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GORDON BELL |  Microsoft Research

Foreword

HIS BOOK IS ABOUT A NEW, FOURTH PARADIGM FOR SCIENCE based on data- 

intensive computing. In such scientific research, we are at a stage of de-

velopment that is analogous to when the printing press was invented. 

Printing took a thousand years to develop and evolve into the many 

forms it takes today. Using computers to gain understanding from data created and 

stored in our electronic data stores will likely take decades—or less. The contribut-

ing authors in this volume have done an extraordinary job of helping to refine an 

understanding of this new paradigm from a variety of disciplinary perspectives. 

In many instances, science is lagging behind the commercial world in the abil-

ity to infer meaning from data and take action based on that meaning. However, 

commerce is comparatively simple: things that can be described by a few numbers 

or a name are manufactured and then bought and sold. Scientific disciplines can-

not easily be encapsulated in a few understandable numbers and names, and most 

scientific data does not have a high enough economic value to fuel more rapid de-

velopment of scientific discovery.

It was Tycho Brahe’s assistant Johannes Kepler who took Brahe’s catalog of sys-

tematic astronomical observations and discovered the laws of planetary motion. 

This established the division between the mining and analysis of captured and 

carefully archived experimental data and the creation of theories. This division is 

one aspect of the Fourth Paradigm. 

In the 20th century, the data on which scientific theories were based was often 

buried in individual scientific notebooks or, for some aspects of “big science,” stored 

on magnetic media that eventually become unreadable. Such data, especially from 
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individuals or small labs, is largely inaccessible. It is likely to be thrown out when 

a scientist retires, or at best it will be held in an institutional library until it is dis-

carded. Long-term data provenance as well as community access to distributed data 

are just some of the challenges. 

Fortunately, some “data places,” such as the National Center for Atmospheric 

Research1 (NCAR), have been willing to host Earth scientists who conduct experi-

ments by analyzing the curated data collected from measurements and computa-

tional models. Thus, at one institution we have the capture, curation, and analysis 

chain for a whole discipline. 

In the 21st century, much of the vast volume of scientific data captured by new 

instruments on a 24/7 basis, along with information generated in the artificial 

worlds of computer models, is likely to reside forever in a live, substantially publicly 

accessible, curated state for the purposes of continued analysis. This analysis will 

result in the development of many new theories! I believe that we will soon see a 

time when data will live forever as archival media—just like paper-based storage—

and be publicly accessible in the “cloud” to humans and machines. Only recently 

have we dared to consider such permanence for data, in the same way we think of 

“stu�” held in our national libraries and museums! Such permanence still seems 

far-fetched until you realize that capturing data provenance, including individual 

researchers’ records and sometimes everything about the researchers themselves, 

is what libraries insist on and have always tried to do. The “cloud” of magnetic 

polarizations encoding data and documents in the digital library will become the 

modern equivalent of the miles of library shelves holding paper and embedded ink 

particles. 

In 2005, the National Science Board of the National Science Foundation pub-

lished “Long-Lived Digital Data Collections: Enabling Research and Education in 

the 21st Century,” which began a dialogue about the importance of data preserva-

tion and introduced the issue of the care and feeding of an emerging group they 

identified as “data scientists”: 

The interests of data scientists—the information and computer scientists, 

database and software engineers and programmers, disciplinary experts, 

curators and expert annotators, librarians, archivists, and others, who are 

crucial to the successful management of a digital data collection—lie in 

having their creativity and intellectual contributions fully recognized.” [1]

1 www.ncar.ucar.edu
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xiiiTHE FOURTH PARADIGM

THE FOURTH PARADIGM: A FOCUS ON DATA-INTENSIVE SYSTEMS  

AND SCIENTIFIC COMMUNICATION

In Jim Gray’s last talk to the Computer Science and Telecommunications Board on 

January 11, 2007 [2], he described his vision of the fourth paradigm of scientific 

research. He outlined a two-part plea for the funding of tools for data capture, cu-

ration, and analysis, and for a communication and publication infrastructure. He 

argued for the establishment of modern stores for data and documents that are on 

par with traditional libraries. The edited version of Jim’s talk that appears in this 

book, which was produced from the transcript and Jim’s slides, sets the scene for 

the articles that follow.

Data-intensive science consists of three basic activities: capture, curation, and 

analysis. Data comes in all scales and shapes, covering large international ex-

periments; cross-laboratory, single-laboratory, and individual observations; and  

potentially individuals’ lives.2 The discipline and scale of individual experiments  

and especially their data rates make the issue of tools a formidable problem.  

The Australian Square Kilometre Array of radio telescopes project,3 CERN’s Large 

Hadron Collider,4 and astronomy’s Pan-STARRS5 array of celestial telescopes are 

capable of generating several petabytes (PB) of data per day, but present plans limit 

them to more manageable data collection rates. Gene sequencing machines are 

currently more modest in their output due to the expense, so only certain coding 

regions of the genome are sequenced (25 KB for a few hundred thousand base pairs) 

for each individual. But this situation is temporary at best, until the US$10 million 

X PRIZE for Genomics6 is won—100 people fully sequenced, in 10 days, for under 

US$10,000 each, at 3 billion base pairs for each human genome. 

Funding is needed to create a generic set of tools that covers the full range of 

activities—from capture and data validation through curation, analysis, and ulti-

mately permanent archiving. Curation covers a wide range of activities, starting 

with finding the right data structures to map into various stores. It includes the 

schema and the necessary metadata for longevity and for integration across instru-

ments, experiments, and laboratories. Without such explicit schema and metadata, 

the interpretation is only implicit and depends strongly on the particular programs 

used to analyze it. Ultimately, such uncurated data is guaranteed to be lost. We 

2 http://research.microsoft.com/en-us/projects/mylifebits 
3 www.ska.gov.au 
4 http://public.web.cern.ch/public/en/LHC/LHC-en.html 
5 http://pan-starrs.ifa.hawaii.edu/public
6 http://genomics.xprize.org 
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must think carefully about which data should be able to live forever and what ad-

ditional metadata should be captured to make this feasible.

Data analysis covers a whole range of activities throughout the workflow pipe-

line, including the use of databases (versus a collection of flat files that a database 

can access), analysis and modeling, and then data visualization. Jim Gray’s recipe 

for designing a database for a given discipline is that it must be able to answer the 

key 20 questions that the scientist wants to ask of it. Much of science now uses data-

bases only to hold various aspects of the data rather than as the location of the data 

itself. This is because the time needed to scan all the data makes analysis infeasible. 

A decade ago, rereading the data was just barely feasible. In 2010, disks are 1,000 

times larger, yet disc record access time has improved by only a factor of two.

DIGITAL LIBRARIES FOR DATA AND DOCUMENTS: JUST LIKE MODERN DOCUMENT LIBRARIES 

Scientific communication, including peer review, is also undergoing fundamental 

changes. Public digital libraries are taking over the role of holding publications 

from conventional libraries—because of the expense, the need for timeliness, and 

the need to keep experimental data and documents about the data together.

At the time of writing, digital data libraries are still in a formative stage, with 

various sizes, shapes, and charters. Of course, NCAR is one of the oldest sites for 

the modeling, collection, and curation of Earth science data. The San Diego Su-

percomputer Center (SDSC) at the University of California, San Diego, which is 

normally associated with supplying computational power to the scientific commu-

nity, was one of the earliest organizations to recognize the need to add data to 

its mission. SDSC established its Data Central site,7 which holds 27 PB of data in  

more than 100 specific databases (e.g., for bioinformatics and water resources). In 

2009, it set aside 400 terabytes (TB) of disk space for both public and private data-

bases and data collections that serve a wide range of scientific institutions, includ-

ing laboratories, libraries, and museums. 

The Australian National Data Service8 (ANDS) has begun o�ering services  

starting with the Register My Data service, a “card catalog” that registers the  

identity, structure, name, and location (IP address) of all the various databases,  

including those coming from individuals. The mere act of registering goes a long 

way toward organizing long-term storage. The purpose of ANDS is to influence 

national policy on data management and to inform best practices for the curation 

7 http://datacentral.sdsc.edu/index.html  
8 www.ands.org.au
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of data, thereby transforming the disparate collections of research data into a co-

hesive collection of research resources. In the UK, the Joint Information Systems 

Committee (JISC) has funded the establishment of a Digital Curation Centre9 to 

explore these issues. Over time, one might expect that many such datacenters will 

emerge. The National Science Foundation’s Directorate for Computer and Infor-

mation Science and Engineering recently issued a call for proposals for long-term 

grants to researchers in data-intensive computing and long-term archiving. 

In the articles in this book, the reader is invited to consider the many opportuni-

ties and challenges for data-intensive science, including interdisciplinary coopera-

tion and training, interorganizational data sharing for “scientific data mashups,” 

the establishment of new processes and pipelines, and a research agenda to exploit 

the opportunities as well as stay ahead of the data deluge. These challenges will  

require major capital and operational expenditure. The dream of establishing a 

“sensors everywhere” data infrastructure to support new modes of scientific re-

search will require massive cooperation among funding agencies, scientists, and 

engineers. This dream must be actively encouraged and funded. 

REFERENCES

 [1] National Science Board, “Long-Lived Digital Data Collections: Enabling Research and Education 

in the 21st Century,” Technical Report NSB-05-40, National Science Foundation, September 

2005, www.nsf.gov/pubs/2005/nsb0540/nsb0540.pdf.

 [2] Talk given by Jim Gray to the NRC-CSTB in Mountain View, CA, on January 11, 2007,  

http://research.microsoft.com/en-us/um/people/gray/JimGrayTalks.htm. (Edited transcript  

also in this volume.)

9 www.dcc.ac.uk





xv i iTHE FOURTH PARADIGM

Jim Gray on eScience:  
A Transformed Scientific Method

E HAVE TO DO BETTER AT PRODUCING TOOLS to support the whole re-

search cycle—from data capture and data curation to data analysis 

and data visualization. Today, the tools for capturing data both at 

the mega-scale and at the milli-scale are just dreadful. After you 

have captured the data, you need to curate it before you can start doing any kind of 

data analysis, and we lack good tools for both data curation and data analysis. Then 

comes the publication of the results of your research, and the published literature 

is just the tip of the data iceberg. By this I mean that people collect a lot of data and 

then reduce this down to some number of column inches in Science or Nature—or 

10 pages if it is a computer science person writing. So what I mean by data iceberg 

is that there is a lot of data that is collected but not curated or published in any 

systematic way. There are some exceptions, and I think that these cases are a good 

place for us to look for best practices. I will talk about how the whole process of 

peer review has got to change and the way in which I think it is changing and what 

CSTB can do to help all of us get access to our research. 

W

1 National Research Council, http://sites.nationalacademies.org/NRC/index.htm; Computer Science and Telecom-
munications Board, http://sites.nationalacademies.org/cstb/index.htm.
2 This presentation is, poignantly, the last one posted to Jim’s Web page at Microsoft Research before he went missing 
at sea on January 28, 2007—http://research.microsoft.com/en-us/um/people/gray/talks/NRC-CSTB_eScience.ppt. 
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eSCIENCE: WHAT IS IT?

eScience is where “IT meets scientists.” Researchers are using many di�erent meth-

ods to collect or generate data—from sensors and CCDs to supercomputers and 

particle colliders. When the data finally shows up in your computer, what do 

you do with all this information that is now in your digital shoebox? People are 

continually seeking me out and saying, “Help! I’ve got all this data. What am I 

supposed to do with it? My Excel spreadsheets are getting out of hand!” So what 

comes next? What happens when you have 10,000 Excel spreadsheets, each with 

50 workbooks in them? Okay, so I have been systematically naming them, but now 

what do I do? 

SCIENCE PARADIGMS

I show this slide [Figure 1] every time I talk. I think it is fair to say that this insight 

dawned on me in a CSTB study of computing futures. We said, “Look, computa-

tional science is a third leg.” Originally, there was just experimental science, and 

then there was theoretical science, with Kepler’s Laws, Newton’s Laws of Motion, 

Maxwell’s equations, and so on. Then, for many problems, the theoretical mod-

els grew too complicated to solve analytically, and people had to start simulating. 

These simulations have carried us through much of the last half of the last millen-

nium. At this point, these simulations are generating a whole lot of data, along with 

FIGURE 1
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a huge increase in data from the experimental sciences. People now do not actually 

look through telescopes. Instead, they are “looking” through large-scale, complex 

instruments which relay data to datacenters, and only then do they look at the in-

formation on their computers.

The world of science has changed, and there is no question about this. The new 

model is for the data to be captured by instruments or generated by simulations 

before being processed by software and for the resulting information or knowledge 

to be stored in computers. Scientists only get to look at their data fairly late in this 

pipeline. The techniques and technologies for such data-intensive science are so 

di�erent that it is worth distinguishing data-intensive science from computational 

science as a new, fourth paradigm for scientific exploration [1].

X-INFO AND COMP-X

We are seeing the evolution of two branches of every discipline, as shown in the 

next slide [Figure 2]. If you look at ecology, there is now both computational ecol-

ogy, which is to do with simulating ecologies, and eco-informatics, which is to do 

with collecting and analyzing ecological information. Similarly, there is bioinfor-

matics, which collects and analyzes information from many di�erent experiments, 

and there is computational biology, which simulates how biological systems work 

and the metabolic pathways or the behavior of a cell or the way a protein is built. 

FIGURE 2
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This is similar to Jeannette Wing’s idea of “computational thinking,” in which com-

puter science techniques and technologies are applied to di�erent disciplines [2]. 

The goal for many scientists is to codify their information so that they can  

exchange it with other scientists. Why do they need to codify their information? 

Because if I put some information in my computer, the only way you are going to be 

able to understand that information is if your program can understand the infor-

mation. This means that the information has to be represented in an algorithmic 

way. In order to do this, you need a standard representation for what a gene is or 

what a galaxy is or what a temperature measurement is.

EXPERIMENTAL BUDGETS ARE ¼ TO ½ SOFTWARE

I have been hanging out with astronomers for about the last 10 years, and I get to 

go to some of their base stations. One of the stunning things for me is that I look 

at their telescopes and it is just incredible. It is basically 15 to 20 million dollars 

worth of capital equipment, with about 20 to 50 people operating the instrument. 

But then you get to appreciate that there are literally thousands of people writing 

code to deal with the information generated by this instrument and that millions 

of lines of code are needed to analyze all this information. In fact, the software 

cost dominates the capital expenditure! This is true at the Sloan Digital Sky Survey 

(SDSS), and it is going to continue to be true for larger-scale sky surveys, and in fact 

for many large-scale experiments. I am not sure that this dominant software cost 

is true for the particle physics community and their Large Hadron Collider (LHC) 

machine, but it is certainly true for the LHC experiments.

Even in the “small data” sciences, you see people collecting information and 

then having to put a lot more energy into the analysis of the information than they 

have done in getting the information in the first place. The software is typically 

very idiosyncratic since there are very few generic tools that the bench scientist 

has for collecting and analyzing and processing the data. This is something that we 

computer scientists could help fix by building generic tools for the scientists.

I have a list of items for policymakers like CSTB. The first one is basically to 

foster both building tools and supporting them. NSF now has a cyberinfrastructure 

organization, and I do not want to say anything bad about them, but there needs to 

be more than just support for the TeraGrid and high-performance computing. We 

now know how to build Beowulf clusters for cheap high-performance computing. 

But we do not know how to build a true data grid or to build data stores made out 

of cheap “data bricks” to be a place for you to put all your data and then analyze the 

JIM GRAY ON eSCIENCE
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information. We have actually made fair progress on simulation tools, but not very 

much on data analysis tools.

PROJECT PYRAMIDS AND PYRAMID FUNDING

This section is just an observation about the way most science projects seem to work. 

There are a few international projects, then there are more multi-campus projects, 

and then there are lots and lots of single-lab projects. So we basically have this Tier 1,  

Tier 2, Tier 3 facility pyramid, which you see over and over again in many di�erent 

fields. The Tier 1 and Tier 2 projects are generally fairly systematically organized 

and managed, but there are only relatively few such projects. These large projects 

can a�ord to have both a software and hardware budget, and they allocate teams of 

scientists to write custom software for the experiment. As an example, I have been 

watching the U.S.-Canadian ocean observatory—Project Neptune—allocate some 

30 percent of its budget for cyberinfrastructure [3]. In round numbers, that’s 30 per-

cent of 350 million dollars or something like 100 million dollars! Similarly, the LHC 

experiments have a very large software budget, and this trend towards large software 

budgets is also evident from the earlier BaBar experiment [4, 5]. But if you are a 

bench scientist at the bottom of the pyramid, what are you going to do for a software 

budget? You are basically going to buy MATLAB3 and Excel4 or some similar soft-

ware and make do with such o�-the-shelf tools. There is not much else you can do. 

So the giga- and mega-projects are largely driven by the need for some large-

scale resources like supercomputers, telescopes, or other large-scale experimental 

facilities. These facilities are typically used by a significant community of scientists 

and need to be fully funded by agencies such as the National Science Foundation 

or the Department of Energy. Smaller-scale projects can typically get funding from 

a more diverse set of sources, with funding agency support often matched by some 

other organization—which could be the university itself. In the paper that Gordon 

Bell, Alex Szalay, and I wrote for IEEE Computer [6], we observed that Tier 1 facili-

ties like the LHC get funded by an international consortium of agencies but the 

Tier 2 LHC experiments and Tier 3 facilities get funded by researchers who bring 

with them their own sources of funding. So funding agencies need to fully fund the 

Tier 1 giga-projects but then allocate the other half of their funding for cyberinfra-

structure for smaller projects.

3 www.mathworks.com  
4 http://o�ce.microsoft.com/en-us/excel/default.aspx
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LABORATORY INFORMATION MANAGEMENT SYSTEMS

To summarize what I have been saying about software, what we need are e�ectively 

“Laboratory Information Management Systems.” Such software systems provide 

a pipeline from the instrument or simulation data into a data archive, and we are 

close to achieving this in a number of example cases I have been working on. Basi-

cally, we get data from a bunch of instruments into a pipeline which calibrates and 

“cleans” the data, including filling in gaps as necessary. Then we “re-grid”5 the in-

formation and eventually put it into a database, which you would like to “publish” 

on the Internet to let people access your information. 

The whole business of going from an instrument to a Web browser involves a 

vast number of skills. Yet what’s going on is actually very simple. We ought to be 

able to create a Beowulf-like package and some templates that would allow people 

who are doing wet-lab experiments to be able to just collect their data, put it into a 

database, and publish it. This could be done by building a few prototypes and docu-

menting them. It will take several years to do this, but it will have a big impact on 

the way science is done.

As I have said, such software pipelines are called Laboratory Information Man-

agement Systems, or LIMS. Parenthetically, commercial systems exist, and you can 

buy a LIMS system o� the shelf. The problem is that they are really geared towards 

people who are fairly rich and are in an industrial setting. They are often also fairly 

specific to one or another task for a particular community—such as taking data 

from a sequencing machine or mass spectrometer, running it through the system, 

and getting results out the other side. 

INFORMATION MANAGEMENT AND DATA ANALYSIS

So here is a typical situation. People are collecting data either from instruments 

or sensors, or from running simulations. Pretty soon they end up with millions of 

files, and there is no easy way to manage or analyze their data. I have been going 

door to door and watching what the scientists are doing. Generally, they are do-

ing one of two things—they are either looking for needles in haystacks or looking 

for the haystacks themselves. The needle-in-the-haystack queries are actually very 

easy—you are looking for specific anomalies in the data, and you usually have some 

idea of what type of signal you are looking for. The particle physicists are looking 

5 This means to “regularize” the organization of the data to one data variable per row, analogous to relational 
database normalization.

JIM GRAY ON eSCIENCE
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for the Higgs particle at the LHC, and they have a good idea of how the decay of 

such a heavy particle will look like in their detectors. Grids of shared clusters of 

computers are great for such needle-in-a-haystack queries, but such grid computers 

are lousy at trend analysis, statistical clustering, and discovering global patterns in 

the data. 

We actually need much better algorithms for clustering and for what is essen-

tially data mining. Unfortunately, clustering algorithms are not order N or N log N 

but are typically cubic in N, so that when N grows too large, this method does not 

work. So we are being forced to invent new algorithms, and you have to live with 

only approximate answers. For example, using the approximate median turns out 

to be amazingly good. And who would have guessed? Not me! 

Much of the statistical analysis deals with creating uniform samples, perform-

ing some data filtering, incorporating or comparing some Monte Carlo simulations, 

and so on, which all generates a large bunch of files. And the situation with these 

files is that each file just contains a bundle of bytes. If I give you this file, you have 

to work hard to figure out what the data in this file means. It is therefore really 

important that the files be self-describing. When people use the word database, 

fundamentally what they are saying is that the data should be self-describing and 

it should have a schema. That’s really all the word database means. So if I give you 

a particular collection of information, you can look at this information and say, “I 

want all the genes that have this property” or “I want all of the stars that have this 

property” or “I want all of the galaxies that have this property.” But if I give you just 

a bunch of files, you can’t even use the concept of a galaxy and you have to hunt 

around and figure out for yourself what is the e�ective schema for the data in that 

file. If you have a schema for things, you can index the data, you can aggregate the 

data, you can use parallel search on the data, you can have ad hoc queries on the 

data, and it is much easier to build some generic visualization tools.

In fairness, I should say that the science community has invented a bunch of 

formats that qualify in my mind as database formats. HDF6 (Hierarchical Data For-

mat) is one such format, and NetCDF7 (Network Common Data Form) is another. 

These formats are used for data interchange and carry the data schema with them 

as they go. But the whole discipline of science needs much better tools than HDF 

and NetCDF for making data self-defining.

6 www.hdfgroup.org
7 www.unidata.ucar.edu/software/netcdf 
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DATA DELIVERY: HITTING A WALL

The other key issue is that as the datasets get larger, it is no longer possible to just 

FTP or grep them. A petabyte of data is very hard to FTP! So at some point, you 

need indices and you need parallel data access, and this is where databases can 

help you. For data analysis, one possibility is to move the data to you, but the other 

possibility is to move your query to the data. You can either move your questions 

or the data. Often it turns out to be more e�cient to move the questions than to 

move the data.

THE NEED FOR DATA TOOLS: LET 100 FLOWERS BLOOM

The suggestion that I have been making is that we now have terrible data man-

agement tools for most of the science disciplines. Commercial organizations like  

Walmart can a�ord to build their own data management software, but in science 

we do not have that luxury. At present, we have hardly any data visualization and 

analysis tools. Some research communities use MATLAB, for example, but the 

funding agencies in the U.S. and elsewhere need to do a lot more to foster the build-

ing of tools to make scientists more productive. When you go and look at what sci-

entists are doing, day in and day out, in terms of data analysis, it is truly dreadful. 

And I suspect that many of you are in the same state that I am in where essentially 

the only tools I have at my disposal are MATLAB and Excel!

We do have some nice tools like Beowulf8 clusters, which allow us to get cost- 

e�ective high-performance computing by combining lots of inexpensive computers.

We have some software called Condor9 that allows you to harvest processing cycles 

from departmental machines. Similarly, we have the BOINC10 (Berkeley Open In-

frastructure for Network Computing) software that enables the harvesting of PC 

cycles as in the SETI@Home project. And we have a few commercial products like 

MATLAB. All these tools grew out of the research community, and I cannot figure 

out why these particular tools were successful. 

We also have Linux and FreeBSD Unix. FreeBSD predated Linux, but some-

how Linux took o� and FreeBSD did not. I think that these things have a lot to 

do with the community, the personalities, and the timing. So my suggestion is 

that we should just have lots of things. We have commercial tools like LabVIEW,11  

8 www.beowulf.org 
9 www.cs.wisc.edu/condor
10 http://boinc.berkeley.edu
11 www.ni.com/labview 
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for example, but we should create several other such systems. And we just need 

to hope that some of these take o�. It should not be very expensive to seed a large 

number of projects. 

THE COMING REVOLUTION IN SCHOLARLY COMMUNICATION

I have reached the end of the first part of my talk: it was about the need for tools 

to help scientists capture their data, curate it, analyze it, and then visualize it. The 

second part of the talk is about scholarly communication. About three years ago, 

Congress passed a law that recommended that if you take NIH (National Institutes 

of Health) funding for your research, you should deposit your research reports with 

the National Library of Medicine (NLM) so that the full text of your papers should 

be in the public domain. Voluntary compliance with this law has been only 3 per-

cent, so things are about to change. We are now likely to see all of the publicly fund-

ed science literature forced online by the funding agencies. There is currently a bill 

sponsored by Senators Cornyn and Lieberman that will make it compulsory for 

NIH grant recipients to put their research papers into the NLM PubMed Central 

repository.12 In the UK, the Wellcome Trust has implemented a similar mandate 

for recipients of its research funding and has created a mirror of the NLM PubMed 

Central repository. 

But the Internet can do more than just make available the full text of research 

papers. In principle, it can unify all the scientific data with all the literature to  

create a world in which the data and the literature interoperate with each other  

[Figure 3 on the next page]. You can be reading a paper by someone and then go o�  

and look at their original data. You can even redo their analysis. Or you can be 

looking at some data and then go o� and find out all the literature about this data. 

Such a capability will increase the “information velocity” of the sciences and will 

improve the scientific productivity of researchers. And I believe that this would be 

a very good development!

Take the example of somebody who is working for the National Institutes of 

Health—which is the case being discussed here—who produces a report. Suppose 

he discovers something about disease X. You go to your doctor and you say, “Doc, 

I’m not feeling very well.” And he says, “Andy, we’re going to give you a bunch 

of tests.” And they give you a bunch of tests. He calls you the next day and says, 

12 See Peter Suber’s Open Access newsletter for a summary of the current situation: www.earlham.edu/~peters/fos/
newsletter/01-02-08.htm.

www.earlham.edu/~peters/fos/newsletter/01-02-08.htm
www.earlham.edu/~peters/fos/newsletter/01-02-08.htm
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“There’s nothing wrong with you. Take two aspirins, and take some vacation.” You 

go back a year later and do the same thing. Three years later, he calls you up and 

says, “Andy, you have X! We figured it out!” You say, “What’s X?” He says, “I have 

no idea, it’s a rare disease, but there’s this guy in New York who knows all about it.” 

So you go to Google13 and type in all your symptoms. Page 1 of the results, up comes 

X. You click on it and it takes you to PubMed Central and to the abstract “All About 

X.” You click on that, and it takes you to the New England Journal of Medicine, which 

says, “Please give us $100 and we’ll let you read about X.” You look at it and see that 

the guy works for the National Institutes of Health. Your tax dollars at work. So 

Lieberman14 and others have said, “This sucks. Scientific information is now peer 

reviewed and put into the public domain—but only in the sense that anybody can 

read it if they’ll pay. What’s that about? We’ve already paid for it.”

The scholarly publishers o�er a service of organizing the peer review, printing 

the journal, and distributing the information to libraries. But the Internet is our 

distributor now and is more or less free. This is all linked to the thought process 

that society is going through about where intellectual property begins and ends. 

The scientific literature, and peer reviewed literature in particular, is probably one 

of the places where it ends. If you want to find out about X, you will probably be 

FIGURE 3

13 Or, as Jim might have suggested today, Bing. 
14 The Federal Research Public Access Act of 2006 (Cornyn-Lieberman).
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able to find out that peach pits are a great treatment for X. But this is not from the 

peer reviewed literature and is there just because there’s a guy out there who wants 

to sell peach pits to you to cure X. So the people who have been pioneering this 

movement towards open access are primarily the folks in healthcare because the 

good healthcare information is locked up and the bad healthcare information is on 

the Internet.

THE NEW DIGITAL LIBRARY

How does the new library work? Well, it’s free because it’s pretty easy to put a 

page or an article on the Internet. Each of you could a�ord to publish in PubMed  

Central. It would just cost you a few thousand dollars for the computer—but how 

much tra�c you would have I don’t know! But curation is not cheap. Getting the 

stu� into the computer, getting it cross-indexed, all that sort of stu�, is costing the 

National Library of Medicine about $100 to curate each article that shows up. If 

it takes in a million articles a year, which is approximately what it expects to get, 

it’s going to be $100 million a year just to curate the stu�. This is why we need to 

automate the whole curation process.

What is now going on is that PubMed Central, which is the digital part of the  

National Library of Medicine, has made itself portable. There are versions of 

PubMed Central running in the UK, in Italy, in South Africa, in Japan, and in 

China. The one in the UK just came online last week. I guess you can appreciate, 

for example, that the French don’t want their National Library of Medicine to be 

in Bethesda, Maryland, or in English. And the English don’t want the text to be in 

American, so the UK version will probably use UK spellings for things in its Web 

interface. But fundamentally, you can stick a document in any of these archives and 

it will get replicated to all the other archives. It’s fairly cheap to run one of these 

archives, but the big challenges are how you do curation and peer review.

OVERLAY JOURNALS

Here’s how I think it might work. This is based on the concept of overlay journals. 

The idea is that you have data archives and you have literature archives. The articles 

get deposited in the literature archives, and the data goes into the data archives. 

Then there is a journal management system that somebody builds that allows us, 

as a group, to form a journal on X. We let people submit articles to our journal by 

depositing them in the archive. We do peer review on them and for the ones we 

like, we make a title page and say, “These are the articles we like” and put it into 
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the archive as well. Now, a search engine comes along and cranks up the page rank 

on all of those articles as being good because they are now referenced by this very 

significant front page. These articles, of course, can also point back to the data. 

Then there will be a collaboration system that comes along that allows people to 

annotate and comment on the journal articles. The comments are not stored in the 

peer reviewed archive but on the side because they have not been peer reviewed—

though they might be moderated. 

The National Library of Medicine is going to do all this for the biomedical com-

munity, but it’s not happening in other scientific communities. For you as members 

of the CSTB, the CS community could help make this happen by providing appro-

priate tools for the other scientific disciplines.

There is some software we have created at Microsoft Research called Conference 

Management Tool (CMT). We have run about 300 conferences with this, and the 

CMT service makes it trivial for you to create a conference. The tool supports the 

whole workflow of forming a program committee, publishing a Web site, accept-

ing manuscripts, declaring conflicts of interest and recusing yourself, doing the 

reviews, deciding which papers to accept, forming the conference program, notify-

ing the authors, doing the revisions, and so on. We are now working on providing a 

button to deposit the articles into arXiv.org or PubMed Central and pushing in the 

title page as well. This now allows us to capture workshops and conferences very 

easily. But it will also allow you to run an online journal. This mechanism would 

make it very easy to create overlay journals.

Somebody asked earlier if this would be hard on scholarly publishers. And the 

answer is yes. But isn’t this also going to be hard for the IEEE and the ACM? The 

answer is that the professional societies are terrified that if they don’t have any  

paper to send you, you won’t join them. I think that they are going to have to deal 

with this somehow because I think open access is going to happen. Looking around 

the room, I see that most of us are old and not Generation Xers. Most of us join 

these organizations because we just think it’s part of being a professional in that 

field. The trouble is that Generation Xers don’t join organizations.

WHAT HAPPENS TO PEER REVIEW?

This is not a question that has concerned you, but many people say, “Why do we 

need peer review at all? Why don’t we just have a wiki?” And I think the answer 

is that peer review is di�erent. It’s very structured, it’s moderated, and there is a 

degree of confidentiality about what people say. The wiki is much more egalitarian. 

JIM GRAY ON eSCIENCE
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I think wikis make good sense for collecting comments about the literature after 

the paper has been published. One needs some structure like CMT provides for the 

peer review process. 

PUBLISHING DATA

I had better move on and go very quickly through publishing data. I’ve talked about 

publishing literature, but if the answer is 42, what are the units? You put some 

data in a file up on the Internet, but this brings us back to the problem of files. The 

important record to show your work in context is called the data provenance. How 

did you get the number 42?

Here is a thought experiment. You’ve done some science, and you want to pub-

lish it. How do you publish it so that others can read it and reproduce your results 

in a hundred years’ time? Mendel did this, and Darwin did this, but barely. We are 

now further behind than Mendel and Darwin in terms of techniques to do this. It’s 

a mess, and we’ve got to work on this problem.

DATA, INFORMATION, AND KNOWLEDGE: ONTOLOGIES AND SEMANTICS

We are trying to objectify knowledge. We can help with basic things like units, 

and what is a measurement, who took the measurement, and when the measure-

ment was taken. These are generic things and apply to all fields. Here [at Microsoft 

Research] we do computer science. What do we mean by planet, star, and galaxy? 

That’s astronomy. What’s the gene? That’s biology. So what are the objects, what 

are the attributes, and what are the methods in the object-oriented sense on these 

objects? And note, parenthetically, that the Internet is really turning into an object-

oriented system where people fetch objects. In the business world, they’re objectify-

ing what a customer is, what an invoice is, and so on. In the sciences, for example, 

we need similarly to objectify what a gene is—which is what GenBank15 does.

And here we need a warning that to go further, you are going to bump into the  

O word for “ontology,” the S word for “schema,” and “controlled vocabularies.” That 

is to say, in going down this path, you’re going to start talking about semantics, 

which is to say, “What do things mean?” And of course everybody has a di�erent 

opinion of what things mean, so the conversations can be endless.

The best example of all of this is Entrez,16 the Life Sciences Search Engine,  

15 www.ncbi.nlm.nih.gov/Genbank 
16 www.ncbi.nlm.nih.gov/Entrez
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created by the National Center for Biotechnology Information for the NLM. Entrez 

allows searches across PubMed Central, which is the literature, but they also have 

phylogeny data, they have nucleotide sequences, they have protein sequences and 

their 3-D structures, and then they have GenBank. It is really a very impressive  

system. They have also built the PubChem database and a lot of other things. This 

is all an example of the data and the literature interoperating. You can be looking at 

an article, go to the gene data, follow the gene to the disease, go back to the litera-

ture, and so on. It is really quite stunning!

So in this world, we have traditionally had authors, publishers, curators, and con-

sumers. In the new world, individual scientists now work in collaborations, and jour-

nals are turning into Web sites for data and other details of the experiments. Curators 

now look after large digital archives, and about the only thing the same is the indi-

vidual scientist. It is really a pretty fundamental change in the way we do science.

One problem is that all projects end at a certain point and it is not clear what 

then happens to the data. There is data at all scales. There are anthropologists out 

collecting information and putting it into their notebooks. And then there are the 

particle physicists at the LHC. Most of the bytes are at the high end, but most of the 

datasets are at the low end. We are now beginning to see mashups where people 

take datasets from various places and glue them together to make a third data-

set. So in the same sense that we need archives for journal publications, we need  

archives for the data.

So this is my last recommendation to the CSTB: foster digital data libraries. 

Frankly, the NSF Digital Library e�ort was all about metadata for libraries and not 

about actual digital libraries. We should build actual digital libraries both for data 

and for the literature.

SUMMARY

I wanted to point out that almost everything about science is changing because 

of the impact of information technology. Experimental, theoretical, and computa-

tional science are all being a�ected by the data deluge, and a fourth, “data-intensive” 

science paradigm is emerging. The goal is to have a world in which all of the science 

literature is online, all of the science data is online, and they interoperate with each 

other. Lots of new tools are needed to make this happen.

JIM GRAY ON eSCIENCE
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EDITORS’ NOTE

The full transcript and PowerPoint slides from Jim’s talk may be found at the 

Fourth Paradigm Web site.17 The questions and answers during the talk have been 

extracted from this text and are available on the Web site. (Note that the question-

ers have not been identified by name.) The text presented here includes minor edits 

to improve readability, as well as our added footnotes and references, but we believe 

that it remains faithful to Jim’s presentation. 
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C
HANGE IS INEVITABLE—the Universe expands, nature adapts 

and evolves, and so must the scientific tools and technol-

ogies that we employ to feed our unrelenting quest for 

greater knowledge in space, Earth, and environmental 

sciences. The opportunities and challenges are many. New com-

puting technologies such as cloud computing and multicore proces-

sors cannot provide the entire solution in their generic forms. But 

e�ective and timely application of such technologies can help us 

significantly advance our understanding of our world, including its 

environmental challenges and how we might address them. 

 With science moving toward being computational and data 

based, key technology challenges include the need to better cap-

ture, analyze, model, and visualize scientific information. The ul-

timate goal is to aid scientists, researchers, policymakers, and the 

general public in making informed decisions. As society demands 

action and responsiveness to growing environmental issues, new 

types of applications grounded in scientific research will need 

to move from raw discovery and eliciting basic data that leads to 

knowledge to informing practical decisions. Active issues such as 

climate change will not wait until scientists have all the data to fill 

their knowledge gaps.

 As evidenced by the articles in this part of the book, scientists 

are indeed actively pursuing scientific understanding through the 

DAN FAY |  Microsoft Research
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use of new computing technologies. Szalay and Blakeley describe Jim Gray’s infor-

mal rules for data-centric development and how they serve as a blueprint for making 

large-scale datasets available through the use of databases, leveraging the built-in 

data management as well as the parallel processing inherent in SQL servers.

In order to facilitate informed decisions based on reliable scientific evidence, 

Dozier and Gail explore how the applied use of technology and current scientific 

knowledge is key to providing tools to policy and decision makers. Hunt, Baldocchi, 

and van Ingen describe the changes under way in ecological science in moving 

from “science in the small” to large collaborations based on synthesis of data. These 

aggregated datasets expose the need for collaborative tools in the cloud as well as 

easy-to-use visualization and analysis tools. Delaney and Barga then provide com-

pelling insights into the need for real-time monitoring of the complex dynamics in 

the sea by creating an interactive ocean laboratory. This novel cyberinfrastructure 

will enable new discoveries and insights through improved ocean models. 

The need for novel scientific browsing technologies is highlighted by Goodman 

and Wong. To advance the linkage across existing resources, astronomers can use 

a new class of visualization tools, such as the WorldWide Telescope (WWT). This 

new class of tool o�ers access to data and information not only to professional sci-

entists but also the general public, both for education and possibly to enable new 

discoveries by anyone with access to the Internet. Finally, Lehning et al. provide 

details about the use of densely deployed real-time sensors combined with visu-

alization for increased understanding of environmental dynamics—like a virtual 

telescope looking back at the Earth. These applications illustrate how scientists 

and technologists have the opportunity to embrace and involve citizen scientists 

in their e�orts.

In Part 1 and throughout the book, we see new sensors and infrastructures  

enabling real-time access to potentially enormous quantities of data, but with ex-

perimental repeatability through the use of workflows. Service-oriented architec-

tures are helping to mitigate the transition to new underlying technologies and 

enable the linkage of data and resources. This rapidly evolving process is the only 

mechanism we have to deal with the data deluge arising from our instruments. 

The question before us is how the world’s intellectual and technological resourc-

es can be best orchestrated to authoritatively guide our responses to current and 

future societal challenges. The articles that follow provide some great answers. 



Gray’s Laws:  
Database-centric  

Computing in Science

HE EXPLOSION IN SCIENTIFIC DATA  has created a major chal-

lenge for cutting-edge scientific projects. With datasets 

growing beyond a few tens of terabytes, scientists have 

no o�-the-shelf solutions that they can readily use to 

manage and analyze the data [1]. Successful projects to date have 

deployed various combinations of flat files and databases [2]. How-

ever, most of these solutions have been tailored to specific projects 

and would not be easy to generalize or scale to the next generation 

of experiments. Also, today’s computer architectures are increas-

ingly imbalanced; the latency gap between multi-core CPUs and 

mechanical hard disks is growing every year, making the chal-

lenges of data-intensive computing harder to overcome [3]. What 

is needed is a systematic and general approach to these problems 

with an architecture that can scale into the future.

GRAY’S LAWS

Jim Gray formulated several informal rules—or laws—that codify 

how to approach data engineering challenges related to large-scale 

scientific datasets. The laws are as follows:

1. Scientific computing is becoming increasingly data intensive.

2. The solution is in a “scale-out” architecture.

3. Bring computations to the data, rather than data to the  

computations.
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4. Start the design with the “20 queries.”

5. Go from “working to working.”

It is important to realize that the analysis of observational datasets is severely 

limited by the relatively low I/O performance of most of today’s computing plat-

forms. High-performance numerical simulations are also increasingly feeling the 

“I/O bottleneck.” Once datasets exceed the random access memory (RAM) capac-

ity of the system, locality in a multi-tiered cache no longer helps [4]. Yet very few 

high-end platforms provide a fast enough I/O subsystem. 

High-performance, scalable numerical computation also presents an algorithmic 

challenge. Traditional numerical analysis packages have been designed to operate 

on datasets that fit in RAM. To tackle analyses that are orders of magnitude larger, 

these packages must be redesigned to work in a multi-phase, divide-and-conquer 

manner while maintaining their numerical accuracy. This suggests an approach in 

which a large-scale problem is decomposed into smaller pieces that can be solved in 

RAM, whereas the rest of the dataset resides on disk. This approach is analogous to 

the way in which database algorithms such as sorts or joins work on datasets larger 

than RAM. These challenges are reaching a critical stage.

Buying larger network storage systems and attaching them to clusters of com-

pute nodes will not solve the problem because network/interconnect speeds are 

not growing fast enough to cope with the yearly doubling of the necessary stor-

age. Scale-out solutions advocate simple building blocks in which the data is par-

titioned among nodes with locally attached storage [5]. The smaller and simpler 

these blocks are, the better the balance between CPUs, disks, and networking can 

become. Gray envisaged simple “CyberBricks” where each disk drive has its own 

CPU and networking [6]. While the number of nodes on such a system would be 

much larger than in a traditional “scale-up” architecture, the simplicity and lower 

cost of each node and the aggregate performance would more than make up for the 

added complexity. With the emergence of solid-state disks and low-power mother-

boards, we are on the verge of being able to build such systems [7].

DATABASE-CENTRIC COMPUTING

Most scientific data analyses are performed in hierarchical steps. During the first 

pass, a subset of the data is extracted by either filtering on certain attributes (e.g., 

removing erroneous data) or extracting a vertical subset of the columns. In the next 

step, data are usually transformed or aggregated in some way. Of course, in more 
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complex datasets, these patterns are often accompanied by complex joins among 

multiple datasets, such as external calibrations or extracting and analyzing di�er-

ent parts of a gene sequence [8]. As datasets grow ever larger, the most e�cient way 

to perform most of these computations is clearly to move the analysis functions as 

close to the data as possible. It also turns out that most of these patterns are easily 

expressed by a set-oriented, declarative language whose execution can benefit enor-

mously from cost-based query optimization, automatic parallelism, and indexes. 

Gray and his collaborators have shown on several projects that existing rela-

tional database technologies can be successfully applied in this context [9]. There 

are also seamless ways to integrate complex class libraries written in procedural 

languages as an extension of the underlying database engine [10, 11]. 

MapReduce has become a popular distributed data analysis and computing para-

digm in recent years [12]. The principles behind this paradigm resemble the distrib-

uted grouping and aggregation capabilities that have existed in parallel relational 

database systems for some time. New-generation parallel database systems such as 

Teradata, Aster Data, and Vertica have rebranded these capabilities as “MapReduce 

in the database.” New benchmarks comparing the merits of each approach have 

been developed [13].

CONNECTING TO THE SCIENTISTS

One of the most challenging problems in designing scientific databases is to estab-

lish e�ective communication between the builder of the database and the domain 

scientists interested in the analysis. Most projects make the mistake of trying to be 

“everything for everyone.” It is clear that that some features are more important 

than others and that various design trade-o�s are necessary, resulting in perfor-

mance trade-o�s. 

Jim Gray came up with the heuristic rule of “20 queries.” On each project he 

was involved with, he asked for the 20 most important questions the researchers 

wanted the data system to answer. He said that five questions are not enough to 

see a broader pattern, and a hundred questions would result in a shortage of focus. 

Since most selections involving human choices follow a “long tail,” or so-called 1/f 

distribution, it is clear that the relative information in the queries ranked by impor-

tance is logarithmic, so the gain realized by going from approximately 20 (24.5) to 

100 (26.5) is quite modest [14].

