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The fractal nature of a diffusion front

and the relation to percolation
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Laboratoire de Physique de la Matière Condensée (*), Ecole Polytechnique, 91128 Palaiseau, France

(Re~u le 30 octobre 1984, accepte le 20 decembre 1984)

Résumé. 2014 On montre sur une simulation à deux dimensions qu’un front de diffusion possède une
géométrie fractale sur une largeur dépendant de la longueur de diffusion. Le nombre de particules
sur le front, et la largeur mesurant son étalement, suivent des lois de puissance en fonction de la
longueur de diffusion. Les exposants de ces lois et la dimension fractale peuvent être écrits simple-
ment en fonction des exposants critiques de la percolation à deux dimensions.

Abstract 2014 Using a two dimensional simulation, a diffusion front is shown to have a fractal geo-
metry in a range increasing with the diffusion length. The number of particles on the front, and the
width measuring its spread, follow power laws as a function of the diffusion length. The associated
exponents and the fractal dimension can be expressed as simple functions of the critical exponents of
the two dimensional percolation problem.
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In the simplest picture, diffusion in solids is the consequence of Brownian motion of atoms on
a lattice. Brownian motion is known to create fractal patterns [1, 2]. The purpose of this paper is
to show, through a numerical simulation on a 2D lattice, that the diffusion front is a fractal
object [3] with dimension Df = 1.76 ± 0.02. Moreover we put forward the idea that there is
a close similarity between this line and the external frontier of a percolating cluster. These consi-
derations may have practical importance since, for example, atomic diffusion plays a role in
many ways in realizing electrical contacts : a good contact between two bodies can often be
realized by heating the system so enabling diffusion to occur in a reasonably short time.
We consider the simple case of the diffusion of particles A on a 2D lattice B with the diffusion

source being a line of A atoms kept at a constant concentration equal to unity. We restrict the
analysis to nearest neighbour site hopping without double occupancy. Under these circumstances
the concentration varies as a function of time and space as [4]

where ID = 2(Dt)1~2 is the diffusion length at time t with diffusion coefficient D. The average

(*) Groupe de Recherche du CNRS.
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concentration is a function of time and space but in the following we will only consider the
situations obtained at fixed successive times. Both square and triangular lattices will be investi-
gated.
We define the microscopic physical interface in a simple manner which is illustrated by the

following electrical picture. The diffusing A atoms are supposed to be metallic, and « conduct-
ing » only if they are nearest neighbours, the B lattice being otherwise insulating. In this picture
if a potential is applied between materials A and B all the occupied sites which are connected
with A are at the same electrical potential. We investigate the frontier of this region. In the case
of a square lattice the frontier is made of those A atoms which are connected through nearest
neighbours with the diffusion source and have an empty first or second neighbour which itself
is connected through empty first or second neighbours to the region far in B where no A atom
are present. This is shown in figure 1 where we see that occupied sites build a land connected
to the diffusion source, and also islands. The empty sites create an « open sea » and lakes. The
object we are looking at is the thick line in figure 1 : it is the « seashore ». Correlations between
particles may play a role in the structure of this seashore. In this simplified model we neglect
such effects : a given diffused state is simply obtained by a random distribution of particles
obeying equation (1). This procedure provides for a considerable gain in computing time com-
pared to the complete simulation of diffusion.
The simulation is made by choosing for each site in a row of atoms at constant x a random

number between 0 and 1. If this random number is smaller than p(x) as given by equation (1),
we put an atom in that site. In this way we constitute one detailed diffusion picture on which
we look for the seashore as defined above. Periodic boundary conditions are used to define
this seashore. We name pf(x) the probability of finding one point of the frontier at x. It is the
density of seashore at distance x. This quantity is obtained from the simulation calculation.
It is found to behave very nearly as a Gaussian function of x. These density profiles are then
averaged over 100 different diffusion pictures of lateral size L = 512 or L = 1 024 (see Fig. 2a)

