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THE FRACTIONAL CLIFFORD-FOURIER TRANSFORM

HENDRIK DE BIE AND NELE DE SCHEPPER

ABSTRACT. In this paper, a fractional version of the Clifford-Fourier transform
is introduced, depending on two numerical parameters. A series expansion for
the kernel of the resulting integral transform is derived. In the case of even
dimension, also an explicit expression for the kernel in terms of Bessel functions
is obtained. Finally, the analytic properties of this new integral transform are
studied in detail.

1. INTRODUCTION

The fractional Fourier transform is a generalization of the classical Fourier trans-
form (F'T). It is usually defined using the operator expression

iam o (A |2
Fo=e3"ezB120) o e [—x, 7]

with A the Laplace operator in R™. As integral transform, it can be written as
—2iay) —™/2 —i(z sin o £ (cot o) (|z|? 2
Fulfi(y) = (x(1 — e2%)) / e=ilew)/sina g (eota)(zPHul®) f () dy

when « # £, o # 0. The precise origin of the fractional F'T is not entirely clear. In
the applied literature, Namias ([18]) is usually credited with its invention. However,
Mustard ([17]) attributes the fractional FT to Condon and Bargmann (see [7, 1]).
In pure mathematics, the main ideas leading to the discovery of the fractional
FT seem to have been around implicitly since the discovery of the so-called Mehler
formula ([16]), connecting the kernel of the fractional Fourier transform with a series
expansion in terms of Hermite functions. In this context, one uses the term Hermite
semigroup to denote the fractional FT, see e.g. [15, 13]. Even in the completely
different mathematical field of C*-algebras, a special case of the fractional FT has
been introduced independently, see [23].

For a detailed overview of the theory and applications of the fractional FT we
refer the reader to [19]. A perspective from the point of view of the Hermite
semigroup can be found in e.g. [2, 22].

In the present paper, we introduce a fractional version of the Clifford-Fourier
transform (CFT). The CFT (see [3, 4, 5, 10]) is a generalization of the Fourier
transform in the framework of Clifford analysis. It is defined by the following
exponential operator

Fy = oI F(A-l2lPFA) _ R R T (Al
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with I'y == — Zj<k ejer (20, — 1105;). The integral kernel of this transform is
not so easy to obtain (see [10]) and the result is a complicated formula (see the
subsequent Theorem 2.1).

Here, we generalize the CFT in the following way

Fop=e 3" efle's (Alzl)

where we have introduced two numerical parameters a and 3. These can of course
be chosen equal to each other (as was done in [8], where only the two dimensional
case was treated). However, choosing them independently gives more insight in the
different roles they play.

This new fractional transform is interesting for several reasons. First, it leads
to a 2-parameter multi-variate Mehler type formula. Second, it elucidates the role
played by the two defining factors in the operator exponential definition of the CFT.
Third, it paves the way for a functional calculus approach to generalized Fourier
transforms in Clifford analysis, which will be reported in [6].

The paper is organized as follows. In section 2 we repeat some basic knowledge
on Clifford analysis and give the explicit kernel of the CFT as determined in [10].
In section 3 we define a fractional version of the CF'T and obtain a series expansion
of its kernel. Subsequently, in section 4 we compute an explicit expression for the
kernel in even dimension. The case of dimension two is treated separately. Next in
section 5 we show that the kernel satisfies a system of PDEs. In section 6 we prove
that the fractional CFT is a continuous operator on the Schwartz space when the
dimension is even. Finally, in section 7 we obtain the eigenvalues of the fractional
CFT, which are used to prove an inversion theorem.

2. PRELIMINARIES
The Clifford algebra Cly ,,, over R™ is the algebra generated by e;, i =1,...,m,
under the relations
eie; +eje; =0, i # 7,

2 _
e; = —1.

(2.1)
This algebra has dimension 2™ as a vector space over R. It can be decomposed as
Clom = BF(CIf ,, with CIf ,,, the space of k-vectors defined by

leim i=span{e;, ... €, < ... <ig}

In the sequel, we will always consider functions f taking values in Cly ,,, unless
explicitly mentioned. Such functions can be decomposed as

(2.2) f=fo+) eifi+) eieifij+...+er...emfim
i=1 i<j
with fo, fi, fijs - -+, f1...m all real-valued functions on R".