The “20 queries” rule is a moniker for a design step that engages the domain 

scientist and the database engineer in a conversation that helps bridge the semantic 
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gap between nouns and verbs used in the scientific domain and the entities and 

relationships stored in the database. Queries define the precise set of questions 

in terms of entities and relationships that domain scientists expect to pose to the 

database. At the end of a full iteration of this exercise, the domain scientist and the 

database speak a common language.

This approach has been very successful in keeping the design process focused 

on the most important features the system must support, while at the same time 

helping the domain scientists understand the database system trade-o�s, thereby 

limiting “feature creep.”

Another design law is to move from working version to working version. Gray was 

very much aware of how quickly data-driven computing architecture changes, espe-

cially if it involves distributed data. New distributed computing paradigms come and 

go every other year, making it extremely di�cult to engage in a multi-year top-down 

design and implementation cycle. By the time such a project is completed, the start-

ing premises have become obsolete. If we build a system that starts working only if 

every one of its components functions correctly, we will never finish.

The only way to survive and make progress in such a world is to build modular 

systems in which individual components can be replaced as the underlying tech-

nologies evolve. Today’s service-oriented architectures are good examples of this. 

Web services have already gone through several major evolutionary stages, and the 

end is nowhere in sight.

FROM TERASCALE TO PETASCALE SCIENTIFIC DATABASES

By using Microsoft SQL Server, we have successfully tackled several projects 

on a scale from a few terabytes (TB) to tens of terabytes [15-17]. Implementing  

databases that will soon exceed 100 TB also looks rather straightforward [18], but 

it is not entirely clear how science will cross the petascale barrier. As databases 

become larger and larger, they will inevitably start using an increasingly scaled-

out architecture. Data will be heavily partitioned, making distributed, non-local  

queries and distributed joins increasingly di�cult. 

For most of the petascale problems today, a simple data-crawling strategy 

over massively scaled-out, share-nothing data partitions has been adequate  

(MapReduce, Hadoop, etc.). But it is also clear that this layout is very suboptimal 

when a good index might provide better performance by orders of magnitude. Joins 

between tables of very di�erent cardinalities have been notoriously di�cult to use 

with these crawlers. 
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Databases have many things to o�er in terms of more e�cient plans. We also need 

to rethink the utility of expecting a monolithic result set. One can imagine crawlers 

over heavily partitioned databases implementing a construct that can provide results 

one bucket at a time, resulting in easier checkpointing and recovery in the middle of 

an extensive query. This approach is also useful for aggregate functions with a clause 

that would stop when the result is estimated to be within, for example, 99% accu-

racy. These simple enhancements would go a long way toward sidestepping huge 

monolithic queries—breaking them up into smaller, more manageable ones.

Cloud computing is another recently emerging paradigm. It o�ers obvious ad-

vantages, such as co-locating data with computations and an economy of scale in 

hosting the services. While these platforms obviously perform very well for their 

current intended use in search engines or elastic hosting of commercial Web sites, 

their role in scientific computing is yet to be clarified. In some scientific analysis 

scenarios, the data needs to be close to the experiment. In other cases, the nodes 

need to be tightly integrated with a very low latency. In yet other cases, very high 

I/O bandwidth is required. Each of these analysis strategies would be suboptimal 

in current virtualization environments. Certainly, more specialized data clouds are 

bound to emerge soon. In the next few years, we will see if scientific computing 

moves from universities to commercial service providers or whether it is necessary 

for the largest scientific data stores to be aggregated into one.

CONCLUSIONS

Experimental science is generating vast volumes of data. The Pan-STARRS project 

will capture 2.5 petabytes (PB) of data each year when in production [18]. The 

Large Hadron Collider will generate 50 to 100 PB of data each year, with about  

20 PB of that data stored and processed on a worldwide federation of national grids 

linking 100,000 CPUs [19]. Yet generic data-centric solutions to cope with this vol-

ume of data and corresponding analyses are not readily available [20].

Scientists and scientific institutions need a template and collection of best prac-

tices that lead to balanced hardware architectures and corresponding software to 

deal with these volumes of data. This would reduce the need to reinvent the wheel. 

Database features such as declarative, set-oriented languages and automatic paral-

lelism, which have been successful in building large-scale scientific applications, 

are clearly needed.

We believe that the current wave of databases can manage at least another order 

of magnitude in scale. So for the time being, we can continue to work. However,  
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it is time to start thinking about the next wave. Scientific databases are an early 

predictor of requirements that will be needed by conventional corporate applica-

tions; therefore, investments in these applications will lead to technologies that 

will be broadly applicable in a few years. Today’s science challenges are good  

representatives of the data management challenges for the 21st century. Gray’s Laws 

represent an excellent set of guiding principles for designing the data-intensive  

systems of the future.
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HE SCIENCE OF EARTH AND ENVIRONMENT has matured 

through two major phases and is entering a third. In the 

first phase, which ended two decades ago, Earth and en-

vironmental science was largely discipline oriented and 

focused on developing knowledge in geology, atmospheric chem-

istry, ecosystems, and other aspects of the Earth system. In the 

1980s, the scientific community recognized the close coupling of 

these disciplines and began to study them as interacting elements 

of a single system. During this second phase, the paradigm of Earth 

system science emerged. With it came the ability to understand 

complex, system-oriented phenomena such as climate change, 

which links concepts from atmospheric sciences, biology, and hu-

man behavior. Essential to the study of Earth’s interacting systems 

was the ability to acquire, manage, and make available data from 

satellite observations; in parallel, new models were developed to 

express our growing understanding of the complex processes in 

the dynamic Earth system [1].

In the emerging third phase, knowledge developed primarily 

for the purpose of scientific understanding is being complement-

ed by knowledge created to target practical decisions and action. 

This new knowledge endeavor can be referred to as the science of  

environmental applications. Climate change provides the most 

prominent example of the importance of this shift. Until now, the 
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climate science community has focused on critical questions involving basic knowl-

edge, from measuring the amount of change to determining the causes. With the 

basic understanding now well established, the demand for climate applications 

knowledge is emerging. How do we quantify and monitor total forest biomass so 

that carbon markets can characterize supply? What are the implications of regional 

shifts in water resources for demographic trends, agricultural output, and energy 

production? To what extent will seawalls and other adaptations to rising sea level 

impact coasts?

These questions are informed by basic science, but they raise additional issues 

that can be addressed only by a new science discipline focused specifically on ap-

plications—a discipline that integrates physical, biogeochemical, engineering, and 

human processes. Its principal questions reflect a fundamental curiosity about the 

nature of the world we live in, tempered by the awareness that a question’s impor-

tance scales with its relevance to a societal imperative. As Nobel laureate and U.S. 

Secretary of Energy Steven Chu has remarked, “We seek solutions. We don’t seek—

dare I say this?—just scientific papers anymore” [2].

To illustrate the relationships between basic science and applications, consider 

the role of snowmelt runo� in water supplies. Worldwide, 1 billion people depend 

on snow or glacier melt for their water resources [3]. Design and operations of 

water systems have traditionally relied on historical measurements in a station-

ary climate, along with empirical relationships and models. As climates and land 

use change, populations grow and relocate, and our built systems age and decay, 

these empirical methods of managing our water become inaccurate—a conundrum 

characterized as “stationarity is dead” [4]. Snowmelt commonly provides water for 

competing uses: urban and agricultural supply, hydropower, recreation, and eco-

systems. In many areas, both rainfall and snowfall occur, raising the concern that 

a future warmer climate will lead to a greater fraction of precipitation as rain, with 

the water arriving months before agricultural demand peaks and with more rapid 

runo� leading to more floods. In these mixed rain and snow systems, the societal 

need is: How do we sustain flood control and the benefits that water provides to 

humans and ecosystems when changes in the timing and magnitude of runo� are 

likely to render existing infrastructure inadequate?

The solution to the societal need requires a more fundamental, process-based 

understanding of the water cycle. Currently, historical data drive practices and de-

cisions for flood control and water supply systems. Flood operations and reservoir 

flood capacity are predetermined by regulatory orders that are static, regardless 
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of the type of water year, current state of the snowpack, or risk of flood. In many 

years, early snowmelt is not stored because statistically based projections anticipate 

floods that better information might suggest cannot materialize because of the ab-

sence of snow. The more we experience warming, the more frequently this occur-

rence will impact the water supply [5]. The related science challenges are: (1) The 

statistical methods in use do not try to estimate the basin’s water balance, and with 

the current measurement networks even in the U.S., we lack adequate knowledge 

of the amount of snow in the basins; (2) We are unable to partition the input be-

tween rain and snow, or to partition that rain or snow between evapotranspiration 

and runo�; (3) We lack the knowledge to manage the relationship between snow 

cover, forests, and carbon stocks; (4) Runo� forecasts that are not based on physical 

principles relating to snowmelt are often inaccurate; and (5) We do not know what 

incentives and institutional arrangements would lead to better management of the 

watershed for ecosystem services.

Generally, models do not consider these kinds of interactions; hence the need for 

a science of environmental applications. Its core characteristics di�erentiate it from 

the basic science of Earth and environment:

• Need driven versus curiosity driven. Basic science is question driven; in con-

trast, the new applications science is guided more by societal needs than scien-

tific curiosity. Rather than seeking answers to questions, it focuses on creating 

the ability to seek courses of action and determine their consequences.

• Externally constrained. External circumstances often dictate when and how 

applications knowledge is needed. The creation of carbon trading markets will 

not wait until we fully quantify forest carbon content. It will happen on a sched-

ule dictated by policy and economics. Construction and repair of the urban wa-

ter infrastructure will not wait for an understanding of evolving rainfall pat-

terns. Applications science must be prepared to inform actions subject to these 

external drivers, not according to academic schedules based on when and how 

the best knowledge can be obtained.

• Consequential and recursive. Actions arising from our knowledge of the Earth 

often change the Earth, creating the need for new knowledge about what we 

have changed. For example, the more we knew in the past about locations of fish 

populations, the more the populations were overfished; our original knowledge 

about them became rapidly outdated through our own actions. Applications sci-
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ence seeks to understand not just those aspects of the Earth addressed by a par-

ticular use scenario, but also the consequences and externalities that result from 

that use scenario. A recent example is the shift of agricultural land to corn-for-

ethanol production—an e�ort to reduce climate change that we now recognize 

as significantly stressing scarce water resources.

• Useful even when incomplete. As the snowpack example illustrates, actions 

are often needed despite incomplete data or partial knowledge. The di�culty of 

establishing confidence in the quality of our knowledge is particularly discon-

certing given the loss of stationarity associated with climate change. New means 

of making e�ective use of partial knowledge must be developed, including ro-

bust inference engines and statistical interpretation.

• Scalable. Basic science knowledge does not always scale to support applications 

needs. The example of carbon trading presents an excellent illustration. Basic 

science tells us how to relate carbon content to measurements of vegetation type 

and density, but it does not give us the tools that scale this to a global inventory. 

New knowledge tools must be built to accurately create and update this inven-

tory through cost-e�ective remote sensing or other means.

• Robust. The decision makers who apply applications knowledge typically have 

limited comprehension of how the knowledge was developed and in what situ-

ations it is applicable. To avoid misuse, the knowledge must be characterized 

in highly robust terms. It must be stable over time and insensitive to individual 

interpretations, changing context, and special conditions.

• Data intensive. Basic science is data intensive in its own right, but data sources 

that support basic science are often insu�cient to support applications. Local-

ized impacts with global extent, such as intrusion of invasive species, are often 

di�cult for centralized projects with small numbers of researchers to ascer-

tain. New applications-appropriate sources must be identified, and new ways  

of observing (including the use of communities as data gatherers) must be  

developed.

Each of these characteristics implies development of new knowledge types and 

new tools for acquiring that knowledge. The snowpack example illustrates what this 

requirement means for a specific application area. Four elements have recently 

come together that make deployment of a measurement and information system 
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that can support decisions at a scale of a large river basin feasible: (1) accurate, 

sustained satellite estimates of snow-covered area across an entire mountain range; 

(2) reliable, low-cost sensors and telemetry systems for snow and soil moisture;  

(3) social science data that complement natural and engineered systems data to en-

able analysis of human decision making; and (4) cyberinfrastructure advances to 

integrate data and deliver them in near real time.

 For snow-dominated drainage basins, the highest-priority scientific challenge is 

to estimate the spatial distribution and heterogeneity of the snow water equivalent—

i.e., the amount of water that would result if the snow were to melt. Because of wind 

redistribution of snow after it falls, snow on the ground is far more heterogeneous 

than rainfall, with several meters of di�erences within a 10 to 100 m distance. Het-

erogeneity in snow depth smoothes the daily runo� because of the variability of the 

duration of meltwater in the snowpack [6]; seasonally, it produces quasi-riparian 

zones of increased soil moisture well into the summer. The approach to estimating 

the snow water equivalent involves several tasks using improved data: (1) extensive 

validation of the satellite estimates of snow cover and its reflectivity, as Figure 1 on 

the next page shows; (2) using results from an energy balance reconstruction of 

snow cover to improve interpolation from more extensive ground measurements 

and satellite data [7]; (3) development of innovative ways to characterize hetero-

geneity [8]; and (4) testing the interpolated estimates with a spatially distributed 

runo� model [9]. The measurements would also help clarify the accuracy in pre-

cipitation estimates from regional climate models.

This third phase of Earth and environmental science will evolve over the next 

decade as the scientific community begins to pursue it. Weather science has already 

built substantial capability in applications science; the larger field of Earth science 

will need to learn from and extend those e�orts. The need for basic science and 

further discovery will not diminish, but instead will be augmented and extended 

by this new phase. The questions to address are both practically important and 

intellectually captivating. Will our hydrologic forecasting skill decline as changes 

in precipitation diminish the value of statistics obtained from historic patterns? 

Where will the next big climate change issue arise, and what policy actions taken 

today could allow us to anticipate it? 

Equally important is improving how we apply this knowledge in our daily lives. 

The Internet and mobile telephones, with their global reach, provide new ways 

to disseminate information rapidly and widely. Information was available to avoid 

much of the devastation from the Asian tsunami and Hurricane Katrina, but we 
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lacked the tools for rapid decision making and communication of needed actions. 

Applications science is therefore integrative; it couples understanding of physical 

phenomena and research into the ways that people and organizations can use better 

knowledge to make decisions. The public as a whole can also become an important 

contributor to localized Earth observation, augmenting our limited satellite and 

sensor networks through devices as simple as mobile phone cameras. The ability to 

leverage this emerging data-gathering capability will be an important challenge for 

the new phase of environmental science. 

The security and prosperity of nearly 7 billion people depend increasingly on our 

ability to gather and apply information about the world around us. Basic environ-
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FIGURE 1.

An illustration of the type of data that are useful in analyzing the snow cover. The left panel shows 

elevations of the Sierra Nevada and Central Valley of California, along with a portion of northwest-

ern Nevada. The middle panel shows the raw satellite data in three spectral bands (0.841–0.876, 

0.545–0.565, and 0.459–0.479 µm) from NASA’s Moderate Resolution Imaging Spectroradiometer 

(MODIS), which provides daily global data at 250 to 1000 m resolution in 36 spectral bands. From 

seven “land” bands at 500 m resolution, we derive the fractional snow-covered area—i.e., the frac-

tion of each 500 m grid cell covered by snow, shown in the right panel [10].
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mental science has established an excellent starting point. We must now develop 

this into a robust science of environmental applications.
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COLOGY IS THE STUDY OF LIFE and its interactions with the 

physical environment. Because climate change requires 

rapid adaptation, new data analysis tools are essential to 

quantify those changes in the midst of high natural vari-

ability. Ecology is a science in which studies have been performed 

primarily by small groups of individuals, with data recorded and 

stored in notebooks. But large synthesis studies are now being at-

tempted by collaborations involving hundreds of scientists. These 

larger e�orts are essential because of two developments: one in 

how science is done and the other in the resource management 

questions being asked. While collaboration synthesis studies are 

still nascent, their ever-increasing importance is clear. Computa-

tional support is integral to these collaborations and key to the 

scientific process.

HOW GLOBAL CHANGES ARE CHANGING ECOLOGICAL SCIENCE

The global climate and the Earth’s landscape are changing, and 

scientists must quantify significant linkages between atmo-

spheric, oceanic, and terrestrial processes to properly study the 

phenomena. For example, scientists are now asking how climate 

fluctuations in temperature, precipitation, solar radiation, length 

of growing season, and extreme weather events such as droughts 

a�ect the net carbon exchange between vegetation and the atmo-
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sphere. This question spans many Earth science disciplines with their respective 

data, models, and assumptions. 

These changes require a new approach to resolving resource management ques-

tions. In the short run of the next few decades, ecosystems cannot be restored to 

their former status. For example, with a warming climate on the West Coast of 

the United States, can historical data from coastal watersheds in southern Califor-

nia be used to predict the fish habitats of northern California coastal watersheds? 

Similarly, what can remote sensing tell us about deforestation? Addressing these 

challenges requires a synthesis of data and models that spans length scales from 

the very local (river pools) to the global (oceanic circulations) and spans time scales 

from a few tens of milliseconds to centuries.

AN EXAMPLE OF ECOLOGICAL SYNTHESIS 

Figure 1 shows a simple “science mash-

up” example of a synthesis study. The 

graph compares annual runo� from 

relatively small watersheds in the foot-

hills of the Sierra Nevada in California 

to local annual precipitation over mul-

tiple years. Annual runo� values were 

obtained from the U.S. Geological Sur-

vey (USGS) for three of the gauging sta-

tions along Dry Creek and the Schubert 

University of California experimental 

field site.1 Long-term precipitation rec-

ords from nearby rain gauges were ob-

tained from the National Climatic Data 

Center.2  The precipitation that does not 

run o� undergoes evapotranspiration 

(ET) that is largely dominated by water-

shed vegetation. In these watersheds, a 

single value of 400 mm is observed over 

all years of data. A similar value of an-

nual ET was obtained by independent 

FIGURE 1.

Simple annual water balance to estimate 

evapotranspiration in Sierra Nevada foothill 

watersheds. The dashed line represents an 

annual ET of 400 mm.
1 http://waterdata.usgs.gov/nwis
2 www.ncdc.noaa.gov
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measurement from atmospheric sensors deployed over an oak savannah ecosystem 

at the AmeriFlux Tonzi Ranch tower.3 This synthesis of historical data defines a  

watershed model appropriate for historical conditions and provides a reference 

frame for addressing climate change e�ects in a highly variable system. 

THE COMING FLOOD OF ECOLOGICAL DATA 

These new synthesis studies are enabled by the confluence of low-cost sensors, 

remote sensing, Internet connectivity, and commodity computing. Sensor deploy-

ments by research groups are shifting from short campaigns to long-term monitor-

ing with finer-scale and more diverse instruments. Satellites give global coverage 

particularly to remote or harsh regions where field research is hampered by physi-

cal and political logistics. Internet connectivity is enabling data sharing across or-

ganizations and disciplines. The result of these first three factors is a data flood. 

Commodity computing provides part of the solution, by allowing for the flood to 

be paired with models that incorporate di�erent physical and biological processes 

and allowing for di�erent models to be linked to span the length and time scales 

of interest.

The flood of ecological data and ecological science synthesis presents unique 

computing infrastructure challenges and new opportunities. Unlike sciences such 

as physics or astronomy, in which detectors are shared, in ecological science data 

are generated by a wide variety of groups using a wide variety of sampling or simu-

lation methodologies and data standards. As shown earlier in Figure 1, the use of 

published data from two di�erent sources was essential to obtain evapotranspira-

tion. This synthesis required digital access to long records, separate processing of 

those datasets to arrive at ET, and finally verification with independent flux tower 

measurements. Other synthetic activities will require access to evolving resources 

from government organizations such as NASA or USGS, science collaborations 

such as the National Ecological Observatory Network and the WATERS Network,4 

individual university science research groups such as Life Under Your Feet,5 and 

even citizen scientist groups such as the Community Collaborative Rain, Hail and 

Snow Network6 and the USA National Phenology Network.7  

While the bulk of the data start out as digital, originating from the field sensor, 

3 www.fluxdata.org:8080/SitePages/siteInfo.aspx?US-Ton
4 www.watersnet.org 
5 www.lifeunderyourfeet.org
6 www.cocorahs.org
7 www.usanpn.org 
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radar, or satellite, the historic data and field data, which are critical for the science, 

are being digitized. The latter data are not always evenly spaced time series; they can 

include the date of leaf budding, or aerial imagery at di�erent wavelengths and reso-

lutions to assess quantities throughout the watershed such as soil moisture, vegeta-

tion, and land use. Deriving science variables from remote sensing remains an active 

area of research; as such, hard-won field measurements often form the ground truth 

necessary to develop conversion algorithms. Citizen science field observations such 

as plant species, plant growth (budding dates or tree ring growth, for example), and 

fish and bird counts are becoming increasingly important. Integrating such diverse 

information is an ever-increasing challenge to science analysis.

NAVIGATING THE ECOLOGICAL DATA FLOOD

The first step in any ecological science analysis is data discovery and harmoniza-

tion. Larger datasets are discoverable today; smaller and historic datasets are often 

found by word of mouth. Because of the diversity of data publishers, no single re-

porting protocol exists. Unit conversions, geospatial reprojections, and time/length 

scale regularizations are a way of life. Science data catalog portals such as Sci-

Scope8 and Web services with common data models such as those from the Open 

Geospatial Consortium9 are evolving.

Integral to these science data search portals is knowledge of geospatial features 

and variable namespace mediation. The first enables searches across study water-

sheds or geological regions as well as simple polygon bounding boxes. The second 

enables searches to include multiple search terms—such as “rainfall,” “precipita-

tion,” and “precip”—when searching across data repositories with di�erent nam-

ing conventions. A new generation of metadata registries that use semantic Web 

technologies will enable richer searches as well as automated name and unit con-

versions. The combination of both developments will enable science data searches 

such as “Find me the daily river flow and suspended sediment discharge data from 

all watersheds in Washington State with more than 30 inches of annual rainfall.”

MOVING ECOLOGICAL SYNTHESIS INTO THE CLOUD

Large synthesis datasets are also leading to a migration from the desktop to cloud 

computing. Most ecological science datasets have been collections of files. An ex-

ample is the Fluxnet LaThuile synthesis dataset, containing 966 site-years of sensor 

8 www.sciscope.org
9 www.opengeospatial.org
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data from 253 sites around the world. The data for each site-year is published as a 

simple comma-separated or MATLAB-ready file of either daily aggregates or half-

hourly aggregates. Most of the scientists download some or all of the files and then 

perform analyses locally. Other scientists are using an alternative cloud service that 

links MATLAB on the desktop to a SQL Server Analysis Services data cube in the 

cloud. The data appears local, but the scientists need not be bothered with the 

individual file handling. Local download and manipulation of the remote sensing 

data that would complement that sensor data are not practical for many scientists. 

A cloud analysis now in progress using both to compute changes in evapotranspi-

ration across the United States over the last 10 years will download 3 terabytes of 

imagery and use 4,000 CPU hours of processing to generate less than 100 MB of 

results. Doing the analysis o� the desktop leverages the higher bandwidth, large 

temporary storage capacity, and compute farm available in the cloud.

Synthesis studies also create a need for collaborative tools in the cloud. Science 

data has value for data-owner scientists in the form of publications, grants, reputa-

tion, and students. Sharing data with others should increase rather than decrease 

that value. Determining the appropriate citations, acknowledgment, and/or co- 

authorship policies for synthesis papers remains an open area of discussion in larger 

collaborations such as Fluxnet10 and the North American Carbon Program.11 Jour-

nal space and authorship limitations are an important concern in these discussions. 

Addressing the ethical question of what it means to be a co-author is essential: Is 

contributing data su�cient when that contribution is based on significant intellec-

tual and physical e�ort? Once such policies are agreed upon, simple collaborative 

tools in the cloud can greatly reduce the logistics required to publish a paper, pro-

vide a location for the discovery of collaboration authors, and enable researchers to 

track how their data are used.

HOW CYBERINFRASTRUCTURE IS CHANGING ECOLOGICAL SCIENCE

The flood of ecological data will break down scientific silos and enable a new gen-

eration of scientific research. The goal of understanding the impacts of climate 

change is driving research that spans disciplines such as plant physiology, soil sci-

ence, meteorology, oceanography, hydrology, and fluvial geomorphology. Bridging 

the diverse length and time scales involved will require a collection of cooperating 

models. Synthesizing the field observations with those model results at key length 

10 www.fluxdata.org
11 www.nacarbon.org/nacp
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and time scales is crucial to the development and validation of such models. 

The diversity of ecological dataset size, dataset semantics, and dataset publisher 

concerns poses a cyberinfrastructure challenge that will be addressed over the next 

several years. Synthesis science drives not only direct conversations but also virtual 

ones between scientists of di�erent backgrounds. Advances in metadata represen-

tation can break down the semantic and syntactic barriers to those conversations. 

Data visualizations that range from our simple mashup to more complex virtual 

worlds are also key elements in those conversations. Cloud access to discoverable, 

distributed datasets and, perhaps even more important, enabling cloud data analy-

ses near the more massive datasets will enable a new generation of cross-discipline 

science. 
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HE GLOBAL OCEAN is the last physical frontier on Earth. 

Covering 70 percent of the planetary surface, it is the 

largest, most complex biome we know. The ocean is a 

huge, mobile reservoir of heat and chemical mass. As 

such, it is the “engine” that drives weather-climate systems across 

the ocean basins and the continents, directly a�ecting food pro-

duction, drought, and flooding on land. Water is e�ectively opaque 

to electromagnetic radiation, so the seafloor has not been as well 

mapped as the surfaces of Mars and Venus, and although the spa-

tial relationships within the ocean basins are well understood to 

a first order, the long- and short-term temporal variations and the 

complexities of ocean dynamics are poorly understood. 

The ultimate repository of human waste, the ocean has ab-

sorbed nearly half of the fossil carbon released since 1800. The 

ocean basins are a source of hazards: earthquakes, tsunamis, and 

giant storms. These events are episodic, powerful, often highly 

mobile, and frequently unpredictable. Because the ocean basins 

are a vast, but finite, repository of living and non-living resources, 

we turn to them for food, energy, and the many minerals neces-

sary to sustain a broad range of human lifestyles. Many scientists 

believe that underwater volcanoes were the crucible in which ear-

ly life began on Earth and perhaps on other planets. The oceans 

connect all continents; they are owned by no one, yet they belong 
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to all of us by virtue of their mobile nature. The oceans may be viewed as the com-

mon heritage of humankind, the responsibility and life support of us all.

OCEAN COMPLEXITY 

Our challenge is to optimize the benefits and mitigate the risks of living on a plan-

et dominated by two major energy sources: sunlight driving the atmosphere and 

much of the upper ocean, and internal heat driving plate tectonics and portions of 

the lower ocean. For more than 4 billion years, the global ocean has responded to 

and integrated the impacts of these two powerful driving forces as the Earth, the 

oceans, the atmosphere, and life have co-evolved. As a consequence, our oceans 

have had a long, complicated history, producing today’s immensely complex sys-

tem in which thousands of physical, chemical, and biological processes continually 

interact over many scales of time and space as the oceans maintain our planetary-

scale ecological “comfort zone.”

Figure 1 captures a small fraction of this complexity, which is constantly driven 

by energy from above and below. Deeper understanding of this “global life-support 

system” requires entirely novel research approaches that will allow broad spectrum, 

interactive ocean processes to be studied simultaneously and interactively by many 

scientists—approaches that enable continuous in situ examination of linkages among 

many processes in a coherent time and space framework. Implementing these pow-

erful new approaches is both the challenge and the vision of next-generation ocean  

science.

HISTORICAL PERSPECTIVE

For thousands of years, humans have gone to sea in ships to escape, to conquer, to 

trade, and to explore. Between October 1957 and January 1960, we launched the 

first Earth-orbiting satellite and dove to the deepest part of the ocean. Ships, satel-

lites, and submarines have been the mainstays of spatially focused oceanographic 

research and exploration for the past 50 years. We are now poised on the next 

threshold of technological breakthrough that will advance oceanic discovery; this 

time, exploration will be focused on the time domain and interacting processes. 

This new era will draw deeply on the emergence, and convergence, of many rapidly 

evolving new technologies. These changes are setting the scene for what Marcel 

Proust called “[t]he real voyage of discovery, [which] lies not in seeking new land-

scapes, but in having new eyes.”

In many ways, this “vision” of next-generation oceanographic research and  
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FIGURE 1.

Two primary energy sources powerfully influence the ocean basins: sunlight and its radiant 

energy, and internal heat with its convective and conductive input. Understanding the complexity 

of the oceans requires documenting and quantifying—in a well-defined time-space framework over 

decades—myriad processes that are constantly changing and interacting with one another.

Illustration designed by John Delaney and Mark Stoermer;  

created by the Center for Environmental Visualization (CEV) for the NEPTUNE Program.
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education involves utilizing a wide range of innovative technologies to simultane-

ously and continuously “see,” or sense, many di�erent processes operating through-

out entire volumes of the ocean from a perspective within the ocean. Some of these 

same capabilities will enable remote in situ detection of critical changes taking 

place within selected ocean volumes. Rapid reconfiguration of key sensor arrays 

linked to the Internet via submarine electro-optical cables will allow us to capture, 

image, document, and measure energetic and previously inaccessible phenomena 

such as erupting volcanoes, major migration patterns, large submarine slumps, big 

earthquakes, giant storms, and a host of other complex phenomena that have been 

largely inaccessible to scientific study. 

THE FOURTH PARADIGM 

The ocean has been chronically under-sampled for as long as humans have been 

trying to characterize its innate complexity. In a very real sense, the current suite 

of computationally intensive numerical/theoretical models of ocean behavior has 

outstripped the requisite level of actual data necessary to ground those models in 

reality. As a consequence, we have been unable to even come close to useful pre-

dictive models of the real behavior of the oceans. Only by quantifying powerful 

episodic events, like giant storms and erupting volcanoes, within the context of 

longer-term decadal changes can we begin to approach dependable predictive mod-

els of ocean behavior. Over time, as the adaptive models are progressively refined 

by continual comparison with actual data flowing from real systems, we slowly 

gain the ability to predict the future behavior of these immensely complex natural 

systems. To achieve that goal, we must take steps to fundamentally change the way 

we approach oceanography.

This path has several crucial steps. We must be able to document conditions 

and measure fluxes within the volume of the ocean, simultaneously and in real time, 

over many scales of time and space, regardless of the depth, energy, mobility, or 

complexity of the processes involved. These measurements must be made using co- 

located arrays of many sensor types, operated by many investigators over periods of 

decades to centuries. And the data must be collected, archived, visualized, and com-

pared immediately to model simulations that are explicitly configured to address 

complexity at scales comparable in time and space to the actual measurements. 

This approach o�ers three major advantages: (1) The models must progressively 

emulate the measured reality through constant comparison with data to capture 

the real behavior of the oceans in “model space” to move toward more predictive 
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simulations; (2) When the models and the data disagree, assuming the data are 

valid, we must immediately adapt at-sea sensor-robot systems to fully characterize 

the events that are unfolding because they obviously o�er new insights into the 

complexities we seek to capture in the failed models; (3) By making and archiving 

all observations and measurements in coherently indexed time and space frame-

works, we can allow many investigators (even those not involved in the data collec-

tion) to examine correlations among any number of selected phenomena during, 

or long after, the time that the events or processes occur. If the archived data are 

immediately and widely available via the Internet, the potential for discovery rises 

substantially because of the growing number of potential investigators who can ex-

plore a rapidly expanding spectrum of “parameter space.” For scientists operating 

in this data-intensive environment, there will be a need for development of a new 

suite of scientific workflow products that can facilitate the archiving, assimilation, 

visualization, modeling, and interpretation of the information about all scientific 

systems of interest. Several workshop reports that o�er examples of these “work-

flow products” are available in the open literature [1, 2].

EMERGENCE AND CONVERGENCE 

Ocean science is becoming the beneficiary of a host of powerful emergent tech-

nologies driven by many communities that are entirely external to the world of 

ocean research—they include, but are not limited to, nanotechnology, biotechnol-

ogy, information technology, computational modeling, imaging technologies, and 

robotics. More powerful yet will be the progressive convergence of these enabling 

capabilities as they are adapted to conduct sophisticated remote marine operations 

in novel ways by combining innovative technologies into appropriate investigative 

or experimental systems.

For example, computer-enabled support activities must include massive data 

storage systems, cloud computing, scientific workflow, advanced visualization dis-

plays, and handheld supercomputing. Instead of batteries and satellites being used 

to operate remote installations, electrical power and the vast bandwidth of optical 

fiber will be used to transform the kinds of scientific and educational activities 

that can be conducted within the ocean. Adaptation of industry-standard electro- 

optical cables for use in oceanographic research can fundamentally change the na-

ture of human telepresence throughout the full volume of the oceans by introduc-

ing unprecedented but routinely available power and bandwidth into “ocean space.” 

High-resolution optical and acoustic sensing will be part of the broader technology 
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of “ocean imaging systems.” These approaches will include routine use of high- 

definition video, in stereo if needed, as well as high-resolution sonar, acoustic 

lenses, laser imaging, and volumetric sampling. Advanced sensor technologies will 

include chemical sensing using remote, and mobile, mass spectrometers and gas 

chromatographs, eco-genomic analysis, and adaptive sampling techniques. 

AN INTEGRATED APPROACH 

After decades of planning [3, 4], the U.S. National Science Foundation (NSF) is on 

the verge of investing more than US$600 million over 6 years in the construction 

and early operation of an innovative infrastructure known as the Ocean Observa-

tories Initiative (OOI) [4]. The design life of the program is 25 years. In addition to 

making much-needed high-latitude and coastal measurements supported by rela-

tively low-bandwidth satellite communications systems, this initiative will include 

a transformative undertaking to implement electro-optically cabled observing sys-

tems in the northeast Pacific Ocean [5-7] o� the coasts of Washington, Oregon, and 

British Columbia, as illustrated in Figure 2.1 

These interactive, distributed sensor networks in the U.S. and Canada will cre-

ate a large-aperture “natural laboratory” for conducting a wide range of long-term 

innovative experiments within the ocean volume using real-time control over the 

entire “laboratory” system. Extending unprecedented power and bandwidth to a 

wide range of interactive sensors, instruments, and robots distributed throughout 

the ocean water, at the air-sea interface, on the seafloor, and below the seafloor 

within drill holes will empower next-generation creativity and exploration of the 

time domain among a broad spectrum of investigators. The University of Washing-

ton leads the cabled component of the NSF initiative, known as the Regional Scale 

Nodes (formerly known, and funded, as NEPTUNE); the University of Victoria 

leads the e�ort in Canada, known as NEPTUNE Canada. The two approaches were 

conceived jointly in 2000 as a collaborative U.S.-Canadian e�ort. The Consortium 

for Ocean Leadership in Washington, D.C., is managing and integrating the entire 

OOI system for NSF. Woods Hole Oceanographic Institution and the University of 

California, San Diego, are responsible for overseeing the Coastal-Global and Cyber-

Infrastructure portions of the program, respectively. Oregon State University and 

Scripps Institution of Oceanography are participants in the Coastal-Global portion 

of the OOI.

1 www.interactiveoceans.ocean.washington.edu
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The cabled ocean observatory approach will revolutionize ocean science by pro-

viding interactive access to ocean data and instruments 24/7/365 over two to three 

decades. More than 1,200 kilometers of electro-optical submarine cable will de-

liver many tens of kilowatts of power to seafloor nodes, where instruments that 

might spread over a 50 km radius for each node will be plugged in directly or via 

secondary extension cables. The primary cable will provide between 2.5 and 10 

gigabit/sec bandwidth connectivity between land and a growing number of fixed 

sensor packages and mobile sensor platforms. We expect that a host of novel ap-

proaches to oceanography will evolve based on the availability of in situ power and 

bandwidth. A major benefit will be the real-time data return and command-control 

of fleets of remotely operated vehicles (ROVs) and autonomous underwater vehicles 

FIGURE 2.

A portion of the OOI focuses on the dynamic behavior of the Juan de Fuca Plate and the energetic pro-

cesses operating in the overlying ocean and atmosphere. Recent modifications in the Regional Scale 

Nodes (RSN) have focused on delivery of the elements shown in red, and the pink components are 

future expansion. The inset shows the crest of Axial Seamount along the active Juan de Fuca Ridge. 

Each square block site will provide unprecedented electrical power and bandwidth available for 

research and education. Many of the processes shown in Figure 1 can be examined at the sites here.                          

Image created by CEV for OOI-RSN.
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(AUVs). The infrastructure will be adaptable, expandable, and exportable to inter-

ested users. Data policy for the OOI calls for all information to be made available 

to all interested users via the Internet (with the exception of information bearing 

on national security). 

Hardwired to the Internet, the cabled observatories will provide scientists, 

students, educators, and the public with virtual access to remarkable parts of our 

planet that are rarely visited by humans. In e�ect, the Internet will be extended 

to the seafloor, with the ability to interact with a host of instruments, including 

HD video live from the many environments within the oceans, as illustrated in  

Figure 3. The cabled observatory systems will be able to capture processes at the 

scale of the tectonic plate, mesoscale oceanic eddies, or even smaller scales. Re-

search into representative activities responsible for climate change, major biologi-

cal productivity at the base of the food chain, or encroaching ocean acidification (to 

name a few) will be readily conducted with this new infrastructure. Novel studies 

FIGURE 3.

Next-generation scientists or citizens. This virtual picture shows a deep ocean octopus, known as 

Grimpoteuthis, and a portion of a submarine hydrothermal system on the Juan de Fuca Ridge. 

Such real-time displays of 3-D HD video will be routine within 5 years. 

Graphic designed by Mark Stoermer and created by CEV for NEPTUNE in 2005.
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of mid-ocean spreading centers, transform faults, and especially processes in the 

subduction zone at the base of the continental slope, which may trigger massive 

earthquakes in the Pacific Northwest, will also be addressable using the same in-

vestment in the same cabled infrastructure. 

This interactive ocean laboratory will be enabled by a common cyberinfrastruc-

ture that integrates multiple observatories, thousands of instruments, tens of thou-

sands of users, and petabytes of data. The goals of the cabled ocean observatory can 

be achieved only if the at-sea portion is complemented by state-of-the-art informa-

tion technology infrastructure resulting from a strong collaborative e�ort between 

computer scientists and ocean scientists. Such collaboration will allow scientists to 

interact with the ocean through real-time command and control of sensors; provide 

models with a continuous data feed; automate data quality control and calibration; 

and support novel approaches to data management, analysis, and visualization.

WHAT IS POSSIBLE? 

Figure 4 on the next page depicts some of the potentially transformative capabili-

ties that could emerge in ocean science by 2020. In the long term, a key element of 

the introduction of unprecedented power and bandwidth for use within the ocean 

basins will be the potential for bold and integrative designs and developments that 

enhance our understanding of, and perhaps our ability to predict, the behavior of 

Earth, ocean, and atmosphere interactions and their bearing on a sustainable plan-

etary habitat. 

CONCLUSION 

The cabled ocean observatory merges dramatic technological advancements in 

sensor technologies, robotic systems, high-speed communication, eco-genomics, 

and nanotechnology with ocean observatory infrastructure in ways that will sub-

stantially transform the approaches that scientists, educators, technologists, and 

policymakers take in interacting with the dynamic global ocean. Over the coming 

decades, most nations will implement systems of this type in the o�shore exten-

sions of their territorial seas. As these systems become more sophisticated and data 

become routinely available via the Internet, the Internet will emerge as the most 

powerful oceanographic research tool on the planet. In this fashion, the legacy of 

Jim Gray will continue to grow as we learn to discover truths and insights within 

the data we already have “in the can.” 

While the cabled observatory will have profound ramifications for the manner 
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FIGURE 4.

Some of the transformative developments that could become routine within 5 years with the added 

power of a cabled support system. The top image shows miniaturized genomic analysis systems 

adapted from land laboratories to the ocean to allow scientists, with the flip of a switch in their 

lab hundreds of miles away, to sample ambient flow remotely and run in situ gene sequencing 

operations within the ocean. The data can be made available on the Internet within minutes of the 

decision to sample microbes in an erupting submarine volcanic plume or a seasonally driven phy-

toplankton bloom. The lower part shows a conceptual illustration of an entire remote analytical-

biological laboratory on the seafloor that allows a variety of key measurements or dissections to be 

made in situ using stereo high-definition video to guide high-precision remote manipulations. 

Scientific concepts by Ginger Armbrust and John Delaney; graphic design by Mark Stoermer for CEV.
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in which scientists, engineers, and educators conduct their professional activities, 

the most far-reaching e�ects may be a significant shift in public attitudes toward 

the oceans as well as toward the scientific process. The real-time data and high-

speed communications inherent in cabled remote observing systems will also open 

entirely new avenues for the public to interact with the natural world. 

In the final analysis, having predictive models of how the ocean functions based 

on decades of refining sophisticated computer simulations against high-quality 

observations from distributed sensor networks will form the basis for learning to 

manage, or at least adapt to, the most powerful climate modulating system on the 

planet—the global ocean. 
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E ARTH AN D ENVI RO N M ENT

HROUGHOUT HISTORY, ASTRONOMERS have been accustomed 

to data falling from the sky. But our relatively newfound 

ability to store the sky’s data in “clouds” o�ers us fascinat-

ing new ways to access, distribute, use, and analyze data, 

both in research and in education. Here we consider three inter-

related questions: (1) What trends have we seen, and will soon 

see, in the growth of image and data collection from telescopes?  

(2) How might we address the growing challenge of finding the 

proverbial needle in the haystack of this data to facilitate scientific 

discovery? (3) What visualization and analytic opportunities does 

the future hold?

TRENDS IN DATA GROWTH 

Astronomy has a history of data collection stretching back at least 

to Stonehenge more than three millennia ago. Over time, the 

format of the information recorded by astronomers has changed, 

from carvings in stone to written records and hand-drawn illustra-

tions to photographs to digital media. 

While the telescope (c. 1600) and the opening up of the electro-

magnetic spectrum beyond wavelengths visible to the human eye 

(c. 1940) led to qualitative changes in the nature of astronomical 

investigations, they did not increase the volume of collected data 

nearly as much as did the advent of the Digital Age. 
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Charge-coupled devices (CCDs), which came into widespread use by the 1980s, 

and equivalent detectors at non-optical wavelengths became much more e�cient 

than traditional analog media (such as photographic plates). The resulting rise in 

the rate of photon collection caused the ongoing (and potentially perpetually accel-

erating) increase in data available to astronomers. The increasing capabilities and 

plummeting price of the digital devices used in signal processing, data analysis, and 

data storage, combined with the expansion of the World Wide Web, transformed 

astronomy from an observational science into a digital and computational science. 

For example, the Large Synoptic Survey Telescope (LSST), coming within the 

decade, will produce more data in its first year of operation—1.28 petabytes—than 

any other telescope in history by a significant margin. The LSST will accomplish 

this feat by using very sensitive CCDs with huge numbers of pixels on a relatively 

large telescope with very fast optics (f/1.234) and a wide field of view (9.6 square de-

grees), and by taking a series of many shorter exposures (rather than the traditional 

longer exposures) that can be used to study the temporal behavior of astronomical 

sources. And while the LSST, Pan-STARRS, and other coming astronomical mega-

projects—many at non-optical wavelengths—will produce huge datasets covering 

the whole sky, other groups and individuals will continue to add their own smaller, 

potentially more targeted, datasets.

For the remainder of this article, we will assume that the challenge of managing 

this explosive growth in data will be solved (likely through the clever use of “cloud” 

storage and novel data structures), and we will focus instead on how to o�er better 

tools and novel technical and social analytics that will let us learn more about our 

universe.

A number of emerging trends can help us find the “needles in haystacks” of data 

available over the Internet, including crowdsourcing, democratization of access via 

new browsing technologies, and growing computational power.