Fig. 1. - Schematic picture of the simulated diffused system at a given time. The source of A atoms at the
bottom is kept at unit concentration. The concentration decreases with increasing x. The thick line repre-
sents the diffusion front that we are studying. Its mean position is x, and it is spread on a width (J c.
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Fig. 2. - Statistical distribution of the simulated frontier defined in figure 1 in the case of a square lattice.
(a) Comparison of the frontier density (crosses) with the overall atom density (continuous line) at a given
time. (b) Frontiers for /~ i = 50 and 1D,2 = 200.

and we calculate the mean position xf and the width af using

and

The results are qualitatively represented in figure 2b. One can see two different profiles of
the frontier for two different times corresponding to 1D, 1 = 50 and ID,2 = 200. The mean position
xf varies like ID’ Figure 3 gives the quantitative results for the width Uf and the number of points
on the frontier Nf. We observe that these quantities follow power laws to within a very good
approximation. This is discussed below.
The geometry of the frontier has been determined by the mass to radius relation [1] :

In our case we take as the mass the number of sites of the frontier in a square of side R. Figure 4
shows the log-log plot in two cases with two very different values of the diffusion length. We
observe that the fractal geometry exists only up to a scale of the order of cf. Because of the depen-
dence of 7f on ID the fractal geometry exists on a scale which increases with the diffusion length.



L-152 JOURNAL DE PHYSIQUE - LETTRES

Fig. 3. - Variation of the number of points of the frontier N and of the width (J as a function of the diffusion
length ID. The above results for Nf have been obtained for, or rescaled to, a sample lateral size of L = 512
in the case of the square lattice.

Fig. 4. - Determination of the fractal dimension of the diffusion front from the mass-to-radius relation
(square lattice). The diffusion front is a fractal only up to a scale of the order of the width Qf. The value 1.62
quoted for 1D = 50 comes from a finite size effect which disappears for lD &#x3E; 1600.



L-153THE FRACTAL NATURE OF A DIFFUSION FRONT

The dimension is one when R is larger than a few (7f. This only tells us that the length of the
frontier is proportional to the lateral size L of the sample. (L is always taken larger than (7f.)
We obtain in the fractal region :

We want now to show that the above physical situation is closely related to the usual per-
colation problem. The percolation problem is defined with a constant concentration probability
over the lattice. One generally thinks that because percolation is a critical phenomenon the pro-
bability of occupation should be kept rigorously constant, otherwise the critical effects are
expected to be smeared out. In fact this is not true and interesting new features appear in the
present situation.

Consider the diffusion system defined above at a given time : it is a random distribution but
with non-uniform probability. There is obviously an infinite cluster which links both lateral
sides of the sample because the concentration near the source is close to unity. Consider now the
geometry of this cluster and its penetration depth. Here again it is obvious that far from the
source the infinite cluster has no branches because in these regions the concentration is too small.
Hence the frontier of the infinite cluster should be in a region where the concentration is around
the critical concentration Pc for the considered lattice. The frontier has a mean distance to the
source xf and thus we expect p(xf) to be near pc. The result of the simulation is shown in table I
for the two cases of the square and triangular lattices. A striking result is obtained : the simulated
frontier is situated at p~. More precisely it appears that the concentration at xf tends asympto-
tically towards Pc in the infinite diffusion limit. But already for ID = 100 the deviation is only
1 %, both for square and triangular lattices. For ID = 6 400 this deviation is as small as 0.2 %.
This explains a result previously mentioned : because xf appears to correspond to a constant

concentration it varies proportionally to the diffusion length ID. This is a consequence of equa-
tion (1) which indicates that a given p is obtained for a constant value of xflld. Values of xfll D
are shown in table I for various choices of ID for square and triangular lattices. If we postulate
that

we expect xf = 0.4769 lD on the triangular lattice where Pc = 0.5 and xf - 0.378 lD on the square
lattice using Pc = 0.593 [5]. One sees in table I that the results of the simulation on finite samples
are very close to these values. 