The Dirac operator is given by 0, = Z;nzl Oy,e; and the vector variable by
x = Z;’;l z;e;. The square of the Dirac operator equals, up to a minus sign, the
Laplace operator in R™: 9% = —A.

We further introduce the so-called Gamma operator (see e.g. [11])

ry:=- Z (10, — Tx0z;).

i<k
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Note that I', commutes with radial functions, i.e. [I', f(|z])] = 0.
Denote by P the space of polynomials taking values in Clg y, i.e.

P = R[Il, NN 75['m] X Clo,m.

The space of homogeneous polynomials of degree k is then denoted by Pp. The
space My, := ker d, N Py, is called the space of spherical monogenics of degree k.
Similarly, Hj := ker A N Py, is the space of spherical harmonics of degree k.
Next we define the inner product and the wedge product of two vectors z and y
i 1
(@,y) = wy; = — 5@y +yo)
j=1

1
TNy = Zejek(fﬂjyk — Try;) = §@y —yz).
j<k

For the sequel we need the square of 2 A y. A short computation (see [10]) shows

(@A) =~z + (@ v)* = =Y (w5 — zry;)°,
J<k
from which we observe that (z A y)? is real-valued.

We also introduce a basis {1, ¢} for the space S(R™) & Cly n, where S(R™)
denotes the Schwartz space. Define the functions v, ¢(x) by

m k-1 _iz?
Yojpe(x) = LE T (|z2)pD e 122,

(2.3) m

Yoji1ke(z) == L7 +k(|£|2)£M;§€)67|£|2/27

where j, k € N| {M,ge) € My : £ =1,...,dimM;} is a basis for My, and L§ are

the Laguerre polynomials. The set {1, ¢} forms a basis of S(R™) ®Clg m, see [20].
The operator exponential definition of the CFT Fy is given by (see [3], we follow

the normalization given in [5])

imm AT A |2 inm AT AT A []2
(2.4) Fyi=e i e (B-zFF20) — o5 o FF T T (A2l

The second equality follows because I' commutes with A and |z|?.
In the paper [10], the question whether F. can be written as an integral trans-
form
Felflly) = 2n)"% | Ki(z,y)f(z)dz,
RTIL
was answered positively in the case of even dimension m. The result is given in the
following theorem.

Theorem 2.1. The kernel of the Clifford-Fourier transform in even dimension
m > 2 is given by

K_(z,y) = ¢'ETve "2y

N ) *
(5) ( (m—2)/2(57 t) + B("l_Q)/2(57 t) + (Q A ﬂ) C(7rz—2)/2(57 t))
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where s = (z,y) and t = |z ANy| = \/|z|*|y|* — 5% and

l
4

u:-\w

Z gm/2—2-2¢ 1 r (nzl)
=0

Al 2y /2(5,) 2771 mj(m—%—s)/z(t)7

1 rz -
* _ m/2—1-2¢ 2
B2y /2(s,t) = s 2001 T (2 — 20) Jm—20—3)/2(t),

Z gm/2—1- 20 1 r(m)

C(m 2)/2(5 t) 207 ﬁj(m 20-1)/2(1)

with Jo(t) = t=*Jo(t).

This theorem was obtained by the explicit computation of

1

N T\N"2 , 1ok _
A= (5) TN (w 0w )

(2.5) B = — (I 7 2kgk BY

where z = |z||ly|, w = ({,n), x = |z| £, y = |y| n and Bf = cos (2v/1 — w?).

3. FRACTIONAL VERSION OF THE CLIFFORD-FOURIER TRANSFORM

In this section, we show how a fractional version of the CFT can be introduced.
To that end, we adapt the initial definition of the CFT

Fp=e T eFsTed (0 |z|?)
to

Fop=e"efles g (A—]z)?)
where a, § € [—7, 7]. Notice that we immediately have

Fa30Fa—p=TFa—p0Fap=7F;

a

ﬂ
2

with F, (A=12*) the fractional version of the ordinary Fourier transform,
given exphcltl by (see [19])

—2iay\ —™/2 —i(z sina % (cot a)(|z|? 2
Falf)) = (rl1 = 7200 7 [ e smachcore e () da,

Our aim is to find an integral expression for F, g:

—m/2

Faslflly) = (n(1 - 7)) Kap(z,y) f(z) dr.

