)F(Ç, r¡)x and (d¡dr¡)F(£, r¡)x exist for all (£, r¡) e
R2. For x e DA, we have

(iv) Ax- i(dldS)F(S, i?)x|{_,_0 - (dl3vM£, »?)4-i-o-

To prove this theorem we need the following two lemmas.

Lemma A. For all x e DA, limit„ TXi<fnx and limit,, TXiVnx exist, where

{q>„} are as usual.

Lemma B. Let U, V: R2—-X be continuous mappings into the Banach

space X. Assume

— I (■ ■ (d/dxx)tp dxx dx2 = I <p ■ V dxx dx2

for all q> e íÓ(R2). Then (djdxx)U exists for all (xx, x2) 6 R2, and equals V.

Proof of Lemma A. The double sequence of functions ynm =

(xxl(xx + ix2))(<fn-qm) is áf(J?«)-bounded, and isf{\X\:Xe supp y>na}-*nm

oo. Thus || Tmt9tx- TXil,nx\\ = || TXVnmx\\-»nm 0. Similarly for the other limit.

For obvious reasons, we define

(Re .4)* = limit  Tx¡iPnx, (Im^)x=limit T^x.
n n

These definitions are independent of the choice of {<pn}.

The proof of Lemma B is analogous to [2, Theorem 1.4.2].

Proof of Theorem 4. Assume x e DA. Then for any rp e &(R2), we

have

•/

d
— (f(xx, x2)F(x,, x2)x dxx dx2 = T_dip/dXix =T_iSl/,^;dxix — T_<f»x

dxx

(where [ffl(f, »?)=^(l, r¡) for all (£, rj) e R2)

= limit T^T^x = limit T_u^x - -i limit T$T^ax
n n n

= — iT»(Re A).\ = — i   <p(xx, x2)F(xx, x2)(Re A)x dxx dx2.

Lemma B implies

(v) (dldi)F(S. r,).\ = -iF(i, ,])(Re A)x   for all (¿J, rj) e R2
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Similarly,

(vi) (dldV)F(Ç, r¡)x = - IF($, rj)(lm A)x   for all (f, r¡) e R2.

Results (v) and (vi) in turn imply

Ax = (Re A)x + i(lm A)x = F(0, 0)(Re A)x + iF(0, 0)(lm A)x

= i(dldÇ)F(Ç,vH=n^ - (dldr¡)F(S,r¡)x\^n^.

We will show that the existence of

(d/df)F(f, vH^o   and   @/3ij)F(f, r¡)x\^0

implies xeDA. Let y=(d¡dC)F(C, r¡)x\í=^0. Then (d¡d!-)F(i;, r¡)x=

F(f, rj)y, and for <p e <3(R2) we have

Tvy - fy   (where y> 6 ^(R2), $ = q>)

= L(Í, r¡)F(C, r¡)y df <ty = ftff, ,)@/df)F(f, rç)* rff <fy

= - fo/dfMf.itfFif.ifljedf <fy = f_av/Six

= T-{><e)"id^x = T_iXi¿x = —iTXiVx.

Similarly, if z=(d\dr,)F(t, i?)x|f=„=0 then Tvz=-iT1^x. Thus F^x=
iT^y—T^z. Now the vanishing of F to power 0 at infinity implies F

vanishes to power 1 at infinity for x: i.e., xe DA.

Remark. If supp F is real, then the function gç(t)=F($, it) is dif-

ferentiate with respect to t e R, for any f e .ft, in the uniform operator

topology. This follows from the representation F(0, /"0=Fcxp((a,2V) for tp

a test function identically 1 near the origin in R1. (Cf. proof of Theorem

3(c).)

Generalized pseudo-hermitian operators.

Definition. A mapping A of a Banach space X into itself is called

generalized pseudo-hermitian (g.p.h.) if

(a) A is a (not necessarily bounded) generalized scalar [6, Definition 3],

and
(b) The spectrum a(A) of A is real.

Remark. [6, Theorem 4] implies that supp F is real foi any spectral

distribution F which is admitted by a g.p.h. operator A.

Definition. A group of operators {Ut}teR in a Banach space X is

called temperate if there are a number C>0 and a positive integer N

such that || Ut\\ <C(1 + \t\f for all t e R.
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Theorem 5. Let A be ag.p.h. operator in X. Then —i-A is the infinitesi-

mal generator of a temperate C0 group of operators in X.

Proof. Let T be a spectral distribution which A admits. Then supp T

is real. Let F(|, r¡) be as in Theorem 3. Define Ut=F(t, it). By Theorem

2(c), U0=I. By Theorem 3(b), Ut is strongly continuous. The group

property Ut+s=UtUs is clear. By Theorem 3(c), \\Uf\\^C(l+\t\)m, so

Ut is a temperate C0 group. Let B denote the infinitesimal generator of

Ut. If x e DA, then Theorem 4 (together with the following remark)

implies the existence of (djdt)(Utx):

(dldt)(Utx)\M = (dldt)F(ï,y)x\^=o + (dldt)[F(0, it)x)\M

= -i(Re A)x + (dldt)[TexvUx2V)x]\t=0

= -i(ReA)x + T^x

= -i(Re ,4)x + (Im A)x = -i ■ Ax.

Thus x e DB and Bx——i ■ Ax.

On the other hand, let x e DB. Then the existence of the derivative

(d/dl;)F(!;, îj)x||=,=0 follows from the relation

F(£, 0)x = F(0, -iÇ)F(£, iS)x,

remembering the remark after Theorem 4 and the differentiability of

F(f, /f)x=t/ix with respect to f. The derivative (d¡dr¡)F(f),r¡) exists

in the uniform operator topology since supp T real implies that

F(0, i;)=rexp(_1J.2,<(1). Thus Theorem 4 implies x e Z)^, and we have

B=-iA.
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