CROWDSOURCING 

The Sloan Digital Sky Survey was undertaken to image, and measure spectra for, 

millions of galaxies. Most of the galaxy images had never been viewed by a human 

because they were automatically extracted from wide-field images reduced in an 

automated pipeline. To test a claim that more galaxies rotate in an anticlockwise 

direction than clockwise, the Sloan team used custom code to create a Web page 

that served up pictures of galaxies to members of the public willing to play the on-

line Galaxy Zoo game, which consists primarily of classifying the handedness of the 
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galaxies. Clever algorithms within the “Zoo” serve the same galaxy to multiple users 

as a reference benchmark and to check up on players to see how accurate they are.

The results from the first year’s aggregated classification of galaxies by the public 

proved to be just as accurate as that done by astronomers. More than 50 million 

classifications of a million galaxies were done by the public in the first year, and 

the claim about right/left handed preference was ultimately refuted. Meanwhile, 

Hanny Van Arkel, a schoolteacher in Holland, found a galaxy that is now the blu-

est known galaxy in the universe. It has come under intense scrutiny by major 

telescopes, including the Very Large Array (VLA) radio telescope, and will soon be 

scrutinized by the Hubble Space Telescope.

DEMOCRATIZING ACCESS VIA NEW BROWSING TECHNOLOGIES 

The time needed to acquire data from any astronomical object increases at least 

as quickly as the square of the distance to that object, so any service that can ac-

cumulate custom ensembles of already captured images and data e�ectively brings 

the night sky closer. The use of archived online data stored in a “data cloud” is fa-

cilitated by new software tools, such as Microsoft’s WorldWide Telescope (WWT), 

which provide intuitive access to images of the night sky that have taken astrono-

mers thousands and thousands of hours of telescope time to acquire.

Using WWT (shown in Figure 1 on the next page), anyone can pan and zoom 

around the sky, at wavelengths from X-ray through radio, and anyone can navigate 

through a three-dimensional model of the Universe constructed from real observa-

tions, just to see what’s there. Anyone can notice an unusual correspondence be-

tween features at multiple wavelengths at some position in the sky and click right 

through to all the published journal articles that discuss that position. Anyone can 

hook up a telescope to the computer running WWT and overlay live, new images on 

top of online images of the same piece of sky at virtually any wavelength. Anyone 

can be guided in their explorations via narrated “tours” produced by WWT users. 

As more and more tours are produced, WWT will become a true “sky browser,” 

with the sky as the substrate for conversations about the universe. Explorers will 

navigate along paths that intersect at objects of common interest, linking ideas and 

individuals. Hopping from tour to tour will be like surfing from Web page to Web 

page now.

But the power of WWT goes far beyond its standalone ability. It is, and will con-

tinue to be, part of an ecosystem of online astronomy that will speed the progress 

of both “citizen” and “professional” science in the coming years.
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Microsoft, through WWT, and Google, through Google Sky, have both cre-

ated API (application programming interface) environments that allow the sky- 

browsing software to function inside a Web page. These APIs facilitate the creation 

of everything from educational environments for children to “citizen science” sites 

and data distribution sites for professional astronomical surveys.

Tools such as Galaxy Zoo are now easy to implement, thanks to APIs. So it now 

falls to the astronomical and educational communities to capitalize on the public’s 

willingness to help navigate the increasing influx of data. High-school students can 

now use satellite data that no one has yet analyzed to make real discoveries about 

the Universe, rather than just sliding blocks down inclined planes in their physics 

class. Amateur astronomers can gather data on demand to fill in missing informa-

tion that students, professionals, and other astronomers ask for online. The collab-

orative and educational possibilities are truly limitless.

The role of WWT and tools like it in the professional astronomy community will 

FIGURE 1.

WorldWide Telescope view of the 30 Doradus region near the Large Magellanic Cloud. 

Image courtesy of the National Optical Astronomy Observatory/National Science Foundation.
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also continue to expand. WWT in particular has already become a better way to 

access all-sky surveys than any extant professional tool. WWT, as part of interna-

tional “virtual observatory” e�orts, is being seamlessly linked to quantitative and 

research tools that astronomers are accustomed to, in order to provide a beautiful 

contextual viewer for information that is usually served only piecemeal. And it has 

already begun to restore the kinds of holistic views of data that astronomers were 

used to before the Digital Age chopped up the sky into so many small pieces and 

incompatible formats.

GROWING COMPUTATIONAL POWER 

In 10 years, multi-core processors will enhance commodity computing power two 

to three orders of magnitude beyond today’s computers. How will all this comput-

ing power help to address the data deluge? Faster computers and increased stor-

age and bandwidth will of course enable our contemporary approaches to scale to 

larger datasets. In addition, fully new ways of handling and analyzing data will be 

enabled. For example, computer vision techniques are already surfacing in con-

sumer digital cameras with face detection and recognition as common features. 

More computational power will allow us to triage and potentially identify unique 

objects, events, and data outliers as soon as they are detected and route them to 

citizen-scientist networks for confirmation. Engagement of citizen scientists in the 

alerting network for this “last leg” of detection can be optimized through better-

designed interfaces that can transform work into play. Interfaces could potentially 

connect human confirmation of objects with global networks of games and simula-

tions where real-time data is broadly distributed and integrated into real-time mas-

sive multiplayer games that seamlessly integrate the correct identification of the 

objects into the games’ success metrics. Such games could give kids the opportunity 

to raise their social stature among game-playing peers while making a meaningful 

contribution to science.

VISUALIZATION AND ANALYSIS FOR THE FUTURE 

WWT o�ers a glimpse of the future. As the diversity and scale of collected data ex-

pand, software will have to become more sophisticated in terms of how it accesses 

data, while simultaneously growing more intuitive, customizable, and compatible. 

The way to improve tools like WWT will likely be linked to the larger challenge 

of how to improve the way visualization and data analysis tools can be used to-

gether in all fields—not just in astronomy.
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Visualization and analysis challenges are more common across scientific fields 

than they are di�erent. Imagine, for example, an astronomer and a climate scien-

tist working in parallel. Both want to study the properties of physical systems as 

observed within a spherical coordinate system. Both want to move seamlessly back 

and forth between, for example, spectral line observations of some sources at some 

specific positions on a sphere (e.g., to study the composition of a stellar atmosphere 

or the CO2 in the Earth’s atmosphere), the context for those positions on the sphere, 

and journal articles and online discussions about these phenomena.

Today, even within a discipline, scientists are often faced with many choices 

of how to accomplish the same subtask in analysis, but no package does all the 

subtasks the way they would prefer. What the future holds is the potential for sci-

entists, or data specialists working with scientists, to design their own software 

by linking componentized, modular applications on demand. So, for example, the 

astronomer and the climate scientist could both use some generalized version of 

WWT as part of a separate, customized system that would link to their favorite 

discipline- or scientist-specific packages for tasks such as spectral-line analysis.

CONCLUSION

The question linking the three topics we have discussed here is, “How can we de-

sign new tools to enhance discovery in the data deluge to come in astronomy?” 

The answer seems to revolve around improved linkage between and among existing  

resources—including citizen scientists willing to help analyze data; accessible image 

browsers such as WWT; and more customized visualization tools that are mashed 

up from common components. This approach, which seeks to more seamlessly 

connect (and reuse) diverse components, will likely be common to many fields of 

science—not just astronomy—in the coming decade.
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E ARTH AN D ENVI RO N M ENT

I
NCREASING ENVIRONMENTAL CHALLENGES WORLDWIDE and a grow-

ing awareness of global climate change indicate an urgent need 

for environmental scientists to conduct science in a new and bet-

ter way. Existing large-scale environmental monitoring systems, 

with their coarse spatiotemporal resolution, are not only expen-

sive, but they are incapable of revealing the complex interactions 

between atmospheric and land surface components with enough 

precision to generate accurate environmental system models.

This is especially the case in mountainous regions with highly 

complex surfaces—the source of much of the world’s fresh water 

and weather patterns. The amount of data required to understand 

and model these interactions is so massive (terabytes, and increas-

ing) that no o�-the-shelf solution allows scientists to easily man-

age and analyze it. This has led to rapidly growing global collabo-

ration among environmental scientists and computer scientists to 

approach these problems systematically and to develop sensing 

and database solutions that will enable environmental scientists 

to conduct their next-generation experiments.

NEXT-GENERATION ENVIRONMENTAL SCIENCE 

The next generation of environmental science, as shown in Fig- 

ure 1, is motivated by the following observations by the atmo-

spheric science community: First, the most prominent challenge 
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in weather and climate prediction is rep-

resented by land-atmosphere interaction 

processes. Second, the average e�ect of 

a patchy surface on the atmosphere can 

be very di�erent from an e�ect that is 

calculated by averaging a particular 

surface property such as temperature 

or moisture [1-3]—particularly in the 

mountains, where surface variability is 

typically very high.

Figure 2 shows an example of this—a 

highly complex mountain surface with 

bare rocks, debris-covered permafrost, 

patchy snow cover, sparse trees, and 

shallow and deep soils with varying 

vegetation. All of these surface features 

can occur within a single kilometer—a 

resolution that is typically not reached 

by weather forecast models of even the 

latest generation. Existing models of 

weather prediction and climate change 

still operate using a grid resolution, 

which is far too coarse (multiple kilome-

ters) to explicitly and correctly map the 

surface heterogeneity in the mountains 

(and elsewhere). This can lead to severe 

errors in understanding and prediction.

 In next-generation environmental 

science, data resolution will be addressed using densely deployed (typically wire-

less) sensor networks. Recent developments in wireless sensing have made it pos-

sible to instrument and sense the physical world with high resolution and fidelity 

over an extended period of time. Wireless connections enable reliable collection 

of data from remote sensors to send to laboratories for processing, analyzing, and 

archiving. Such high-resolution sensing enables scientists to understand more pre-

cisely the variability and dynamics of environmental parameters. Wireless sensing 

also provides scientists with safe and convenient visibility of in situ sensor deploy-

FIGURE 1.

A typical data source context for next-

generation environmental science, with a 

heterogeneous sensor deployment that in-

cludes (1) mobile stations, (2) high-resolution 

conventional weather stations, (3) full-size 

snow/weather stations, (4) external weather 

stations, (5) satellite imagery, (6) weather 

radar, (7) mobile weather radar, (8) stream 

observations, (9) citizen-supplied observa-

tions, (10) ground LIDAR, (11) aerial LIDAR, 

(12) nitrogen/methane measures, (13) snow 

hydrology and avalanche probes, (14) seismic 

probes, (15) distributed optical fiber tempera-

ture sensing, (16) water quality sampling, 

(17) stream gauging stations, (18) rapid mass 

movements research, (19) runo� stations, and 

(20) soil research.
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ments and allows them to enable, debug, and test the deployments from the labo-

ratory. This helps minimize site visits, which can be costly, time consuming, and 

even dangerous.

However, dense sensor deployments in harsh, remote environments remain 

challenging for several reasons. First, the whole process of sensing, computation, 

and communication must be extremely energy e�cient so that sensors can remain 

operational for an extended period of time using small batteries, solar panels, or 

other environmental energy. Second, sensors and their communication links must 

be fairly robust to ensure reliable data acquisition in harsh outdoor environments. 

Third, invalid sensor data due to system failures or environmental impacts must be 

identified and treated accordingly (e.g., flagged or even filtered from the dataset). 

Although recent research (including the Swiss Experiment and Life Under Your 

Feet) partially addresses these issues, further research is needed to address them in 

many production systems.

FIGURE 2.

Terrestrial laser scan for snow distribution in the Swiss Alps show-

ing typical patchy snow cover.
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MANAGING AND EXPLORING MASSIVE VOLUMES OF SENSOR DATA

High-resolution environmental sensing introduces severe data management chal-

lenges for scientists. These include reliably archiving large volumes (many terabytes) 

of data, sharing such data with users within access control policies, and maintaining 

su�cient context and provenance of sensor data using correct metadata [4].

Environmental scientists can use commercial database tools to address many of 

the data management and exploratory challenges associated with such a massive 

influx of data. For example, Microsoft’s SenseWeb project [5] provides an infra-

structure, including an underlying Microsoft SQL Server database, for archiving 

massive amounts of sensor data that might be compressed and distributed over 

multiple computers. SenseWeb also maintains suitable data indexes and enables 

e�cient query processing to help users quickly explore the dataset to find features 

for detailed analysis [5-7]. But even with these capabilities, SenseWeb hits just the 

tip of the iceberg of the challenging data management tasks facing environmental 

scientists. Additional tools are necessary to e�ciently integrate sensor data with 

relevant context and provide data provenance. Querying such data in a unified 

framework remains challenging. More research is also needed to deal with uncer-

tain data that comes from noisy sensors and to handle the constant data flow from 

distributed locations.

To better understand environmental phenomena, scientists need to derive and 

apply various models to transform sensor data into scientific and other practical 

results. Database technology can help scientists to easily integrate observational 

data from diverse sources, possibly distributed over the Internet, with model assess-

ments and forecasts—a procedure known as data assimilation. Sophisticated data 

mining techniques can allow scientists to easily explore spatiotemporal patterns of 

data (both interactively as well as in batch on archived data). Modeling techniques 

can provide correct and timely prediction of phenomena such as flooding events, 

landslides, or avalanche cycles, which can be highly useful for intervention and 

damage prevention, even with just a few hours of lead time. This very short-term 

forecasting is called nowcasting in meteorology.

Scientists in the Swiss Experiment project1 have made progress in useful data as-

similation and nowcasting. One case study in this project applies advanced sensors 

and models to forecasting alpine natural hazards [8]. A refined nowcast relies on 

the operational weather forecast to define the target area of a potential storm that 

1 www.swiss-experiment.ch
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would a�ect a small-scale 

region (a few square kilo-

meters) in the mountains. 

The operational weather 

forecast should allow suf- 

ficient time to install lo-

cal mobile stations (such 

as SensorScope stations2) 

and remote sensing devic-

es at the target area and 

to set up high-resolution 

hazard models. In the long 

term, specialized weath- 

er forecast models will be 

developed to allow much more precise local simulation.

 To increase the public’s environmental awareness and to support decision and 

policy makers, useful findings from scientific experiments must be presented and 

disseminated in a practical fashion. For example, SenseWeb provides a Web-based 

front end called SensorMap3 that presents real-time and historical environmental 

factors in an easy-to-understand visual interface. It overlays spatial visualizations 

(such as icons showing current air pollution at a location or images showing distri-

bution of snowfalls) over a browsable geographic map, plays the visualizations of 

selected environmental datasets as a movie on top of a geographic map, and shows 

important trends in historic environmental data as well as useful summaries of 

real-time environmental data. (See Figure 3.) At present, such platforms support 

only a limited set of visualizations, and many challenges remain to be solved to sup-

port the more advanced visualizations required by diverse audiences.

WORLDWIDE ENVIRONMENTAL MONITORING

We have described the next-generation environmental monitoring system as isolat-

ed—focused on a particular region of interest such as a mountain range, ice field, or 

forest. This is how such environmental systems are starting to be deployed. How-

ever, we foresee far more extensive monitoring systems that can allow scientists 

to share data with one another and combine and correlate data from millions of 

FIGURE 3.

SensorMap showing temperature distribution overlaid on 

3-D mountain terrain.

2 www.swiss-experiment.ch/index.php/SensorScope:Home
3 www.sensormap.org
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sensors all over the world to gain an even better understanding of global environ-

mental patterns.

Such a global-scale sensor deployment would introduce unprecedented benefits 

and challenges. As sensor datasets grow larger, traditional data management tech-

niques (such as loading data into a SQL database and then querying it) will clearly 

prove inadequate. To avoid moving massive amounts of data around, computations 

will need to be distributed and pushed as close to data sources as possible [7]. To 

reduce the storage and communication footprint, datasets will have to be com-

pressed without loss of fidelity. To support data analysis with reasonable latencies, 

computation should preferably be done over compressed data [9]. Scientific analy-

sis will also most likely require additional metadata, such as sensor specifications, 

experiment setups, data provenance, and other contextual information. Data from 

heterogeneous sources will have to be integrated in a unified data management and 

exploration framework [10].

Obviously, computer science tools can enable this next-generation environmen-

tal science only if they are actually used by domain scientists. To expedite adoption 

by domain scientists, such tools must be intuitive, easy to use, and robust. More-

over, they cannot be “one-size-fits-all” tools for all domains; rather, they should 

be domain-specific custom tools—or at least custom variants of generic tools. De-

veloping these tools will involve identifying the important problems that domain 

scientists are trying to answer, analyzing the design trade-o�s, and focusing on 

important features. While such application engineering approaches are common 

for non-science applications, they tend not to be a priority in science applications. 

This must change. 

CONCLUSION

The close collaboration between environmental science and computer science 

is providing a new and better way to conduct scientific research through high- 

resolution and high-fidelity data acquisition, simplified large-scale data man-

agement, powerful data modeling and mining, and e�ective data sharing and  

visualization. In this paper, we have outlined several challenges to realizing the  

vision of next-generation environmental science. Some significant progress has been 

made in this context—such as in the Swiss Experiment and SenseWeb, in which an  

advanced, integrated environmental data infrastructure is being used by a variety 

of large environmental research projects, for environmental education, and by in-

dividual scientists. Meanwhile, dramatic progress is being made in complementary 
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fields such as basic sensor technology. Our expectation is that all of these advanc-

es in instrumenting the Earth will help us realize the dreams of next-generation  

environmental science—allowing scientists, government, and the public to better  

understand and live safely in their environment.
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H E ALTH AN D WELLBE I N G
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P
ART 2 OF THIS BOOK EXPLORES the remarkable progress  

and challenges we are seeing in the most intimate and 

personal of our sciences, the one with the most immedi-

ate impact on all of us across the planet: the science of 

health and medicine. 

The first article sets the scene. Gillam et al. describe the prog-

ress of medical science over human history and make a strong 

case for a convergence of technologies that will change the face of 

healthcare within our lifetime. The remaining articles shed light 

on the convergent strands that make up this larger picture, by fo-

cusing on particular medical science challenges and the technolo-

gies being developed to overcome them.

Any assertion that the coming healthcare revolution will be 

universal is credible only if we can demonstrate how it can cross 

the economic and social divides of the modern world. Robertson et 

al. show that a combination of globally pervasive cell phone tech-

nology and the computational technique of Bayesian networks can 

enable collection of computerized healthcare records in regions 

where medical care is sparse and can also provide automated, ac-

curate diagnoses.

An understanding of the human brain is one of the grand chal-

lenges of medicine, and Lichtman et al. describe their approach to 

the generation of the vast datasets needed to understand this most 
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complex of structures. Even imaging the human brain at the subcellular level, 

with its estimated 160 trillion synaptic connections, is a challenge that will test 

the bounds of data storage, and that is merely the first step in deducing function 

from form.

An approach to the next stage of understanding how we think is presented by 

Horvitz and Kristan, who describe techniques for recording sequences of neuronal 

activity and correlating them with behavior in the simplest of organisms. This work 

will lead to a new generation of software tools, bringing techniques of machine 

learning/artificial intelligence to generate new insights into medical data.

While the sets of data that make up a personal medical record are orders of mag-

nitude smaller than those describing the architecture of the brain, current trends 

toward universal electronic healthcare records mean that a large proportion of the 

global population will soon have records of their health available in a digital form. 

This will constitute in aggregate a dataset of a size and complexity rivaling those of 

neuroscience. Here we find parallel challenges and opportunities. Buchan, Winn, 

and Bishop apply novel machine learning techniques to this vast body of healthcare 

data to automate the selection of therapies that have the most desirable outcome. 

Technologies such as these will be needed if we are to realize the world of the 

“Healthcare Singularity,” in which the collective experience of human healthcare 

is used to inform clinical best practice at the speed of computation.

While the coming era of computerized health records promises more accessible 

and more detailed medical data, the usability of this information will require the 

adoption of standard forms of encoding so that inferences can be made across data-

sets. Cardelli and Priami look toward a future in which medical data can be overlaid 

onto executable models that encode the underlying logic of biological systems—to 

not only depict the behavior of an organism but also predict its future condition or 

reaction to a stimulus. In the case of neuroscience, such models may help us under-

stand how we think; in the case of medical records, they may help us understand 

the mechanisms of disease and treatment. Although the computational modeling 

of biological phenomena is in its infancy, it provides perhaps the most intriguing 

insights into the emerging complementary and synergistic relationship between 

computational and living systems. 
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N 1499, WHEN PORTUGUESE EXPLORER VASCO DA GAMA returned 

home after completing the first-ever sea voyage from Europe 

to India, he had less than half of his original crew with him—

scurvy had claimed the lives of 100 of the 160 men. Through-

out the Age of Discovery,1 scurvy was the leading cause of death 

among sailors. Ship captains typically planned for the death of as 

many as half of their crew during long voyages. A dietary cause 

for scurvy was suspected, but no one had proved it. More than a 

century later, on a voyage from England to India in 1601, Captain 

James Lancaster placed the crew of one of his four ships on a regi-

men of three teaspoons of lemon juice a day. By the halfway point 

of the trip, almost 40% of the men (110 of 278) on three of the 

ships had died, while on the lemon-supplied ship, every man sur-

vived [1]. The British navy responded to this discovery by repeat-

ing the experiment—146 years later. 

In 1747, a British navy physician named James Lind treated sail-

ors su�ering from scurvy using six randomized approaches and 

demonstrated that citrus reversed the symptoms. The British navy 

responded, 48 years later, by enacting new dietary guidelines re-

quiring citrus, which virtually eradicated scurvy from the British 

fleet overnight. The British Board of Trade adopted similar dietary 

1 15th to 17th centuries.
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practices for the merchant fleet in 1865, an additional 70 years later. The total time 

from Lancaster’s definitive demonstration of how to prevent scurvy to adoption 

across the British Empire was 264 years [2].

The translation of medical discovery to practice has thankfully improved sub-

stantially. But a 2003 report from the Institute of Medicine found that the lag be-

tween significant discovery and adoption into routine patient care still averages 

17 years [3, 4]. This delayed translation of knowledge to clinical care has negative 

e�ects on both the cost and the quality of patient care. A nationwide review of 439 

quality indicators found that only half of adults receive the care recommended by 

U.S. national standards [5]. 

THE IMPACT OF THE INFORMATION EXPLOSION IN MEDICINE

Despite the adoption rate of medical knowledge significantly improving, we face 

a new challenge due to the exponential increase in the rate of medical knowledge 

discovery. More than 18 million articles are currently catalogued in the biomedical 

literature, including over 800,000 added in 2008. The accession rate has doubled 

every 20 years, and the number of articles per year is expected to surpass 1 million 

in 2012, as shown in Figure 1. 

Translating all of this emerging medical knowledge into practice is a staggering 

challenge. Five hundred years ago, Leonardo da Vinci could be a painter, engineer, 

musician, and scientist. One hundred years ago, it is said that a physician might 

have reasonably expected to know everything in the field of medicine.2 Today, a 

typical primary care doctor must stay abreast of approximately 10,000 diseases and 

syndromes, 3,000 medications, and 1,100 laboratory tests [6]. Research librarians 

estimate that a physician in just one specialty, epidemiology, needs 21 hours of 

study per day just to stay current [7]. Faced with this flood of medical information, 

clinicians routinely fall behind, despite specialization and sub-specialization [8]. 

The sense of information overload in medicine has been present for surprisingly 

many years. An 1865 speech by Dr. Henry Noyes to the American Ophthalmologic 

Society is revealing. He said that “medical men strive manfully to keep up their 

knowledge of how the world of medicine moves on; but too often they are the first 

to accuse themselves of being unable to meet the duties of their daily calling.…” 

He went on to say, “The preparatory work in the study of medicine is so great, if 

adequately done, that but few can spare time for its thorough performance….” [9]

2 www.medinfo.cam.ac.uk/miu/papers/Hanka/THIM/default.htm
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COULD KNOWLEDGE ADOPTION IN HEALTH-

CARE BECOME NEARLY INSTANTANEOUS?

The speed at which definitive medi-

cal discoveries have broadly reached 

medical practice over the last two mil-

lennia has progressively increased, as 

shown in Figure 2 on the next page. 

Focusing on the last 150 years, in 

which the e�ects of industrialization 

and the information explosion have 

been most acute, the trajectory flat-

tens slightly but remains largely linear, 

as the figure shows. (An asymptotic fit 

yields an r2 of 0.73, whereas the linear 

fit is 0.83.) 

 Given that even the speed of light 

is finite, this trend will inevitably be  

asymptotic to the horizontal axis. Yet, 

if the linearity can be su�ciently 

maintained for a while, the next 20 

years could emerge as a special time 

for healthcare as the translation from medical knowledge discovery to widespread medi-

cal practice becomes nearly instantaneous.

The proximity of this trajectory to the axis occurs around the year 2025. In 

response to the dramatic computational progress observed with Moore’s Law and 

the growth in parallel and distributed computing architectures, Ray Kurzweil, in 

The Singularity Is Near, predicts that 2045 will be the year of the Singularity, when 

computers meet or exceed human computational ability and when their ability to 

recursively improve themselves can lead to an “intelligence explosion” that ulti-

mately a�ects all aspects of human culture and technology [10]. Mathematics de-

fines a “singularity” as a point at which an object changes its nature so as to attain 

properties that are no longer the expected norms for that class of object. Today, 

the dissemination path for medical information is complex and multi-faceted, in-

volving commercials, lectures, brochures, colleagues, and journals. In a world with 

nearly instantaneous knowledge translation, dissemination paths would become 

almost entirely digital and direct. 

FIGURE 1. 

The number of biomedical articles catalogued 

each year is increasing precipitously and is 

expected to surpass 1 million in 2012.



HEALTH AND WELLBEING60

FIGURE 2. 

While it took 2,300 years after the first report of angina for the condition to be commonly taught 

in medical curricula, modern discoveries are being disseminated at an increasingly rapid pace. 

Focusing on the last 150 years, the trend still appears to be linear, approaching the axis around 2025.
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While the ideas around a technological singularity remain controversial,3 the 

authors refer to this threshold moment, when medical knowledge becomes “liquid” 

and its flow from research to practice (“bench to bedside”) becomes frictionless 

and immediate, as the “Healthcare Singularity.”

THE PROMISES OF A POST–HEALTHCARE SINGULARITY WORLD

Rofecoxib (Vioxx) was approved as safe and e�ective by the U.S. Food and Drug 

Administration (FDA) on May 20, 1999. On September 30, 2004, Merck withdrew 

it from the market because of concerns about the drug’s potential cardiovascular 

side e�ects. The FDA estimates that in the 5 years that the drug was on the market, 

rofecoxib contributed to more than 27,000 heart attacks or sudden cardiac deaths 

and as many as 140,000 cases of heart disease [11]. Rofecoxib was one of the most 

widely used medications ever withdrawn; over 80 million people had taken the 

drug, which was generating US$2.5 billion a year in sales.4

Today, it is reasonable to expect that after an FDA announcement of a drug’s 

withdrawal from the market, patients will be informed and clinicians will imme-

diately prescribe alternatives. But current channels of dissemination delay that re-

sponse. In a post–Healthcare Singularity world, that expectation will be met. To 

enable instantaneous translation, journal articles will consist of not only words, but 

also bits. Text will commingle with code, and articles will be considered complete 

only if they include algorithms. 

With this knowledge automation, every new medication will flow through a cas-

cade of post-market studies that are independently created and studied by leading 

academics across the oceans (e�ectively “crowdsourcing” quality assurance). Sus-

picious observations will be flagged in real time, and when certainty is reached, 

unsafe medications will disappear from clinical prescription systems in a rippling 

wave across enterprises and clinics. The biomedical information explosion will at 

last be contained and harnessed.

Other scenarios of knowledge dissemination will be frictionless as well: medical 

residents can abandon the handbooks they have traditionally carried that list drugs 

of choice for diseases, opting instead for clinical systems that personalize health-

care and geographically regionalize treatments based on drug sensitivities that are 

drawn in real time from the local hospital microbiology lab and correlated with the 

patient’s genomic profile.

3 http://en.wikipedia.org/wiki/Technological_singularity
4 http://en.wikipedia.org/wiki/Rofecoxib
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Knowledge discovery will also be enhanced. Practitioners will have access to 

high-performance, highly accurate databases of patient records to promote preven-

tive medical care, discover successful treatment patterns [12, 13], and reduce medi-

cal errors. Clinicians will be able to generate cause-e�ect hypotheses, run virtual 

clinical trials to deliver personalized treatment plans, and simulate interventions 

that can prevent pandemics.

Looking farther ahead, the instantaneous flow of knowledge from research 

centers to the front lines of clinical care will speed the treatment and prevention 

of newly emerging diseases. The moment that research labs have identified the 

epitopes to target for a new disease outbreak, protein/DNA/RNA/lipid synthesizers 

placed in every big hospital around the world will receive instructions, remotely 

transmitted from a central authority, directing the on-site synthesis of vaccines or 

even directed antibody therapies for rapid administration to patients. 

PROGRESS TOWARD THE HEALTHCARE SINGULARITY 

Companies such as Microsoft and Google are building new technologies to enable 

data and knowledge liquidity. Microsoft HealthVault and Google Health are Inter-

net based, secure, and private “consumer data clouds” into which clinical patient 

data can be pushed from devices and other information systems. Importantly, once 

the data are in these “patient clouds,” they are owned by the patient. Patients them-

selves determine what data can be redistributed and to whom the data may be 

released. 

A February 2009 study by KLAS reviewed a new class of emerging data aggrega-

tion solutions for healthcare. These enterprise data aggregation solutions (“enter-

prise data clouds”) unify data from hundreds or thousands of disparate systems 

(such as MEDSEEK, Carefx, dbMotion, Medicity, and Microsoft Amalga).5 These 

platforms are beginning to serve as conduits for data to fill patient data clouds. A 

recent example is a link between New York-Presbyterian’s hospital-based Amalga 

aggregation system and its patients’ HealthVault service.6 Through these links, data 

can flow almost instantaneously from hospitals to patients.

The emergence of consumer data clouds creates new paths by which new medical 

knowledge can reach patients directly. On April 21, 2009, Mayo Clinic announced 

the launch of the Mayo Clinic Health Advisory, a privacy- and security-enhanced 

5 www.klasresearch.com/Klas/Site/News/PressReleases/2009/Aggregation.aspx
6 http://chilmarkresearch.com/2009/04/06/healthvault-ny-presbyterian-closing-the-loop-on-care
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online application that o�ers individualized health guidance and recommendations 

built with the clinical expertise of Mayo Clinic and using secure and private patient 

health data from Microsoft HealthVault.7 Importantly, new medical knowledge and 

recommendations can be computationally instantiated into the advisory and ap-

plied virtually instantaneously to patients worldwide.

New technology is bridging research labs and clinical practice. On April 28, 

2009, Microsoft announced the release of Amalga Life Sciences, an extension to 

the data-aggregation class of products for use by scientists and researchers. Through 

this release, Microsoft is o�ering scalable “data aggregation and liquidity” solutions 

that link three audiences: patients, providers, and researchers. Companies such as 

Microsoft are building the “pipeline” to allow data and knowledge to flow through 

a semantically interoperable network of patients, providers, and researchers. These 

types of connectivity e�orts hold the promise of e�ectively instantaneous dissemi-

nation of medical knowledge throughout the healthcare system. The Healthcare 

Singularity could be the gateway event to a new Age of Semantic Medicine.

Instantaneous knowledge translation in medicine is not only immensely impor-

tant, highly desirable, valuable, and achievable in our lifetimes, but perhaps even 

inevitable. 
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H E ALTH AN D WELLBE I N G

B
RINGING INTELLIGENT HEALTHCARE INFORMATICS to bear 

on the dual problems of reducing healthcare costs and 

improving quality and outcomes is a challenge even in 

countries with a reasonably developed technology infra-

structure. Much of medical knowledge and information remains 

in paper form, and even where it is digitized, it often resides in 

disparate datasets and repositories and in diverse formats. Data 

sharing is uncommon and frequently hampered by the lack of 

foolproof de-identification for patient privacy. All of these issues  

impede opportunities for data mining and analysis that would en-

able better predictive and preventive medicine.

Developing countries face these same issues, along with the 

compounding e�ects of economic and geopolitical constraints, 

transportation and geographic barriers, a much more limited clin-

ical workforce, and infrastructural challenges to delivery. Simple, 

high-impact deliverable interventions such as universal childhood 

immunization and maternal childcare are hampered by poor 

monitoring and reporting systems. A recent Lancet article by 

Christopher Murray’s group concluded that “immunization cover-

age has improved more gradually and not to the level suggested by 

countries’ o�cial reports of WHO and UNICEF estimates. There 

is an urgent need for independent and contestable monitoring 

of health indicators in an era of global initiatives that are target- 

Healthcare Delivery in Developing 
Countries: Challenges and  

Potential Solutions

JOEL ROBERTSON 

DEL DEHART 

Robertson Research 

Institute 

KRISTIN TOLLE 

DAVID HECKER MAN 

Microsoft Research



HEALTH AND WELLBEING66

oriented and disburse funds based on 

performance.” [1] 

Additionally, the most recent report  

on the United Nations Millennium De-

velopment Goals notes that “pneumo-

nia kills more children than any other 

disease, yet in developing countries, the 

proportion of children under five with 

suspected pneumonia who are taken to 

appropriate health-care providers re-

mains low.” [2] Providing reliable data 

gathering and diagnostic decision sup-

port at the point of need by the best-

trained individual available for care is 

the goal of public health e�orts, but tools 

to accomplish this have been expensive, unsupportable, and inaccessible.

Below, we elaborate on the challenges facing healthcare delivery in develop-

ing countries and describe computer- and cell phone–based technology we have 

created to help address these challenges. At the core of this technology is the  

NxOpinion Knowledge Manager1 (NxKM), which has been under development at 

the Robertson Research Institute since 2002. This health platform includes a medi-

cal knowledge base assembled from the expertise of a large team of experts in the 

U.S. and developing countries, a diagnostic engine based on Bayesian networks, 

and cell phones for end-user interaction.

SCALE UP, SCALE OUT, AND SCALE IN

One of the biggest barriers to deployment of a decision support or electronic health 

record system is the ability to scale. The term “scale up” refers to a system’s ability 

to support a large user base—typically hundreds of thousands or millions. Most 

systems are evaluated within a narrower scope of users. “Scale out” refers to a sys-

tem’s ability to work in multiple countries and regions as well as the ability to work 

across disease types. Many systems work only for one particular disease and are not 

easily regionalized—for example, for local languages, regulations, and processes. 

“Scale in” refers to the ability of a system to capture and benchmark against a single 

1 www.nxopinion.com/product/knowledgemng 

The NxOpinion health platform being used by  

Indian health extension workers.
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individual. Most systems assume a generic patient and fail to capture unique char-

acteristics that can be e�ective in individualized treatment.

With respect to scaling up, NxKM has been tested in India, Congo, Dominican 

Republic, Ghana, and Iraq. It has also been tested in an under-served inner-city com-

munity in the United States. In consultation with experts in database scaling, the 

architecture has been designed to combine multiple individual databases with a cen-

tral de-identified database, thus allowing, in principle, unlimited scaling options.

As for scaling out to work across many disease types and scaling in to provide 

accurate individual diagnoses, the amount of knowledge required is huge. For ex-

ample, INTERNIST-1, an expert system for diagnosis in internal medicine, con-

tains approximately 250,000 relationships among roughly 600 diseases and 4,000 

findings [3]. Building on the earlier work of one of us (Heckerman), who devel-

oped e�cient methods for assessing and representing expert medical knowledge 

via a Bayesian network [4], we have brought together medical literature, textbook  

information, and expert panel recommendations to construct a growing knowledge 

base for NxKM, currently including over 1,000 diseases and over 6,000 discrete 

findings. The system also scales in by allowing very fine-grained data capture. Each 

finding within an individual health record or diagnostic case can be tracked and 

monitored. This level of granularity allows for tremendous flexibility in determining 

factors relating to outcome and diagnostic accuracy.

With regard to scaling out across a region, a challenge common to developing 

countries is the exceptionally diverse and region-specific nature of medical condi-

tions. For example, a disease that is common in one country or region might be rare 

in another. Whereas rule-based expert systems must be completely reengineered in 

each region, the modular nature of the NxKM knowledge base, which is based on 

probabilistic similarity networks [4], allows for rapid customization to each region. 

The current incarnation of NxKM uses region-specific prevalence from expert esti-

mates. It can also update prevalence in each region as it is used in the field. NxKM 

also incorporates a modular system that facilitates customization to terms, treat-

ments, and language specific to each region. When region-specific information is 

unknown or unavailable, a default module is used until such data can be collected 

or identified.

DIAGNOSTIC ACCURACY AND EFFICIENCY

Studies indicate that even highly trained physicians overestimate their diagnos-

tic accuracy. The Institute of Medicine recently estimated that 44,000 to 98,000  
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preventable deaths occur each year due to medical error, many due to misdiag-

nosis [5]. In developing countries, the combined challenges of misdiagnoses  

and missing data not only reduce the quality of medical care for individuals but 

lead to missed outbreak recognition and flawed population health assessment  

and planning.

Again, building on the diagnostic methodology from probabilistic similarity  

networks [4], NxKM employs a Bayesian reasoning engine that yields accurate di-

agnoses. An important component of the system that leads to improved accuracy is 

the ability to ask the user additional questions that are likely to narrow the range 

of possible diagnoses. NxKM has the ability to ask the user for additional findings 

based on value-of-information computations (such as a cost function) [4]. Also im-

portant for clinical use is the ability to identify the confidence in the diagnosis (i.e., 

the probability of the most likely diagnosis). This determination is especially useful 

for less-expert users of the system, which is important for improving and supervis-

ing the care delivered by health extension workers (HEWs) in developing regions 

where deep medical knowledge is rare.

GETTING HEALTHCARE TO WHERE IT IS NEEDED: THE LAST MILE

Another key challenge is getting diagnostics to where they are most needed. Be-

cause of their prevalence in developing countries, cell phones are a natural choice 

for a delivery vehicle. Indeed, it is believed that, in many such areas, access to cell 

phones is better than access to clean water. For example, according to the market 

database Wireless Intelligence,2 80 percent of the world’s population was within 

range of a cellular network in 2008. And figures from the International Telecom-

munication Union3 show that by the end of 2006, 68 percent of the world’s mobile 

subscriptions were in developing countries. More recent data from the Interna-

tional Telecommunications Union shows that between 2002 and 2007, cellular 

subscription was the most rapid growth area for telecommunication in the world, 

and that the per capita increase was greatest in the developing world.4

Consequently, we have developed a system wherein cell phones are used to  

access a centrally placed NxKM knowledge base and diagnostic engine implement-

ed on a PC. We are now testing the use of this system with HEWs in rural India. In 

addition to providing recommendations for medical care to the HEWs, the phone/

2 www.wirelessintelligence.com
3 www.itu.int
4 www.itu.int/ITU-D/ict/papers/2009/7.1%20teltscher_IDI%20India%202009.pdf
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central-PC solution can be used to create portable personal health records. One of 

our partner organizations, School Health Annual Report Programme (SHARP), 

will use it to screen more than 10 million Indian schoolchildren in 2009, creating 

a unique virtual personal health record for each child. 

Another advantage of this approach is that the data collected by this system 

can be used to improve the NxKM knowledge base. For example, as mentioned 

above, information about region-specific disease prevalence is important for ac-

curate medical diagnosis. Especially important is time-critical information about 

the outbreak of a disease in a particular location. As the clinical application is 

used, validated disease cases, including those corresponding to a new outbreak, are  

immediately available to NxKM. In addition, individual diagnoses can be moni-

tored centrally. If the uploaded findings of an individual patient are found to yield a 

low-confidence diagnosis, the patient can be identified for follow-up.

THE USER INTERFACE

A challenge with cellular technology is the highly constrained user interface and 

the di�culty of entering data using a relatively small screen and keypad. Our  

system simplifies the process in a number of ways. First, findings that are com-

mon for a single location (e.g., facts about a given village) are prepopulated into the 

system. Also, as mentioned above, the system is capable of generating questions—

specifically, simple multiple-choice questions—after only basic information such as 

the chief complaint has been entered. In addition, questions can be tailored to the  

organization, location, or skill level of the HEW user.

It is also important that the user interface be independent of the specific device 

hardware because users often switch between phones of di�erent designs. Our in-

terface application sits on top of a middle-layer platform that we have implemented 

for multiple devices. 

In addition to simple input, the interface allows easy access to important bits of 

information. For example, it provides a daily summary of patients needing care, 

including their diagnosis, village location, and previous caregivers. 

DATA-SHARING SOLUTIONS

Even beyond traditional legacy data silos (such as EPIC and CERNER) [5], bar-

riers to sharing critical public health data still exist—including concerns about  

privacy and sovereignty. Data availability can also be limited regionally (e.g., in  

India and South Africa), by organizations (e.g., the World Health Organization,  
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NxOpinion’s innovative approach, which shows data when you want it, how you want 

it, and where you want it, using artificial intelligence.
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World Vision, or pharmaceutical companies), or by providers (e.g., insurance com-

panies and medical provider groups). Significant public health value resides in each 

of these datasets, and e�orts should be made to overcome the barriers to gathering 

data into shared, de-identified global databases. Such public datasets, while useful 

on their own, also add significant value to proprietary datasets, providing valuable 

generic context to proprietary information.

NxKM imports, manages, and exports data via publish sets. These processes  

allow various interest groups (governments, public health organizations, primary 

care providers, small hospitals, laboratory and specialty services, and insurance 

providers) to share the same interactive de-identified (privacy-preserving) global 

database while maintaining control of proprietary and protected data.

LOOKING FORWARD

Several challenges remain. While better educated HEWs are able to use these 

data collection and diagnostic decision support tools readily, other HEWs, such as  

Accredited Social Health Activists (ASHAs) and other front-line village workers, 

are often illiterate or speak only a local dialect. We are exploring two potential 

solutions—one that uses voice recognition technology and another that allows 

a user to answer multiple-choice questions via the cell phone’s numeric keypad. 

Voice recognition technology provides added flexibility in input, but—at least so 

far—it requires the voice recognizer to be trained by each user.

Another challenge is unique and reproducible patient identification—verifi-

cation that the subject receiving treatment is actually the correct patient—when 

there is no standard identification system for most under-served populations. Voice  

recognition combined with face recognition and newer methods of biometrics, 

along with a corroborating GPS location, can help ensure that the patient who 

needs the care is the one actually receiving treatment.

Another barrier is data integrity. For example, most rural individuals will re-

port diagnoses that have not been substantiated by qualified medical personnel and 

could be erroneous. We have attempted to mitigate this issue by using an inference 

engine that allows for down-weighting of unsubstantiated evidence.

Deploying systems that work anywhere in the world can lead to the creation 

of a massive amount of patient information. Storing, reconciling, and then ac-

cessing that information in the field, all while maintaining appropriate privacy 

and security, are exceptionally challenging when patient numbers are in the mil-

lions (instead of tens of thousands, as with most current electronic health record  
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systems). Further, feeding verified data on this scale back into the system to im-

prove its predictive capability while maintaining the ability to analyze and retrieve 

specific segments (data mine) remains di�cult. 

A final, and perhaps the greatest, obstacle is that of cooperation. If organiza-

tions, governments, and companies are willing to share a de-identified global data-

base while protecting and owning their own database, medical science and health-

care can benefit tremendously. A unified database that allows integration across 

many monitoring and evaluation systems and databases should help in quickly and 

e�ciently identifying drug resistance or outbreaks of disease and in monitoring 

the e�ectiveness of treatments and healthcare interventions. The global database 

should support data queries that guard against the identification of individuals and 

yet provide su�cient information for statistical analyses and validation. Such tech-

nology is beginning to emerge (e.g., [6]), but the daunting challenge of finding a 

system of rewards that encourages such cooperation remains.