Rm,
In our computation, we need to put a few restrictions on the parameters o and f.
We exclude for now the case where @ = 0 or @ = £7. In section 7.3 we will explain
what happens for these exceptional values.



THE FRACTIONAL CLIFFORD-FOURIER TRANSFORM 5

We compute formally

Fup = €5 T E (0 lal?)

= (m(1 - e*%"))’m”ei%/ e—iley)/sinapg(cota)(al®+Hyl) () gz,
Hence, the kernel is given by
K, ﬁ(L y) = Py (e—i(zg)/sinaeg(cota)(|§\2+|g|2))
= e%(cota)(kp\ +|y| ) 1By ( iz ,g)/sina)

where the last line follows because I', commutes with |y].

Recall now the series expansion for the ordinary Fourier kernel ([24], Section
11.5)

oo

(3.1) 8 = 22T(N) Y (k + N (=) (12l [y ) Teeallzllyl) CR (& m)),
k=0

where £ = z/|z|, n = y/|y| and A = (m — 2)/2. Here, J, is the Bessel function and
C’,i‘ the Gegenbauer polynomial.
Using (3.1), the term e’*Tv (e_i@@/smo‘) can be computed. Indeed, we find

08Ty (e—i@@/ sin a>

=ePTur(0) Y 2 ke + A)(isina) (| ly])* T <|:ICI|1|Z;|> Cr((&,m)
k=0
z|ly|

22)‘ k+ A (isina) T <

k=0

so we have reduced the problem to calculating "' ((Jzlly))*C((&,m))). This can
be done in a manner analogous to Lemma 3.1 in [10]. The result is given in the
following lemma.

) ¢ ((|zlly)FCR (€ m)))

Lemma 3.1. One has

T (allyl)OR ({6 m)) = 5 (B4 4 %) (aly FCR(E, )

_ 2(k/\+>\) (eiﬁ(k+m—2) _ e—zﬂk) (1zlly))* C (€, n)

At e PEEm=2) — e R) (Jal [y )E T Ot (6 m)).-

Using this lemma and the previous computation, we arrive at the following series
representation for the kernel of the fractional CFT.

DN | =

Theorem 3.2. The fractional Clifford-Fourier transform Fo g = %™ il s (A-lzl”)
is given by the integral transform

(7‘((1 _ 6721‘04))
with integral kernel

Kap(z,y) = (A;*’B + By + (zAy) C;I:B) ¢ 3 (cot a)(lzl* +]y/*)

—m/2



6 HENDRIK DE BIE AND NELE DE SCHEPPER

with
AP P (w,2) = = 22N+ 1)) iR (ePEEN — e miBRZmA g () O (w),
k=0

BY P (w,2) =227 Y (k4 N)iF (e P2 4 o7 gL (B) CR (w),

oo
Cf\l’ﬁ(w,z’) _ctAarl) Zi—k(em(lﬁ-w\) _ e—iﬁk)g—A—le+>\(%') C«]z\j-ll (w),

Remark 3.1. It is important to note that the kernels of these integral transforms
are not symmetric, in the sense that K, g(z,y) # Ka,5(y,z). Hence, we adopt the
convention that we always integrate over the first variable in the kernel.

The functions Ai’ﬁ , B;’"ﬁ and C’;\’"ﬁ satisfy nice recursive relations. They are
given in the following lemma.

Lemma 3.1. The following identities hold

A e
AS\M)B('LU, z :ﬁ%awAifl(w, %I) A 2 27
«a, 3 ieZﬂ a,f
B)\’ (w,%’) :78wB)\;1(w,2) A > 17
. iB
O (w,7) =0, C (w, %) A> 1
z

Proof. This follows immediately from Theorem 3.2 and the fact that --C(w)
2XC T (w).

Ol

4. EXPLICIT REPRESENTATION OF THE KERNEL

We determine the explicit formula of K, g(z,y) on R™ in the case of even di-
mension. B

We first obtain the result in dimension 2, using the series expansion obtained in
the previous section. Note that this result can also be proven using Clifford algebra
techniques in a similar way as was done in [8] for the case where o = 3. This is left
as an exercise for the reader.