’

Table I. - Mean position of the.frontier and concentration of diffused atoms at this position. These
results are obtained from the 2D simulation for selected values of the diffusion length, both for square
and triangular lattices. The values of p~ for these two lattices are respectively 0.593 and 0. 5 [7].
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Moreover the external frontier of the percolating cluster, the so-called « hull », has in fact
the same definition as our seashore [6]. Thus the above ideas suggest that the diffusion front
should have the same geometric properties as the percolation hull. The fractal dimension of the
percolation hull has been determined for the square lattice to be Dh = 1.74 ± 0.02 or Dh =
1.76 ± 0.01 [6]. Comparison with the value Df = 1.76 ± 0.02 that we have determined supports
the idea of a direct similarity between the diffusion front and the percolation hull.
We then start from the same consideration to predict theoretically the exponents for the depen-

dence on ID of the width af and the length Nf of the diffusion front. From the data shown in
figure 4 we obtain

When x is larger or smaller than x f the concentration deviates from Pc due to the gradient
of the particle concentration. There are lakes and islands in these regions. The characteristic
size of these objects should be of the order of the correlation length [7] corresponding to the value
of the concentration at that coordinate :

where v is the usual critical exponent and ’0 is of the order of the lattice parameter [7].
If the distance to xf of a cluster (lake or island) of characteristic size ~(x) is equal to ~ this cluster

has obviously a finite probability of touching the frontier and thus to be within the frontier width.
In other words

where K should be of the order of unity.
Using equations (1), (6), (7) and (9) we derive from (10) by a Taylor expansion

thus

where K’ is also of the order of one. Then we find

If we use for v the value [8] v = 4/3 we predict ex(1 = 4/7 = 0.5714, while the simulation gives
ex(1 = 0.57 ± 0.01. The value of the prefactor obtained from the simulation (relation (7)) indicates
that equation (10) is well verified.
We want now to interpret the exponent CXN that we observe for the dependence of Nf on ID

(Fig. 4). In fact N f is not an intrinsic quantity because it is proportional to the lateral size L of
the sample for L larger than 6f. We propose to consider a more intrinsic quantity Nf Qf/L which
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is the number of points on the frontier on a lateral scale uf. From (8) and (11) one can write

But as shown above the frontier is a fractal on this scale so that from equations (4) and (11)

By comparing (13) and (14) one finds

Using v = 4/3 and our measured value Df = 1.76 :t 0.02 we predict aN = 0.43 :t 0.01 while the
simulation gives aN = 0.425 :t 0.005.
A remarkable feature arises from table II where the values of (Nf (7f)/(L/~) are shown. This last

Fig. 5. - Diffused atom concentration at the mean front position x, as a function of the diffusion length
in the case of a square lattice. The approximate value Pc = 0.593 has been represented. The error bars repre-
sent statistical uncertainties.

Table II. - Values of Nf 6f/LID. The result of the simulation suggests that this quantity tends to a
constant value when I D goes to infinity.
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quantity should vary as

In table II we see that this quantity is almost constant indicating that the number of points of the
frontier contained in a square of side equal to the width of the frontier is proportional to the
diffusion length, hence to the total number of diffused atoms. The exponent appearing in (16)
should be zero, thus aN + exu - 1 = 0 and

Moreover from (12) and (15) we conjecture that

may hold in two dimensions. The same relation should hold for Dh the-fractal dimension of the
percolation hull.

In conclusion we have shown that the diffusion front is a fractal line with the same dimension as
the « hull » of the infinite cluster in the percolation problem on a 2D lattice. The observation
that the mean frontier occurs in the region where the concentration of diffused atoms is equal to
the percolation valuer indicates the close connection between this problem and the percolation
problem. Moreover the width and the number of points on the frontier depends on the diffusion
length through power laws, whose exponents are obtained with a very good precision. These
exponents are not critical exponents but appear to be simply related to the critical exponents of
percolation. This result suggests that a fruitful approach to percolation problems can be obtained
in systems with a gradient of concentration. The case of a linear gradient will be discussed in detail
in a forthcoming paper [9].
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