SUMMARY

We have developed and are beginning to deploy a system for the acquisition, analy-

sis, and transmission of medical knowledge and data in developing countries. The 

system includes a centralized component based on PC technology that houses med-

ical knowledge and data and has real-time diagnostic capabilities, complemented 

by a cell phone–based interface for medical workers in the field. We believe that 

such a system will lead to improved medical care in developing countries through 

improved diagnoses, the collection of more accurate and timely data across more 

individuals, and the improved dissemination of accurate and timely medical knowl-

edge and information. 

When we stop and think about how a world of connected personal health rec-

ords can be used to improve medicine, we can see that the potential impact is stag-

gering. By knowing virtually every individual who exists, the diseases a�ecting that 

person, and where he or she is located; by improving data integrity; and by collect-

ing the data in a central location, we can revolutionize medicine and perhaps even 

eradicate more diseases. This global system can monitor the e�ects of various hu-

manitarian e�orts and thereby justify and tailor e�orts, medications, and resources 

to specific areas. It is our hope that a system that can o�er high-quality diagnoses as 

well as collect and rapidly disseminate valid data will save millions of lives. Alerts 

and responses can become virtually instantaneous and can thus lead to the identi-

fication of drug resistance, outbreaks, and e�ective treatments in a fraction of the 
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time it takes now. The potential for empowering caregivers in developing countries 

though a global diagnostic and database system is enormous.
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HE BRAIN, THE SEAT OF OUR COGNITIVE ABILITIES, is perhaps 

the most complex puzzle in all of biology. Every second 

in the human brain, billions of cortical nerve cells trans-

mit billions of messages and perform extraordinarily 

complex computations. How the brain works—how its function 

follows from its structure—remains a mystery.

The brain’s vast numbers of nerve cells are interconnected at 

synapses in circuits of unimaginable complexity. It is largely as-

sumed that the specificity of these interconnections underlies our 

ability to perceive and classify objects, our behaviors both learned 

(such as playing the piano) and intrinsic (such as walking), and 

our memories—not to mention controlling lower-level functions 

such as maintaining posture and even breathing. At the highest 

level, our emotions, our sense of self, our very consciousness are 

entirely the result of activities in the nervous system.

At a macro level, human brains have been mapped into re-

gions that can be roughly associated with specific types of activi-

ties. However, even this building-block approach is fraught with 

complexity because often many parts of the brain participate in 

completing a task. This complexity arises especially because most 

behaviors begin with sensory input and are followed by analysis, 

decision making, and finally a motor output or action. 

At the microscopic level, the brain comprises billions of neu-

Discovering the Wiring  
Diagram of the Brain
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rons, each connected to other neurons by up to several thousand synaptic connec-

tions. Although the existence of these synaptic circuits has been appreciated for 

over a century, we have no detailed circuit diagrams of the brains of humans or any 

other mammals. Indeed, neural circuit mapping has been attempted only once, and 

that was two decades ago on a small worm with only 300 nerve cells. The central 

stumbling block is the enormous technical di�culty associated with such mapping. 

Recent technological breakthroughs in imaging, computer science, and molecular 

biology, however, allow a reconsideration of this problem. But even if we had a wir-

ing diagram, we would need to know what messages the neurons in the circuit are 

passing—not unlike listening to the signals on a computer chip. This represents 

the second impediment to understanding: traditional physiological methods let us 

listen to only a tiny fraction of the nerves in the circuit.

To get a sense of the scale of the problem, consider the cerebral cortex of the 

human brain, which contains more than 160 trillion synaptic connections. These 

connections originate from billions of neurons. Each neuron receives synaptic con-

nections from hundreds or even thousands of di�erent neurons, and each sends 

information via synapses to a similar number of target neurons. This enormous 

fan-in and fan-out can occur because each neuron is geometrically complicated, 

possessing many receptive processes (dendrites) and one highly branched outflow 

process (an axon) that can extend over relatively long distances.

One might hope to be able to reverse engineer the circuits in the brain. In other 

words, if we could only tease apart the individual neurons and see which one is 

connected to which and with what strength, we might at least begin to have the 

tools to decode the functioning of a particular circuit. The staggering numbers 

and complex cellular shapes are not the only daunting aspects of the problem. The 

circuits that connect nerve cells are nanoscopic in scale. The density of synapses in 

the cerebral cortex is approximately 300 million per cubic millimeter. 

Functional magnetic resonance imaging (fMRI) has provided glimpses into the 

macroscopic 3-D workings of the brain. However, the finest resolution of fMRI is 

approximately 1 cubic millimeter per voxel—the same cubic millimeter that can 

contain 300 million synapses. Thus there is a huge amount of circuitry in even the 

most finely resolved functional images of the human brain. Moreover, the size of 

these synapses falls below the di�raction-limited resolution of traditional optical 

imaging technologies. 

Circuit mapping could potentially be amenable to analysis based on color cod-

ing of neuronal processes [1] and/or the use of techniques that break through the  
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di�raction limit [2]. Presently, the gold standard for analyzing synaptic connections 

is to use electron microscopy (EM), whose nanometer (nm) resolution is more than 

su�cient to ascertain the finest details of neural connections. But to map circuits, 

one must overcome a technical hurdle: EM typically images very thin sections (tens 

of nanometers in thickness), so reconstructing a volume requires a “serial recon-

struction” whereby the image information from contiguous slices of the same vol-

ume is recomposed into a volumetric dataset. There are several ways to generate 

such volumetric data (see, for example, [3-5]), but all of these have the potential to 

generate astonishingly large digital image data libraries, as described next.

SOME NUMBERS

If one were to reconstruct by EM all the synaptic circuitry in 1 cubic mm of brain 

(roughly what might fit on the head of a pin), one would need a set of serial images 

spanning a millimeter in depth. Unambiguously resolving all the axonal and den-

dritic branches would require sectioning at probably no more than 30 nm. Thus the 

1 mm depth would require 33,000 images. Each image should have at least 10 nm 

lateral resolution to discern all the vesicles (the source of the neurotransmitters) 

and synapse types. A square-millimeter image at 5 nm resolution is an image that 

has ~4 x1010 pixels, or 10 to 20 gigapixels. So the image data in 1 cubic mm will be 

in the range of 1 petabyte (250 ~ 1,000,000,000,000,000 bytes). The human brain 

contains nearly 1 million cubic mm of neural tissue.

SOME SUCCESSES TO DATE

Given this daunting task, one is tempted to give up and find a simpler problem. 

However, new technologies and techniques provide glimmers of hope. We are pur-

suing these with the ultimate goal of creating a “connectome”—a complete circuit 

diagram of the brain. This goal will require intensive and large-scale collaborations 

among biologists, engineers, and computer scientists. 

Three years ago, the Reid and Lichtman labs began working on ways to auto-

mate and accelerate large-scale serial-section EM. Focusing specifically on large 

cortical volumes at high resolution, the Reid group has concentrated on very high 

throughput as well as highly automated processes. So far, their work has been pub-

lished only in abstract form [3], but they are confident about soon having the first 

10 terabytes of volumetric data on fine-scale brain anatomy. Physiological experi-

ments can now show the function of virtually every neuron in a 300 µm cube. 

The new EM data has the resolution to show virtually every axon, dendrite, and 



HEALTH AND WELLBEING78

synapse—the physical connections that underlie neuronal function. 

The problem of separating and tracking the individual neurons within the vol-

ume remains. However, some successes have already been achieved using exotic 

means. Lichtman’s lab found a way to express various combinations of red, green, 

and blue fluorescent proteins in genetically engineered mice. These random com-

binations presently provide about 90 colors or combinations of colors [1]. With this 

approach, it is possible to track individual neurons as they branch to their eventual 

synaptic connections to other neurons or to the end-organs in muscle. The multi-

color labeled nerves (dubbed “brainbow”), shown in Figure 1, are reminiscent of 

the rainbow cables in computers and serve the same purpose: to disambiguate 

wires traveling over long distances. 

Because these colored labels are present in the living mouse, it is possible to 

track synaptic wiring changes by observing the same sites multiple times over min-

utes, days, or even months. 

Reid’s lab has been able to stain neurons of rat and cat visual cortices such that 

they “light up” when activated. By stimulating the cat with lines of di�erent orien-

tations, they have literally been able to see which neurons are firing, depending on 

the specific visual stimulus. By comparing the organization of the rat’s visual cortex 

to that of the cat, they have found that while a rat’s neurons appear to be randomly 

organized based on the orientation of the visual stimulus, a cat’s neurons exhibit 

remarkable structure. (See Figure 2.)

Achieving the finest resolution using EM requires imaging very thin slices of 

neural tissue. One method begins with a block of tissue; after each imaging pass, a 

FIGURE 1. 

Brainbow images showing individual neurons fluorescing in di�erent colors. By tracking the neu-

rons through stacks of slices, we can follow each neuron’s complex branching structure to create 

the treelike structures in the image on the right.
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thin slice is removed (and destroyed) from the block, and then the process is repeat-

ed. Researchers in the Lichtman group at Harvard have developed a new device—a 

sort of high-tech lathe that they are calling an Automatic Tape-Collecting Lathe 

Ultramicrotome (ATLUM)—that can allow e�cient nanoscale imaging over large 

tissue volumes. (See Figure 3 on the next page.)

The ATLUM [3] automatically sections an embedded block of brain tissue into 

thousands of ultrathin sections and collects these on a long carbon-coated tape for 

later staining and imaging in a scanning electron microscope (SEM). Because the 

process is fully automated, volumes as large as tens of cubic millimeters—large 

enough to span entire multi-region neuronal circuits—can be quickly and reliably 

reduced to a tape of ultrathin sections. SEM images of these ATLUM-collected sec-

tions can attain lateral resolutions of 5 nm or better—su�cient to image individual 

synaptic vesicles and to identify and trace all circuit connectivity.

The thin slices are images of one small region at a time. Once a series of individu-

al images is obtained, these images must be stitched together into very large images 

FIGURE 2. 

Neurons in a visual cortex stained in vivo with a calcium-sensitive dye. Left: A 3-D reconstruction 

of thousands of neurons in a rat visual cortex, obtained from a stack of images (300 µm on a side). 

The neurons are color coded according to the orientation of the visual stimulus that most excited 

them. Center: A 2-D image of the plane of section from the left panel. Neurons that responded to 

di�erent stimulus orientations (di�erent colors) are arranged seemingly randomly in the cortex.  

Inset: Color coding of stimulus orientations. Right: By comparison, the cat visual cortex is 

extremely ordered. Neurons that responded preferentially to di�erent stimulus orientations are 

segregated with extraordinary precision. This image represents a complete 3-D functional map  

of over 1,000 neurons in a 300x300x200 µm volume in the visual cortex [6, 7].
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and possibly stacked into volumes. At Microsoft Research, work has proceeded to 

stitch together and then interactively view images containing billions of pixels.1 

Once these gigapixel-size images are organized into a hierarchical pyramid, the HD 

View application can stream requested imagery over the Web for viewing.2 This al-

lows exploration of both large-scale and very fine-scale features. Figure 4 shows a 

walkthrough of the result.

Once the images are captured and stitched, multiple slices of a sample must be 

stacked to assemble them into a coherent volume. Perhaps the most di�cult task 

at that point is extracting the individual strands of neurons. Work is under way at 

Harvard to provide interactive tools to aid in outlining individual “processes” and 

then tracking them slice to slice to pull out each dendritic and axonal fiber [8, 9]. 

(See Figure 5.) Synaptic interfaces are perhaps even harder to find automatically; 

however, advances in both user interfaces and computer vision give hope that the 

whole process can be made tractable.

Decoding the complete connectome of the human brain is one of the great 

challenges of the 21st century. Advances at both the biological level and technical 

level are certain to lead to new successes and discoveries, and they will hopefully 

help answer fundamental questions about how our brain performs the miracle of 

thought.

1 http://research.microsoft.com/en-us/um/redmond/groups/ivm/ICE
2 http://research.microsoft.com/en-us/um/redmond/groups/ivm/HDView

FIGURE 3. 

The Automatic Tape-Collecting 

Lathe Ultramicrotome (ATLUM), 

which can allow e�cient  

nanoscale imaging over large 

tissue volumes.

Knife 
advances

This tissue ribbon is collected 
by a submerged conveyor belt

Tissue rotates

These synchronized motions produce 
a spiral cut through the tissue block, 
yielding a continuous ribbon of tissue 
in the knife’s water boat

Knife’s water
level adjusted via
this inlet tube
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FIGURE 5. 

NeuroTrace allows neuroscientists to interactively explore and segment neural processes in high-

resolution EM data.

FIGURE 4. 

HD View allows interactive exploration of this 2.5-gigapixel image. 

Left: A slice of neural tissue. The large gray feature in the center 

is a nucleus of a neuron. Center: A close-up of a capillary and my-

elinated axon. Right: Close-up myelin layers encircling the cross-

section of an axon. Bottom: A zoomed-in view showing tiny vesicles 

surrounding a synaptic connection between very fine structures.
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LTHOUGH GREAT STRIDES HAVE BEEN MADE in neurobiol-

ogy, we do not yet understand how the symphony of 

communication among neurons leads to rich, compe-

tent behaviors in animals. How do local interactions 

among neurons coalesce into the behavioral dynamics of nervous 

systems, giving animals their impressive abilities to sense, learn, 

decide, and act in the world? Many details remain cloaked in mys-

tery. We are excited about the promise of gaining new insights by 

applying computational methods, in particular machine learning 

and inference procedures, to generate explanatory models from 

data about the activities of populations of neurons. 

NEW TOOLS FOR NEUROBIOLOGISTS

For most of the history of electrophysiology, neurobiologists have 

monitored the membrane properties of neurons of vertebrates and 

invertebrates by using glass micropipettes filled with a conduct-

ing solution. Mastering techniques that would impress the most 

expert of watchmakers, neuroscientists have fabricated glass elec-

trodes with tips that are often less than a micron in diameter, and 

they have employed special machinery to punch the tips into the 

cell bodies of single neurons—with the hope that the neurons will 

function as they normally do within larger assemblies. Such an ap-

proach has provided data about the membrane voltages and action 
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potentials of a single cell or just a handful of cells. 

However, the relationship between neurobiologists and data about nervous  

systems is changing. New recording machinery is making data available on the  

activity of large populations of neurons. Such data makes computational proce-

dures increasingly critical as experimental tools for unlocking new understanding 

about the connections, architecture, and overall machinery of nervous systems.

New opportunities for experimentation and modeling on a wider scale have be-

come available with the advent of fast optical imaging methods. With this approach, 

dyes and photomultipliers are used to track calcium levels and membrane potentials 

of neurons, with high spatial and temporal resolution. These high-fidelity optical re-

cordings allow neurobiologists to examine the simultaneous activity of populations 

of tens to thousands of neurons. In a relatively short time, data available about the 

activity of neurons has grown from a trickle of information gleaned via sampling of 

small numbers of neurons to large-scale observations of neuronal activity. 

Spatiotemporal datasets on the behaviors of populations of neurons pose tanta-

lizing inferential challenges and opportunities. The next wave of insights about the 

neurophysiological basis for cognition will likely come via the application of new 

kinds of computational lenses that direct an information-theoretic “optics” onto 

streams of spatiotemporal population data. 

We foresee that neurobiologists studying populations of neurons will one day 

rely on tools that serve as computational microscopes—systems that harness ma-

chine learning, reasoning, and visualization to help neuroscientists formulate and 

test hypotheses from data. Inferences derived from the spatiotemporal data stream-

ing from a preparation might even be overlaid on top of traditional optical views 

during experiments, augmenting those views with annotations that can help with 

the direction of the investigation. 

Intensive computational analyses will serve as the basis for modeling and vi-

sualization of the intrinsically high-dimensional population data, where multiple 

neuronal units interact and contribute to the activity of other neurons and as-

semblies, and where interactions are potentially context sensitive—circuits and 

flows might exist dynamically, transiently, and even simultaneously on the same 

neuronal substrate. 

COMPUTATION AND COMPLEXITY

We see numerous opportunities ahead for harnessing fast-paced computations to 

assist neurobiologists with the science of making inferences from neuron popula-
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tion data. Statistical analyses have already been harnessed in studies of popula-

tions of neurons. For example, statistical methods have been used to identify and 

characterize neuronal activity as trajectories in large dynamical state spaces [1]. 

We are excited about employing richer machine learning and reasoning to induce 

explanatory models from case libraries of neuron population data. Computational 

procedures for induction can assist scientists with teasing insights from raw data 

on neuronal activity by searching over large sets of alternatives and weighing the 

plausibility of di�erent explanatory models. The computational methods can be 

tasked with working at multiple levels of detail, extending upward from circuit-

centric exploration of local connectivity and functionality of neurons to potentially 

valuable higher-level abstractions of neuronal populations—abstractions that may 

provide us with simplifying representations of the workings of nervous systems. 

Beyond generating explanations from observations, inferential models can be 

harnessed to compute the expected value of information, helping neuroscientists to 

identify the best next test to perform or information to gather, in light of current 

goals and uncertainties. Computing the value of information can help to direct in-

terventional studies, such as guidance on stimulating specific units, clamping the 

voltage of particular cells, or performing selective modification of cellular activity 

via agonist and antagonist pharmacological agents. 

We believe that there is promise in both automated and interactive systems, 

including systems that are used in real-time settings as bench tools. Computational 

tools might one day even provide real-time guidance for probes and interventions 

via visualizations and recommendations that are dynamically generated during 

imaging studies. 

Moving beyond the study of specific animal systems, computational tools for an-

alyzing neuron population data will likely be valuable in studies of the construction 

of nervous systems during embryogenesis, as well as in comparing nervous systems 

of di�erent species of animals. Such studies can reveal the changes in circuitry and 

function during development and via the pressures of evolutionary adaptation.

SPECTRUM OF SOPHISTICATION 

Neurobiologists study nervous systems of invertebrates and vertebrates across a 

spectrum of complexity. Human brains are composed of about 100 billion neurons 

that interact with one another via an estimated 100 trillion synapses. In contrast, 

the brain of the nematode, Caenorhabditis elegans (C. elegans), has just 302 neurons. 

Such invertebrate nervous systems o�er us an opportunity to learn about the prin-
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ciples of neuronal systems, which can be generalized to more complex systems, 

including our own. For example, C. elegans has been a model system for research 

on the structure of neuronal circuits; great progress has been achieved in mapping 

the precise connections among its neurons.

Many neurobiologists choose to study simpler nervous systems even if they are 

motivated by questions about the neurobiological nature of human intelligence. 

Nervous systems are derived from a family tree of refinements and modifications, 

so it is likely that key aspects of neuronal information processing have been con-

served across brains of a range of complexities. While new abstractions, layers, and 

interactions may have evolved in more complex nervous systems, brains of di�erent 

complexities likely rely on a similar neuronal fabric—and there is much that we do 

not know about that fabric. 

In work with our colleagues Ashish Kapoor, Erick Chastain, Johnson Apacible, 

Daniel Wagenaar, and Paxon Frady, we have been pursuing the use of machine 

learning, reasoning, and visualization to understand the machinery underlying de-

cision making in Hirudo, the European medicinal leech. We have been applying 

computational analyses to make inferences from optical data about the activity of 

populations of neurons within the segmental ganglia of Hirudo. The ganglia are 

composed of about 400 neurons, and optical imaging reveals the activity of approx-

imately 200 neurons at a time—all the neurons on one side of the ganglion. Several 

frames of the optical imaging of Hirudo are displayed in Figure 1. The brightness 

FIGURE 1. 

Imaging of a sequence of neurons of Hirudo  

in advance of its decision to swim or crawl. 
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of each of the imaged neurons represents the level of depolarization of the cells, 

which underlies the production of action potentials.

We are developing analyses and assembling tools in pursuit of our vision of devel-

oping computational microscopes for understanding the activity of neuronal popu-

lations and their relationship to behavior. In one approach, we generate graphical 

probabilistic temporal models that can predict the forthcoming behavior of Hirudo 

from a short window of analysis of population data. The models are generated by 

searching over large spaces of feasible models in which neurons, and abstractions 

of neurons, serve as random variables and in which temporal and atemporal de-

pendencies are inferred among the variables. The methods can reveal modules of 

neurons that appear to operate together and that can appear dynamically over the 

course of activity leading up to decisions by the animal. In complementary work, 

we are considering the role of neuronal states in defining trajectories through state 

spaces of a dynamical system. 

EMERGENCE OF A COMPUTATIONAL MICROSCOPE

We have started to build interactive viewers and tools that allow scientists to ma-

nipulate inferential assumptions and parameters and to inspect implications vi-

sually. For example, sliders allow for smooth changes in thresholds for admitting 

connections among neurons and for probing strengths of relationships and mem-

bership in modules. We would love to see a world in which such tools are shared 

broadly among neuroscientists and are extended with learning, inference, and  

visualization components developed by the neuroscience community.

Figure 2 on the next page shows a screenshot of a prototype tool we call the 

MSR Computational Microscope, which was developed by Ashish Kapoor, Erick 

Chastain, and Eric Horvitz at Microsoft Research as part of a broader collabora-

tion with William Kristan at the University of California, San Diego, and Daniel  

Wagenaar at California Institute of Technology. The tool allows users to visualize 

neuronal activity over a period of time and then explore inferences about relation-

ships among neurons in an interactive manner. Users can select from a variety of 

inferential methods and specify modeling assumptions. They can also mark particu-

lar neurons and neuronal subsets as focal points of analyses. The view in Figure 2 

shows an analysis of the activity of neurons in the segmental ganglia of Hirudo. In-

ferred informational relationships among cells are displayed via highlighting of neu-

rons and through the generation of arcs among neurons. Such inferences can help to 

guide exploration and confirmation of physical connections among neurons. 
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FIGURE 2. 

Possible connections and 

clusters inferred from  

population data during 

imaging of Hirudo. 

FIGURE 3. 

Inferred informational  

relationships among  

neurons in a segmental  

ganglion of Hirudo.  

Measures of similarity  

of the dynamics of  

neuronal activity over  

time are displayed via  

arcs and clusters.
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Figure 3 shows another informational analysis that spatially clusters cells that 

behave in a similar manner in the ganglia of Hirudo over a set of trials. The analysis 

provides an early vision of how information-theoretic analyses might one day help 

neurobiologists to discover and probe interactions within and between neuronal 

subsystems. 

We are only at the start of this promising research direction, but we expect to 

see a blossoming of analyses, tools, and a broader sub-discipline that focuses on 

the neuroinformatics of populations of neurons. We believe that computational 

methods will lead us to e�ective representations and languages for understanding 

neuronal systems and that they will become essential tools for neurobiologists to 

gain insight into the myriad mysteries of sensing, learning, and decision making by 

nervous systems.
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T
HE QUANTITY OF AVAILABLE HEALTHCARE DATA is rising rap-

idly, far exceeding the capacity to deliver personal or pub-

lic health benefits from analyzing this data [1]. Three key 

elements of the rise are electronic health records (EHRs), 

biotechnologies, and scientific outputs. We discuss these in turn 

below, leading to our proposal for a unified modeling approach that 

can take full advantage of a data-intensive environment.

ELECTRONIC HEALTH RECORDS

Healthcare organizations around the world, in both low- and high-

resource settings, are deploying EHRs. At the community level, 

EHRs can be used to manage healthcare services, monitor the 

public’s health, and support research. Furthermore, the social ben-

efits of EHRs may be greater from such population-level uses than 

from individual care uses.

The use of standard terms and ontologies in EHRs is increas-

ing the structure of healthcare data, but clinical coding behavior 

introduces new potential biases. For example, the introduction of 

incentives for primary care professionals to tackle particular con-

ditions may lead to fluctuations in the amount of coding of new 

cases of those conditions [2]. On the other hand, the falling cost of 

devices for remote monitoring and near-patient testing is leading 

to more capture of objective measures in EHRs, which can provide 
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less biased signals but may create the illusion of an increase in disease prevalence 

simply due to more data becoming available. 

Some patients are beginning to access and supplement their own records or 

edit a parallel health record online [3]. The stewardship of future health records 

may indeed be more with individuals (patients/citizens/consumers) and communi-

ties (families/local populations etc.) than with healthcare organizations. In sum-

mary, the use of EHRs is producing more data-intensive healthcare environments 

in which substantially more data are captured and transferred digitally. Computa-

tional thinking and models of healthcare to apply to this wealth of data, however, 

have scarcely been developed.

BIOTECHNOLOGIES

Biotechnologies have fueled a boom in molecular medical research. Some tech-

niques, such as genome-wide analysis, produce large volumes of data without the 

sampling bias that a purposive selection of study factors might produce. Such data-

sets are thus more wide ranging and unselected than conventional experimental 

measurements. Important biases can still arise from artifacts in the biotechnical 

processing of samples and data, but these are likely to decrease as the technolo-

gies improve. A greater concern is the systematic error that lies outside the data 

landscape—for example, in a metabolomic analysis that is confounded by not con-

sidering the time of day or the elapsed time from the most recent meal to when the 

sample was taken. The integration of di�erent scales of data, from molecular-level 

to population-level variables, and di�erent levels of directness of measurement of 

factors is a grand challenge for data-intensive health science. When realistically 

complex multi-scale models are available, the next challenge will be to make them 

accessible to clinicians and patients, who together can evaluate the competing risks 

of di�erent options for personalizing treatment.

SCIENTIFIC OUTPUTS

The outputs of health science have been growing exponentially [4]. In 2009, a new 

paper is indexed in PubMed, the health science bibliographic system, on average 

every 2 minutes. The literature-review approach to managing health knowledge is 

therefore potentially overloaded. Furthermore, the translation of new knowledge 

into practice innovation is slow and inconsistent [5]. This adversely a�ects not only 

clinicians and patients who are making care decisions but also researchers who are 

reasoning about patterns and mechanisms. There is a need to combine the mining 
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of evidence bases with computational models for exploring the burgeoning data 

from healthcare and research.

Hypothesis-driven research and reductionist approaches to causality have served 

health science well in identifying the major independent determinants of health 

and the outcomes of individual healthcare interventions. (See Figure 1.) But they 

do not reflect the complexity of health. For example, clinical trials exclude as many 

as 80 percent of the situations in which a drug might be prescribed—for example, 

when a patient has multiple diseases and takes multiple medications [7]. Consider a 

newly licensed drug released for general prescription. Clinician X might prescribe 

the drug while clinician Y does not, which could give rise to natural experiments. 

In a fully developed data-intensive healthcare system in which the data from those 

experiments are captured in EHRs, clinical researchers could explore the outcomes 

of patients on the new drug compared with natural controls, and they could poten-

tially adjust for confounding and modifying factors. However, such adjustments 

might be extremely complex and beyond the capability of conventional models.

FIGURE 1. 

Conventional approaches based on statistical hypothesis testing artificially decompose the 

healthcare domain into numerous sub-problems. They thereby miss a significant opportunity for 

statistical “borrowing of strength.” Chronic obstructive pulmonary disease (COPD), cardiovascular 

disease (CVD), and lung cancer can be considered together as a “big three” [6].
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A UNIFIED APPROACH

We propose a unified modeling approach that can take full advantage of a data-

intensive environment without losing the realistic complexity of health. (See Fig-

ure 2.) Our approach relies on developments within the machine learning field over 

the past 10 years, which provide powerful new tools that are well suited to this 

challenge. Knowledge of outcomes, interventions, and confounding or modifying 

factors can all be captured and represented through the framework of probabilis-

tic graphical models in which the relevant variables, including observed data, are 

expressed as a graph [8]. Inferences on this graph can then be performed automati-

cally using a variety of algorithms based on local message passing, such as [9]. Com-

pared with classical approaches to machine learning, this new framework o�ers a 

deeper integration of domain knowledge, taken directly from experts or from the 

literature, with statistical learning. Furthermore, these automatic inference algo-

rithms can scale to datasets of hundreds of millions of records, and new tools such 

FIGURE 2. 

We propose a unified approach to healthcare modeling that exploits the growing statistical re-

sources of electronic health records in addition to the data collected for specific studies.
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as Infer.NET allow rapid development of solutions within this framework [10]. We 

illustrate the application of this approach with two scenarios.

In scenario 1, an epidemiologist is investigating the genetic and environmental 

factors that predispose some children to develop asthma. He runs a cohort study of 

1,000 children who have been followed for 10 years, with detailed environmental 

and physiological measures as well as data on over half a million of the 3 million 

genetic factors that might vary between individuals. The conventional epidemiol-

ogy approach might test predefined hypotheses using selected groups of genetic 

and other factors. A genome-wide scanning approach might also be taken to look 

for associations between individual genetic factors and simple definitions of health 

status (e.g., current wheeze vs. no current wheeze at age 5 years). Both of these 

approaches use relatively simple statistical models. An alternative machine learn-

ing approach might start with the epidemiologist constructing a graphical model 

of the problem space, consulting literature and colleagues to build a graph around 

the organizing principle—say, “peripheral airways obstruction.” This model better 

reflects the realistic complexity of asthma with a variety of classes of wheeze and 

other signs and symptoms, and it relates them to known mechanisms. Unsuper-

vised clustering methods are then used to explore how genetic, environmental, and 

other study factors influence the clustering into di�erent groups of allergic sensi-

tization with respect to skin and blood test results and reports of wheezing. The 

epidemiologist can relate these patterns to biological pathways, thereby shaping 

hypotheses to be explored further.

In scenario 2, a clinical team is auditing the care outcomes for patients with 

chronic angina. Subtly di�erent treatment plans of care are common, such as 

di�erent levels of investigation and treatment in primary care before referral to 

specialist care. A typical clinical audit approach might debate the treatment plan, 

consult literature, examine simple summary statistics, generate some hypotheses, 

and perhaps test the hypotheses using simple regression models. An alternative ma-

chine learning approach might construct a graphical model of the assumed treat-

ment plan, via debate and reference to the literature, and compare this with discov-

ered network topologies in datasets reflecting patient outcomes. Plausible networks 

might then be used to simulate the potential e�ects of changes to clinical practice 

by running scenarios that change edge weights in the underlying graphs. Thus the 

families of associations in locally relevant data can be combined with evidence 

from the literature in a scenario-planning activity that involves clinical reasoning 

and machine learning.
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THE FOURTH PARADIGM: HEALTH AVATARS

Unified models clearly have the potential to influence personal health choices, clin-

ical practice, and public health. So is this a paradigm for the future?

The first paradigm of healthcare information might be considered to be the case 

history plus expert physician, formalized by Hippocrates more than 2,000 years 

ago and still an important part of clinical practice. In the second paradigm, a medi-

cal record is shared among a set of complementary clinicians, each focusing their 

specialized knowledge on the patient’s condition in turn. The third paradigm is  

evidence-based healthcare that links a network of health professionals with knowl-

edge and patient records in a timely manner. This third paradigm is still in the pro-

cess of being realized, particularly in regard to capturing the complexities of clini-

cal practice in a digital record and making some aspects of healthcare computable.

We anticipate a fourth paradigm of healthcare information, mirroring that of 

other disciplines, whereby an individual’s health data are aggregated from multiple 

sources and attached to a unified model of that person’s health. The sources can 

range from body area network sensors to clinical expert oversight and interpreta-

tion, with the individual playing a much greater part than at present in building and 

acting on his or her health information. Incorporating all of this data, the unified 

model will take on the role of a “health avatar”—the electronic representation of 

an individual’s health as directly measured or inferred by statistical models or clini-

cians. Clinicians interacting with a patient’s avatar can achieve a more integrated 

view of di�erent specialist treatment plans than they do with care records alone. 

The avatar is not only a statistical tool to support diagnosis and treatment, but 

it is also a communication tool that links the patient and the patient’s elected net-

work of clinicians and other trusted caregivers—for what-if treatment discussions, 

for example. While initially acting as a fairly simple multi-system model, the health 

avatar could grow in depth and complexity to narrow the gap between avatar and 

reality. Such an avatar would not involve a molecular-level simulation of a human 

being (which we view as implausible) but would instead involve a unified statistical 

model that captures current clinical understanding as it applies to an individual 

patient.

This paradigm can be extended to communities, where multiple individual ava-

tars interact with a community avatar to provide a unified model of the community’s 

health. Such a community avatar could provide relevant and timely information for 

use in protecting and improving the health of those in the community. Scarce com-

munity resources could be matched more accurately to lifetime healthcare needs, 
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particularly in prevention and early intervention, to reduce the severity and/or du-

ration of illness and to better serve the community as a whole. Clinical, consumer, 

and public health services could interact more e�ectively, providing both social 

benefit and new opportunities for healthcare innovation and enterprise.

CONCLUSION

Data alone cannot lead to data-intensive healthcare. A substantial overhaul of meth-

odology is required to address the real complexity of health, ultimately leading to 

dramatically improved global public healthcare standards. We believe that machine 

learning, coupled with a general increase in computational thinking about health, 

can be instrumental. There is arguably a societal duty to develop computational 

frameworks for seeking signals in collections of health data if the potential benefit 

to humanity greatly outweighs the risk. We believe it does.
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N A RECENT PAPER, NOBEL LAUREATE PAUL NURSE calls for a bet-

ter understanding of living organisms through “both the  

development of the appropriate languages to describe infor-

mation processing in biological systems and the generation  

of more e�ective methods to translate biochemical descriptions 

into the functioning of the logic circuits that underpin biological 

phenomena.” [1]

The language that Nurse wishes to see is a formal language 

that can be automatically translated into machine executable 

code and that enables simulation and analysis techniques for 

proving properties of biological systems. Although there are 

many approaches to the formal modeling of living systems, only 

a few provide executable descriptions that highlight the mecha-

nistic steps that make a system move from one state to another 

[2]. Almost all the techniques related to mathematical modeling 

abstract from these individual steps to produce global behavior, 

usually averaged over time.

Computer science provides the key elements to describe mecha-

nistic steps: algorithms and programming languages [3]. Following 

the metaphor of molecules as processes introduced in [4], process 

calculi have been identified as a promising tool to model biological 

systems that are inherently complex, concurrent, and driven by 

the interactions of their subsystems.

Visualization in  
Process Algebra Models  

of Biological Systems
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Causality is a key di�erence between language-based modeling approaches and 

other techniques. In fact, causality in concurrent languages is strictly related to the 

notion of concurrency or independence of events, which makes causality substan-

tially di�erent from temporal ordering. An activity A causes an activity B if A is a 

necessary condition for B to happen and A influences the activity of B—i.e., there is a 

flow of information from A to B. The second part of the condition defining causality 

makes clear the distinction between precedence (related only to temporal ordering) 

and causality (a subset of the temporal ordering in which the flow of information is 

also considered) [5]. As a consequence, the list of the reactions performed by a sys-

tem does not provide causal information but only temporal information. It is there-

fore mandatory to devise new modeling and analysis tools to address causality.

Causality is a key issue in the analysis of complex interacting systems because it 

helps in dissecting independent components and simplifying models while also al-

lowing us to clearly identify cross-talks between di�erent signaling cascades. Once 

the experimentalist observes an interesting event in a simulation, it is possible to 

compact the previous history of the system, exposing only the preceding events 

that caused the interesting one. This can give precise hints about the causes of a 

disease, the interaction of a drug with a living system (identifying its e�cacy and 

its side e�ects), and the regulatory mechanisms of oscillating behaviors.

Causality is a relationship between events, and as such it is most naturally stud-

ied within discrete models, which are in turn described via algorithmic model-

ing languages. Although many modeling languages have been defined in computer 

science to model concurrent systems, many challenges remain to building algo-

rithmic models for the system-level understanding of biological processes. These 

challenges include the relationship between low-level local interactions and emer-

gent high-level global behavior; the incomplete knowledge of the systems under 

investigation; the multi-level and multi-scale representations in time, space, and 

size; and the causal relations between interactions and the context awareness of 

the inner components. Therefore, the modeling formalisms that are candidates to 

propel algorithmic systems biology should be complementary to and interoperable 

with mathematical modeling. They should address parallelism and complexity, be 

algorithmic and quantitative, express causality, and be interaction driven, compos-

able, scalable, and modular.

LANGUAGE VISUALIZATION

A fundamental issue in the adoption of formal languages in biology is their  
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usability. A modeling language must be understandable by biologists so they can 

relate it to their own informal models and to experiments. 

One attempt by biologists to connect formal languages and informal descrip-

tions of systems involved the use of a constrained natural language organized in the 

form of tables that collect all the information related to the structure and dynamic 

of a system. This narrative representation is informative and structured enough to 

be compiled into formal description that is amenable to simulation and analysis  

[6, 7]. Although the narrative modeling style is not yet visual, it is certainly more 

readable and corresponds better to the intuition of biologists than a formal (pro-

gramming) language. 

The best way to make a language understandable to scientists while also helping 

to manage complexity is to visualize the language. This is harder than visualizing 

data or visualizing the results of simulations because a language implicitly describes 

the full kinetics of a system, including the dynamic relationships between events. 

Therefore, language visualization must be dynamic, and possibly reactive [8], which 

means that a scientist should be able to detect and insert events in a running simula-

tion by direct intervention. This requires a one-to-one correspondence between the 

internal execution of a formal language and its visualization so that the kinetics of  

the language can be fully reflected in the kinetics of the visualization and vice versa.

This ability to fully match the kinetics of a general (Turing-complete) model-

ing language to visual representations has been demonstrated, for example, for pi- 

calculus [9], but many practical challenges remain to adapting such general meth-

ods to specific visualization requirements. (See Figure 1 on the next page.) One 

such requirement, for example, is the visualization and tracking of molecular com-

plexes; to this end, the BlenX language [10] and its support tools permit explicit rep-

resentation of complexes of biological elements and examination of their evolution 

in time [11]. (See Figure 2 on page 103.) The graphical representation of complexes 

is also useful in studying morphogenesis processes to unravel the mechanistic steps 

of pattern formation. (See Figure 3 on page 104.)

ANALYSIS

Model construction is one step in the scientific cycle, and appropriate modeling 

languages (along with their execution and visualization capabilities) are important, 

particularly for modeling complex systems. Ultimately, however, one will want to 

analyze the model using a large number of techniques. Some of these techniques 

may be centered on the underlying mathematical framework, such as the analysis of 
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di�erential equations, Markov chains, 

or Petri nets generated from the mod-

el. Other techniques may be centered 

on the model description (the lan-

guage in which the model is written). 

For example, we may want to know 

whether two di�erent model descrip-

tions actually represent the same be-

havior, by some measure of behavior 

equivalence. This kind of model cor-

respondence can arise, for example, 

from apparently di�erent biological 

systems that work by the same funda-

mental principles. A similar question 

is whether we can simplify (abstract) 

a model description and still preserve 

its behavior, again by some measure of 

behavior equivalence that may mask 

some unimportant detail. 

Behavioral equivalences are in fact 

a primary tool in computer science 

for verifying computing systems. For 

instance, we can use equivalences to 

ensure that an implementation is in 

agreement with a specification, ab-

stracting as much as possible from 

syntactic descriptions and instead fo-

cusing on the semantics (dynamic) of 

specifications and implementations. 

So far, biology has focused on syntac-

tic relationships between genes, genomes, and proteins. An entirely new avenue 

of research is the investigation of the semantic equivalences of biological entities 

populating complex networks of interactions. This approach could lead to new vi-

sions of systems and reinforce the need for computer science to enhance systems 

biology.

Biology is a data-intensive science. Biological systems are huge collections of in-
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This diagram can be placed in 1:1 correspon-

dence with formal stochastic pi-calculus 

models [9, 12, 13] so that one can edit either the 

diagrams or the models. The nodes represent 

molecular states (the node icons are just for  

illustration), and the labeled arcs represent  

interactions with other molecules in the envi-

ronment. The models use a biochemical variant 

of pi-calculus with rate weight as superscripts 

and with +/- for binding and unbinding.
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teracting components. The last decade of research has contributed to identifying and 

classifying those components, especially at the molecular level (gene, metabolites, 

proteins). To make sense of the large amount of data available, we need to implicitly 

represent them in compact and executable models so that executions can recover the 

available data as needed. This approach would merge syntax and semantics in unify-

ing representations and would create the need for di�erent ways of storing, retrieving, 

and comparing data. A model repository that represents the dynamics of biological 

processes in a compact and mechanistic manner would therefore be extremely valu-

able and could heighten the understanding of biological data and the basic biological 

principles governing life. This would facilitate predictions and the optimal design of 

further experiments to move from data collection to knowledge production. 

FIGURE 2. 

The green S boxes in the diagram represent entities populating the biological system under con-

sideration. The light blue rectangles attached to the green boxes represent the active interfaces/

domains available for complexation and decomplexation. The diagram shows how the simulation 

of the BlenX specification formed a ring complex and provides the position and the connections 

between boxes for inspection.
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ANALYSIS VISUALIZATION

Executable models need visualization to make their execution interactive (to dy-

namically focus on specific features) and reactive (to influence their execution on 

the fly). Execution is one form of analysis; other analysis methods will need vi-

sualization as well. For complex systems, the normal method of “batch” analysis, 

consisting of running a complex analysis on the model and then mining the output 

for clues, needs to be replaced with a more interactive, explorative approach.

Model abstraction is an important tool for managing complexity, and we can en-

vision performing this activity interactively—for example, by lumping components 

together or by hiding components. The notion of lumping will then need an appro-

priate visualization and an appropriate way of relating the behavior of the original 

components to the behavior of the lumped components. This doesn’t mean visual-

izing the modeling language, but rather visualizing an abstraction function between 

FIGURE 3. 

The green, red, and blue S boxes in the diagram represent di�erent species populating the biologi-

cal system under consideration. The light blue rectangles attached to the boxes represent the active 

interfaces/domains available for complexation and decomplexation. The diagram elucidates how 

patterns are formed in morphogenesis processes simulated by BlenX specifications.
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models. We therefore suggest visualizing the execution of programs/models in such 

a way that the output is linked to the source code/model specification and the graph-

ical abstraction performed by the end user is transformed into a formal program/

model transformation. The supporting tool would then check which properties the 

transformation is preserving or not preserving and warn the user accordingly.

All the above reinforces the need for a formal and executable language to model 

biology as the core feature of an in silico laboratory for biologists that could be the 

next-generation high-throughput tool for biology.
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ARNING! The articles in Part 3 of this book use a 
range of dramatic metaphors, such as “explosion,” 
“tsunami,” and even the “big bang,” to strikingly 
illustrate how scientific research will be trans-

formed by the ongoing creation and availability of high volumes 
of scientific data. Although the imagery may vary, these authors 
share a common intent by addressing how we must adjust our  
approach to computational science to handle this new prolifera-
tion of data. Their choice of words is motivated by the opportunity 
for research breakthroughs a�orded by these large and rich data-
sets, but it also implies the magnitude of our culture’s loss if our 
research infrastructure is not up to the task. 

Abbott’s perspective across all of scientific research challenges 
us with a fundamental question: whether, in light of the prolif-
eration of data and its increasing availability, the need for sharing 
and collaboration, and the changing role of computational science, 
there should be a “new path for science.” He takes a pragmatic 
view of how the scientific community will evolve, and he is skepti-
cal about just how eager researchers will be to embrace techniques 
such as ontologies and other semantic technologies. While avoid-
ing dire portents, Abbott is nonetheless vivid in characterizing a 
disconnect between the supply of scientific knowledge and the  
demands of the private and government sectors.

W
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To bring the issues into focus, Southan and Cameron explore the “tsunami” of 
data growing in the EMBL-Bank database—a nucleotide sequencing information 
service. Throughout Part 3 of this book, the field of genetic sequencing serves as a 
reasonable proxy for a number of scientific domains in which the rate of data pro-
duction is brisk (in this case, a 200% increase per annum), leading to major chal-
lenges in data aggregation, workflow, backup, archiving, quality, and retention, to 
name just a few areas.

Larus and Gannon inject optimism by noting that the data volumes are trac-
table through the application of multicore technologies—provided, of course, that 
we can devise the programming models and abstractions to make this technical  
innovation e�ective in general-purpose scientific research applications.

Next, we revisit the metaphor of a calamity induced by a data tidal wave as  
Gannon and Reed discuss how parallelism and the cloud can help with scalability 
issues for certain classes of computational problems. 