Subsequently, we derive the kernel for even dimensions larger than 2.

4.1. The case m = 2. In this case A = 0. We need the well-known relation [21,
(4.7.8)]

lim A7'C) (w) = (2/n) cosnf, w =cosh, n>1.
A—0
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We then compute the three series given in Theorem 3.2. The first one reduces to
ASP (w, ) = 0. Next we obtain B’ (w, 2) as

ByP(w,2) = Jo(2) + 2 Zi_ka(E) cos k3 cos k6

k=1

=2 <Jo<z> £23 iRy (3) cosh( - 9))

k=1

T % (JO(E) +23 i P Jk(3) cos k(B + 9))

— le—i’z'cos (B846) + %e—izcos (B—0)

cos B

1 . .. psing sin 8
= —e W na (e—zzsmesina + ezzsmﬁgma)

.oosinf\ .., cos8
cos (zsm& . )e FWsina

sin a
In the 4th line we have used the well-known decomposition (see [12], p. 7, formula
(27))
e Feost — J0(2) +22i*k(]k(2) cos k6.
k=1
Similarly we calculate Cy P (w, %) as

o 2 = ._ sin kS sin k6
CO’B(w,Z) Zz ka(E)/Bi

Zsina P sin 0

(Jo A)-FQZZ ¥ Je(2) cos k(B — 9))

k=1

2z sin 6

© 2zsinf

< A)—l—?Z F Tk A)cosk(ﬂ—l—@))

7 . .
_ —iz cos (B—0) _ _—iZcos (ﬁ+0))
2zsinf (e c

sin 8
sin (zsin032) _, coss

= - - sina |

zsinf

Hence we have obtained the following

Theorem 4.1. The kernel of the fractional Clifford-Fourier transform in dimension
m = 2 s given by

Ko p(@,y) = e3 (ot et Ty (omitew/sine)

sin o t

sin tsinﬁ>
= cos( smﬁ) (:c/\y) ﬂ e Hay) §8 L& (cot a)(z*+]yl?)

with t = |z Ay| = /|z?|y]? — (z,y)2.
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4.2. The case m > 2. Observe first that
Af”B = —iew(sina)Cg’B

and

—izw st sina _o _ smﬁ
Ca’B—e Ui 22w, cos (z\/l )

sin 3 sin a

Using the recursion relations obtained in Lemma 3.1 we subsequently obtain

: 1 . cos 1
Az’ﬁ = —k(ie?P)F— 37k 1gk-1 <em“am5w 19, cos < mgnﬂ)) ,

sin 8 sin
sin
Boz,ﬂ (26 B)k —kak ( —zzwqma coS (Z /1—11}2 - ﬂ)) 7
sin «
1 - L cosB sin
CoP = (i) ——_z-k=2pk (e“zwsina w19, cos (zm 5)) :
sin 3 sin « sin a

Introducing a new variable z* = Z'sin 3, these formulae simplify to
Az’ﬁ = —k(ie'?)k(sin B)F (z*) "k 1ok-1 (e*iz*wcowwflaw cos (z* m>) ,
B = (i) (sin §)* () ol (7 P eos (21— w?) )
C’,’:’ﬁ = (iew)k%(z*)*k”@ﬁ (e*“*wcotﬂwflaw cos (z* m» .
Let us now compute A(,:”B explicitly. We find

k—1

a . . : k—1 *\L— —l— —iz"wco
A = a3 () )y ()

£=0

x (2%)7¢20, (wilaw cos (z"v1— w2))

1 k—1
2 o k—1
: k—1_—iz*wcot B . 0 ik % g%
(2) kie™*P sin B (cos B)FLe E§_0< ¢ )(ztanﬁ) Cy(s™,t")

where we have introduced the variables s* = z*w = :ng (z,y) and t* = 2*V1 —w? =
Sinf 1z A y| and used the definition of C7 (s*,t*) in Theorem 2.1 and formula (2.5).

sin «
In a similar way, we can compute B,’:’ﬁ and C,':’B , yielding

1 k
a,f z 2 kB . A\k —iz"wcot B k . 0 Dx[ % 4%
B" = <2> e (cos B)"e Zz%<£>(ztan6) Bj(s*,t")
and

a,f z zkﬁSI B k_—iz"wcot B L kK pk
Cyr = ( ) e (cos B)%e Z( ) (itan B8)° Cy(s*,t").