From there, we move to the role of computational workflow tools in helping to 
orchestrate key tasks in managing the data deluge. Goble and De Roure identify 
the benefits and issues associated with applying computational workflow to scien-
tific research and collaboration. Ultimately, they argue that workflows illustrate  
primacy of method as a crucial technology in data-centric research.

Fox and Hendler see “semantic eScience” as vital in helping to interpret interrela-
tionships of complex concepts, terms, and data. After explaining the potential bene-
fits of semantic tools in data-centric research, they explore some of the challenges to 
their smooth adoption. They note the inadequate participation of the scientific com-
munity in developing requirements as well as a lack of coherent discussion about the 
applicability of Web-based semantic technologies to the scientific process. 

Next, Hansen et al. provide a lucid description of the hurdles to visualizing large 
and complex datasets. They wrestle with the familiar topics of workflow, scalabil-
ity, application performance, provenance, and user interactions, but from a visual-
ization standpoint. They highlight that current analysis and visualization methods 
lag far behind our ability to create data, and they conclude that multidisciplinary 
skills are needed to handle diverse issues such as automatic data interpretation, 
uncertainty, summary visualizations, verification, and validation.

Completing our journey through these perils and opportunities, Parastatidis 
considers how we can realize a comprehensive knowledge-based research infra-
structure for science. He envisions this happening through a confluence of tradi-
tional scientific computing tools, Web-based tools, and select semantic methods.
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HE SCIENTIFIC CHALLENGES of the 21st century will strain 
the partnerships between government, industry, and 
academia that have developed and matured over the last 
century or so. For example, in the United States, begin-

ning with the establishment of the National Science Foundation 
in 1950, the nation’s research university system has blossomed and 
now dominates the basic research segment. (The applied research 
segment, which is far larger, is primarily funded and implemented 
within the private sector.) 

One cannot overstate the successes of this system, but it has 
come to be largely organized around individual science disciplines 
and rewards individual scientists’ e�orts through publications and 
the promotion and tenure process. Moreover, the eternal “restless-
ness” of the system means that researchers are constantly seeking 
new ideas and new funding [1, 2]. An unexpected outcome of this 
system is the growing disconnect between the supply of scientific 
knowledge and the demand for that knowledge from the private 
and government sectors [3, 4]. The internal reward structure at 
universities, as well as the peer review system, favors research 
projects that are of inherent interest to the scientific community 
but not necessarily to those outside the academic community.
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NEW DRIVERS

It is time to reexamine the basic structures underlying our research enterprise. For 
example, given the emerging and urgent need for new approaches to climate and 
energy research in the broad context of sustainability, fundamental research on the 
global climate system will continue to be necessary, but businesses and policymak-
ers are asking questions that are far more interdisciplinary than in the past. This 
new approach is more akin to scenario development in support of risk assessment 
and management than traditional problem solving and the pursuit of knowledge 
for its own sake. 

In climate science, the demand side is focused on feedback between climate 
change and socioeconomic processes, rare (but high-impact) events, and the de- 
velopment of adaptive policies and management protocols. The science supply side 
favors studies of the physical and biological aspects of the climate system on a con-
tinental or global scale and reducing uncertainties (e.g., [5]). This misalignment 
between supply and demand hampers society’s ability to respond e�ectively and in 
a timely manner to the changing climate.

RECENT HISTORY

The information technology (IT) infrastructure of 25 years ago was well suited to 
the science culture of that era. Data volumes were relatively small, and therefore 
each data element was precious. IT systems were relatively expensive and were 
accessible only to experts. The fundamental workflow relied on a data collection 
system (e.g., a laboratory or a field sensor), transfer into a data storage system, data 
processing and analysis, visualization, and publication. 

Figure 1 shows the architecture of NASA’s Earth Observing System Data and 
Information System (EOSDIS) from the late 1980s. Although many thought that 
EOSDIS was too ambitious (it planned for 1 terabyte per day of data), the primary 
argument against it was that it was too centralized for a system that needed to 
be science driven. EOSDIS was perceived to be a data factory, operating under a 
set of rigorous requirements with little opportunity for knowledge or technology 
infusion. Ultimately, the argument was not about centralized versus decentral-
ized but rather who would control the requirements: the science community or the 
NASA contractor. The underlying architecture, with its well-defined (and relatively 
modest-sized) data flows and mix of centralized and distributed components, has 
remained undisturbed, even as the World Wide Web, the Internet, and the volume 
of online data have grown exponentially. 
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THE PRESENT DAY

Today, the suite of national supercomputer centers as well as the notion of “cloud 
computing” looks much the same as the architecture shown in Figure 1. It doesn’t 
matter whether the network connection is an RS-232 asynchronous connection, 
a dial-up modem, or a gigabit network, or whether the device on the scientist’s 
desktop is a VT100 graphics terminal or a high-end multicore workstation. Virtual-
ized (but distributed) repositories of data storage and computing capabilities are 
accessed via network by relatively low-capability devices. 

Moore’s Law has had 25 years to play out since the design of EOSDIS. Although 
we generally focus on the increases in capacity and the precipitous decline in the 
price/performance ratio, the pace of rapid technological innovation has placed enor-
mous pressure on the traditional modes of scientific research. The vast amounts of 
data have greatly reduced the value of an individual data element, and we are no 
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longer data-limited but insight-limited. “Data-intensive” should not refer just to the 
centralized repositories but also to the far greater volumes of data that are network-
accessible in o�ces, labs, and homes and by sensors and portable devices. Thus, 
data-intensive computing should be considered more than just the ability to store 
and move larger amounts of data. The complexity of these new datasets as well as 
the increasing diversity of the data flows is rendering the traditional compute/data-
center model obsolete for modern scientific research. 

IMPLICATIONS FOR SCIENCE

IT has a�ected the science community in two ways. First, it has led to the  
commoditization of generic storage and computing. For science tasks that can be 
accomplished through commodity services, such services are a reasonable option. 
It will always be more cost e�ective to use low-profit-margin, high-volume services 
through centralized mechanisms such as cloud computing. Thus more universities 
are relying on such services for data backup, e-mail, o�ce productivity applica-
tions, and so on. 

The second way that IT has a�ected the science community is through radical 
personalization. With personal access to teraflops of computing and terabytes of 
storage, scientists can create their own compute clouds. Innovation and new sci-
ence services will come from the edges of the networks, not the commodity-driven 
datacenters. Moreover, not just scientists but the vastly larger number of sensors 
and laboratory instruments will soon be connected to the Internet with their own 
local computation and storage services. The challenge is to harness the power of 
this new network of massively distributed knowledge services.

Today, scientific discovery is not accomplished solely through the well-defined, 
rigorous process of hypothesis testing. The vast volumes of data, the complex and 
hard-to-discover relationships, the intense and shifting types of collaboration be-
tween disciplines, and new types of near-real-time publishing are adding pattern 
and rule discovery to the scientific method [6]. Especially in the area of climate 
science and policy, we could see a convergence of this new type of data-intensive 
research and the new generation of IT capabilities.

The alignment of science supply and demand in the context of continuing sci-
entific uncertainty will depend on seeking out new relationships, overcoming lan-
guage and cultural barriers to enable collaboration, and merging models and data 
to evaluate scenarios. This process has far more in common with network gaming 
than with the traditional scientific method. Capturing the important elements of 
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data preservation, collaboration, provenance, and accountability will require new 
approaches in the highly distributed, data-intensive research community.

Instead of well-defined data networks and factories coupled with an individually 
based publishing system that relies on peer review and tenure, this new research 
enterprise will be more unruly and less predictable, resembling an ecosystem in its 
approach to knowledge discovery. That is, it will include loose networks of poten-
tial services, rapid innovation at the edges, and a much closer partnership between 
those who create knowledge and those who use it. As with every ecosystem, emer-
gent (and sometimes unpredictable) behavior will be a dominant feature.

Our existing institutions—including federal agencies and research universities—
will be challenged by these new structures. Access to data and computation as well 
as new collaborators will not require the physical structure of a university or mil-
lions of dollars in federal grants. Moreover, the rigors of tenure and its strong em-
phasis on individual achievement in a single scientific discipline may work against 
these new approaches. We need an organization that integrates natural science 
with socioeconomic science, balances science with technology, focuses on systems 
thinking, supports flexible and interdisciplinary approaches to long-term problem 
solving, integrates knowledge creation and knowledge use, and balances individual 
and group achievement. 

Such a new organization could pioneer integrated approaches to a sustainable 
future, approaches that are aimed at understanding the variety of possible futures. 
It would focus on global-scale processes that are manifested on a regional scale 
with pronounced socioeconomic consequences. Rather than a traditional academic 
organization with its relatively static set of tenure-track professors, a new organiza-
tion could take more risks, build and develop new partnerships, and bring in people 
with the talent needed for particular tasks. Much like in the U.S. television series 
Mission Impossible, we will bring together people from around the world to address 
specific problems—in this case, climate change issues.

MAKING IT HAPPEN

How can today’s IT enable this type of new organization and this new type of sci-
ence? In the EOSDIS era, it was thought that relational databases would provide the 
essential services needed to manage the vast volumes of data coming from the EOS 
satellites. Although database technology provided the baseline services needed for 
the standard EOS data products, it did not capture the innovation at the edges of 
the system where science was in control. Today, semantic webs and ontologies are 
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being proposed as a means to enable knowledge discovery and collaboration. How-
ever, as with databases, it is likely that the science community will be reluctant to 
use these inherently complex tools except for the most mundane tasks.

Ultimately, digital technology can provide only relatively sparse descriptions of 
the richness and complexity of the real world. Moreover, seeking the unusual and 
unexpected requires creativity and insight—processes that are di�cult to represent 
in a rigid digital framework. On the other hand, simply relying on PageRank1-like 
statistical correlations based on usage will not necessarily lead to detection of the 
rare and the unexpected. However, new IT tools for the data-intensive world can 
provide the ability to “filter” these data volumes down to a manageable level as well 
as provide visualization and presentation services to make it easier to gain creative 
insights and build collaborations. 

The architecture for data-intensive computing should be based on storage, com-
puting, and presentation services at every node of an interconnected network. Pro-
viding standard, extensible frameworks that accommodate innovation at the net-
work edges should enable these knowledge “ecosystems” to form and evolve as the 
needs of climate science and policy change.
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S
CIENTIFIC REVOLUTIONS ARE DIFFICULT TO QUANTIFY, but the 
rate of data generation in science has increased so pro-
foundly that we can simply examine a single area of the 
life sciences to appreciate the magnitude of this e�ect 

across all of them. Figure 1 on the next page tracks the dramatic 
increase in the number of individual bases submitted to the Eu-
ropean Molecular Biology Laboratory Nucleotide Sequence Data-
base1 (EMBL-Bank) by the global experimental community. This 
submission rate is currently growing at 200% per annum. 

Custodianship of the data is held by the International Nucle-
otide Sequence Database Collaboration (INSDC), which consists 
of the DNA Data Bank of Japan (DDBJ), GenBank in the U.S., and 
EMBL-Bank in the UK. These three repositories exchange new 
data on a daily basis. As of May 2009, the totals stood at approxi-
mately 250 billion bases in 160 million entries.

A recent submission to EMBL-Bank, accession number 
FJ982430, illustrates the speed of data generation and the e�ec-
tiveness of the global bioinformatics infrastructure in responding 
to a health crisis. It includes the complete H1 subunit sequence 
of 1,699 bases from the first case of novel H1N1 influenza virus 
in Denmark. This was submitted on May 4, 2009, within days of 
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the infected person being diagnosed. 
Many more virus subunit sequences 
have been submitted from the U.S., 
Italy, Mexico, Canada, Denmark, and 
Israel since the beginning of the 2009 
global H1N1 pandemic.

EMBL-Bank is hosted at the Euro-
pean Bioinformatics Institute (EBI), 
an academic organization based in 
Cambridge, UK, that forms part of 
the European Molecular Biology 
Laboratory (EMBL). The EBI is a cen-
ter for both research and services in 
bioinformatics. It hosts biological 
data, including nucleic acid, pro-
tein sequences, and macromolecular 
structures. The neighboring Well-
come Trust Sanger Institute gener-
ates about 8 percent of the world’s se-
quencing data output. Both of these 
institutions on the Wellcome Trust 

Genome campus include scientists who generate data and administer the databases 
into which it flows, biocurators who provide annotations, bioinformaticians who 
develop analytical tools, and research groups that seek biological insights and con-
solidate them through further experimentation. Consequently, it is a community in 
which issues surrounding computing infrastructure, data storage, and mining are 
confronted on a daily basis, and in which both local and global collaborative solu-
tions are continually explored. 

The collective name for the nucleotide sequencing information service is the Eu-
ropean Nucleotide Archive [1]. It includes EMBL-Bank and three other repositories 
that were set up for new types of data generation: the Trace Archive for trace data 
from first-generation capillary instruments, the Short Read Archive for data from 
next-generation sequencing instruments, and a pilot Trace Assembly Archive that 
stores alignments of sequencing reads with links to finished genomic sequences 
in EMBL-Bank. Data from all archives are exchanged regularly with the National 
Center for Biotechnology Information in the U.S. Figure 2 compares the sizes of 
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EMBL-Bank, the Trace Archive, and the Short 
Read Archive. 

THE CHALLENGE OF NEXT-GENERATION SEQUENCING

The introduction in 2005 of so-called next-gen-
eration sequencing instruments that are capable 
of producing millions of DNA sequence reads in 
a single run has not only led to a huge increase in 
genetic information but has also placed bioinfor-
matics, and life sciences research in general, at the 
leading of edge of infrastructure development for 
the storage, movement, analysis, interpretation, 
and visualization of petabyte-scale datasets [2]. 
The Short Read Archive, the European repository 
for accepting data from these machines, received 
30 terabytes (TB) of data in the first six months 
of operation—equivalent to almost 30% of the 
entire EMBL-Bank content accumulated over the 
28 years since data collection began. The uptake 
of new instruments and technical developments 
will not only increase submissions to this archive 
manyfold within a few years, but it will also pre-
lude the arrival of “next-next-generation” DNA se-
quencing systems [3].

To meet this demand, the EBI has increased storage from 2,500 TB (2.5 PB) in 
2008 to 5,000 TB (5 PB) in 2009—an approximate annual doubling. Even if the 
capacity keeps pace, bottlenecks might emerge as I/O limitations move to other 
points in the infrastructure. For example, at this scale, traditional backup becomes 
impractically slow. Indeed, a hypothetical total data loss at the EBI is estimated to 
require months of restore time. This means that streamed replication of the origi-
nal data is becoming a more e�cient option, with copies being stored at multiple 
locations. Another bottleneck example is that technical advances in data transfer 
speeds now exceed the capacity to write out to disks—about 70 megabits/sec, with 
no imminent expectation of major performance increases. The problem can be 
ameliorated by writing to multiple disks, but at a considerable increase in cost. 

This inexorable load increase necessitates continual assessment of the balance 
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between submitting derived data to the repositories and storing raw instrument 
output locally. Scientists at all stages of the process, experimentalists, instrument 
operators, datacenter administrators, bioinformaticians, and biologists who ana-
lyze the results will need to be involved in decisions about storage strategies. For 
example, in laboratories running high-throughput sequencing instruments, the 
cost of storing raw data for a particular experiment is already approaching that of 
repeating the experiment. Researchers may balk at the idea of deleting raw data 
after processing, but this is a pragmatic option that has to be considered. Less con-
troversial solutions involve a triage of data reduction options between raw output, 
base calls, sequence reads, assemblies, and genome consensus sequences. An ex-
ample of such a solution is FASTQ, a text-based format for storing both a nucleotide 
sequence and its corresponding quality scores, both encoded with a single ASCII 
character. Developed by the Sanger Institute, it has recently become a standard 
for storing the output of next-generation sequencing instruments. It can produce a 
200-fold reduction in data volume—that is, 99.5% of the raw data can be discarded. 
Even more compressed sequence data representations are in development.

GENOMES: ROLLING OFF THE PRODUCTION LINE

The production of complete genomes is rapidly advancing our understanding of 
biology and evolution. The impressive progress is illustrated in Figure 3, which de-
picts the increase of genome sequencing projects in the Genomes OnLine Database 
(GOLD).

While the figure was generated based on all global sequencing projects, many of 
these genomes are available for analysis on the Ensembl Web site hosted jointly by 
the EBI and the Sanger Institute. The graph shows that, by 2010, well over 5,000 
genome projects will have been initiated and more than 1,000 will have produced 
complete assemblies. A recent significant example is the bovine genome [4], which 
followed the chicken and will soon be joined by all other major agricultural species. 
These will not only help advance our understanding of mammalian evolution and 
domestication, but they will also accelerate genetic improvements for farming and 
food production. 

RESEQUENCING THE HUMAN GENOME: ANOTHER DATA SCALE-UP

Recent genome-wide studies of human genetic variation have advanced our under-
standing of common human diseases. This has motivated the formation of an inter-
national consortium to develop a comprehensive catalogue of sequence variants in 
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multiple human populations. Over the 
next three years, the Sanger Institute, 
BGI Shenzhen in China, and the Na-
tional Human Genome Research Insti-
tute’s Large-Scale Genome Sequencing 
Program in the U.S. are planning to 
sequence a minimum of 1,000 human 
genomes. 

In 2008, the pilot phase of the proj-
ect generated approximately 1 terabase 
(trillion bases) of sequence data per 
month; the number is expected to dou-
ble in 2009. The total generated will be 
about 20 terabases. The requirement 
of about 30 bytes of disk storage per 
base of sequence can be extrapolated 
to about 500 TB of data for the entire 
project. By comparison, the original 
human genome project took about 10 
years to generate about 40 gigabases 
(billion bases) of DNA sequence. Over 
the next two years, up to 10 billion bas-
es will be sequenced per day, equating 

to more than two human genomes (at 2.85 billion per human) every 24 hours. The 
completed dataset of 6 trillion DNA bases will be 60 times more sequence data 
than that shown earlier in Figure 1. 

THE RAISON D’ÊTRE OF MANAGING DATA: CONVERSION TO NEW KNOWLEDGE 

Even before the arrival of the draft human genome in 2001, biological databases 
were moving from the periphery to the center of modern life sciences research, 
leading to the problem that the capacity to mine data has fallen behind our ability 
to generate it. As a result, there is a pressing need for new methods to fully exploit 
not only genomic data but also other high-throughput result sets deposited in data- 
bases. These result sets are also becoming more hypothesis-neutral compared with 
traditional small-scale, focused experiments. Usage statistics for EBI services, 
shown in Figure 4 on the next page, show that the biological community, sup-

P
ro

je
c
ts

Year

Genome Sequencing 
Projects on GOLD

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

4000

2500

1000

0

4500

3500

1500

2000

3000

500

January 2009:
4,370 Projects

Complete

Incomplete

FIGURE 3. 

The increase in both initiated and completed 

genome projects since 1997 in the Genomes 

OnLine Database (GOLD).  Courtesy of GOLD.



SCIENTIFIC INFRASTRUCTURE122

ported by the bioinformatics  
specialists they collaborate 
with, are accessing these  
resources in increasing num- 
bers. 

The Web pages associated 
with the 63 databases hosted 
at the EBI now receive over 
3.5 million hits per day, rep-
resenting more than half 
a million independent us-
ers per month. While this 
does not match the increase 
in rates of data accumula-
tion, evidence for a strong 
increase in data mining is 
provided by the Web ser-
vices’ programmatic access 
figures, which are approach-
ing 1 million jobs per month. 
To further facilitate data use, 

the EBI is developing, using open standards, the EB-eye search system to provide a 
single entry point. By indexing in various formats (e.g., flat files, XML dumps, and 
OBO format), the system provides fast access and allows the user to search globally 
across all EBI databases or individually in selected resources. 

EUROPEAN PLANS FOR CONSOLIDATING INFRASTRUCTURE

EBI resources are e�ectively responding to increasing demand from both the gen-
erators and users of data, but increases in scale for the life sciences across the whole 
of Europe require long-term planning. This is the mission of the ELIXIR project, 
which aims to ensure a reliable distributed infrastructure to maximize access to 
biological information that is currently distributed in more than 500 databases 
throughout Europe. The project addresses not only data management problems but 
also sustainable funding to maintain the data collections and global collaborations. 
It is also expected to put in place processes for developing collections for new data 
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types, supporting interoperability of bioinformatics tools, and developing bioinfor-
matics standards and ontologies.

The development of ELIXIR parallels the transition to a new phase in which 
high-performance, data-intensive computing is becoming essential to progress in 
the life sciences [5]. By definition, the consequences for research cannot be pre-
dicted with certainty. However, some pointers can be given. By mining not only the 
increasingly comprehensive datasets generated by genome sequencing mentioned 
above but also transcript data, proteomics information, and structural genomics 
output, biologists will obtain new insights into the processes of life and their evolu-
tion. This will in turn facilitate new predictive power for synthetic biology and sys-
tems biology. Beyond its profound impact on the future of academic research, this 
data-driven progress will also translate to the more applied areas of science—such 
as pharmaceutical research, biotechnology, medicine, public health, agriculture, 
and environmental science—to improve the quality of life for everyone.
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N THE PAST HALF CENTURY, parallel computers, parallel computa-
tion, and scientific research have grown up together. Scientists 
and researchers’ insatiable need to perform more and larger 
computations has long exceeded the capabilities of conven-

tional computers. The only approach that has met this need is 
parallelism—computing more than one operation simultaneously. 
At one level, parallelism is simple and easy to put into practice. 
Building a parallel computer by replicating key operating compo-
nents such as the arithmetic units or even complete processors is 
not di�cult. But it is far more challenging to build a well-balanced 
machine that is not stymied by internal bottlenecks. In the end, 
the principal problem has been software, not hardware. Parallel 
programs are far more di�cult to design, write, debug, and tune 
than sequential software—which itself is still not a mature, repro-
ducible artifact.

THE EVOLUTION OF PARALLEL COMPUTING 

The evolution of successive generations of parallel computing 
hardware has also forced a constant rethinking of parallel algo-
rithms and software. Early machines such as the IBM Stretch, the 
Cray I, and the Control Data Cyber series all exposed parallelism 
as vector operations. The Cray II, Encore, Alliant, and many gen-
erations of IBM machines were built with multiple processors that 

I
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shared memory. Because it proved so di�cult to increase the number of proces-
sors while sharing a single memory, designs evolved further into systems in which 
no memory was shared and processors shared information by passing messages.  
Beowulf clusters, consisting of racks of standard PCs connected by Ethernet, 
emerged as an economical approach to supercomputing. Networks improved in 
latency and bandwidth, and this form of distributed computing now dominates su-
percomputers. Other systems, such as the Cray multi-threaded platforms, demon-
strated that there were di�erent approaches to addressing shared-memory parallel-
ism. While the scientific computing community has struggled with programming 
each generation of these exotic machines, the mainstream computing world has 
been totally satisfied with sequential programming on machines where any paral-
lelism is hidden from the programmer deep in the hardware. 

In the past few years, parallel computers have entered mainstream computing 
with the advent of multicore computers. Previously, most computers were sequen-
tial and performed a single operation per time step. Moore’s Law drove the im-
provements in semiconductor technology that doubled the transistors on a chip 
every two years, which increased the clock speed of computers at a similar rate 
and also allowed for more sophisticated computer implementations. As a result, 
computer performance grew at roughly 40% per year from the 1970s, a rate that 
satisfied most software developers and computer users. This steady improvement 
ended because increased clock speeds require more power, and at approximately  
3 GHz, chips reached the limit of economical cooling. Computer chip manufactur-
ers, such as Intel, AMD, IBM, and Sun, shifted to multicore processors that used 
each Moore’s Law generation of transistors to double the number of independent 
processors on a chip. Each processor ran no faster than its predecessor, and some-
times even slightly slower, but in aggregate, a multicore processor could perform 
twice the amount of computation as its predecessor.

PARALLEL PROGRAMMING CHALLENGES

This new computer generation rests on the same problematic foundation of soft-
ware that the scientific community struggled with in its long experience with par-
allel computers. Most existing general-purpose software is written for sequential 
computers and will not run any faster on a multicore computer. Exploiting the po-
tential of these machines requires new, parallel software that can break a task into 
multiple pieces, solve them more or less independently, and assemble the results 
into a single answer. Finding better ways to produce parallel software is currently 
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the most pressing problem facing the software development community and is the 
subject of considerable research and development.

The scientific and engineering communities can both benefit from these urgent 
e�orts and can help inform them. Many parallel programming techniques origi-
nated in the scientific community, whose experience has influenced the search for 
new approaches to programming multicore computers. Future improvements in 
our ability to program multicore computers will benefit all software developers as 
the distinction between the leading-edge scientific community and general-purpose 
computing is erased by the inevitability of parallel computing as the fundamental 
programming paradigm.

One key problem in parallel programming today is that most of it is conducted 
at a very low level of abstraction. Programmers must break their code into com-
ponents that run on specific processors and communicate by writing into shared 
memory locations or exchanging messages. In many ways, this state of a�airs is 
similar to the early days of computing, when programs were written in assembly 
languages for a specific computer and had to be rewritten to run on a di�erent 
machine. In both situations, the problem was not just the lack of reusability of pro-
grams, but also that assembly language development was less productive and more 
error prone than writing programs in higher-level languages. 

ADDRESSING THE CHALLENGES

Several lines of research are attempting to raise the level at which parallel programs 
can be written. The oldest and best-established idea is data parallel programming. 
In this programming paradigm, an operation or sequence of operations is applied 
simultaneously to all items in a collection of data. The granularity of the operation 
can range from adding two numbers in a data parallel addition of two matrices 
to complex data mining calculations in a map-reduce style computation [1]. The 
appeal of data parallel computation is that parallelism is mostly hidden from the 
programmer. Each computation proceeds in isolation from the concurrent compu-
tations on other data, and the code specifying the computation is sequential. The 
developer need not worry about the details of moving data and running computa-
tions because they are the responsibility of the runtime system. GPUs (graphics 
processing units) provide hardware support for this style of programming, and they 
have recently been extended into GPGPUs (general-purpose GPUs) that perform 
very high-performance numeric computations.

Unfortunately, data parallelism is not a programming model that works for all 



SCIENTIFIC INFRASTRUCTURE128

types of problems. Some computations require more communication and coordina-
tion. For example, protein folding calculates the forces on all atoms in parallel, but 
local interactions are computed in a manner di�erent from remote interactions. 
Other examples of computations that are hard to write as data parallel programs 
include various forms of adaptive mesh refinement that are used in many modern 
physics simulations in which local structures, such as clumps of matter or cracks in 
a material structure, need finer spatial resolution than the rest of the system. 

A new idea that has recently attracted considerable research attention is trans-
actional memory (TM), a mechanism for coordinating the sharing of data in a 
multicore computer. Data sharing is a rich source of programming errors because 
the developer needs to ensure that a processor that changes the value of data has 
exclusive access to it. If another processor also tries to access the data, one of the 
two updates can be lost, and if a processor reads the data too early, it might see an 
inconsistent value. The most common mechanism for preventing this type of error 
is a lock, which a program uses to prevent more than one processor from accessing 
a memory location simultaneously. Locks, unfortunately, are low-level mechanisms 
that are easily and frequently misused in ways that both allow concurrent access 
and cause deadlocks that freeze program execution.

TM is a higher-level abstraction that allows the developer to identify a group of 
program statements that should execute atomically—that is, as if no other part of 
the program is executing at the same time. So instead of having to acquire locks for 
all the data that the statements might access, the developer shifts the burden to the 
runtime system and hardware. TM is a promising idea, but many engineering chal-
lenges still stand in the way of its widespread use. Currently, TM is expensive to im-
plement without support in the processors, and its usability and utility in large, real-
world codes is as yet undemonstrated. If these issues can be resolved, TM promises 
to make many aspects of multicore programming far easier and less error prone.

Another new idea is the use of functional programming languages. These lan-
guages embody a style of programming that mostly prohibits updates to program 
state. In other words, in these languages a variable can be given an initial value, 
but that value cannot be changed. Instead, a new variable is created with the new 
value. This style of programming is well suited to parallel programming because 
it eliminates the updates that require synchronization between two processors. 
Parallel, functional programs generally use mutable state only for communication 
among parallel processors, and they require locks or TM only for this small, dis-
tinct part of their data. 
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Until recently, only the scientific and engineering communities have struggled 
with the di�culty of using parallel computers for anything other than the most 
embarrassingly parallel tasks. The advent of multicore processors has changed this 
situation and has turned parallel programming into a major challenge for all soft-
ware developers. The new ideas and programming tools developed for mainstream 
programs will likely also benefit the technical community and provide it with new 
means to take better advantage of the continually increasing power of multicore 
processors.

REFERENCES

 [1] D. Gannon and D. Reed, “Parallelism and the Cloud,” in this volume. 





13 1THE FOURTH PARADIGM

SCI ENTI F IC I N FR ASTRUC TU R E

O

DENNIS GANNON

DAN REED 

Microsoft Research

Parallelism and the Cloud

VER THE PAST DECADE, scientific and engineering  
research via computing has emerged as the third  
pillar of the scientific process, complementing the-
ory and experiment. Several national studies have 

highlighted the importance of computational science as a critical 
enabler of scientific discovery and national competitiveness in the 
physical and biological sciences, medicine and healthcare, and  
design and manufacturing [1-3]. 

As the term suggests, computational science has historically  
focused on computation: the creation and execution of mathemat-
ical models of natural and artificial processes. Driven by opportu-
nity and necessity, computational science is expanding to encom-
pass both computing and data analysis. Today, a rising tsunami of 
data threatens to overwhelm us, consuming our attention by its 
very volume and diversity. Driven by inexpensive, seemingly ubiq-
uitous sensors, broadband networks, and high-capacity storage 
systems, the tsunami encompasses data from sensors that monitor 
our planet from deep in the ocean, from land instruments, and 
from space-based imaging systems. It also includes environmental 
measurements and healthcare data that quantify biological pro-
cesses and the e�ects of surrounding conditions. Simply put, we 
are moving from data paucity to a data plethora, which is leading 
to a relative poverty of human attention to any individual datum 
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and is necessitating machine-assisted winnowing.
This ready availability of diverse data is shifting scientific approaches from the 

traditional, hypothesis-driven scientific method to science based on exploration. 
Researchers no longer simply ask, “What experiment could I construct to test this 
hypothesis?” Increasingly, they ask, “What correlations can I glean from extant 
data?” More tellingly, one wishes to ask, “What insights could I glean if I could 
fuse data from multiple disciplines and domains?” The challenge is analyzing many 
petabytes of data on a time scale that is practical in human terms.

The ability to create rich, detailed models of natural and artificial phenomena 
and to process large volumes of experimental data created by a new generation 
of scientific instruments that are themselves powered by computing makes com-
puting a universal intellectual amplifier, advancing all of science and engineering 
and powering the knowledge economy. Cloud computing is the latest technological 
evolution of computational science, allowing groups to host, process, and analyze 
large volumes of multidisciplinary data. Consolidating computing and storage in 
very large datacenters creates economies of scale in facility design and construc-
tion, equipment acquisition, and operations and maintenance that are not possible 
when these elements are distributed. Moreover, consolidation and hosting mitigate 
many of the sociological and technical barriers that have limited multidisciplinary 
data sharing and collaboration. Finally, cloud hosting facilitates long-term data 
preservation—a task that is particularly challenging for universities and govern-
ment agencies and is critical to our ability to conduct longitudinal experiments. 

It is not unreasonable to say that modern datacenters and modern supercomput-
ers are like twins separated at birth. Both are massively parallel in design, and both 
are organized as a network of communicating computational nodes. The individual 
nodes of each are based on commodity microprocessors that have multiple cores, 
large memories, and local disk storage. They both execute applications that are 
designed to exploit massive amounts of parallelism. Their di�erences lie in their 
evolution. Massively parallel supercomputers have been designed to support com-
putation with occasional bursts of input/output and to complete a single massive 
calculation as fast as possible, one job at a time. In contrast, datacenters direct their 
power outward to the world and consume vast quantities of input data. 

Parallelism can be exploited in cloud computing in two ways. The first is for hu-
man access. Cloud applications are designed to be accessed as Web services, so they 
are organized as two or more layers of processes. One layer provides the service in-
terface to the user’s browser or client application. This “Web role” layer accepts us-
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ers’ requests and manages the tasks assigned to the second layer. The second layer 
of processes, sometimes known as the “worker role” layer, executes the analytical 
tasks required to satisfy user requests. One Web role and one worker role may be 
su�cient for a few simultaneous users, but if a cloud application is to be widely 
used—such as for search, customized maps, social networks, weather services, 
travel data, or online auctions—it must support thousands of concurrent users. 

The second way in which parallelism is exploited involves the nature of the data 
analysis tasks undertaken by the application. In many large data analysis scenarios, 
it is not practical to use a single processor or task to scan a massive dataset or data 
stream to look for a pattern—the overhead and delay are too great. In these cases, 
one can partition the data across large numbers of processors, each of which can 
analyze a subset of the data. The results of each “sub-scan” are then combined and 
returned to the user. 

This “map-reduce” pattern is frequently used in datacenter applications and is 
one in a broad family of parallel data analysis queries used in cloud computing. Web 
search is the canonical example of this two-phase model. It involves constructing 
a searchable keyword index of the Web’s contents, which entails creating a copy 
of the Web and sorting the contents via a sequence of map-reduce steps. Three key 
technologies support this model of parallelism: Google has an internal version [4], 
Yahoo! has an open source version known as Hadoop, and Microsoft has a map- 
reduce tool known as DryadLINQ [5]. Dryad is a mechanism to support the exe-
cution of distributed collections of tasks that can be configured into an arbitrary  
directed acyclic graph (DAG). The Language Integrated Query (LINQ) extension to 
C# allows SQL-like query expressions to be embedded directly in regular programs. 
The DryadLINQ system can automatically compile these queries into Dryad DAG, 
which can be executed automatically in the cloud. 

Microsoft Windows Azure supports a combination of multi-user scaling and 
data analysis parallelism. In Azure, applications are designed as stateless “roles” 
that fetch tasks from queues, execute them, and place new tasks or data into other 
queues. Map-reduce computations in Azure consist of two pools of worker roles: 
mappers, which take map tasks o� a map queue and push data to the Azure storage, 
and reducers, which look for reduce tasks that point to data in the storage system 
that need reducing. Whereas DryadLINQ executes a static DAG, Azure can execute 
an implicit DAG in which nodes correspond to roles and links correspond to mes-
sages in queues. Azure computations can also represent the parallelism generated 
by very large numbers of concurrent users. 
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This same type of map-reduce data analysis appears repeatedly in large-scale sci-
entific analyses. For example, consider the task of matching a DNA sample against 
the thousands of known DNA sequences. This kind of search is an “embarrassingly 
parallel” task that can easily be sped up if it is partitioned into many independent 
search tasks over subsets of the data. Similarly, consider the task of searching for 
patterns in medical data, such as to find anomalies in fMRI scans of brain images, 
or the task of searching for potential weather anomalies in streams of events from 
radars. 

Finally, another place where parallelism can be exploited in the datacenter is at 
the hardware level of an individual node. Not only does each node have multiple 
processors, but each typically has multiple computer cores. For many data analy-
sis tasks, one can exploit massive amounts of parallelism at the instruction level. 
For example, filtering noise from sensor data may involve invoking a Fast Fourier 
Transform (FFT) or other spectral methods. These computations can be sped up by 
using general-purpose graphics processing units (GPGPUs) in each node. Depend-
ing on the rate at which a node can access data, this GPGPU-based processing may 
allow us to decrease the number of nodes required to meet an overall service rate.

The World Wide Web began as a loose federation of simple Web servers that each 
hosted scientific documents and data of interest to a relatively small community of 
researchers. As the number of servers grew exponentially and the global Internet 
matured, Web search transformed what was initially a scientific experiment into 
a new economic and social force. The e�ectiveness of search was achievable only 
because of the available parallelism in massive datacenters. As we enter the period 
in which all of science is being driven by a data explosion, cloud computing and its 
inherent ability to exploit parallelism at many levels has become a fundamental 
new enabling technology to advance human knowledge. 
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W
E ARE IN AN ERA OF DATA-CENTRIC SCIENTIFIC RESEARCH, 

in which hypotheses are not only tested through 
directed data collection and analysis but also gen-
erated by combining and mining the pool of data 

already available [1-3]. The scientific data landscape we draw upon 
is expanding rapidly in both scale and diversity. Taking the life sci-
ences as an example, high-throughput gene sequencing platforms 
are capable of generating terabytes of data in a single experiment, 
and data volumes are set to increase further with industrial-scale 
automation. From 2001 to 2009, the number of databases reported 
in Nucleic Acids Research jumped from 218 to 1,170 [4]. Not only 
are the datasets growing in size and number, but they are only 
partly coordinated and often incompatible [5], which means that 
discovery and integration tasks are significant challenges. At the 
same time, we are drawing on a broader array of data sources: 
modern biology draws insights from combining di�erent types of 
“omic” data (proteomic, metabolomic, transcriptomic, genomic) 
as well as data from other disciplines such as chemistry, clinical 
medicine, and public health, while systems biology links multi-
scale data with multi-scale mathematical models. These data en-
compass all types: from structured database records to published 
articles, raw numeric data, images, and descriptive interpretations 
that use controlled vocabularies. 
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Data generation on this scale must be matched by scalable processing methods. 
The preparation, management, and analysis of data are bottlenecks and also be-
yond the skill of many scientists. Workflows [6] provide (1) a systematic and auto-
mated means of conducting analyses across diverse datasets and applications; (2) a 
way of capturing this process so that results can be reproduced and the method can 
be reviewed, validated, repeated, and adapted; (3) a visual scripting interface so 
that computational scientists can create these pipelines without low-level program-
ming concern; and (4) an integration and access platform for the growing pool of 
independent resource providers so that computational scientists need not special-
ize in each one. The workflow is thus becoming a paradigm for enabling science 
on a large scale by managing data preparation and analysis pipelines, as well as the 
preferred vehicle for computational knowledge extraction. 

WORKFLOWS DEFINED

A workflow is a precise description of a scientific procedure—a multi-step process to 
coordinate multiple tasks, acting like a sophisticated script [7]. Each task represents 
the execution of a computational process, such as running a program, submitting a 
query to a database, submitting a job to a compute cloud or grid, or invoking a ser-
vice over the Web to use a remote resource. Data output from one task is consumed 
by subsequent tasks according to a predefined graph topology that “orchestrates” 
the flow of data. Figure 1 presents an example workflow, encoded in the Taverna 
Workflow Workbench [8], which searches for genes by linking four publicly avail-
able data resources distributed in the U.S., Europe, and Japan: BioMart, Entrez, 
UniProt, and KEGG.

Workflow systems generally have three components: an execution platform, a 
visual design suite, and a development kit. The platform executes the workflow 
on behalf of applications and handles common crosscutting concerns, including  
(1) invocation of the service applications and handling the heterogeneity of data 
types and interfaces on multiple computing platforms; (2) monitoring and recovery 
from failures; (3) optimization of memory, storage, and execution, including con-
currency and parallelization; (4) data handling: mapping, referencing, movement, 
streaming, and staging; (5) logging of processes and data provenance tracking; and 
(6) security and monitoring of access policies. Workflow systems are required to 
support long-running processes in volatile environments and thus must be robust 
and capable of fault tolerance and recovery. They also need to evolve continu-
ally to harness the growing capabilities of underlying computational and storage  
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FIGURE 1. 

A Taverna workflow that connects several internationally distributed datasets to identify candi-

date genes that could be implicated in resistance to African trypanosomiasis [11].
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resources, delivering greater capacity for analysis. 
The design suite provides a visual scripting application for authoring and shar-

ing workflows and preparing the components that are to be incorporated as execut-
able steps. The aim is to shield the author from the complexities of the underlying 
applications and enable the author to design and understand workflows without 
recourse to commissioning specialist and specific applications or hiring software 
engineers. This empowers scientists to build their own pipelines when they need 
them and how they want them. Finally, the development kit enables developers to 
extend the capabilities of the system and enables workflows to be embedded into 
applications, Web portals, or databases. This embedding is transformational: it has 
the potential to incorporate sophisticated knowledge seamlessly and invisibly into 
the tools that scientists use routinely. 

Each workflow system has its own language, design suite, and software compo-
nents, and the systems vary in their execution models and the kinds of components 
they coordinate [9]. Sedna is one of the few to use the industry-standard Business 
Process Execution Language (BPEL) for scientific workflows [10]. General-purpose 
open source workflow systems include Taverna,1 Kepler,2 Pegasus,3 and Triana.4 
Other systems, such as the LONI Pipeline5 for neuroimaging and the commercial 
Pipeline Pilot6 for drug discovery, are more geared toward specific applications and 
are optimized to support specific component libraries. These focus on interoperat-
ing applications; other workflow systems target the provisioning of compute cycles 
or submission of jobs to grids. For example, Pegasus and DAGMan7 have been used 
for a series of large-scale eScience experiments such as prediction models in earth-
quake forecasting using sensor data in the Southern California Earthquake Center 
(SCEC) CyberShake project.8

WORKFLOW USAGE

Workflows liberate scientists from the drudgery of routine data processing so  
they can concentrate on scientific discovery. They shoulder the burden of routine 
tasks, they represent the computational protocols needed to undertake data-centric  

1 www.taverna.org.uk 
2 http://kepler-project.org
3 http://pegasus.isi.edu
4 www.trianacode.org
5 http://pipeline.loni.ucla.edu
6 http://accelrys.com/products/scitegic
7 www.cs.wisc.edu/condor/dagman
8 http://epicenter.usc.edu/cmeportal/CyberShake.html
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science, and they open up the use of processes and data resources to a much wider 
group of scientists and scientific application developers. 

Workflows are ideal for systematically, accurately, and repeatedly running rou-
tine procedures: managing data capture from sensors or instruments; cleaning, 
normalizing, and validating data; securely and e�ciently moving and archiving 
data; comparing data across repeated runs; and regularly updating data warehous-
es. For example, the Pan-STARRS9 astronomical survey uses Microsoft Trident  
Scientific Workflow Workbench10 workflows to load and validate telescope de-
tections running at about 30 TB per year. Workflows have also proved useful for  
maintaining and updating data collections and warehouses by reacting to changes 
in the underlying datasets. For example, the Nijmegen Medical Centre rebuilt the 
tGRAP G-protein coupled receptors mutant database using a suite of text-mining 
Taverna workflows. 

At a higher level, a workflow is an explicit, precise, and modular expression of 
an in silico or “dry lab” experimental protocol. Workflows are ideal for gathering 
and aggregating data from distributed datasets and data-emitting algorithms—a 
core activity in dataset annotation; data curation; and multi-evidential, compara-
tive science. In Figure 1, disparate datasets are searched to find and aggregate data 
related to metabolic pathways implicated in resistance to African trypanosomiasis; 
interlinked datasets are chained together by the dataflow. In this instance, the au-
tomated and systematic processing by the workflow overcame the inadequacies of 
manual data triage—which leads to prematurely excluding data from analysis to 
cope with the quantity—and delivered new results [11].

Beyond data assembly, workflows codify data mining and knowledge discovery 
pipelines and parameter sweeps across predictive algorithms. For example, LEAD11 
workflows are driven by external events generated by data mining agents that mon-
itor collections of instruments for significant patterns to trigger a storm predic-
tion analysis; the Jet Propulsion Laboratory uses Taverna workflows for exploring a 
large space of multiple-parameter configurations of space instruments. 

Finally, workflow systems liberate the implicit workflow embedded in an  
application into an explicit and reusable specification over a common software  
machinery and shared infrastructure. Expert informaticians use workflow sys-
tems directly as means to develop workflows for handling infrastructure; expert  

9 http://pan-starrs.ifa.hawaii.edu 
10 http://research.microsoft.com/en-us/collaboration/tools/trident.aspx
11 http://portal.leadproject.org
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scientific informaticians use them to design and explore new investigative pro-
cedures; a larger group of scientists uses precooked workflows with restricted  
configuration constraints launched from within applications or hidden behind 
Web portals.

WORKFLOW-ENABLED DATA-CENTRIC SCIENCE

Workflows o�er techniques to support the new paradigm of data-centric science. 
They can be replayed and repeated. Results and secondary data can be computed as 
needed using the latest sources, providing virtual data (or on-demand) warehouses 
by e�ectively providing distributed query processing. Smart reruns of workflows au-
tomatically deliver new outcomes when fresh primary data and new results become 
available—and also when new methods become available. The workflows them-
selves, as first-class citizens in data-centric science, can be generated and trans-
formed dynamically to meet the requirements at hand. In a landscape of data in 
considerable flux, workflows provide robustness, accountability, and full auditing. 
By combining workflows and their execution records with published results, we 
can promote systematic, unbiased, transparent, and comparable research in which 
outcomes carry the provenance of their derivation. This can potentially accelerate 
scientific discovery. 

To accelerate experimental design, workflows can be reconfigured and repur-
posed as new components or templates. Creating workflows requires expertise that 
is hard won and often outside the skill set of the researcher. Workflows are often 
complex and challenging to build because they are essentially forms of program-
ming that require some understanding of the datasets and the tools they manip-
ulate [12]. Hence there is significant benefit in establishing shared collections of 
workflows that contain standard processing pipelines for immediate reuse or for 
repurposing in whole or in part. These aggregations of expertise and resources can 
help propagate techniques and best practices. Specialists can create the application 
steps, experts can design the workflows and set parameters, and the inexperienced 
can benefit by using sophisticated protocols.

The myExperiment12 social Web site has demonstrated that by adopting content- 
sharing tools for repositories of workflows, we can enable social networking around 
workflows and provide community support for social tagging, comments, rat-
ings and recommendations, and mixing of new workflows with those previously  

12 www.myexperiment.org
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deposited [13]. This is made possible by the scale of participation in data-centric 
science, which can be brought to bear on challenging problems. For example, the 
environment of workflow execution is in such a state of flux that workflows appear 
to decay over time, but workflows can be kept current by a combination of expert 
and community curation.

Workflows enable data-centric science to be a collaborative endeavor on mul-
tiple levels. They enable scientists to collaborate over shared data and shared ser-
vices, and they grant non-developers access to sophisticated code and applications 
without the need to install and operate them. Consequently, scientists can use the 
best applications, not just the ones with which they are familiar. Multidisciplinary 
workflows promote even broader collaboration. In this sense, a workflow system is 
a framework for reusing a community’s tools and datasets that respects the original 
codes and overcomes diverse coding styles. Initiatives such as the BioCatalogue13 
registry of life science Web services and the component registries deployed at SCEC 
enable components to be discovered. In addition to the benefits that come from  
explicit sharing, there is considerable value in the information that may be gath-
ered just through monitoring the use of data sources, services, and methods. This 
enables automatic monitoring of resources and recommendation of common prac-
tice and optimization. 

Although the impact of workflow tools on data-centric research is potentially 
profound—scaling processing to match the scaling of data—many challenges exist 
over and above the engineering issues inherent in large-scale distributed software 
[14]. There are a confusing number of workflow platforms with various capabili-
ties and purposes and little compliance with standards. Workflows are often di�-
cult to author, using languages that are at an inappropriate level of abstraction and 
expecting too much knowledge of the underlying infrastructure. The reusability 
of a workflow is often confined to the project it was conceived in—or even to its 
author—and it is inherently only as strong as its components. Although workflows 
encourage providers to supply clean, robust, and validated data services, compo-
nent failure is common. If the services or infrastructure decays, so does the work-
flow. Unfortunately, debugging failing workflows is a crucial but neglected topic. 
Contemporary workflow platforms fall short of adequately supporting rapid deploy-
ment into the user applications that consume them, and legacy application codes 
need to be integrated and managed.

13 www.biocatalogue.org
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CONCLUSION

Workflows a�ect data-centric research in four ways. First, they shift scientific 
practice. For example, in a data-driven hypothesis [1], data analysis yields results 
that are to be tested in the laboratory. Second, they have the potential to empower  
scientists to be the authors of their own sophisticated data processing pipelines 
without having to wait for software developers to produce the tools they need. 
Third, they o�er systematic production of data that is comparable and verifiably  
attributable to its source. Finally, people speak of a data deluge [15], and data- 
centric science could be characterized as being about the primacy of data as op-
posed to the primacy of the academic paper or document [16], but it brings with it a 
method deluge: workflows illustrate primacy of method as another crucial paradigm 
in data-centric research. 
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CIENCE IS BECOMING INCREASINGLY DEPENDENT ON DATA, yet 
traditional data technologies were not designed for the 
scale and heterogeneity of data in the modern world. 
Projects such as the Large Hadron Collider (LHC) and 

the Australian Square Kilometre Array Pathfinder (ASKAP) will 
generate petabytes of data that must be analyzed by hundreds of 
scientists working in multiple countries and speaking many di�er-
ent languages. The digital or electronic facilitation of science, or 
eScience [1], is now essential and becoming widespread.

Clearly, data-intensive science, one component of eScience, 
must move beyond data warehouses and closed systems, striving 
instead to allow access to data to those outside the main project 
teams, allow for greater integration of sources, and provide inter-
faces to those who are expert scientists but not experts in data 
administration and computation. As eScience flourishes and the 
barriers to free and open access to data are being lowered, other, 
more challenging, questions are emerging, such as, “How do I use 
this data that I did not generate?” or “How do I use this data type, 
which I have never seen, with the data I use every day?” or “What 
should I do if I really need data from another discipline but I can-
not understand its terms?” This list of questions is large and grow-
ing as data and information product use increases and as more of 
science comes to rely on specialized devices.
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An important insight into dealing with heterogeneous data is that if you know 
what the data “means,” it will be easier to use. As the volume, complexity, and 
heterogeneity of data resources grow, scientists increasingly need new capabilities 
that rely on new “semantic” approaches (e.g., in the form of ontologies—machine 
encodings of terms, concepts, and relations among them). Semantic technologies 
are gaining momentum in eScience areas such as solar-terrestrial physics (see  
Figure 1), ecology,1 ocean and marine sciences,2 healthcare, and life sciences,3 to 
name but a few. The developers of eScience infrastructures are increasingly in need 
of semantic-based methodologies, tools, and middleware. They can in turn facili-
tate scientific knowledge modeling, logic-based hypothesis checking, semantic data 
integration, application composition, and integrated knowledge discovery and data 
analysis for di�erent scientific domains and systems noted above, for use by scien-
tists, students, and, increasingly, non-experts.

The influence of the artificial intelligence community and the increasing amount 
of data available on the Web (which has led many scientists to use the Web as their 
primary “computer”) have led semantic Web researchers to focus both on formal 
aspects of semantic representation languages and on general-purpose semantic ap-
plication development. Languages are being standardized, and communities are in 
turn using those languages to build and use ontologies—specifications of concepts 
and terms and the relations between them (in the formal, machine-readable sense). 
All of the capabilities currently needed by eScience—including data integration, 
fusion, and mining; workflow development, orchestration, and execution; capture 
of provenance, lineage, and data quality; validation, verification, and trust of data 
authenticity; and fitness for purpose—need semantic representation and mediation 
if eScience is to become fully data-intensive. 

The need for more semantics in eScience also arises in part from the increasingly 
distributed and interdisciplinary challenges of modern research. For example, the 
availability of high spatial-resolution remote sensing data (such as imagery) from 
satellites for ecosystem science is simultaneously changing the nature of research 
in other scientific fields, such as environmental science. Yet ground-truthing with 
in situ data creates an immediate data-integration challenge. Questions that arise 
for researchers who use such data include, “How can ‘point’ data be reconciled 
with various satellite data—e.g., swath or gridded—products?” “How is the spatial 

1 E.g., the Science Environment for Ecological Knowledge (SEEK) and [2]. 
2 E.g., the Marine Metadata Interoperability (MMI) project.
3 E.g., the Semantic Web Health Care and Life Sciences (HCLS) Interest Group and [3].
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registration performed?” “Do these data represent the ‘same’ thing, at the same 
vertical (as well as geographic) position or at the same time, and does that matter?” 
Another scientist, such as a biologist, might need to access the same data from a 
very di�erent perspective, to ask questions such as, “I found this particular species 
in an unexpected location. What are the geophysical parameters—temperature, 
humidity, and so on—for this area, and how has it changed over the last weeks, 
months, years?” Answers to such questions reside in both the metadata and the 
data itself. Perhaps more important is the fact that data and information products 
are increasingly being made available via Web services, so the semantic binding 
(i.e., the meaning) we seek must shift from being at the data level to being at the 
Internet/Web service level.

Semantics adds not only well-defined and machine-encoded definitions of vo-

FIGURE 1. 

The Virtual Solar-Terrestrial Observatory (VSTO) provides data integration between physical 

parameters measured by di�erent instruments. VSTO also mediates independent coordinate infor-

mation to select appropriate plotting types using a semantic eScience approach without the user 

having to know the underlying representations and structure of the data [4, 5].
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cabularies, concepts, and terms, but it also explains the interrelationships among 
them (and especially, on the Web, among di�erent vocabularies residing in di�er-
ent documents or repositories) in declarative (stated) and conditional (e.g., rule-
based or logic) forms. One of the present challenges around semantic eScience is 
balancing expressivity (of the semantic representation) with the complexity of de-
fining terms used by scientific experts and implementing the resulting systems. 
This balance is application dependent, which means there is no one-approach-fits-
all solution. In turn, this implies that a peer relationship is required between physi-
cal scientists and computer scientists, and between software engineers and data 
managers and data providers.

The last few years have seen significant development in Web-based (i.e., XML) 
markup languages, including stabilization and standardization. Retrospective data 
and their accompanying catalogs are now provided as Web services, and real-time and 
near-real-time data are becoming standardized as sensor Web services are emerging. 
This means that diverse datasets are now widely available. Clearinghouses for such 
service registries, including the Earth Observing System Clearinghouse (ECHO) 
and the Global Earth Observation System of Systems (GEOSS) for Earth science, 
are becoming populated, and these complement comprehensive inventory catalogs 
such as NASA’s Global Change Master Directory (GCMD). However, these registries 
remain largely limited to syntax-only representations of the services and underlying 
data. Intensive human e�ort—to match inputs, outputs, and preconditions as well as 
the meaning of methods for the services—is required to utilize them.

Project and community work to develop data models to improve lower-level in-
teroperability is also increasing. These models expose domain vocabularies, which 
is helpful for immediate domains of interest but not necessarily for crosscutting 
areas such as Earth science data records and collections. As noted in reports from 
the international level to the agency level, data from new missions, together with 
data from existing agency sources, are increasingly being used synergistically with 
other observing and modeling sources. As these data sources are made available as 
services, the need for interoperability among di�ering vocabularies, services, and 
method representations remains, and the limitations of syntax-only (or lightweight 
semantics, such as coverage) become clear. Further, as demand for information 
products (representations of the data beyond pure science use) increases, the need 
for non-specialist access to information services based on science data is rapidly 
increasing. This need is not being met in most application areas.

Those involved in extant e�orts (noted earlier, such as solar-terrestrial physics, 
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ecology, ocean and marine sciences, healthcare, and life sciences) have made the 
case for interoperability that moves away from reliance on agreements at the data-
element, or syntactic, level toward a higher scientific, or semantic, level. Results 
from such research projects have demonstrated these types of data integration ca-
pabilities in interdisciplinary and cross-instrument measurement use. Now that 
syntax-only interoperability is no longer state-of-the-art, the next logical step is to 
use the semantics to begin to enable a similar level of semantic support at the data-
as-a-service level.

Despite this increasing awareness of the importance of semantics to data- 
intensive eScience, participation from the scientific community to develop the par-
ticular requirements from specific science areas has been inadequate. Scientific re-
searchers are growing ever more dependent on the Web for their data needs, but to 
date they have not yet created a coherent agenda for exploring the emerging trends 
being enabled by semantic technologies and for interacting with Semantic Web 
researchers. To help create such an agenda, we need to develop a multi-disciplinary 
field of semantic eScience that fosters the growth and development of data-intensive 
scientific applications based on semantic methodologies and technologies, as well 
as related knowledge-based approaches. To this end, we issue a four-point call to 
action:

• Researchers in science must work with colleagues in computer science and in-
formatics to develop field-specific requirements and to implement and evaluate 
the languages, tools, and applications being developed for semantic eScience.

• Scientific and professional societies must provide the settings in which the 
needed rich interplay between science requirements and informatics capabili-
ties can be realized, and they must acknowledge the importance of this work 
in career advancement via citation-like metrics.

• Funding agencies must increasingly target the building of communities of prac-
tice, with emphasis on the types of interdisciplinary teams of researchers and 
practitioners that are needed to advance and sustain semantic eScience e�orts.

• All parties—scientists, societies, and funders—must play a role in creating 
governance around controlled vocabularies, taxonomies, and ontologies that 
can be used in scientific applications to ensure the currency and evolution of 
knowledge encoded in semantics.
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Although early e�orts are under way in all four areas, much more must be done. 
The very nature of dealing with the increasing complexity of modern science de-
mands it.
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INCE THE ADVENT OF COMPUTING, the world has experi-
enced an information “big bang”: an explosion of data. 
The amount of information being created is increasing at 
an exponential rate. Since 2003, digital information has 

accounted for 90 percent of all information produced [1], vastly 
exceeding the amount of information on paper and on film. One of 
the greatest scientific and engineering challenges of the 21st cen-
tury will be to understand and make e�ective use of this growing 
body of information. Visual data analysis, facilitated by interactive 
interfaces, enables the detection and validation of expected results 
while also enabling unexpected discoveries in science. It allows 
for the validation of new theoretical models, provides comparison 
between models and datasets, enables quantitative and qualitative 
querying, improves interpretation of data, and facilitates decision 
making. Scientists can use visual data analysis systems to explore 
“what if” scenarios, define hypotheses, and examine data using 
multiple perspectives and assumptions. They can identify con-
nections among large numbers of attributes and quantitatively as-
sess the reliability of hypotheses. In essence, visual data analysis 
is an integral part of scientific discovery and is far from a solved 
problem. Many avenues for future research remain open. In this 
article, we describe visual data analysis topics that will receive at-
tention in the next decade [2, 3].

Visualization for  
Data-Intensive Science
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VISUS: PROGRESSIVE STREAMING FOR SCALABLE DATA EXPLORATION

In recent years, computational scientists with access to the world’s largest super-
computers have successfully simulated a number of natural and man-made phe-
nomena with unprecedented levels of detail. Such simulations routinely produce 
massive amounts of data. For example, hydrodynamic instability simulations per-
formed at Lawrence Livermore National Laboratory (LLNL) in early 2002 produced 
several tens of terabytes of data, as shown in Figure 1. This data must be visualized 
and analyzed to verify and validate the underlying model, understand the phenom-
enon in detail, and develop new insights into its fundamental physics. Therefore, 
both visualization and data analysis algorithms require new, advanced designs that 
enable high performance when dealing with large amounts of data.

Data-streaming techniques and out-of-core computing specifically address the  
issues of algorithm redesign and data layout restructuring, which are neces-
sary to enable scalable processing of massive amounts of data. For example, 
space-filling curves have been used to develop a static indexing scheme called 
ViSUS,1 which produces a data layout that enables the hierarchical traversal of n- 
dimensional regular grids. Three features make this approach particularly attrac-
tive: (1) the order of the data is independent of the parameters of the physical 
hardware (a cache-oblivious approach), (2) conversion from Z-order used in clas-
sical database approaches is achieved using a simple sequence of bit-string ma-
nipulations, and (3) it does not introduce any data replication. This approach has 

FIGURE 1. 

Interactive visualization of four timesteps of the 11523 simulation of a Rayleigh-Taylor instability. 

Gravity drives the mixing of a heavy fluid on top of a lighter one. Two envelope surfaces capture 

the mixing region. 
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1 www.pascucci.org/visus
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been used for direct streaming and real-time monitoring of large-scale simulations 
during execution [4].

Figure 2 shows the ViSUS streaming infrastructure streaming LLNL simulation 
codes and visualizing them in real time on the Blue Gene/L installation at the Su-
percomputing 2004 exhibit (where Blue Gene/L was introduced as the new fastest 
supercomputer in the world). The extreme scalability of this approach allows the 
use of the same code base for a large set of applications while exploiting a wide 
range of devices, from large powerwall displays to workstations, laptop computers, 
and handheld devices such as the iPhone. 

Generalization of this class of techniques to the case of unstructured meshes re-
mains a major problem. More generally, the fast evolution and growing diversity of 
hardware pose a major challenge in the design of software infrastructures that are 
intrinsically scalable and adaptable to a variety of computing resources and running 
conditions. This poses theoretical and practical questions that future researchers in 
visualization and analysis for data-intensive applications will need to address.

VISTRAILS: PROVENANCE AND DATA EXPLORATION

Data exploration is an inherently creative process that requires the researcher to 
locate relevant data, visualize the data and discover relationships, collaborate with 

FIGURE 2. 

Scalability of the ViSUS infrastructure, which is used for visualization in a variety of applications 

(such as medical imaging, subsurface modeling, climate modeling, microscopy, satellite imaging, 

digital photography, and large-scale scientific simulations) and with a wide range of devices (from 

the iPhone to the powerwall). 
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peers while exploring solutions, and disseminate results. Given the volume of data 
and complexity of analyses that are common in scientific exploration, new tools are 
needed and existing tools should be extended to better support creativity.

The ability to systematically capture provenance is a key requirement for these 
tools. The provenance (also referred to as the audit trail, lineage, or pedigree) of a 
data product contains information about the process and data used to derive the 
data product. The importance of keeping provenance for data products is well 
recognized in the scientific community [5, 6]. It provides important documen- 
tation that is key to preserving the data, determining its quality and author- 
ship, and reproducing and validating the results. The availability of provenance 
also supports reflective reasoning, allowing users to store temporary results,  
make inferences from stored knowledge, and follow chains of reasoning back- 
ward and forward.

VisTrails2 is an open source system that we designed to support exploratory 
computational tasks such as visualization, data mining, and integration. VisTrails 
provides a comprehensive provenance management infrastructure and can be eas-
ily combined with existing tools and libraries. A new concept we introduced with 
VisTrails is the notion of provenance of workflow evolution [7]. In contrast to previous 
workflow and visualization systems, which maintain provenance only for derived 
data products, VisTrails treats the workflows (or pipelines) as first-class data items 
and keeps their provenance. VisTrails is an extensible system. Like workflow sys-
tems, it allows pipelines to be created that combine multiple libraries. In addition, 
the VisTrails provenance infrastructure can be integrated with interactive tools, 
which cannot be easily wrapped in a workflow system [8]. 

Figure 3 shows an example of an exploratory visualization using VisTrails. In 
the center, the visual trail, or vistrail, captures all modifications that users apply 
to the visualizations. Each node in the vistrail tree corresponds to a pipeline, and 
the edges between two nodes correspond to changes applied to transform the par-
ent pipeline into the child (e.g., through the addition of a module or a change to a 
parameter value). The tree-based representation allows a scientist to return to a 
previous version in an intuitive way, undo bad changes, compare workflows, and be 
reminded of the actions that led to a particular result. 

Ad hoc approaches to data exploration, which are widely used in the scientific 
community, have serious limitations. In particular, scientists and engineers need 

2 http://vistrails.sci.utah.edu
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to expend substantial e�ort managing data (e.g., scripts that encode computational 
tasks, raw data, data products, images, and notes) and need to record provenance 
so that basic questions can be answered, such as: Who created the data product 
and when? When was it modified, and by whom? What process was used to create 
it? Were two data products derived from the same raw data? This process is not 
only time consuming but error prone. The absence of provenance makes it hard 
(and sometimes impossible) to reproduce and share results, solve problems collab-
oratively, validate results with di�erent input data, understand the process used to 
solve a particular problem, and reuse the knowledge involved in the data analysis 
process. It also greatly limits the longevity of the data product. Without precise and 
su�cient information about how it was generated, its value is greatly diminished. 
Visualization systems aimed at the scientific domain need to provide a flexible 

FIGURE 3. 

An example of an exploratory visualization for studying celestial structures derived from cosmo-

logical simulations using VisTrails. Complete provenance of the exploration process is displayed as 

a “vistrail.” Detailed metadata are also stored, including free-text notes made by the scientist, the 

date and time the workflow was created or modified, optional descriptive tags, and the name of the 

person who created it.
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framework that not only enables scientists to perform complex analyses over large 
datasets but also captures detailed provenance of the analysis process. 

Figure 4 shows ParaView3 (a data analysis and visualization tool for extreme-

FIGURE 4. 

Representing provenance as a series of actions that modify a pipeline makes visualizing the di�er-

ences between two workflows possible. The di�erence between two workflows is represented in a 

meaningful way, as an aggregation of the two. This is both informative and intuitive, reducing the 

time it takes to understand how two workflows are functionally di�erent.

3 www.paraview.org
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ly large datasets) and the VisTrails Provenance Explorer transparently capturing 
a complete exploration process. The provenance capture mechanism was imple-
mented by inserting monitoring code in ParaView’s undo/redo mechanism, which 
captures changes to the underlying pipeline specification. Essentially, the action 
on top of the undo stack is added to the vistrail in the appropriate place, and undo 
is reinterpreted to mean “move up the version tree.” Note that the change-based 
representation is both simple and compact—it uses substantially less space than the 
alternative approach of storing multiple instances, or versions, of the state.

FLOW VISUALIZATION TECHNIQUES

A precise qualitative and quantitative assessment of three-dimensional transient 
flow phenomena is required in a broad range of scientific, engineering, and medical 
applications. Fortunately, in many cases the analysis of a 3-D vector field can be re-
duced to the investigation of the two-dimensional structures produced by its interac-
tion with the boundary of the object under consideration. Typical examples of such 
analysis for fluid flows include airfoils and reactors in aeronautics, engine walls and 
exhaust pipes in the automotive industry, and rotor blades in turbomachinery.

Other applications in biomedicine focus on the interplay between bioelectric 
fields and the surface of an organ. In each case, numerical simulations of increas-
ing size and sophistication are becoming instrumental in helping scientists and 
engineers reach a deeper understanding of the flow properties that are relevant to 
their task. The scientific visualization community has concentrated a significant 
part of its research e�orts on the design of visualization methods that convey local 
and global structures that occur at various spatial and temporal scales in transient 
flow simulations. In particular, emphasis has been placed on the interactivity of the 
corresponding visual analysis, which has been identified as a critical aspect of the 
e�ectiveness of the proposed algorithms.

A recent trend in flow visualization research is to use GPUs to compute image 
space methods to tackle the computational complexity of visualization techniques 
that support flows defined over curved surfaces. The key feature of this approach 
is the ability to e�ciently produce a dense texture representation of the flow with-
out explicitly computing a surface parameterization. This is achieved by projecting 
onto the image plane the flow corresponding to the visible part of the surface, al-
lowing subsequent texture generation in the image space through backward inte-
gration and iterative blending. Although the use of partial surface parameterization 
obtained by projection results in an impressive performance gain, texture patterns 
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stretching beyond the visible part of the self-occluded surface become incoherent 
due to the lack of full surface parameterization. 

To address this problem, we have introduced a novel scheme that fully supports 
the creation of high-quality texture-based visualizations of flows defined over ar-
bitrary curved surfaces [9]. Called Flow Charts, our scheme addresses the issue 
mentioned previously by segmenting the surface into overlapping patches, which 
are then individually parameterized into charts and packed in the texture domain. 
The overlapped region provides each local chart with a smooth representation of its 
direct vicinity in the flow domain as well as with the inter-chart adjacency infor-
mation, both of which are required for accurate and non-disrupted particle advec-
tion. The vector field and the patch adjacency relation are naturally represented 
as textures, enabling e�cient GPU implementation of state-of-the-art flow texture 
synthesis algorithms such as GPUFLIC and UFAC. 

Figure 5 shows the result of a simulation of a high-speed German Intercity- 
Express (ICE) train traveling at a velocity of about 250 km/h with wind blowing 
from the side at an incidence angle of 30 degrees. The wind causes vortices to form 
on the lee side of the train, creating a drop in pressure that adversely a�ects the 
train’s ability to stay on the track. These flow structures induce separation and 
attachment flow patterns on the train surface. They can be clearly seen in the pro-
posed images close to the salient edges of the geometry. 

FIGURE 5. 

Simulation of a high-speed ICE train. Left: The GPUFLIC result. Middle: Patch configurations. 

Right: Charts in texture space.
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The e�ectiveness of a physically based formulation can be seen with the  
Karman dataset (Figure 6), a numerical simulation of the classical Von Kármán 
vortex street phenomenon, in which a repeating pattern of swirling vortices 
is caused by the separation of flow passing over a circular-shaped obstacle. The  
visualization of dye advection is overlaid on dense texture visualization that shows 
instantaneous flow structures generated by GPUFLIC. The patterns generated by 
the texture-advection method are hazy due to numerical di�usion and loss of mass. 
In a level-set method, intricate structures are lost because of the binary dye/back-
ground threshold. Thanks to the physically based formulation [10], the visualiza-
tion is capable of accurately conveying detailed structures not shown using the 
traditional texture-advection method.

FUTURE DATA-INTENSIVE VISUALIZATION CHALLENGES

Fundamental advances in visualization techniques and systems must be made to 
extract meaning from large and complex datasets derived from experiments and 
from upcoming petascale and exascale simulation systems. E�ective data analysis 
and visualization tools in support of predictive simulations and scientific knowl-
edge discovery must be based on strong algorithmic and mathematical foundations 

FIGURE 6. 

Visualization of the Karman dataset using dye advection. Left column: Physically based dye 

advection. Middle column: Texture advection method. Right column: Level-set method. The time 

sequence is from top to bottom.
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and must allow scientists to reliably characterize salient features in their data. New 
mathematical methods in areas such as topology, high-order tensor analysis, and 
statistics will constitute the core of feature extraction and uncertainty modeling 
using formal definition of complex shapes, patterns, and space-time distributions. 
Topological methods are becoming increasingly important in the development of 
advanced data analysis because of their expressive power in describing complex 
shapes at multiple scales. The recent introduction of robust combinatorial tech-
niques for topological analysis has enabled the use of topology—not only for pre-
sentation of known phenomena but for the detection and quantification of new 
features of fundamental scientific interest.

Our current data-analysis capabilities lag far behind our ability to produce simu-
lation data or record observational data. New visual data analysis techniques will 
need to dynamically consider high-dimensional probability distributions of quanti-
ties of interest. This will require new contributions from mathematics, probability, 
and statistics. The scaling of simulations to ever-finer granularity and timesteps 
brings new challenges in visualizing the data that is generated. It will be crucial to 
develop smart, semi-automated visualization algorithms and methodologies to help 
filter the data or present “summary visualizations” to enable scientists to begin ana-
lyzing the immense datasets using a more top-down methodological path. The abil-
ity to fully quantify uncertainty in high-performance computational simulations 
will provide new capabilities for verification and validation of simulation codes. 
Hence, uncertainty representation and quantification, uncertainty propagation, 
and uncertainty visualization techniques need to be developed to provide scientists 
with credible and verifiable visualizations.

New approaches to visual data analysis and knowledge discovery are needed to 
enable researchers to gain insight into this emerging form of scientific data. Such 
approaches must take into account the multi-model nature of the data; provide the 
means for scientists to easily transition views from global to local model data; al-
low blending of traditional scientific visualization and information visualization; 
perform hypothesis testing, verification, and validation; and address the challenges 
posed by the use of vastly di�erent grid types and by the various elements of the 
multi-model code. Tools that leverage semantic information and hide details of 
dataset formats will be critical to enabling visualization and analysis experts to 
concentrate on the design of these approaches rather than becoming mired in the 
trivialities of particular data representations [11].
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SCI ENTI F IC I N FR ASTRUC TU R E

C
OMPUTER SYSTEMS HAVE BECOME A VITAL PART of the mod-
ern research environment, supporting all aspects of the 
research lifecycle [1]. The community uses the terms 
“eScience” and “eResearch” to highlight the important 

role of computer technology in the ways we undertake research, 
collaborate, share data and documents, submit funding applica-
tions, use devices to automatically and accurately collect data 
from experiments, deploy new generations of microscopes and 
telescopes to increase the quality of the acquired imagery, and 
archive everything along the way for provenance and long-term 
preservation [2, 3].

However, the same technological advances in data capture, 
generation, and sharing and the automation enabled by computers 
have resulted in an unprecedented explosion in data—a situation 
that applies not only to research but to every aspect of our digi-
tal lives. This data deluge, especially in the scientific domain, has 
brought new research infrastructure challenges, as highlighted by 
Jim Gray and Alex Szalay [4]. The processing, data transfer, and 
storage demands are far greater today than just a few years ago. 
It is no surprise that we are talking about the emergence of a new 
research methodology—the “fourth paradigm”—in science.
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THE FOURTH PARADIGM 

Through the use of technology and automation, we are trying to keep up with the 
challenges of the data deluge. The emergence of the Web as an application, data 
sharing, and collaboration platform has broken many barriers in the way research 
is undertaken and disseminated. The emerging cloud computing infrastructures 
(e.g., Amazon’s1) and the new generation of data-intensive computing platforms (e.g., 
DISC,2 Google’s MapReduce,3 Hadoop,4 and Dryad5) are geared toward managing 
and processing large amounts of data. Amazon is even o�ering a “sneakernet”6-like 
service7 to address the problem of transferring large amounts of data into its cloud. 
Companies such as Google, Yahoo!, and Microsoft are demonstrating that it is pos-
sible to aggregate huge amounts of data from around the Web and store, manage, 
and index it and then build engaging user experiences around it.

The primary focus of the current technologies addresses only the first part of the 
data-information-knowledge-wisdom spectrum.8 Computers have become e�cient 
at storing, managing, indexing, and computing (research) data. They are even able 
to represent and process some of the information hidden behind the symbols used 
to encode that data. Nevertheless, we are still a long way from having computer 
systems that can automatically discover, acquire, organize, analyze, correlate, in-
terpret, infer, and reason over information that’s on the Internet, that’s hidden on 
researchers’ hard drives, or that exists only in our brains. We do not yet have an 
infrastructure capable of managing and processing knowledge on a global scale, 
one that can act as the foundation for a generation of knowledge-driven services 
and applications.

So, if the fourth paradigm is about data and information, it is not unreasonable 
to foresee a future, not far away, where we begin thinking about the challenges of 
managing knowledge and machine-based understanding on a very large scale. We 
researchers will probably be the first to face this challenge.

1 http://aws.amazon.com
2 www.pdl.cmu.edu/DISC 
3 http://labs.google.com/papers/mapreduce.html 
4 http://hadoop.apache.org 
5 http://research.microsoft.com/en-us/projects/dryad 
6 http://en.wikipedia.org/wiki/Sneakernet
7 http://aws.amazon.com/importexport
8 http://en.wikipedia.org/wiki/DIKW
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KNOWLEDGE-ORIENTED RESEARCH INFRASTRUCTURES

The work by the Semantic Web9 community has resulted in a number of technolo-
gies to help with data modeling, information representation, and the interexchange 
of semantics, always within the context of a particular application domain. Given 
the formal foundations of some of these technologies (e.g., the Web Ontology Lan-
guage, or OWL), it has been possible to introduce reasoning capabilities, at least for 
some specific bounded domains (e.g., BioMoby10). 

Moving forward, the work of the Semantic Web community will continue to 
play a significant role in the interoperable exchange of information and knowledge. 
More importantly, as representation technologies such as RDF (Resource Descrip-
tion Framework), OWL, and microformats become widely accepted, the focus will 
transition to the computational aspects of semantic understanding and knowledge. 
The challenge we will face is the automation of the aggregation and combination of 
huge amounts of semantically rich information and, very crucially, the processes by 
which that information is generated and analyzed. Today, we must start thinking 
about the technologies we’ll need in order to semantically describe, analyze, and 
combine the information and the algorithms used to produce it or consume it, and 
to do so on a global scale. If today’s cloud computing services focus on o�ering a 
scalable platform for computing, tomorrow’s services will be built around the man-
agement of knowledge and reasoning over it.

We are already seeing some attempts to infer knowledge based on the world’s 
information. Services such as OpenCyc,11 Freebase,12 Powerset,13 True Knowl-
edge,14 and Wolfram|Alpha15 demonstrate how facts can be recorded in such a way 
that they can be combined and made available as answers to a user’s questions. 
Wolfram|Alpha, in particular, has made use of domain experts to encode the com-
putational aspects of processing the data and information that they have aggregat-
ed from around the Web and annotated. It demonstrates how a consumer-oriented 
service can be built on top of a computational infrastructure in combination with 
natural language processing. It is likely that many similar services will emerge in 
the near future, initially targeting specialized technical/academic communities 

9 http://en.wikipedia.org/wiki/Semantic_Web 
10 www.biomoby.org  
11 www.opencyc.org 
12 www.freebase.com 
13 www.powerset.com  
14 www.trueknowledge.com
15 www.wolframalpha.com
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and later expanding to all domains of interest. As with other service-oriented ap-
plications on the Web, the incorporation of computational knowledge services for 
scientists will be an important aspect of any research cyberinfrastructure. 

The myGrid16 and myExperiment17 projects demonstrate the benefits of captur-
ing and then sharing, in a semantically rich way, the definitions of workflows in sci-
ence. Such workflows e�ectively document the process by which research-related 
information is produced and the steps taken toward reaching (or unsuccessfully 
trying to reach) a conclusion. Imagine the possibilities of expanding this idea to 
all aspects of our interaction with information. Today, for example, when someone 
enters “GDP of Brazil vs. Japan” as a query in Wolfram|Alpha, the engine knows 
how to interpret the input and produce a comparison graph of the GDP (gross do-
mestic product) of the two countries. If the query is “Ford,” the engine makes an as-
sumption about its interpretation but also provides alternatives (e.g., “person” if the 
intended meaning might be Henry Ford or Gerald Rudolph Ford, Jr., vs. “business 
entity” if the intended meaning might be the Ford Motor Company). The context 
within which specific information is to be interpreted is important in determining 
what computational work will be performed. The same ideas could be implemented 
as part of a global research infrastructure, where Wolfram|Alpha could be one of the 
many available interoperable services that work together to support researchers.

The research community would indeed benefit greatly from a global infrastruc-
ture whose focus is on knowledge sharing and in which all applications and ser-
vices are built with knowledge exchange and processing at their core. This is not 
to suggest that there should be yet another attempt to unify and centrally manage 
all knowledge representation. Scientists will always be better at representing and 
reasoning over their own domain. However, a research infrastructure should ac-
commodate all domains and provide the necessary glue for information to be cross-
linked, correlated, and discovered in a semantically rich manner.

Such an infrastructure must provide the right set of services to not only allow 
access to semantically rich information but also expose computational services that 
operate on the world’s knowledge. Researchers would be able to ask questions re-
lated to their domain of expertise, and a sea of knowledge would immediately be ac-
cessible to them. The processes of acquiring and sharing knowledge would be auto-
mated, and associated tools (e.g., a word processor that records an author’s intended 

16 www.mygrid.org.uk  
17 www.myexperiment.org
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use of a term18) would make it even easier to analyze, do research, and publish 
results. Natural language processing will aid in the interaction with the knowledge-
based ecosystem of information, tools, and services, as shown in Figure 1.

 Note that this proposed research infrastructure would not attempt to realize 
artificial intelligence (AI)—despite the fact that many of the technologies from the 
Semantic Computing19 community (from data modeling and knowledge represen-
tation to natural language processing and reasoning) have emerged from work in 

18 http://ucsdbiolit.codeplex.com
19 A distinction is assumed between the general approach of computing based on semantic technologies (machine 
learning, neural networks, ontologies, inference, etc.) and the Semantic Web as described in [5] and [6], which re-
fers to a specific ecosystem of technologies, such as RDF and OWL. The Semantic Web technologies are considered 
to be just some of the many tools at our disposal when building semantics-based and knowledge-based solutions.
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the AI field over the decades. The primary focus of the proposed cyberinfrastruc-
ture is automated knowledge management rather than intelligence.

MASHING UP KNOWLEDGE

Interdisciplinary research has gained a lot of momentum, especially as the result 
of eScience and cyberinfrastructure activities. Technology has played an enabling 
role by primarily supporting collaboration, sharing of information, and data man-
agement within the context of a research project. In the future, researchers should 
not have to think about how their questions, assumptions, theories, experiments, 
or data correlate with existing knowledge across disciplines in one scientific do-
main or even across domains.

The process of combining information from existing scientific knowledge gener-
ated by di�erent researchers at di�erent times and in di�erent locations, including 
the specific methodologies that were followed to produce conclusions, should be 
automatic and implicitly supported by the research infrastructure.20 For example, 
it should be trivial for a young Ph.D. researcher in chemistry to pose work items 
to a computer as natural language statements like “Locate 100,000 molecules that 
are similar to the known HIV protease inhibitors, then compute their electronic 
properties and dock them into viral escape mutants.” This illustrates the use of 
natural language processing and also the need for researchers to agree on vocabu-
laries for capturing knowledge—something already occurring in many scientific 
domains through the use of Semantic Web technologies. Furthermore, the example 
illustrates the need to be able to capture the computational aspects of how existing 
knowledge is processed and how new facts are generated.

The research community has already started working on bringing the existing 
building blocks together to realize a future in which machines can further assist 
researchers in managing and processing knowledge. As an example, the oreChem21   
project aims to automate the process by which chemistry-related knowledge cap-
tured in publications is extracted and represented in machine-processable formats, 
such as the Chemistry Markup Language (CML). Through the use of chemistry- 
related ontologies, researchers will be able to declaratively describe the computa-
tions they would like to perform over the body of machine-processable knowledge.

20 Assuming that open access to research information has become a reality.  
21 http://research.microsoft.com/orechem
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While projects such as oreChem do not attempt to realize a large-scale infra-
structure for computable scientific knowledge, they do represent the first investiga-
tions toward such a vision. Going forward, the boundaries of domains will become 
less rigid so that cross-discipline knowledge (computational) mashups can become 
an important aspect of any semantics-enabled, knowledge-driven research infra-
structure. The ability to cross-reference and cross-correlate information, facts, as-
sumptions, and methodologies from di�erent research domains on a global scale 
will be a great enabler for our future researchers.

A CALL TO ACTION

Today, platforms that o�er implementations of the MapReduce computational pat-
tern (e.g., Hadoop and Dryad) make it easy for developers to perform data-intensive 
computations at scale. In the future, it will be very important to develop equivalent 
platforms and patterns to support knowledge-related actions such as aggregation, 
acquisition, inference, reasoning, and information interpretation. We should aim 
to provide scientists with a cyberinfrastructure on top of which it should be easy  
to build a large-scale application capable of exploiting the world’s computer- 
represented scientific knowledge.

The interoperable exchange of information, whether representing facts or pro-
cesses, is vital to successfully sharing knowledge. Communities need to come to-
gether—and many of them are already doing so—in order to agree on vocabularies 
for capturing facts and information specific to their domains of expertise. Research 
infrastructures of the future will create the necessary links across such vocabular-
ies so that information can be interlinked as part of a global network of facts and 
processes, as per Tim Berners-Lee’s vision for the Semantic Web. 

The future research infrastructures, which will be knowledge driven, will look 
more like Vannevar Bush’s memex than today’s data-driven computing machines. 
As Bush said, “Wholly new forms of encyclopedias will appear, ready made with a 
mesh of associative trails running through them, ready to be dropped into the mem- 
ex and there amplified.” [7] We are not far from that vision today.
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SCH O L AR LY COM MU N ICATIO N

J
IM GRAY’S PASSION FOR eSCIENCE WAS ADMIRED BY MANY, but 

few were aware of his deep desire to apply computing to 

increase the productivity of scholars and accelerate the pace 

of discovery and innovation for scientific researchers. Sev-

eral authors in Part 4 of this book knew and worked with 

Jim. All of the authors not only share his vision but are actively 

endeavoring to make it a reality.

Lynch introduces how the Fourth Paradigm applies to the field 

of scholarly communication. His article is organized around a cen-

tral question: what are the e�ects of data-intensive science on the 

scientific record? He goes on to ask: what has become of the schol-

arly record—an ever-changing, ever-evolving set of data, publica-

tions, and related supporting materials of staggering volume? In 

this new world, not only does the individual scientist benefit (as 

the end user), but through data-intensive computing we can expect 

more cross-domain ventures that accelerate discovery, highlight 

new connections, and suggest unforeseen links that will speed sci-

ence forward. 

Ginsparg delves into the nuts and bolts of the rapid transfor-

mation of scholarly publications. He references key examples of 

cutting-edge work and promising breakthroughs across multiple 

disciplines. In the process, he notes the siloed nature of the sci-

ences and encourages us to learn from one another and adopt best 

practices across discipline boundaries. He also provides a helpful 

LEE DIRKS |  Microsoft Research



SCHOLARLY COMMUNICATION176

roadmap that outlines an ideal route to a vision he shared with Jim Gray of “com-

munity-driven scientific knowledge curation and creation.”

Van de Sompel and Lagoze stress that academics have yet to realize the full 

potential benefits of technology for scholarly communication. The authors make 

a crucial point that the hardest issues are social or dependent on humans, which 

means they cannot be easily resolved by new applications and additional silicon. 

They call for the development of open standards and interoperability protocols to 

help mitigate this situation. 

The issues of sharing scientific data at an international level are addressed by 

Fitzgerald, Fitzgerald, and Pappalardo. Scientists sometimes encounter the greatest 

constraints at the national or regional level, which prevent them from participating 

in the global scientific endeavor. Citing a specific example, the authors appeal for 

coordination beyond the scientific community and recommend that policymakers 

work to avoid introducing impediments into the system.

Wilbanks puts a fine point on a common theme throughout this section: in 

many ways, scientists are often unwittingly responsible for holding back science. 

Even though, as professionals, we envision, instrument, and execute on innovative 

scientific endeavors, we do not always actually adopt or fully realize the systems we 

have put in place. As an amalgamated population of forward-thinking researchers, 

we often live behind the computational curve. He notes that it is crucial for con-

nectivity to span all scientific fields and for multidisciplinary work and cooperation 

across domains, in turn, to fuel revolutionary advancements. 

Hannay closes the section by highlighting the interconnectedness of our net-

worked world despite lingering social barriers between various scientific fields. He 

notes that science’s gradual shift from a cottage enterprise to a large-scale industry 

is part of the evolution of how we conduct science. He provides intriguing examples 

from around the world of research that can point a way to the future of Web-based 

communication, and he declares that we are living in an awkward age immediately 

prior to the advent of semantic reality and interconnectedness.

Research is evolving from small, autonomous scholarly guilds to larger, more en-

lightened, and more interconnected communities of scientists who are increasingly 

interdependent upon one another to move forward. In undertaking this great en-

deavor together—as Jim envisioned—we will see science, via computation, advance 

further and faster than ever before.
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SCH O L AR LY COM MU N ICATIO N

I
N THE LATTER PART OF HIS CAREER, Jim Gray led the thinking of 

a group of scholars who saw the emergence of what they char-

acterized as a fourth paradigm of scientific research. In this 

essay, I will focus narrowly on the implications of this fourth 

paradigm, which I will refer to as “data-intensive science” [1], for 

the nature of scientific communication and the scientific record.

Gray’s paradigm joins the classic pair of opposed but mutually 

supporting scientific paradigms: theory and experimentation. The 

third paradigm—that of large-scale computational simulation—

emerged through the work of John von Neumann and others in 

the mid-20th century. In a certain sense, Gray’s fourth paradigm 

provides an integrating framework that allows the first three to in-

teract and reinforce each other, much like the traditional scientific 

cycle in which theory o�ered predictions that could be experimen-

tally tested, and these experiments identified phenomena that re-

quired theoretical explanation. The contributions of simulation to 

scientific progress, while enormous, fell short of their initial prom-

ise (for example, in long-term weather prediction) in part because 

of the extreme sensitivity of complex systems to initial conditions 

and chaotic behaviors [2]; this is one example in which simulation, 

theory, and experiment in the context of massive amounts of data 

must all work together. 