2
£=0

This leads to the following theorem.
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Theorem 4.2. The kernel of the fractional Clifford-Fourier transform in even
dimension m > 2 is given by

Ko 5(z,y) = e (cota)(al®+lyl*) iy (e—i@@/sm)
1 .
_ (g) ? i8m=2)/2(cog §)(m—2)/2is" cot B o (ot o) (al*+ly|*)

a, 3% * g% a,f3,% * g% a, B, % * g%
x (A(WQ) (8% )+ BL (55 ) + (@A y) Oy (57t ))

where s* = 525 (5. y) and t* = SinB|g/\g| and

sin « sin «

m_2
a,B,* * g% . m—2 S T =2 . k[ kg%
A(Tf_’Q)/Q(s ) =i (2) tanﬁez: <2 ’ )(ztanﬁ)Z Cj (s*,t%),
=0
w1

B(O;’,Lﬁ_’Q)/2(s ) = — (2 ’ )(ztanﬁ)é Bj(s*,t"),
£=0

m_

a,B,* * gk __Sinﬁ %_1 . O vk kg%
C(m_2)/2(s ) = sna 2 ( ’ (itan B8)° Cy(s*,t%)

with By (s*,t*) and C} (s*,t*) defined in Theorem 2.1 and with Jo(t*) = (t*)~*J4(t*).

Taking into account the expression of Cj(s*,t*) and executing the substitution
{ = p+ j, we obtain consecutively

-1
(7 uamrciee)

£=0

k1Y PR R .
("7 )y P T 00

_ (k—1)! itan B\’ ,. ., b
=_ 4 (k—l—p—j)!j!(p—j)!( 5 ) (is* tan B) Jp+%(t ).

hS]
I
o
<
I
=}

Similarly, we find that

k

> <’;> (itan B)' By (s*,t*)

£=0
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. . .. a,B,x a,B,% o, B,*
Hence, we obtain the following explicit formulae for A(m—2)/27 B(m_2)/2 and C(m_2)/2

in terms of a finite sum of Bessel functions:

m/2—2 (min (p,m/2—2—p) . 7
. -2 (m/2 —2)! itan 8
Aa7/37* 5*7_&* = —3 (m) tanﬁ — -
(=225 ) 2 pz:(:) 2 (m/2=2—p—7)ljlp—j) \ 2s*

J=0

X

(is™ tan B)P ], 1 (7)

e m/2—1 (min (p,m/2—1—p) (m/2 —1)! itan g J
B, * t* —
(m-2)72(87517) > > (m/2—=1—-p—7)p—J) ( 2s* )

p=0 Jj=0

X

(is™ tan B)P.J, 1 (*)

. m/2—1 (min (p,m/2—1—p)
sin 3

o 2
p=0

x (is” tanﬁ)pz)+%(t*).

o, - (m/2 —1)! itan B\’
oy s, 1) =

= (m/2=1—p—75)5p—5\ 2s*

5. FRACTIONAL CLIFFORD-FOURIER SYSTEM

In this section we derive the system of PDEs that is satisfied by the kernel of
the fractional CFT.

Proposition 5.1. For all m, the kernel K, g(x,y) satisfies the properties
(isina Oy + cosa y)Kap(z,y) = eiﬁ(m_l)Ka7_ﬂ(g,y) z,
yKap(z,y) = eiﬁ(m*l)Ka,,g(g, y)(isina Oy + cosa z).

In the last formula, the Dirac operator 0, is acting from the right on K, _g3.
Proof. Taking into account that

9,Ly = (m —1-Ty)*0,
and thus also that

8yezﬂr£ _ iB(m=1-T,) 5

Y

we subsequently calculate
OyKap(z,y) = 6@;6%(C0t @) (12* +1y|*) (iBTy o —i(z,y) / sin o
— 82 (e%(COt a)(|£|2+\g|2)) eiﬁl—‘ge_i<£7g>/ sin o

1 edleota)lal+yl") iB(m=1-Ty) g (~ilew)/sina

=icotay Kop(z,y) +ePm Y K, () (- — )
- - - Sin «

or
(isina Oy + cos YKo p(z,y) = etBm=1) Ko, p(z,y) .