To understand the e�ects of data-intensive science on the  
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scientific record,1 it is first necessary to review the nature of that record, what it 

is intended to accomplish, and where it has and hasn’t succeeded in meeting the 

needs of the various paradigms and the evolution of science. 

To a first approximation, we can think of the modern scientific record, dating 

from the 17th century and closely tied to the rise of both science and scholarly  

societies, as comprising an aggregation of independent scientific journals and con-

ference presentations and proceedings, plus the underlying data and other evidence 

to support the published findings. This record is stored in a highly distributed and, 

in some parts, highly redundant fashion across a range of libraries, archives, and 

museums around the globe. The data and evidentiary components have expanded 

over time: written observational records too voluminous to appear in journals have 

been stored in scientific archives, and physical evidence held in natural history mu-

seums is now joined by a vast array of digital datasets, databases, and data archives 

of various types, as well as pre-digital observational records (such as photographs) 

and new collections of biological materials. While scientific monographs and some 

specialized materials such as patents have long been a limited but important part of 

the record, “gray literature,” notably technical reports and preprints, have assumed 

greater importance in the 20th century. In recent years, we have seen an explosion 

of Web sites, blogs, video clips, and other materials (generally quite apart from the 

traditional publishing process) become a significant part of this record, although 

the boundaries of these materials and various problems related to their persistent 

identification, archiving and continued accessibility, vetting, and similar properties 

have been highly controversial. 

The scientific record is intended to do a number of things. First and foremost, 

it is intended to communicate findings, hypotheses, and insights from one person 

to another, across space and across time. It is intended to organize: to establish 

common nomenclature and terminology, to connect related work, and to develop 

disciplines. It is a vehicle for building up communities and for a form of large-scale  

collaboration across space and time. It is a means of documenting, managing, and 

often, ultimately, resolving controversies and disagreements. It can be used to estab-

lish precedence for ideas and results, and also (through citation and bibliometrics) 

to o�er evidence for the quality and significance of scientific work. The scientific 

record is intended to be trustworthy, in several senses. In the small and in the near 

1 For brevity and clearest focus, I’ve limited the discussion here to science. But just as it’s clear that eScience is only 
a special case of eResearch and data-intensive science is a form of data-intensive scholarship, many of the points 
here should apply, with some adaptation, to the humanities and the social sciences.
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term, pre-publication peer review, editorial and authorial reputation, and transpar-

ency in reporting results are intended to ensure confidence in the correctness of 

individual articles. In the broader sense, across spans of time and aggregated col-

lections of materials, findings are validated and errors or deliberate falsifications, 

particularly important ones, are usually identified and corrected by the community 

through post-publication discussion or formal review, reproduction, reuse and ex-

tension of results, and the placement of an individual publication’s results in the 

broader context of scientific knowledge. 

A very central idea that is related simultaneously to trustworthiness and to the 

ideas of collaboration and building upon the work of others is that of reproducibility 

of scientific results. While this is an ideal that has often been given only reluctant 

practical support by some scientists who are intent on protecting what they view as 

proprietary methods, data, or research leads, it is nonetheless what fundamentally 

distinguishes science from practices such as alchemy. The scientific record—not 

necessarily a single, self-contained article but a collection of literature and data 

within the aggregate record, or an article and all of its implicit and explicit “links” 

in today’s terminology—should make enough data available, and contain enough 

information about methods and practices, that another scientist could reproduce 

the same results starting from the same data. Indeed, he or she should be able to do 

additional work that helps to place the initial results in better context, to perturb 

assumptions and analytic methods, and to see where these changes lead. It is worth 

noting that the ideal of reproducibility for sophisticated experimental science often 

becomes problematic over long periods of time: reproducing experimental work 

may require a considerable amount of tacit knowledge that was part of common 

scientific practice and the technology base at the time the experiment was first 

carried out but that may be challenging and time consuming to reproduce many 

decades later. 

How well did the scientific record work during the long dominance of the first 

two scientific paradigms? In general, pretty well, I believe. The record (and the 

institutions that created, supported, and curated it) had to evolve in response to 

two major challenges. The first was mainly in regard to experimental science: as 

experiments became more complicated, sophisticated, and technologically medi-

ated, and as data became more extensive and less comprehensively reproduced as 

part of scientific publications, the linkages between evidence and writings became 

more complex and elusive. In particular, as extended computation (especially me-

chanically or electromechanically assisted computation carried out by groups of 
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human “computers”) was applied to data, di�culties in reproducibility began to 

extend far beyond access to data and understanding of methods. The a�ordances of 

a scholarly record based on print and physical artifacts o�ered little relief here; the 

best that could be done was to develop organized systems of data archives and set 

some expectations about data deposit or obligations to make data available. 

The second evolutionary challenge was the sheer scale of the scientific enter-

prise. The literature became huge; disciplines and sub-specialties branched and 

branched again. Tools and practices had to be developed to help manage this 

scale—specialized journals, citations, indices, review journals and bibliographies, 

managed vocabularies, and taxonomies in various areas of science. Yet again, given 

the a�ordances of the print-based system, all of these innovations seemed to be 

too little too late, and scale remained a persistent and continually overwhelming 

problem for scientists. 

The introduction of the third paradigm in the middle of the 20th century, along 

with the simultaneous growth in computational technologies supporting experi-

mental and theoretical sciences, intensified the pressure on the traditional scien-

tific record. Not only did the underlying data continue to grow, but the output of 

simulations and experiments became large and complex datasets that could only 

be summarized, rather than fully documented, in traditional publications. Worst 

of all, software-based computation for simulation and other purposes became an 

integral part of the question of experimental reproducibility.2 It’s important to rec-

ognize how long it really took to reach the point when computer hardware was rea-

sonably trustworthy in carrying out large-scale floating-point computations.3 (Even 

today, we are very limited in our ability to produce provably correct large-scale 

software; we rely on the slow growth of confidence through long and widespread 

use, preferably in a range of di�erent hardware and platform environments. Docu-

menting complex software configurations as part of the provenance of the products 

of data-intensive science remains a key research challenge in data curation and 

scientific workflow structuring.) The better news was that computational technolo-

gies began to help with the management of the enormous and growing body of sci-

2 Actually, the ability to comprehend and reproduce extensive computations became a real issue for theoretical  
science as well; the 1976 proof of the four-color theorem in graph theory involved exhaustive computer analysis  
of a very large number of special cases and caused considerable controversy within the mathematical community 
about whether such a proof was really fully valid. A more recent example would be the proposed proof of the  
Kepler Conjecture by Thomas Hales.
3 The IEEE floating-point standard dates back to only 1985. I can personally recall incidents with major mainframe 
computers back in the 1970s and 1980s in which shipped products had to be revised in the field after significant 
errors were uncovered in their hardware and/or microcode that could produce incorrect computational results.
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entific literature as many of the organizational tools migrated to online databases 

and information retrieval systems starting in the 1970s and became ubiquitous and 

broadly a�ordable by the mid-1990s. 

With the arrival of the data-intensive computing paradigm, the scientific record 

and the supporting system of communication and publication have reached a Janus 

moment where we are looking both backward and forward. It has become clear 

that data and software must be integral parts of the record—a set of first-class ob-

jects that require systematic management and curation in their own right. We see 

this reflected in the emphasis on data curation and reuse in the various cyberin-

frastructure and eScience programs [3-6]. These datasets and other materials will 

be interwoven in a complex variety of ways [7] with scientific papers, now finally 

authored in digital form and beginning to make serious structural use of the new 

a�ordances of the digital environment, and at long last bidding a slow farewell to 

the initial model of electronic scientific journals, which applied digital storage and 

delivery technologies to articles that were essentially images of printed pages. We 

will also see tools such as video recordings used to supplement traditional descrip-

tions of experimental methods, and the inclusion of various kinds of two- or three-

dimensional visualizations. At some level, one can imagine this as the perfecting of 

the traditional scientific paper genre, with the capabilities of modern information 

technology meeting the needs of the four paradigms. The paper becomes a window 

for a scientist to not only actively understand a scientific result, but also reproduce 

it or extend it. 

However, two other developments are taking hold with unprecedented scale and 

scope. The first is the development of reference data collections, often independent 

of specific scientific research even though a great deal of research depends on these 

collections and many papers make reference to data in these collections. Many 

of these are created by robotic instrumentation (synoptic sky surveys, large-scale  

sequencing of microbial populations, combinatorial chemistry); some also intro-

duce human editorial and curatorial work to represent the best current state of 

knowledge about complex systems (the annotated genome of a given species, a  

collection of signaling pathways, etc.) and may cite results in the traditional  

scientific literature to justify or support assertions in the database. These refer-

ence collections are an integral part of the scientific record, of course, although 

we are still struggling with how best to manage issues such as versioning and the 

fixity of these resources. These data collections are used in very di�erent ways than 

traditional papers; most often, they are computed upon rather than simply read. 
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As these reference collections are updated, the updates may trigger new computa-

tions, the results of which may lead to new or reassessed scientific results. More 

and more, at least some kinds of contributions to these reference data collections 

will be recognized as significant scholarly contributions in their own right. One 

might think of this as scientists learning to more comprehensively understand the 

range of opportunities and idioms for contributing to the scholarly record in an era 

of data and computationally intensive science. 

Finally, the scientific record itself is becoming a major object of ongoing com-

putation—a central reference data collection—at least to the extent to which copy-

right and technical barriers can be overcome to permit this [8]. Data and text min-

ing, inferencing, integration among structured data collections and papers written 

in human languages (perhaps augmented with semantic markup to help computa-

tionally identify references to particular kinds of objects—such as genes, stars, spe-

cies, chemical compounds, or places, along with their associated properties—with 

a higher degree of accuracy than would be possible with heuristic textual analysis 

algorithms), information retrieval, filtering, and clustering all help to address the 

problems of the ever-growing scale of the scientific record and the ever-increasing 

scarcity of human attention. They also help exploit the new technologies of data-

intensive science to more e�ectively extract results and hypotheses from the rec-

ord. We will see very interesting developments, I believe, as researchers use these 

tools to view the “public” record of science through the lens of various collections of 

proprietary knowledge (unreleased results, information held by industry for com-

mercial advantage, or even government intelligence).

In the era of data-intensive computing, we are seeing people engage the scien-

tific record in two ways. In the small, one or a few articles at a time, human beings 

read papers as they have for centuries, but with computational tools that allow 

them to move beyond the paper to engage the underlying science and data much 

more e�ectively and to move from paper to paper, or between paper and reference 

data collection, with great ease, precision, and flexibility. Further, these encounters 

will integrate with collaborative environments and with tools for annotation, au-

thoring, simulation, and analysis. But now we are also seeing scholars engage the 

scientific record in the large, as a corpus of text and a collection of interlinked data 

resources, through the use of a wide range of new computational tools. This en-

gagement will identify papers of interest; suggest hypotheses that might be tested 

through combinations of theoretical, experimental, and simulation investigations; 

or at times directly produce new data or results. As the balance of engagement 
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in the large and in the small shifts (today, it is still predominantly in the small, I 

believe), we will see this change many aspects of scientific culture and scientific 

publishing practice, probably including views on open access to the scientific litera-

ture, the application of various kinds of markup and the choice of authoring tools 

for scientific papers, and disciplinary norms about data curation, data sharing, and 

overall data lifecycle. Further, I believe that in the practice of data-intensive sci-

ence, one set of data will, over time, figure more prominently, persistently, and 

ubiquitously in scientific work: the scientific record itself. 
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I
FIRST MET JIM GRAY WHEN HE WAS THE MODERATOR of the data-

base subject area of arXiv, part of the expansion into computer 

science that arXiv initiated in 1998. Soon afterward, he was 

instrumental in facilitating the full-text harvest of arXiv by 

large-scale search engines, beginning with Google and followed 

by Microsoft and Yahoo!—previous robotic crawls of arXiv being 

overly restricted in the 1990s due to their flooding of the servers 

with requests. Jim understood the increasing role of text as a form 

of data, and the need for text to be ingestible and treatable like 

any other computable object. In 2005, he was involved in both 

arXiv and PubMed Central and expressed to me his mystification 

that while the two repositories served similar roles, they seemed 

to operate in parallel universes, not connecting in any substantive 

way. His vision was of a world of scholarly resources—text, data-

bases, and any other associated materials—that were seamlessly 

navigable and interoperable.

Many of the key open questions regarding the technological 

transformation of scholarly infrastructure were raised well over 

a decade ago, including the long-term financial model for imple-

menting quality control, the architecture of the article of the  

future, and how all of the pieces will merge into an interoperable 

whole. While answers have remained elusive, there is reason to  

expect significant near-term progress on at least the latter two 
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questions. In [1], I described how the range of possibilities for large and comprehen-

sive full-text aggregations were just starting to be probed and o�ered the PubMed 

Central database as an exemplar of a forward-looking approach. Its full-text XML 

documents are parsed to permit multiple “related material views” for a given ar-

ticle, with links to genomic, nucleotide, inheritance, gene expression, protein, 

chemical, taxonomic, and other related databases. This methodology is now begin-

ning to spread, along with more general forms of semantic enhancement: facilitat-

ing automated discovery and reasoning, providing links to related documents and 

data, providing access to actionable data within articles, and permitting integration 

of data between articles.

A recent example of semantic enhancement by a publisher is the Royal Society 

of Chemistry’s journal Molecular BioSystems.1 Its enhanced HTML highlights terms 

in the text that are listed in chemical terminology databases and links them to 

the external database entries. Similarly, it highlights and links terms from gene, 

sequence, and cell ontologies. This textual markup is implemented by editors with 

subject-matter expertise, assisted by automated text-mining tools. An example of a 

fully automated tool for annotation of scientific terms is EMBL Germany’s Reflect,2  

which operates as an external service on any Web page or as a browser plug-in. It 

tags gene, protein, and small molecule names, and the tagged items are linked to 

the relevant sequence, structure, or interaction databases.

In a further thought experiment, Shotton et al. [2] marked up an article by hand 

using o�-the-shelf technologies to demonstrate a variety of possible semantic en-

hancements—essentially a minimal set that would likely become commonplace in 

the near future. In addition to semantic markup of textual terms and live linkages 

of DOIs and other URLs where feasible, they implemented a reorderable reference 

list, a document summary including document statistics, a tag cloud of technical 

terms, tag trees of marked-up named entities grouped by semantic type, citation 

analysis (within each article), a “Citations in Context” tooltip indicating the type of 

citation (background, intellectual precedent, refutation, and so on), downloadable 

spreadsheets for tables and figures, interactive figures, and data fusion with results 

from other research articles and with contextual online maps. (See Figure 1.) They 

emphasize the future importance of domain-specific structured digital abstracts—

namely, machine-readable metadata that summarize key data and conclusions of 

articles, including a list of named entities in the article with precise database iden-

1 www.rsc.org/Publishing/Journals/mb
2 http://reflect.ws, winner of the recent Elsevier Grand Challenge (www.elseviergrandchallenge.com).
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tifiers, a list of the main results described via controlled vocabulary, and a descrip-

tion, using standard evidence codes, of the methodology employed. The use of con-

trolled vocabularies in this structured summary will enable not only new metrics 

for article relatedness but also new forms of automated reasoning.

Currently, recognition of named entities (e.g., gene names) in unstructured text 

is relatively straightforward, but reliable extraction of relationships expressed in 

conventional text is significantly more di�cult. The next generation of automated 

knowledge extraction and processing tools, operating on structured abstracts and 

semantically enhanced text, will bring us that much closer to direct searching and 

browsing of “knowledge”—i.e., via synthesized concepts and their relationships. 

Further enhancements will include citation network analysis, automated image 

analysis, more generalized data mashups, and prekeyed or configurable algorithms 

that provide new types of semantic lenses through which to view the text, data, and 

images. All of these features can also be federated into hub environments where 

FIGURE 1.

A screenshot of “Exemplar Semantic Enhancements” from http://imageweb.zoo.ox.ac.uk/pub/

2008/plospaper/latest, as described in [2]. Di�erent semantic classes of terms are linked and can 

be optionally highlighted using the buttons in the top row. Hovering the mouse pointer over an 

in-text reference citation displays a box containing key supporting statements or figures from the 

cited document.

http://imageweb.zoo.ox.ac.uk/pub/2008/plospaper/latest
http://imageweb.zoo.ox.ac.uk/pub/2008/plospaper/latest
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users can annotate articles and related information, discover hidden associations, 

and share new results.

In the near term, semantic text enhancement will be performed by a combina-

tion of semi-supervised tools used by authors,3 tools used by editors, and automated 

tools applied to both new and archival publications. Many legacy authors will be 

unwilling to spend time enhancing their documents, especially if much additional 

e�ort is required. Certainly many publishers will provide the markup as a value-

added component of the publication process—i.e., as part of their financial model. 

The beneficial e�ects of this enhancement, visible to all readers, will create pres-

sure in the open sector for equally powerful tools, perhaps after only a small time 

lag as each new feature is developed. It is more natural to incorporate the semantics 

from the outset rather than trying to layer it on afterwards—and in either case, 

PDF will not provide a convenient transport format. With the correct document 

format, tools, and incentives, authors may ultimately provide much of the struc-

tural and semantic metadata during the course of article writing, with marginal 

additional e�ort.

In the longer term, there remains the question of where the semantic markup 

should be hosted, just as with other data published to the Web: Should publishers 

host datasets relevant to their own publications, or should there be independent  

SourceForge-like data repositories? And how should the markup be stored: as triple-

stores internal to the document or as external attachments specifying relationships 

and dependencies? As knowledge progresses, there will be new linkages, new 

things to annotate, and existing annotations that may lead to changed resources or 

data. Should it be possible to peel these back and view the document in the context 

of any previous time frame?

To avoid excessive one-o� customization, the interactions between documents 

and data and the fusion of di�erent data sources will require a generic, interopera-

ble semantic layer over the databases. Such structures will also make the data more 

accessible to generic search engines, via keyword searches and natural-language 

queries. Having the data accessible in this way should encourage more database 

maintainers to provide local semantic interfaces, thereby increasing integration 

into the global data network and amplifying the community benefits of open access 

to text and data. Tim Berners-Lee4 has actively promoted the notion of linked data 

3 For example, Pablo Fernicola’s “Article Authoring Add-in for Microsoft O�ce Word 2007,” 
www.microsoft.com/downloads/details.aspx?familyid=09c55527-0759-4d6d-ae02-51e90131997e.
4 www.w3.org/DesignIssues/LinkedData.html
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for all such purposes, not just by academics or for large and commonly used data-

bases. Every user makes a small contribution to the overall structure by linking an 

object to a URI, which can be dereferenced to find links to more useful data. Such 

an articulated semantic structure facilitates simpler algorithms acting on World 

Wide Web text and data and is more feasible in the near term than building a layer 

of complex artificial intelligence to interpret free-form human ideas using some 

probabilistic approach.

New forms of interaction with the data layer are also embedded in discussions 

of Wolfram|Alpha,5 a new resource (made publicly available only after this writing) 

that uses substantial personnel resources to curate many thousands of data feeds into 

a format suitable for manipulation by a Mathematica algorithmic and visualization 

engine. Supplemented by a front end that interprets semi-natural-language queries, 

this system and its likely competition will dramatically raise user expectations for 

new forms of synthesized information that is available directly via generic search en-

gines. These applications will develop that much more quickly over data repositories 

whose semantic layer is curated locally rather than requiring centralized curation.

Much of the recent progress in integrating data with text via semantic enhance-

ment, as described above, has been with application to the life sciences literature. 

In principle, text mining and natural-language processing tools that recognize  

relevant entities and automatically link to domain-specific ontologies have natural 

analogs in all fields—for example, astronomical objects and experiments in astron-

omy; mathematical terms and theorems in mathematics; physical objects, termi-

nology, and experiments in physics; and chemical structures and experiments in 

chemistry. While data-intensive science is certainly the norm in astrophysics, the 

pieces of the data network for astrophysics do not currently mesh nearly as well as 

in the life sciences. Most paradoxically, although the physics community was ahead 

in many of these digital developments going back to the early 1990s (including the 

development of the World Wide Web itself at CERN, a high-energy physics lab) and 

in providing open access to its literature, there is currently no coordinated e�ort 

to develop semantic structures for most areas of physics. One obstacle is that in 

many distributed fields of physics, such as condensed-matter physics, there are no 

dominant laboratories with prominent associated libraries to establish and main-

tain global resources.

5 www.wolframalpha.com, based on a private demonstration on April 23, 2009, and a public presentation on  
April 28, 2009, http://cyber.law.harvard.edu/events/2009/04/wolfram.
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In the biological and life sciences, it’s also possible that text will decrease in 

value over the next decade compared with the semantic services that direct re-

searchers to actionable data, help interpret information, and extract knowledge [3]. 

In most scientific fields, however, the result of research is more than an impartial 

set of database entries. The scientific article will retain its essential role of using 

carefully selected data to persuade readers of the truth of its author’s hypotheses. 

Database entries will serve a parallel role of providing access to complete and im-

partial datasets, both for further exploration and for automated data mining. There 

are also important di�erences among areas of science in the role played by data. As 

one prominent physicist-turned-biologist commented to me recently, “There are no 

fundamental organizing principles in biology”6—suggesting that some fields may 

always be intrinsically more data driven than theory driven. Science plays di�er-

ent roles within our popular and political culture and hence benefits from di�er-

ing levels of support. In genomics, for example, we saw the early development of  

GenBank, its adoption as a government-run resource, and the consequent growth 

of related databases within the National Library of Medicine, all heavily used.

It has also been suggested that massive data mining, and its attendant ability to 

tease out and predict trends, could ultimately replace more traditional components 

of the scientific method [4]. This viewpoint, however, confuses the goals of funda-

mental theory and phenomenological modeling. Science aims to produce far more 

than a simple mechanical prediction of correlations; instead, its goal is to employ 

those regularities extracted from data to construct a unified means of understand-

ing them a priori. Predictivity of a theory is thus primarily crucial as a validator of its 

conceptual content, although it can, of course, have great practical utility as well.

So we should neither overestimate the role of data nor underestimate that of  

text, and all scientists should track the semantic enhancement of text and related 

data-driven developments in the biological and life sciences with great interest—

and perhaps with envy. Before too long, some archetypal problem might emerge 

in the physical sciences7 that formerly required many weeks of complex query tra-

versals of databases, manually maintained browser tabs, impromptu data analysis 

scripts, and all the rest of the things we do on a daily basis. For example, a future 

researcher with seamless semantic access to a federation of databases—including 

band structure properties and calculations, nuclear magnetic resonance (NMR) 

6 Wally Gilbert, dinner on April 27, 2009. His comment may have been intended in a more limited context than 
implied here.
7 As emphasized to me by John Wilbanks in a discussion on May 1, 2009.
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and X-ray scattering measurements, and mechanical and other properties—might 

instantly find a small modification to a recently fabricated material to make it the 

most e�cient photovoltaic ever conceived. Possibilities for such progress in finding 

new sources of energy or forestalling long-term climate change may already be go-

ing unnoticed in today’s unintegrated text/database world. If classes of such prob-

lems emerge and an immediate solution can be found via automated tools acting di-

rectly on a semantic layer that provides the communication channels between open 

text and databases, then other research communities will be bootstrapped into 

the future, benefiting from the new possibilities for community-driven scientific 

knowledge curation and creation embodied in the Fourth Paradigm.
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HIS SENTENCE, WHICH WE USED for e�ect in numerous con-

ference presentations and eventually fully articulated 

in a 2004 paper [1], is still by and large true. Although 

scholarly publishers have adopted new technologies that 

have made access to scholarly materials significantly easier (such 

as the Web and PDF documents), these changes have not realized 

the full potential of the new digital and networked reality. In par-

ticular, they do not address three shortcomings of the prevailing 

scholarly communication system: 

• Systemic issues, particularly the unbreakable tie in the publi-
cation system between the act of making a scholarly claim and 

the peer-review process

• Economic strains that are manifested in the “serials crisis,” 
which places tremendous burdens on libraries

• Technical aspects that present barriers to an interoperable 
information infrastructure

We share these concerns about the state of scholarly commu-

nication with many others worldwide. Almost a decade ago, we  

     “The current scholarly communication system     

is nothing but a scanned copy of the paper-based system.”
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collaborated with members of that global community to begin the Open Archives 

Initiative (OAI), which had a significant impact on the direction and pace of the 

Open Access movement. The OAI Protocol for Metadata Harvesting (OAI-PMH) 

and the concurrent OpenURL e�ort reflected our initial focus on the process-related 

aspects of scholarly communication. Other members of the community focused on 

the scholarly content itself. For example, Peter Murray-Rust addressed the flatten-

ing of structured, machine-actionable information (such as tabular data and data 

points underlying graphs) into plain text suited only for human consumption [2]. 

A decade after our initial work in this area, we are delighted to observe the rapid 

changes that are occurring in various dimensions of scholarly communication. We 

will touch upon three areas of change that we feel are significant enough to indi-

cate a fundamental shift.

AUGMENTING THE SCHOLARLY RECORD WITH A MACHINE-ACTIONABLE SUBSTRATE 

One motivation for machine readability is the flood of literature that makes it im-

possible for researchers to keep up with relevant scholarship [3]. Agents that read 

and filter on scholars’ behalf can o�er a solution to this problem. The need for such 

a mechanism is heightened by the fact that researchers increasingly need to absorb 

and process literature across disciplines, connecting the dots and combining exist-

ing disparate findings to arrive at new insights. This is a major issue in life sciences 

fields that are characterized by many interconnected disciplines (such as genetics, 

molecular biology, biochemistry, pharmaceutical chemistry, and organic chemis-

try). For example, the lack of uniformly structured data across related biomedical 

domains is cited as a significant barrier to translational research—the transfer of 

discoveries in basic biological and medical research to application in patient care 

at the clinical level [4]. 

Recently, we have witnessed a significant push toward a machine-actionable rep-

resentation of the knowledge embedded in the life sciences literature, which sup-

ports reasoning across disciplinary boundaries. Advanced text analysis techniques 

are being used to extract entities and entity relations from the existing literature, 

and shared ontologies have been introduced to achieve uniform knowledge repre-

sentation. This approach has already led to new discoveries based on information 

embedded in literature that was previously readable only by humans. Other disci-

plines have engaged in similar activities, and some initiatives are allowing scholars 

to start publishing entity and entity-relation information at the time of an article’s 

publication, to avoid the post-processing that is current practice [5].
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The launch of the international Concept Web Alliance, whose aim is to provide 

a global interdisciplinary platform to discuss, design, and potentially certify solutions 

for the interoperability and usability of massive, dispersed, and complex data, indicates 

that the trend toward a machine-actionable substrate is being taken seriously by 

both academia and the scholarly information industry. The establishment of a 

machine-actionable representation of scholarly knowledge can help scholars and 

learners deal with information abundance. It can allow for new discoveries to be 

made by reasoning over a body of established knowledge, and it can increase the 

speed of discovery by helping scholars to avoid redundant research and by revealing 

promising avenues for new research. 

INTEGRATION OF DATASETS INTO THE SCHOLARLY RECORD

Even though data have always been a crucial ingredient in scientific explorations, 

until recently they were not treated as first-class objects in scholarly communi-

cation, as were the research papers that reported on findings extracted from the 

data. This is rapidly and fundamentally changing. The scientific community is ac-

tively discussing and exploring implementation of all core functions of scholarly  

communication—registration, certification, awareness, archiving, and rewarding [1]—

for datasets. 

For example, the Data Pyramid proposed in [6] clearly indicates how attention 

to trust (certification) and digital preservation (archiving) for datasets becomes vital 

as their application reaches beyond personal use and into the realms of disciplinary 

communities and society at large. The international e�orts aimed at enabling the 

sharing of research data [7] reflect recognition of the need for an infrastructure to 

facilitate discovery of shared datasets (awareness). And e�orts aimed at defining 

a standard citation format for datasets [8] take for granted that they are primary 

scholarly artifacts. These e�orts are motivated in part by the belief that researchers 

should gain credit (be rewarded) for the datasets they have compiled and shared. 

Less than a decade or so ago, these functions of scholarly communication largely 

applied only to the scholarly literature. 

EXPOSURE OF PROCESS AND ITS INTEGRATION INTO THE SCHOLARLY RECORD

Certain aspects of the scholarly communication process have been exposed for 

a long time. Citations made in publications indicate the use of prior knowledge 

to generate new insights. In this manner, the scholarly citation graph reveals as-

pects of scholarly dynamics and is thus actively used as a research focus to detect  
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connections between disciplines and for trend analysis and prediction. However, 

interpretation of the scholarly citation graph is often error prone due to imperfect 

manual or automatic citation extraction approaches and challenging author dis-

ambiguation issues. The coverage of citation graph data is also partial (top-ranked 

journals only or specific disciplines only), and unfortunately the most representa-

tive graph (Thomson Reuters) is proprietary. 

The citation graph problem is indicative of a broader problem: there is no unam-

biguous, recorded, and visible trace of the evolution of a scholarly asset through the 

system, nor is there information about the nature of the evolution. The problem is 

that relationships, which are known at the moment a scholarly asset goes through a 

step in a value chain, are lost the moment immediately after, in many cases forever. 

The actual dynamics of scholarship—the interaction/connection between assets, 

authors, readers, quality assessments about assets, scholarly research areas, and so 

on—are extremely hard to recover after the fact. Therefore, it is necessary to estab-

lish a layer underlying scholarly communication—a grid for scholarly communica-

tion that records and exposes such dynamics, relationships, and interactions.

A solution to this problem is emerging through a number of innovative initiatives 

that make it possible to publish information about the scholarly process in machine- 

readable form to the Web, preferably at the moment that events of the above- 

described type happen and hence, when all required information is available. 

Specific to the citation graph case, the Web-oriented citation approach explored 

by the CLADDIER project demonstrates a mechanism for encoding an accurate, 

crawlable citation graph on the Web. Several initiatives are aimed at introducing 

author identifiers [9] that could help establish a less ambiguous citation graph. A 

graph augmented with citation semantics, such as that proposed by the Citation 

Typing Ontology e�ort, would also reveal why an artifact is being cited—an impor-

tant bit of information that has remained elusive until now [10].

Moving beyond citation data, other e�orts to expose the scholarly process in-

clude projects that aim to share scholarly usage data (the process of paying atten-

tion to scholarly information), such as COUNTER, MESUR, and the bX scholarly 

recommender service. Collectively, these projects illustrate the broad applicability 

of this type of process-related information for the purpose of collection develop-

ment, computation of novel metrics to assess the impact of scholarly artifacts [11], 

analysis of current research trends [12], and recommender systems. As a result of 

this work, several projects in Europe are pursuing technical solutions for sharing 

detailed usage data on the Web. 
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Another example of process capture is the successful myExperiment e�ort, 

which provides a social portal for sharing computational workflow descriptions. 

Similar e�orts in the chemistry community allow the publication and sharing of 

laboratory notebook information on the Web [13]. 

We find these e�orts particularly inspiring because they allow us to imagine 

a next logical step, which would be the sharing of provenance data. Provenance 

data reveal the history of inputs and processing steps involved in the execution 

of workflows and are a critical aspect of scientific information, both to establish 

trust in the veracity of the data and to support the reproducibility demanded of all 

experimental science. Recent work in the computer science community [14] has 

yielded systems capable of maintaining detailed provenance information within 

a single environment. We feel that provenance information that describes and in-

terlinks workflows, datasets, and processes is a new kind of process-type meta-

data that has a key role in network-based and data-intensive science—similar in 

importance to descriptive metadata, citation data, and usage data in article-based 

scholarship. Hence, it seems logical that eventually provenance information will 

be exposed so it can be leveraged by a variety of tools for discovery, analysis, and 

impact assessment of some core products of new scholarship: workflows, datasets, 

and processes.

LOOKING FORWARD

As described above, the scholarly record will emerge as the result of the inter-

twining of traditional and new scholarly artifacts, the development of a machine- 

actionable scholarly knowledge substrate, and the exposure of meta-information 

about the scholarly process. These facilities will achieve their full potential only  

if they are grounded in an appropriate and interoperable cyberinfrastructure that  

is based on the Web and its associated standards. The Web will not only contribute 

to the sustainability of the scholarly process, but it will also integrate scholarly  

debate seamlessly with the broader human debate that takes place on the Web. 

We have recently seen an increased Web orientation in the development of  

approaches to scholarly interoperability. This includes the exploration or active use 

of uniform resource identifiers (URIs), more specifically HTTP URIs, for the iden-

tification of scholarly artifacts, concepts, researchers, and institutions, as well as 

the use of the XML, RDF, RDFS, OWL, RSS, and Atom formats to support the 

representation and communication of scholarly information and knowledge. These 

foundational technologies are increasingly being augmented with community-



SCHOLARLY COMMUNICATION198

specific and community-driven yet compliant specializations. Overall, a picture is 

beginning to emerge in which all constituents of the new scholarly record (both 

human and machine-readable) are published on the Web, in a manner that com-

plies with general Web standards and community-specific specializations of those 

standards. Once published on the Web, they can be accessed, gathered, and mined 

by both human and machine agents. 

Our own work on the OAI Object Reuse & Exchange (OAI-ORE) specifications 

[15], which define an approach to identifying and describing eScience assets that 

are aggregations of multiple resources, is an illustration of this emerging Web-

centric cyberinfrastructure approach. It builds on core Web technologies and also 

adheres to the guidelines of the Linked Data e�ort, which is rapidly emerging as the 

most widespread manifestation of years of Semantic Web work. 

When describing this trend toward the use of common Web approaches for 

scholarly purposes, we are reminded of Jim Gray, who insisted throughout the 

preliminary discussions leading to the OAI-ORE work that any solution should  

leverage common feed technologies—RSS or Atom. Jim was right in indicating that 

many special-purpose components of the cyberinfrastructure need to be developed 

to meet the requirements of scholarly communication, and in recognizing that  

others are readily available as a result of general Web standardization activities.

As we look into the short-term future, we are reminded of one of Jim Gray’s 

well-known quotes: “May all your problems be technical.” With this ironic com-

ment, Jim was indicating that behind even the most di�cult technical problems 

lies an even more fundamental problem: assuring the integration of the cyberin-

frastructure into human workflows and practices. Without such integration, even 

the best cyberinfrastructure will fail to gain widespread use. Fortunately, there 

are indications that we have learned this lesson from experience through the years  

with other large-scale infrastructure projects such as the Digital Libraries Initia-

tives. The Sustainable Digital Data Preservation and Access Network Partners  

(DataNet) program funded by the O�ce of Cyberinfrastructure at the U.S. National  

Science Foundation (NSF) has recently awarded funding for two 10-year projects  

that focus on cyberinfrastructure as a sociotechnical problem—one that requires 

both knowledge of technology and understanding of how the technology integrates 

into the communities of use. We believe that this wider focus will be one of the 

most important factors in changing the nature of scholarship and the ways that it is  

communicated over the coming decade.

We are confident that the combination of the continued evolution of the 
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Web, new technologies that leverage its core principles, and an understanding of 

the way people use technology will serve as the foundation of a fundamentally  

rethought scholarly communication system that will be friendly to both humans and  

machines. With the emergence of that system, we will happily refrain from using 

our once-beloved scanned copy metaphor.
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DVANCES IN INFORMATION AND COMMUNICATION technol-

ogies have brought about an information revolution, 

leading to fundamental changes in the way that infor-

mation is collected or generated, shared, and distrib-

uted [1, 2]. The importance of establishing systems in which re-

search findings can be readily made available to and used by other 

researchers has long been recognized in international scientific 

collaborations. Acknowledgment of the need for data access and 

sharing is most evident in the framework documents underpin-

ning many of the large-scale observational projects that generate 

vast amounts of data about the Earth, water, the marine environ-

ment, and the atmosphere. 

For more than 50 years, the foundational documents of major 

collaborative scientific projects have typically included as a key 

principle a commitment to ensuring that research outputs will 

be openly and freely available. While these agreements are often 

entered into at the international level (whether between govern-

ments or their representatives in international organizations), in-

dividual researchers and research projects typically operate locally, 

within a national jurisdiction. If the data access principles adopted 

by international scientific collaborations are to be e�ectively im-

plemented, they must be supported by the national policies and 

laws in place in the countries in which participating researchers 
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are operating. Failure to establish a bridge between, on the one hand, data access 

principles enunciated at the international level and, on the other hand, the policies 

and laws at the national level means that the benefits flowing from data sharing are 

at risk of being thwarted by domestic objectives [3]. 

The need for coherence among data sharing principles adopted by inter- 

national science collaborations and the policy and legal frameworks in place in  

the national jurisdictions where researchers operate is highlighted by the Global 

Earth Observation System of Systems1 (GEOSS) initiated in 2005 by the Group  

on Earth Observations (GEO) [1, p. 125]. GEOSS seeks to connect the producers of 

environmental data and decision-support tools with the end users of these products, 

with the aim of enhancing the relevance of Earth observations to global issues. The 

end result will be a global public infrastructure that generates comprehensive, near-

real-time environmental data, information, and analyses for a wide range of users. 

The vision for GEOSS is as a “system of systems,” built on existing observa-

tional systems and incorporating new systems for Earth observation and model-

ing that are o�ered as GEOSS components. This emerging public infrastructure 

links a diverse and growing array of instruments and systems for monitoring and 

forecasting changes in the global environment. This system of systems supports 

policymakers, resource managers, science researchers, and many other experts 

and decision makers.

INTERNATIONAL POLICIES

One of GEO’s earliest actions was to explicitly acknowledge the importance of data 

sharing in achieving its vision and to agree on a strategic set of data sharing prin-

ciples for GEOSS [4]: 

• There will be full and open exchange of data, metadata and products shared 
within GEOSS, recognizing relevant international instruments, and national 

policies and legislation.

• All shared data, metadata, and products will be made available with minimum 
time delay and at minimum cost.

• All shared data, metadata, and products free of charge or no more than cost of 
reproduction will be encouraged for research and education.

1 www.earthobservations.org/index.html
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These principles, though significant, are not strictly new. A number of other 

international policy statements promote public availability and open exchange of 

data, including the Bermuda Principles (1996) and the Berlin Declaration on Open 

Access to Knowledge in the Sciences and Humanities (2003) [5]. 

The Bermuda Principles were developed by scientists involved in the Interna-

tional Human Genome Sequencing Consortium and their funding agencies and 

represented an agreement among researchers about the need to establish a basis 

for the rapid and open sharing of prepublication data on gene sequences [6]. The 

Bermuda Principles required automatic release of sequence assemblies larger than 

1 KB and immediate publication of finished annotated sequences. They sought to 

make the entire gene sequence freely available to the public for research and devel-

opment in order to maximize benefits to society. 

The Berlin Declaration had the goal of supporting the open access paradigm 

via the Internet and promoting the Internet as a fundamental instrument for a 

global scientific knowledge base. It defined “open access contribution” to include 

scientific research results, raw data, and metadata, and it required open access con-

tributions to be deposited in an online repository and made available under a “free, 

irrevocable, worldwide, right of access to, and a license to copy, use, distribute, 

transmit and display the work publicly and to make and distribute derivative works, 

in any digital medium for any responsible purpose, subject to proper attribution of 

authorship.” [7] 

In fact, the GEOSS principles map closely to the data sharing principles espoused 

in the Antarctic Treaty, signed almost 50 years earlier in Washington, D.C., in 1959, 

which has received sustained attention in Australia, particularly in relation to ma-

rine data research.2 Article III of the Antarctic Treaty states: 

1. In order to promote international cooperation in scientific investigation in  

Antarctica, as provided for in Article II of the present Treaty, the Contract-

ing Parties agree that, to the greatest extent feasible and practicable: … 

(c) scientific observations and results from Antarctica shall be exchanged and 

made freely available. [8]

The data sharing principles stated in the Antarctic Treaty, the GEOSS 10-Year 

Implementation Plan, the Bermuda Principles, and the Berlin Declaration, among 

2 Other international treaties with such provisions include the UN Convention on the Law of the Sea, the Ozone 
Protocol, the Convention on Biodiversity, and the Aarhus Convention.
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others, are widely acknowledged to be not only beneficial but crucial to information 

flows and the availability of data. However, problems arise because, in the absence 

of a clear policy and legislative framework at the national level, other considerations 

can operate to frustrate the e�ective implementation of the data sharing objectives 

that are central to international science collaborations [5, 9]. Experience has shown 

that without an unambiguous statement of data access policy and a supporting leg-

islative framework, good intentions are too easily frustrated in practice. 

NATIONAL FRAMEWORKS

The key strategy in ensuring that international policies requiring “full and open 

exchange of data” are e�ectively acted on in practice lies in the development of a 

coherent policy and legal framework at a national level. (See Figure 1.) The national 

framework must support the international principles for data access and sharing 

but also be clear and practical enough for researchers to follow at a research proj-

ect level. While national frameworks for data sharing are well established in the 

United States and Europe, this is not the case in many other jurisdictions (includ-

ing Australia). Kim Finney of the Antarctic Data Centre has drawn attention to 

the di�culties in implementing Article III(1)(c) of the Antarctic Treaty in the ab-

sence of established data access policies 

in signatories to the treaty. She points 

out that being able to achieve the goal 

set out in the treaty requires a genuine 

willingness on the part of scientists to 

make their data available to other re-

searchers. This willingness is lacking, 

despite the treaty’s clear intention that 

Antarctic science data be “exchanged 

and made freely available.” Finney ar-

gues that there is a strong need for a 

data access policy in Antarctic member 

states, because without such a policy, 

the level of conformance with the aspi-

rations set out in the Antarctic Treaty is 

patchy at best [10] [1, pp. 77–78].

In the U.S., the O�ce of Manage-

ment and Budget (OMB) Circular A-130 

International 
Policies

e.g., GEOSS data- 
sharing principles, 
Antarctic Treaty, 

Bermuda Principles 

International 
Legal 

Instruments
e.g., OECD 

Recommendations

National 
Frameworks

Data 
Management 

Plans

FIGURE 1.

A regulatory framework for data-sharing  

arrangements.
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establishes the data access and reuse policy framework for the executive branch de-

partments and agencies of the U.S. federal government [11] [1, pp. 174–175]. As well 

as acknowledging that government information is a valuable public resource and 

that the nation stands to benefit from the dissemination of government informa-

tion, OMB Circular A-130 requires that improperly restrictive practices be avoided. 

Additionally, Circular A-16, entitled “Coordination of Geographic Information and 

Related Spatial Data Activities,” provides that U.S. federal agencies have a respon-

sibility to “[c]ollect, maintain, disseminate, and preserve spatial information such 

that the resulting data, information, or products can be readily shared with other 

federal agencies and non-federal users, and promote data integration between all 

sources.” [12] [1, pp. 181–183] 

In Europe, the policy framework consists of the broad-reaching Directive on the 

Re-use of Public Sector Information (2003) (the PSI Directive) [13], as well as the 

specific directive establishing an Infrastructure for Spatial Information (2007) (the 

INSPIRE Directive) [14] and the Directive on Public Access to Environmental In-

formation (2003) [15], which obliges public authorities to provide timely access to 

environmental information. 

In negotiating the PSI Directive, the European Parliament and Council of the 

European Union recognized that the public sector is the largest producer of infor-

mation in Europe and that substantial social and economic benefits stood to be 

gained if this information were available for access and reuse. However, European 

content firms engaging in the aggregation of information resources into value- 

added information products would be at a competitive disadvantage if they did not 

have clear policies or uniform practices to guide them in relation to access to and 

reuse of public sector information. The lack of harmonization of policies and prac-

tices regarding public sector information was seen as a barrier to the development 

of digital products and services based on information obtained from di�erent coun-

tries [1, pp. 137–138]. In response, the PSI Directive establishes a framework of 

rules governing the reuse of existing documents held by the public sector bodies of 

EU member states. Furthermore, the INSPIRE Directive establishes EU policy and 

principles relating to spatial data held by or on behalf of public authorities and to the 

use of spatial data by public authorities in the performance of their public tasks.