The expression for yK, g(z,y) is proven in a similar way using

QFZ =(m-1- Fg)kg.
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Remark 5.1. When m is even, we can also obtain Proposition 5.1 using the ex-
plicit expression for the kernel as given in Theorem 4.2. However, the resulting
computation is much more tedious.

Next, we obtain the following corollary.

Corollary 5.2. For all m, the kernel K, g(z,y) satisfies
(0, +v) Kol y) = —e 90 DE, s(a,y) (0, — z)

(% _ y) Kaﬁ(@ay) _ _eia+iﬁ("l_1)Ka7_ﬂ(£7y) (3£+£)
and
HzKa,ﬁ(£7g) = HyKa,ﬁ(lv g)
with Hy = A, — |z|?.
Proof. Immediately, using Proposition 5.1 and the fact that
2H, = —{(’&—l—g,ag—g}.

Putting

~

i cot o x 2 2
(5.1) KO"B(Q’Q) = KQ,B(§7Q) 62( t )(‘7| +|g‘ )’
let us determine the system of partial differential equations satisfied by IA(Q 8-
Proposition 5.2. For all m, fA{a,B(L y) satisfies
(isina 9y)[Kas(z,y)] = " VK, _s(z,y) z,
yRap(zy) = ?0 VKo sz y)|(isina y).

Proof. These equations are obtained by plugging the form (5.1) into Proposition
5.1. ([

The interested reader may at this point wonder whether IA(a”g (z,y) as given in
Theorem 4.2 is the only (unique) solution to the system of PDEs given in Propo-
sition 5.2. It turns out that this is not the case. Indeed, when oo = 8 = 7/2 we
have investigated this phenomenon in [9], yielding an entire class of solutions to
this type of PDE. A similar analysis can be performed for arbitrary a and 5.

6. PROPERTIES OF THE FRACTIONAL CFT

From the explicit expression for the kernel of the fractional CFT given in Theo-
rem 4.2, we can derive some properties of the kernel.
Let us start by giving a bound for the kernel.

Lemma 6.1. Let m be even. For x,y € R™, there exists a constant ¢ such that

[AG ) o (878 4 B (s t) < e (14 [2) 77D/ (1 [yl 272
@k — 2k OOl (85 1) < e (L4 [ =272 (L4 [y)m=272 j £k

Proof. The proof is similar of the one of Lemma 5.2 and Theorem 5.3 in [10]. O
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Note that the kernel is bounded if m = 2.
Recall that the kernel K, g(z,y) is a Clifford algebra valued function. It can be
decomposed as

(6.1) Kop(a,y) = Ko(z,y) + Y eie;Kij(z,y)

i<j
with Ko(z,y) and K;j(x,y) scalar functions. Now, using Lemma 6.1, we immedi-
ately have the following bounds.

Theorem 6.2. Let m be even. For z,y € R™, one has
[Ko(z,y)| < e(L+ [z) " =D2 (1 + [y) " =2/2,
|Kij(@, )] < c(L+[z) 221+ [y)m2/2 i
The bound of the kernel function defines the domain of the fractional CFT.
Theorem 6.3. Let m be an even integer. The fractional Clifford-Fourier transform

is well-defined on B(R™) ® Clg ., with

B(Rm>:{feL1<Rm> gy |f<y>dy<oo}.

Proof. This follows immediately from Theorem 6.2. O

m

Subsequently, we derive the calculus properties of the fractional CFT.
Lemma 6.4. Let m be even and f € S(R™) ® Cly,m. Then
Fa,—p [(xcosa —isinady) f| = e_m(m_l)g]:a,g[f],
Fa,—p [(cos ad, —ixsin a)f] = e*iﬁ(mfl)ag}"a,g[f].

Proof. Because m is even, the kernel K, g has a polynomial bound according to
Theorem 6.2 and we can apply integration by parts. Using Proposition 5.1 then
yields the desired results. ([l

We now arrive at the main theorem of this section.

Theorem 6.5. Let m be even. Then F, g is a continuous operator on S(R™) @
Clo,m.-

Proof. Using formula (6.1) we can rewrite F, g as
.7:(17[3 = ]:0 + Z eiej]:ij
i<y
with

Folflly) = (n1 =)™ | Kol y)f @

Fulf@) = (1= ) ™ [ Ky g fla)da

scalar integral transforms.