Unlike the U.S. and Europe, however, Australia does not currently have a na-

tional policy framework addressing access to and use of data. In particular, the 

current situation with respect to public sector information (PSI) access and reuse 

is fragmented and lacks a coherent policy foundation, whether viewed in terms of 
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interactions within or among the di�erent levels of government at the local, state/

territory, and federal levels or between the government, academic, and private  

sectors.3 In 2008, the “Venturous Australia” report of the Review of the National 

Innovation System recommended (in Recommendation 7.7) that Australia estab-

lish a National Information Strategy to optimize the flow of information in the 

Australian economy [16]. However, just how a National Information Strategy could 

be established remains unclear. 

A starting point for countries like Australia that have yet to establish national 

frameworks for the sharing of research outputs has been provided by the Organisa-

tion for Economic Co-operation and Development (OECD). At the Seoul Ministe-

rial Meeting on the Future of the Internet Economy in 2008, the OECD Ministers 

endorsed statements of principle on access to research data produced as a result of 

public funding and on access to public sector information. These documents es-

tablish principles to guide availability of research data, including openness, trans-

parency, legal conformity, interoperability, quality, e�ciency, accountability, and 

sustainability, similar to the principles expressed in the GEOSS statement. The 

openness principle in the OECD Council’s Recommendation on Access to Research 

Data from Public Funding (2006) states:

A) Openness 

Openness means access on equal terms for the international research com- 

munity at the lowest possible cost, preferably at no more than the marginal 

cost of dissemination. Open access to research data from public funding 

should be easy, timely, user-friendly and preferably Internet-based. [17]

OECD Recommendations are OECD legal instruments that describe standards 

or objectives that OECD member countries (such as Australia) are expected to im-

plement, although they are not legally binding. However, through long-standing 

practice of member countries, a Recommendation is considered to have great moral 

force [2, p. 11]. In Australia, the Prime Minister’s Science, Engineering and Innova-

tion Council (PMSEIC) Data for Science Working Group, in its 2006 report “From 

Data to Wisdom: Pathways to Successful Data Management for Australian Science,” 

recommended that OECD guidelines be taken into account in the development of a 

strategic framework for management of research data in Australia [18].

The development of a national framework for data management based on  

3 There has been little policy advancement in Australia on the matter of access to government information since 
the O�ce of Spatial Data Management’s Policy on Spatial Data Access and Pricing in 2001.
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principles promoting data access and sharing (such as the OECD Recommendation) 

would help to incorporate international policy statements and protocols such as the 

Antarctic Treaty and the GEOSS Principles into domestic law. This would provide 

stronger guidance (if not a requirement) for researchers to consider and, where 

practicable, incorporate these data sharing principles into their research project 

data management plans [5, 9]. 

CONCLUSION

Establishing data sharing arrangements for complex, international eResearch col-

laborations requires appropriate national policy and legal frameworks and data 

management practices. While international science collaborations typically ex-

press a commitment to data access and sharing, in the absence of a supporting 

national policy and legal framework and good data management practices, such 

objectives are at risk of not being implemented. Many complications are inherent 

in eResearch science collaborations, particularly where they involve researchers 

operating in distributed locations. Technology has rendered physical boundaries 

irrelevant, but legal jurisdictional boundaries remain. If research data is to flow 

as intended, it will be necessary to ensure that national policies and laws support 

the data access systems that have long been regarded as central to international 

science collaborations. In developing policies, laws, and practices at the national 

level, guidance can be found in the OECD’s statements on access to publicly funded 

research data, the U.S. OMB’s Circular A-130, and various EU directives.

It is crucial that countries take responsibility for promoting policy goals for ac-

cess and reuse of data at all three levels in order to facilitate information flows. It 

is only by having the proper frameworks in place that we can be sure to keep afloat 

in the data deluge. 
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TEND TO GET NERVOUS WHEN I HEAR TALK OF PARADIGM SHIFTS. 

The term itself has been debased through inaccurate popular 

use—even turning into a joke on The Simpsons—but its origi-

nal role in Thomas Kuhn’s Structure of Scientific Revolutions [1] 

is worth revisiting as we examine the idea of a Fourth Paradigm 

and its impact on scholarly communication [2].

Kuhn’s model describes a world of science in which a set of ideas 

becomes dominant and entrenched, creating a worldview (the in-

famous “paradigm”) that itself gains strength and power. This set 

of ideas becomes powerful because it represents a plausible ex-

planation for observed phenomena. Thus we get the luminiferous 

aether, the miasma theory of infectious disease, and the idea that 

the sun revolves around the Earth. The set of ideas, the worldview, 

the paradigm, gains strength through incrementalism. Each indi-

vidual scientist tends to work in a manner that adds, bit by bit, to 

the paradigm. The individual who can make a big addition to the 

worldview gains authority, research contracts, awards and prizes, 

and seats on boards of directors. 

All involved gain an investment in the set of ideas that goes 

beyond the ideas themselves. Industries and governments (and 

the people who work in them) build businesses and policies that 

depend on the worldview. This adds a layer of defense—an im-

mune system of sorts—that protects the worldview against attack. 

I Have Seen the  
Paradigm Shift, and It Is Us
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Naysayers are marginalized. New ideas lie fallow, unfunded, and unsta�ed. Fear, 

uncertainty, and doubt color perceptions of new ideas, methods, models, and ap-

proaches that challenge the established paradigm. 

Yet worldviews fall and paradigms shatter when they stop explaining the ob-

served phenomena or when an experiment conclusively proves the paradigm wrong. 

The aether was conclusively disproven after hundreds of years of incrementalism. 

As was miasma, as was geocentricism. The time for a shift comes when the old 

ways of explaining things simply can no longer match the new realities.

This strikes me as being the idea behind Jim Gray’s argument about the fourth 

data paradigm [3] and the framing of the “data deluge”—that our capacity to mea-

sure, store, analyze, and visualize data is the new reality to which science must 

adapt. Data is at the heart of this new paradigm, and it sits alongside empiricism, 

theory, and simulation, which together form the continuum we think of as the 

modern scientific method. 

But I come to celebrate the first three paradigms, not to bury them. Empiricism 

and theory got us a long way, from a view of the world that had the sun revolving 

around the Earth to quantum physics. Simulation is at the core of so much con-

temporary science, from anthropological re-creations of ancient Rome to weather 

prediction. The accuracy of simulations and predictions represents the white-hot 

center of policy debates about economics and climate change. And it’s vital to note 

that empiricism and theory are essential to a good simulation. I can encode a lovely 

simulation on my screen in which there is no theory of gravity, but if I attempt to 

drive my car o� a cli�, empiricism is going to bite my backside on the way down. 

Thus, this is actually not a paradigm shift in the Kuhnian sense. Data is not 

sweeping away the old reality. Data is simply placing a set of burdens on the meth-

odologies and social habits we use to deal with and communicate our empiricism 

and our theory, on the robustness and complexity of our simulations, and on the 

way we expose, transmit, and integrate our knowledge. 

What needs to change is our paradigm of ourselves as scientists—not the old 

paradigms of discovery. When we started to realize that stu� was made of atoms, 

that we were made of genes, that the Earth revolved around the sun, those were 

paradigm shifts in the Kuhnian sense. What we’re talking about here cuts across 

those classes of shift. Data-intensive science, if done right, will mean more para-

digm shifts of scientific theory, happening faster, because we can rapidly assess our 

worldview against the “objective reality” we can so powerfully measure. 

The data deluge strategy might be better informed by networks than by Kuhnian 
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dynamics. Networks have a capacity to scale that is useful in our management of 

the data overload—they can convert massive amounts of information into a good 

thing so the information is no longer a “problem” that must be “solved.” And there 

is a lesson in the way networks are designed that can help us in exploring the data 

deluge: if we are to manage the data deluge, we need an open strategy that follows 

the network experience.

By this I mean the “end-to-end,” layer-by-layer, designed information technol-

ogy and communications networks that are composed of no more than a stack of 

protocols. The Internet and the Web have been built from documents that propose 

standard methods for transferring information, describing how to display that in-

formation, and assigning names to computers and documents. Because we all agree 

to use those methods, because those methods can be used by anyone without ask-

ing for permission, the network emerges and scales.

In this view, data is not a “fourth paradigm” but a “fourth network layer” (atop 

Ethernet, TCP/IP, and the Web [4]) that interoperates, top to bottom, with the other 

layers. I believe this view captures the nature of the scientific method a little better 

than the concept of the paradigm shift, with its destructive nature. Data is the re-

sult of incremental advances in empiricism-serving technology. It informs theory, 

it drives and validates simulations, and it is served best by two-way, standard com-

munication with those layers of the knowledge network.

To state it baldly, the paradigm that needs destruction is the idea that we as 

scientists exist as un-networked individuals. Now, if this metaphor is acceptable, it 

holds two lessons for us as we contemplate network design for scholarly communi-

cation at the data-intensive layer.

The first lesson, captured perfectly by David Isenberg, is that the Internet  

“derives its disruptive quality from a very special property: IT IS PUBLIC.” [5] It’s 

public in several ways. The standard specifications that define the Internet are 

themselves open and public—free to read, download, copy, and make derivatives 

from. They’re open in a copyright sense. Those specifications can be adopted by 

anyone who wants to make improvements and extensions, but their value comes 

from the fact that a lot of people use them, not because of private improvements. 

As Isenberg notes, this allows a set of “miracles” to emerge: the network grows  

without a master, lets us innovate without asking for permission, and grows and 

discovers markets (think e-mail, instant messaging, social networks, and even por-

nography). Changing the public nature of the Internet threatens its very existence. 

This is not intuitive to those of us raised in a world of rivalrous economic goods and 
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traditional economic theory. It makes no sense that Wikipedia exists, let alone that 

it kicks Encyclopedia Britannica to the curb.

As Galileo might have said, however, “And yet it moves.” [6] Wikipedia does ex-

ist, and the network—a consensual hallucination defined by a set of dry requests 

for comments—carries Skype video calls for free between me and my family in 

Brazil. It is an engine for innovation the likes of which we have never seen. And 

from the network, we can draw the lesson that new layers of the network related 

to data should encode the idea of publicness—of standards that allow us to work 

together openly and transfer the network e�ects we know so well from the giant 

collection of documents that is the Web to the giant collections of data we can so 

easily compile.

The second lesson comes from another open world, that of open source soft-

ware. Software built on the model of distributed, small contributions joined to-

gether through technical and legal standardization was another theoretical impos-

sibility subjected to a true Kuhnian paradigm shift by the reality of the Internet. 

The ubiquitous ability to communicate, combined with the low cost of acquiring 

programming tools and the visionary application of public copyright licenses, had 

the strangest impact: it created software that worked, and scaled. The key lesson 

is that we can harness the power of millions of minds if we standardize, and the 

products can in many cases outperform those built in traditional, centralized en-

vironments. (A good example is the Apache Web server, which has been the most 

popular Web server software on the Internet since 1996.)

Creative Commons applied these lessons to licensing and created a set of standard 

licenses for cultural works. These have in turn exploded to cover hundreds of mil-

lions of digital objects on the network. Open licensing turns out to have remarkable 

benefits—it allows for the kind of interoperability (and near-zero transaction costs) 

that we know from technical networks to occur on a massive scale for rights associ-

ated with digital objects such as songs and photographs—and scientific information.

Incentives are the confounding part of all of this to traditional economic theory. 

Again, this is a place where a Kuhnian paradigm shift is indeed happening—the 

old theory could not contemplate a world in which people did work for free, but the 

new reality proves that it happens. Eben Moglen provocatively wrote in 1999 that 

collaboration on the Internet is akin to electrical induction—an emergent property 

of the network unrelated to the incentives of any individual contributor. We should 

not ask why there is an incentive for collaborative software development any more 

than we ask why electrons move in a current across a wire. We should instead ask, 
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what is the resistance in the wire, or in the network, to the emergent property? 

Moglen’s Metaphorical Corollaries to Faraday’s Law and Ohm’s Law1 still resonate 

10 years on. 

There is a lot of resistance in the network to a data-intensive layer. And it’s actu-

ally not based nearly as much on intellectual property issues as it was on software 

(although the field strength of copyright in resisting the transformation of peer-

reviewed literature is very strong and is actively preventing the “Web revolution” in 

that realm of scholarly communication). With data, problems are caused by copy-

right,2 but resistance also comes from many other sources: it’s hard to annotate 

and reuse data, it’s hard to send massive data files around, it’s hard to combine 

data that was not generated for recombination, and on and on. Thus, to those who 

didn’t generate it, data has a very short half-life. This resistance originates with the 

paradigm of ourselves as individual scientists, not the paradigms of empiricism, 

theory, or simulation.

I therefore propose that our focus be Moglen-inspired and that we resist the re-

sistance. We need investment in annotation and curation, in capacity to store and 

render data, and in shared visualization and analytics. We need open standards for 

sharing and exposing data. We need the RFCs (Requests for Comments) of the data 

layer. And, above all, we need to teach scientists and scholars to work in this new 

layer of data. As long as we practice a micro-specialization guild culture of training, 

the social structure of science will continue to provide significant resistance to the 

data layer. 

We need to think of ourselves as connected nodes that need to pass data, test 

theories, access each others’ simulations. And given that every graph about data 

collection capacity is screaming up exponentially, we need scale in our capacity to 

use that data, and we need it badly. We need to network ourselves and our knowl-

edge. Nothing else we have designed to date as humans has proven to scale as fast 

as an open network.

Like all metaphors, the network one has its limits. Networking knowledge is 

harder than networking documents. Emergent collaboration in software is easier 

1 “Moglen’s Metaphorical Corollary to Faraday’s Law says that if you wrap the Internet around every person on the 
planet and spin the planet, software flows in the network. It’s an emergent property of connected human minds 
that they create things for one another’s pleasure and to conquer their uneasy sense of being too alone. The only 
question to ask is, what’s the resistance of the network? Moglen’s Metaphorical Corollary to Ohm’s Law states that 
the resistance of the network is directly proportional to the field strength of the ‘intellectual property’ system.” [7]
2 Data receives wildly di�erent copyright treatment across the world, which causes confusion and makes interna-
tional licensing schemes complex and di�cult. [8] 
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because the tools are cheap and ubiquitous—that’s not the case in high-throughput 

physics or molecular biology. Some of the things that make the Web great don’t 

work so well for science and scholarship because the concept of agreement-based 

ratings find you only the stu� that represents a boring consensus and not the inter-

esting stu� along the edges.

But there is precious little in terms of alternatives to the network approach. The 

data deluge is real, and it’s not slowing down. We can measure more, faster, than 

ever before. We can do so in massively parallel fashion. And our brain capacity is 

pretty well frozen at one brain per person. We have to work together if we’re go-

ing to keep up, and networks are the best collaborative tool we’ve ever built as a 

culture. And that means we need to make our data approach just as open as the 

protocols that connect computers and documents. It’s the only way we can get the 

level of scale that we need.

There is another nice benefit to this open approach. We have our worldviews and 

paradigms, our opinions and our arguments. It’s our nature to think we’re right. 

But we might be wrong, and we are most definitely not completely right. Encoding 

our current worldviews in an open system would mean that those who come along 

later can build on top of us, just as we build on empiricism and theory and simu-

lation, whereas encoding ourselves in a closed system would mean that what we 

build will have to be destroyed to be improved. An open data layer to the network 

would be a fine gift to the scientists who follow us into the next paradigm—a grace 

note of good design that will be remembered as a building block for the next evolu-

tion of the scientific method.
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NE OF THE MOST ARTICULATE OF WEB COMMENTATORS, 

Clay Shirky, put it best. During his “Lessons from 

Napster” talk at the O’Reilly Peer-to-Peer Confer-

ence in 2001, he invited his audience to consider the 

infamous prediction of IBM’s creator, Thomas Watson, that the 

world market for computers would plateau at somewhere around 

five [1]. No doubt some of the people listening that day were them-

selves carrying more than that number of computers on their laps 

or their wrists and in their pockets or their bags. And that was 

even before considering all the other computers about them in the 

room—inside the projector, the sound system, the air condition-

ers, and so on. But only when the giggling subsided did he land 

his killer blow. “We now know that that number was wrong,” said 

Shirky. “He overestimated by four.” Cue waves of hilarity from the 

assembled throng.

Shirky’s point, of course, was that the defining characteristic 

of the Web age is not so much the ubiquity of computing devices 

(transformational though that is) but rather their interconnected-

ness. We are rapidly reaching a time when any device not con-

nected to the Internet will hardly seem like a computer at all. The 

network, as they say, is the computer.

This fact—together with the related observation that the domi-

nant computing platform of our time is not Unix or Windows or 

From Web 2.0 to the  
Global Database
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Mac OS, but rather the Web itself—led Tim O’Reilly to develop a vision for what he 

once called an “Internet operating system” [2], which subsequently evolved into a 

meme now known around the world as “Web 2.0” [3].

Wrapped in that pithy (and now, unfortunately, overexploited) phrase are two 

important concepts. First, Web 2.0 acted as a reminder that, despite the dot-com 

crash of 2001, the Web was—and still is—changing the world in profound ways. 

Second, it incorporated a series of best-practice themes (or “design patterns and 

business models”) for maximizing and capturing this potential. These themes  

included:

• Network effects and “architectures of participation”

• The Long Tail

• Software as a service

• Peer-to-peer technologies

• Trust systems and emergent data

• Open APIs and mashups

• AJAX

• Tagging and folksonomies

• “Data as the new ‘Intel Inside’”

The first of these has widely become seen as the most significant. The Web is 

more powerful than the platforms that preceded it because it is an open network 

and lends itself particularly well to applications that enable collaboration. As a re-

sult, the most successful Web applications use the network on which they are built 

to produce their own network e�ects, sometimes creating apparently unstoppable 

momentum. This is how a whole new economy can arise in the form of eBay. And 

how tiny craigslist and Wikipedia can take on the might of mainstream media and 

reference publishing, and how Google can produce excellent search results by sur-

reptitiously recruiting every creator of a Web link to its cause.

If the Web 2.0 vision emphasizes the global, collaborative nature of this new 

medium, how is it being put to use in perhaps the most global and collaborative of 

all human endeavors, scientific research? Perhaps ironically, especially given the 

origins of the Web at CERN [4], scientists have been relatively slow to embrace 
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approaches that fully exploit the Web, at least in their professional lives. Blogging, 

for example, has not taken o� in the same way that it has among technologists, 

political pundits, economists, or even mathematicians. Furthermore, collaborative 

environments such as OpenWetWare1 and Nature Network2 have yet to achieve 

anything like mainstream status among researchers. Physicists long ago learned to 

share their findings with one another using the arXiv preprint server,3 but only be-

cause it replicated habits that they had previously pursued by post and then e-mail. 

Life and Earth scientists, in contrast, have been slower to adopt similar services, 

such as Nature Precedings.4

This is because the barriers to full-scale adoption are not only (or even mainly) 

technical, but also psychological and social. Old habits die hard, and incentive  

systems originally created to encourage information sharing through scientific 

journals can now have the perverse e�ect of discouraging similar activities by other 

routes.

Yet even if these new approaches are growing more slowly than some of us would 

wish, they are still growing. And though the timing of change is di�cult to predict, 

the long-term trends in scientific research are unmistakable: greater specializa-

tion, more immediate and open information sharing, a reduction in the size of 

the “minimum publishable unit,” productivity measures that look beyond journal 

publication records, a blurring of the boundaries between journals and databases, 

and reinventions of the roles of publishers and editors. Most important of all—and 

arising from this gradual but inevitable embrace of information technology—we 

will see an increase in the rate at which new discoveries are made and put to use. 

Laboratories of the future will indeed hum to the tune of a genuinely new kind of 

computationally driven, interconnected, Web-enabled science.

Look, for example, at chemistry. That granddaddy of all collaborative sites,  

Wikipedia,5 now contains a great deal of high-quality scientific information, much 

of it provided by scientists themselves. This includes rich, well-organized, and  

interlinked information about many thousands of chemical compounds. Mean-

while, more specialized resources from both public and private initiatives—notably 

PubChem6 and ChemSpider7—are growing in content, contributions, and usage 

1  http://openwetware.org
2  http://network.nature.com
3  www.arxiv.org
4  http://precedings.nature.com
5  http://wikipedia.org
6  http://pubchem.ncbi.nlm.nih.gov
7  www.chemspider.com
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despite the fact that chemistry has historically been a rather proprietary domain. 

(Or perhaps in part because of it, but that is a di�erent essay.)

And speaking of proprietary domains, consider drug discovery. InnoCentive,8 

a company spun o� from Eli Lilly, has blazed a trail with a model of open, Web-

enabled innovation that involves organizations reaching outside their walls to solve 

research-related challenges. Several other pharmaceutical companies that I have 

spoken with in recent months have also begun to embrace similar approaches, not 

principally as acts of goodwill but in order to further their corporate aims, both 

scientific and commercial.

In industry and academia alike, one of the most important forces driving the 

adoption of technologically enabled collaboration is sheer necessity. Gone are the 

days when a lone researcher could make a meaningful contribution to, say, mo-

lecular biology without access to the data, skills, or analyses of others. As a result, 

over the last couple of decades many fields of research, especially in biology, have 

evolved from a “cottage industry” model (one small research team in a single loca-

tion doing everything from collecting the data to writing the paper) into a more 

“industrial” one (large, distributed teams of specialists collaborating across time 

and space toward a common end).

In the process, they are gathering vast quantities of data, with each stage in 

the progression being accompanied by volume increases that are not linear but 

exponential. The sequencing of genes, for example, has long since given way to 

whole genomes, and now to entire species [5] and ecosystems [6]. Similarly, one- 

dimensional protein-sequence data has given way to three-dimensional protein 

structures, and more recently to high-dimensional protein interaction datasets.

This brings changes that are not just quantitative but also qualitative. Chris  

Anderson has been criticized for his Wired article claiming that the accumulation 

and analysis of such vast quantities of data spells the end of science as we know 

it [7], but he is surely correct in his milder (but still very significant) claim that 

there comes a point in this process when “more is di�erent.” Just as an information  

retrieval algorithm like Google’s PageRank [8] required the Web to reach a certain 

scale before it could function at all, so new approaches to scientific discovery will 

be enabled by the sheer scale of the datasets we are accumulating.

But realizing this value will not be easy. Everyone concerned, not least research-

ers and publishers, will need to work hard to make the data more useful. This will 

8  www.innocentive.com
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involve a range of approaches, from the relatively formal, such as well-defined 

standard data formats and globally agreed identifiers and ontologies, to looser 

ones, like free-text tags [9] and HTML microformats [10]. These, alongside au-

tomated approaches such as text mining [11], will help to give each piece of in-

formation context with respect to all the others. It will also enable two hitherto 

largely separate domains—the textual, semi-structured world of journals and the 

numeric, highly structured world of databases—to come together into one inte-

grated whole. As the information held in journals becomes more structured, as 

that held in many databases becomes more curated, and as these two domains 

establish richer mutual links, the distinction between them might one day become 

so fuzzy as to be meaningless.

Improved data structures and richer annotations will be achieved in large part 

by starting at the source: the laboratory. In certain projects and fields, we already 

see reagents, experiments, and datasets being organized and managed by sophisti-

cated laboratory information systems. Increasingly, we will also see the researchers’ 

notes move from paper to screen in the form of electronic laboratory notebooks, en-

abling them to better integrate with the rest of the information being generated. In 

areas of clinical significance, these will also link to biopsy and patient information. 

And so, from lab bench to research paper to clinic, from one finding to another, we 

will join the dots as we explore terra incognita, mapping out detailed relationships 

where before we had only a few crude lines on an otherwise blank chart.

Scientific knowledge—indeed, all of human knowledge—is fundamentally con-

nected [12], and the associations are every bit as enlightening as the facts them-

selves. So even as the quantity of data astonishingly balloons before us, we must 

not overlook an even more significant development that demands our recognition 

and support: that the information itself is also becoming more interconnected. 

One link, tag, or ID at a time, the world’s data are being joined together into a 

single seething mass that will give us not just one global computer, but also one 

global database. As befits this role, it will be vast, messy, inconsistent, and con-

fusing. But it will also be of immeasurable value—and a lasting testament to our 

species and our age.
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CRAIG MUNDIE |  Microsoft

The Way Forward

HE MULTI-DISCIPLINARY NATURE OF THE ARTICLES collected in this book o�ers 

a unique perspective on data-driven scientific discovery—and a glimpse 

into an exciting future.

As we move into the second decade of the 21st century, we face an 

extraordinary range of challenges—healthcare, education, energy and the environ-

ment, digital access, cyber-security and privacy, public safety, and more. But along 

with the other contributors to this book, I believe these challenges can be trans-

formed into opportunities with the help of radical new developments in science 

and technology.

As Jim Gray observed, the first, second, and third paradigms of science— 

empirical, analytical, and simulation—have successfully carried us to this point in 

history. Moreover, there is no doubt that if we rely on existing paradigms and tech-

nologies, we will continue to make incremental progress. But if we are to achieve 

dramatic breakthroughs, new approaches will be required. We need to embrace the 

next, fourth paradigm of science.

Jim’s vision of this paradigm called for a new scientific methodology focused  

on the power of data-intensive science. Today, that vision is becoming reality. Com-

puting technology, with its pervasive connectivity via the Internet, already under-

pins almost all scientific study. We are amassing previously unimaginable amounts 

of data in digital form—data that will help bring about a profound transforma-

tion of scientific research and insight. At the same time, computing is on the cusp  

of a wave of disruptive technological advances—such as multicore architecture,  

T
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client-plus-cloud computing, natural user interfaces, and quantum computing—

that promises to revolutionize scientific discovery.

Data-intensive science promises breakthroughs across a broad spectrum. As the 

Earth becomes increasingly instrumented with low-cost, high-bandwidth sensors, 

we will gain a better understanding of our environment via a virtual, distributed 

whole-Earth “macroscope.” Similarly, the night sky is being brought closer with 

high-bandwidth, widely available data-visualization systems. This virtuous circle of 

computing technology and data access will help educate the public about our planet 

and the Universe at large—making us all participants in the experience of science 

and raising awareness of its immense benefit to everyone.

In healthcare, a shift to data-driven medicine will have an equally transforma-

tive impact. The ability to compute genomics and proteomics will become feasible 

on a personal scale, fundamentally changing how medicine is practiced. Medical 

data will be readily available in real time—tracked, benchmarked, and analyzed 

against our unique characteristics, ensuring that treatments are as personal as we 

are individual. Massive-scale data analytics will enable real-time tracking of dis-

ease and targeted responses to potential pandemics. Our virtual “macroscope” can 

now be used on ourselves, as well as on our planet. And all of these advances will 

help medicine scale to meet the needs of the more than 4 billion people who today 

lack even basic care.

As computing becomes exponentially more powerful, it will also enable more 

natural interactions with scientists. Systems that are able to “understand” and have 

far greater contextual awareness will provide a level of proactive assistance that 

was previously available only from human helpers. For scientists, this will mean 

deeper scientific insight, richer discovery, and faster breakthroughs. Another  

major advance is the emergence of megascale services that are hosted in the cloud 

and that operate in conjunction with client computers of every kind. Such an  

infrastructure will enable wholly new data delivery systems for scientists—o�ering 

them new ways to visualize, analyze, and interact with their data, which will in 

turn enable easier collaboration and communication with others.

This enhanced computing infrastructure will make possible the truly global 

digital library, where the entire lifecycle of academic research—from inception 

to publication—will take place in an electronic environment and be openly avail-

able to all. During the development of scientific ideas and subsequent publishing,  

scientists will be able to interact virtually with one another—sharing data sources, 

workflows, and research. Readers, in turn, will be able to navigate the text of a 

THE WAY FORWARD
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publication and easily view related presentations, supporting images, video, audio, 

data, and analytics—all online. Scientific publication will become a 24/7, world-

wide, real-time, interactive experience.

I am encouraged to see scientists and computer scientists working together to 

address the great challenges of our age. Their combined e�orts will profoundly and 

positively a�ect our future.
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The well-formed.eigenfactor project visualizes information flow in science. 
It came about as a collaboration between the Eigenfactor project (data 
analysis) and Moritz Stefaner (visualization). This diagram shows the  
citation links of the journal Nature. More information and visualizations 
can be found at http://well-formed.eigenfactor.org.
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Conclusions

Y THE MID-1990S, JIM GRAY HAD RECOGNIZED that the next “big data” challeng-

es for database technology would come from science and not from com-

merce. He also identified the technical challenges that such data-intensive 

science would pose for scientists and the key role that IT and computer 

science could play in enabling future scientific discoveries. The term “eScience” 

was coined in the year 2000 by John Taylor, when he was director general of the 

UK Research Councils. Taylor had recognized the increasingly important role that 

IT must play in the collaborative, multidisciplinary, and data-intensive scientific re-

search of the 21st century and used the term eScience to encompass the collection 

of tools and technologies needed to support such research. In recognition of the 

UK eScience initiative, Jim Gray called his research group at Microsoft Research 

the eScience Group, and he set about working with scientists to understand their 

problems and learn what tools they needed.

In his talk to the Computer Science and Telecommunications Board of the U.S. 

National Research Council in 2007, Jim expanded on his vision of data-intensive 

science and enumerated seven key areas for action by the funding agencies:

1. Foster both the development of software tools and support for these tools.

2. Invest in tools at all levels of the funding pyramid.

3. Foster the development of generic Laboratory Information Management  

Systems (LIMS).

4. Foster research into scientific data management, data analysis, data visualiza-

tion, and new algorithms and tools.

B
TONY HEY, STEWART TANSLEY, AND KRISTIN TOLLE |  Microsoft Research



228

5. Establish digital libraries that support other sciences in the same way the  

National Library of Medicine supports the bio-sciences.

6. Foster the development of new document authoring tools and publication  

models.

7. Foster the development of digital data libraries that contain scientific data (not 

just the metadata) and support integration with published literature.

We believe that these challenges to the funding agencies are just as important 

today. This is why we have introduced this collection of essays, along with a version 

of Jim’s talk to the NRC-CSTB constructed from the transcript of his lecture and 

his presentation slides. It is also educational to see the continuing momentum and 

progress of the eScience community since the report “Towards 2020 Science” pub-

lished by our colleagues at Microsoft Research, Cambridge, UK.1 That was based 

on a workshop in July 2005, attended by some of the authors in this new book, and 

subsequently inspired Nature’s “2020 Computing” special issue in March 2006.2

At the heart of scientific computing in this age of the Fourth Paradigm is 

a need for scientists and computer scientists to work collaboratively—not in a  

superior/subordinate relationship, but as equals—with both communities fuel-

ing, enabling, and enriching our ability to make discoveries that can bring about 

productive and positive changes in our world. In this book, we have highlighted 

healthcare and the environment, just two areas in which humanity faces some of its 

biggest challenges. To make significant progress, the research community must be 

supported by an adequate cyberinfrastructure comprising not only the hardware 

of computing resources, datacenters, and high-speed networks but also software 

tools and middleware. Jim also envisaged the emergence of a global digital research 

library containing both the research literature and the research data. Not only are 

we seeing the maturing of data-intensive science, but we are also in the midst of 

a revolution in scholarly communication. This is driven not only by technologies 

such as the Internet, Web 2.0, and semantic annotations but also by the worldwide 

movement toward open access and open science.

This book is really a labor of love. It started with Jim’s desire to enable scientific 

research through the technologies of computer science—cutting across the disci-

plines highlighted herein and beyond. We see this book as a continuation of Jim’s 

work with the science community. We deliberately asked our scientific contributors 

CONCLUSIONS 

1 http://research.microsoft.com/en-us/um/cambridge/projects/towards2020science/background_overview.htm 
2 Nature, vol. 440, no. 7083, Mar. 23, 2006, pp. 383–580.
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to move out of their professional comfort zones and share their visions for the fu-

ture of their research fields on a 5-to-10-year horizon. We asked them to write their 

contributions not only in essay form, which is often a greater challenge than writ-

ing a purely technical research article, but often in collaboration with a computer 

scientist. We are grateful to all of our contributors for rising to this challenge, and 

we hope that they (and you!) will be pleased with the result. 

Several decades ago, science was very discipline-centric. Today, as evidenced by 

the articles in this book, significant advances are being made as a result of multi-

disciplinary collaboration—and will continue to be made into the future. The essays 

in this book present a current snapshot of some of the leading thinking about the 

exciting partnership between science and computer science—a data revolution—

which makes this information timely and potentially fleeting. However, it is our 

fervent hope and belief that the underlying message presented by the totality of 

these articles will be durable for many years.

Finally, we o�er this book as a call to action for the entire research community, 

governments, funding agencies, and the public. We urge collaboration toward a 

common goal of a better life for all humanity. We find ourselves in a phase in which 

we need to use our scientific understanding to achieve specific goals for the sake of 

humanity’s survival. It is clear that to achieve this aim, we very much need experts 

with deep scientific knowledge to work closely with those who have deep experi-

ence with technology. 

This situation is somewhat analogous to the 1940s, when U.S. and European phys-

icists answered an urgent call from governments to collaborate on the Manhattan 

Project. Today, scientists must collaborate globally to solve the major environmental 

and health problems facing humanity in a race that is perhaps even more urgent. 

And ironically, the nuclear physics developed in the Manhattan Project is likely to 

provide part of the answer in supplying the world with zero-carbon energy.

Tony Hey, Kristin Tolle, 

and Stewart Tansley

Microsoft External Research,
http://research.microsoft.com/ 
collaboration

http://research.microsoft.com/collaboration
http://research.microsoft.com/collaboration
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WE HOPE THIS BOOK WILL INSPIRE YOU to take action as well as embark on further 

study. We are “walking the talk” ourselves at Microsoft Research. For example, we 

have reformulated our academic partnership organization, External Research, to 

focus on the themes presented in this book. 

These themes incorporate active research in dynamic fields, so it is hard to track 

and predict the future evolution of the ideas presented in this book. But here are 

some suggested ways to remain engaged and to join in the dialogue:

• If you’re a scientist, talk to a computer scientist about your challenges, and vice 
versa. 

• If you’re a student, take classes in both science and computer science. 

• If you’re a teacher, mentor, or parent, encourage those in your care toward 
interdisciplinary study in addition to giving them the option to specialize.

• Engage with the editors and authors of this book through the normal scholarly 
channels.

• Keep up to date with our eScience research collaborations through our Web 
site: http://research.microsoft.com.

• Be active in the eScience community—at the Fourth Paradigm Web site below, 
we suggest helpful resources. 

www.fourthparadigm.org

N EXT STE PS

NEXT STEPS 
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A Few Words About Jim… 

URING AWARD WINNER AND AMERICAN COMPUTER SCIENTIST Dr. James  

Nicholas “Jim” Gray (born 1944, missing at sea on January 28, 2007) 

was esteemed for his groundbreaking work as a programmer, database  

expert, engineer, and researcher. He earned his Ph.D. from the Univer-

sity of California, Berkeley, in 1969—becoming the first person to earn a doctorate 

in computer science at that institution. He worked at several major high-tech com-

panies, including Bell Labs, IBM Research, Tandem, Digital Equipment Corpora-

tion, and finally Microsoft Research in Silicon Valley.

Jim joined Microsoft in 1995 as a Senior Researcher, ultimately becoming a 

Technical Fellow and managing the Bay Area Research Center (BARC). His pri-

mary research interests were large databases and transaction processing systems. 

He had a longstanding interest in scalable computing—building super-servers and 

work group systems from commodity software and hardware. His work after 2002 

focused on eScience: applying computers to solve data-intensive scientific problems. 

This culminated in his vision (with Alex Szalay) of a “fourth paradigm” of science, 

a logical progression of earlier, historical phases dominated by experimentation, 

theory, and simulation. 

Jim pioneered database technology and was among the first to develop the tech-

nology used in computerized transactions. His work helped develop e-commerce, 

online ticketing, automated teller machines, and deep databases that enable the 

success of today’s high-quality modern Internet search engines. 

In 1998, he received the ACM A.M. Turing Award, the most prestigious honor in 

computer science, for “seminal contributions to database and transaction process-
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ing research and technical leadership in system implementation.” He was appointed 

an IEEE Fellow in 1982 and also received the IEEE Charles Babbage Award. 

His later work in database technology has been used by oceanographers,  

geologists, and astronomers. Among his accomplishments at Microsoft were the 

TerraServer Web site in collaboration with the U.S. Geological Survey, which paved 

the way for modern Internet mapping services, and his work on the Sloan Digital 

Sky Survey in conjunction with the Astrophysical Research Consortium (ARC) and 

others. Microsoft’s WorldWide Telescope software, based on the latter, is dedicated 

to Jim.

“Jim always reached out in two ways—technically and personally,” says David 

Vaskevitch, Microsoft’s senior corporate vice president and chief technical o�cer 

in the Platform Technology & Strategy division. “Technically, he was always there 

first, pointing out how di�erent the future would be than the present.”

“Many people in our industry, including me, are deeply indebted to Jim for his 

intellect, his vision, and his unselfish willingness to be a teacher and a mentor,” 

says Mike Olson, vice president of Embedded Technologies at Oracle Corporation. 

Adds Shankar Sastry, dean of the College of Engineering at UC Berkeley, “Jim was 

a true visionary and leader in this field.”

“Jim’s impact is measured not just in his technical accomplishments, but also in 

the numbers of people around the world whose work he inspired,” says Rick Rashid, 

senior corporate vice president at Microsoft Research.

Microsoft Chairman Bill Gates sums up Jim’s legacy in this way: “The impact of 

his thinking is continuing to get people to think in a new way about how data and 

software are redefining what it means to do science.”

Such sentiments are frequently heard from the myriad researchers, friends, and 

colleagues who interacted with Jim over the years, irrespective of their own promi-

nence and reputation. Known, loved, and respected by so many, Jim Gray needs no 

introduction, so instead we dedicate this book to him and the amazing work that 

continues in his absence. 

—The Editors

A FEW WORDS ABOUT JIM...
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exa- E 1,000,000,000,000,000,000 1018 quintillion

peta- P 1,000,000,000,000,000 1015 quadrillion

tera- T 1,000,000,000,000 1012 trillion

giga- G 1,000,000,000 109 billion

mega- M 1,000,000 106 million

kilo- k 1,000 103 thousand

hecto- h 100 102 hundred

deca- da 10 101 ten

- - 1 100 one

deci- d 0.1 10−1 tenth

centi- c 0.01 10−2 hundredth

milli- m 0.001 10−3 thousandth

micro- µ 0.000001 10−6 millionth

nano- n 0.000000001 10−9 billionth

pico- p 0.000000000001 10−12 trillionth

G LOSSARY

POWERS OF TEN

COMMON ABBREVIATIONS

 ASKAP Australian Square Kilometre Array Pathfinder

 ATLUM Automatic Tape-Collecting Lathe Ultramicrotome

 AUV autonomous underwater vehicle

 BPEL Business Process Execution Language

 CCD charge-coupled device

 CEV Center for Environmental Visualization

 CLADDIER Citation, Location, And Deposition in Discipline and 
  Institutional Repositories

 CML Chemistry Markup Language

 CPU central processing unit

 CSTB Computer Science and Telecommunications Board

 DAG directed acyclic graph

 DDBJ DNA Data Bank of Japan

Adapted from http://en.wikipedia.org/wiki/Order_of_magnitude
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 DOE Department of Energy 

 EBI European Bioinformatics Institute

 ECHO Earth Observing System Clearinghouse

 EHR electronic health record

 EMBL  European Molecular Biology Laboratory

 EMBL-Bank European Molecular Biology Laboratory Nucleotide   
  Sequence Database

 EOSDIS Earth Observing System Data and Information System

 ET evapotranspiration

 FDA Food and Drug Administration 

 FFT Fast Fourier Transform

 FLUXNET A global network of micrometeorological tower sites

 fMRI functional magnetic resonance imaging

 FTP File Transfer Protocol

 GCMD NASA’s Global Change Master Directory

 GEOSS Global Earth Observation System of Systems

 GOLD Genomes OnLine Database

 GPU graphics processing unit

 GPGPU general-purpose graphics processing unit

 GUI graphical user interface

 H1N1 swine flu

 INSDC International Nucleotide Sequence Database Collaboration

 IT information technology

 KEGG Kyoto Encyclopedia of Genes and Genomes

 KLAS Keystone Library Automation System

 LEAD Linked Environments for Atmospheric Discovery

 LHC Large Hadron Collider

 LIDAR Light Detection and Ranging

 LLNL Lawrence Livermore National Laboratory

 LONI Laboratory of Neuro Imaging

 MESUR Metrics from Scholarly Usage of Resources 

 MMI Marine Metadata Interoperability

 NASA National Aeronautics and Space Administration

 NHS National Health Service (UK)

 NIH National Institutes of Health

 NLM National Library of Medicine

GLOSSARY



239THE FOURTH PARADIGM

 NLM DTD National Library of Medicine Document Type Definition 

 NOAA National Oceanic and Atmospheric Administration

 NRC National Research Council

 NSF National Science Foundation

 OAI Open Archives Initiative

 OAI-ORE Open Archives Initiative Object Reuse and Exchange protocol 

 OAI-PMH Open Archives Initiative Protocol for Metadata Harvesting

 OBO Open Biomedical Ontologies 

 OO object-oriented

 OOI Ocean Observatories Initiative

 OWL Web Ontology Language

Pan-STARRS  Panoramic Survey Telescope And Rapid Response System

 PHR personal health record

 PubMed Free National Library of Medicine online database of  
  biomedical journal articles 

 RDF Resource Description Framework

 RDFS RDF Schema

 ROV remotely operated vehicle

 RSS Really Simple Syndication

 SCEC Southern California Earthquake Center

 SOA service-oriented architecture

 SWORD Simple Web-service O�ering Repository Deposit

 TCP/IP Transmission Control Protocol/Internet Protocol  

  (the Internet Protocol Suite)

 TM transactional memory

 UNICEF United Nations Children’s Fund

 UniProt Universal Protein Resource

 URI Uniform Resource Identifier

 USGS U.S. Geological Survey

 VT 100  A Digital Equipment Corporation (DEC) video terminal 

 WATERS WATer and Environmental Research Systems Network   
 Network  

 WHO World Health Organization
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“The impact of Jim Gray’s thinking is continuing to get people to think in a new 

way about how data and software are redefining what it means to do science.”

—BILL GATES

“I often tell people working in eScience that they aren’t in this field because  

they are visionaries or super-intelligent—it’s because they care about science  

and they are alive now. It is about technology changing the world, and science 

taking advantage of it, to do more and do better.”

—RHYS FRANCIS, AUSTRALIAN eRESEARCH INFRASTRUCTURE COUNCIL

“One of the greatest challenges for 21st-century science is how we respond to this 

new era of data-intensive science. This is recognized as a new paradigm beyond 

experimental and theoretical research and computer simulations of natural 

phenomena—one that requires new tools, techniques, and ways of working.”

—DOUGLAS KELL, UNIVERSITY OF MANCHESTER

“The contributing authors in this volume have done an extraordinary job of  

helping to refine an understanding of this new paradigm from a variety of  

disciplinary perspectives.”

—GORDON BELL, MICROSOFT RESEARCH

ABOUT THE FOURTH PARADIGM 

This book presents the first broad look at the rapidly emerging field of data- 

intensive science, with the goal of influencing the worldwide scientific and com-

puting research communities and inspiring the next generation of scientists. 

Increasingly, scientific breakthroughs will be powered by advanced computing 

capabilities that help researchers manipulate and explore massive datasets. The 

speed at which any given scientific discipline advances will depend on how well 

its researchers collaborate with one another, and with technologists, in areas of 

eScience such as databases, workflow management, visualization, and cloud- 

computing technologies. This collection of essays expands on the vision of pio-

neering computer scientist Jim Gray for a new, fourth paradigm of discovery based 

on data-intensive science and o�ers insights into how it can be fully realized. 
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