Now we observe that (z cosa — isinady)?, resp. (cosad, —izsina)? are scalar
operators. Indeed, we can e.g. compute
(z cosa — isinad,)? = —(cosa)?|z|? + (sina)?A — isinacosa{z, d,}

= —(cosa)?|z|? + (sina)?A + isin o cos a(2E + m),
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with E = Z;nzl 20, the Euler operator. Subsequently applying Lemma 6.4 two
times, we obtain

Fol(zcosa — isinady)*f(y) = ~|yI*Folf1(y)

(6.2) L
Fol(cosady —izsina)”fl(y) = —AyFolf](y)-

The same results hold for F;.

It clearly suffices to prove that Fy and F;; are continuous maps on S(R™). We
give the proof for Fy, the other cases being similar.

Recall that the Schwartz class S(R™) is endowed with the topology defined by
the family of semi-norms

prys(f) = sup 270° f(z)|, 7.0 € Ny,
ze m

and f € S(R™) if p, s(f) < oo for all v,0. An equivalent characterization is given
by g% () < o0 for

5 (f) = sup |zYA"f(z)], veN§, neN,,
TeR™

see [10], proof of Theorem 6.3.
Now let v € Nj* and n € Ny. If |y| < 1, then by (6.2) and Theorem 6.2,

Y Ay (Fof) ()l = 97| - [Fol(cos ady — iz sina)* f](y)|

<ec(l+ \gl)(m’zm/ (1 + [2)) =2/ (cos @by — iz sina)™ f(z)|dx

m

<c sup |(1+ |§|)3m/2(cos ady — iz sin o)™ f(2)|
reER™

as f is a Schwartz class function. For [y| > 1 we find similarly

¥ Ay (Fof) )] = ly"] - [ Fol(cos ady — iz sina)*" f](y)]
= |y"| - |yl |Fol(z cos o — i sin ad, )*? (cos ad, — iz sina)®” f](y)|

< C@lef?a(l + M)(m%)/2
X / (14 |z])(m—2)/2 |(§c0sa — isinad,)? (cos ad, — iz sin a)Q"f(gﬂ dx

< ¢y sup |(1+ |z|)*™/?(z cos a — isinad, )% (cos ad, — iz sin )" f(z)]
TER™

if 20 > |y| + (m —2)/2.
As now both terms

sup |(1+ @|)3m/2(cos ady; — izsin a)Q”f(§)|
zeR™

sup |(1 + |z])*>™/?(z cos @ — i sin ady )7 (cos ady, — iz sin a)?" f(z)|
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can be expanded so that they are bounded from above by a finite sum of seminorms
p~.5(f), it is easy to obtain an expression of the form

sup [y" Ay (Fof) (vl
ye]an

< max {cl sup |(1 + |z])®>™/?(cos ad, — iz sin ) f(z)],
zeRTﬂ,

co sup | (14 |z])*™/2(z cos o — i sin ad,) 7 (cos ady, — iz sin a)znf(x)} .
zER™

< Z P%5(f)-

finite

This proves the continuity of Fy. Similar considerations give the continuity of F;;,
thus completing the proof of the theorem. ([l

7. EIGENVALUES OF FRACTIONAL CFT

In this section we will calculate the action of the fractional CFT on the basis
{¥j i} defined by (2.3). This will allow us to prove the inversion theorem on
Schwartz space for even dimension (see Theorem 7.3). We also discuss what happens
for exceptional values of the fractional parameters a and f.

7.1. Operator exponential approach. The fractional CFT can be written as

the operator exponential
Fop = ei(—aH+pT)

with % = 2(—A + |z|? — m). Combining (see [5], p. 114)
Hthjrel = (G + k) Y
with
Dojkel = —ktojne 5 Tlji1k6 = (K +m — 1)1,

we obtain

(—aH + BD) [ojke] = (—a(2) + k) — BE) thajh.e

(—aH + BD)[2j1 k0] = (—(2) + 1+ k) + B(k+m — 1)) Yoji1ke

Hence, we find consecutively

(—aH 4 BT)" [Yh2;,k.¢]

, r > in
e oM o k] = Y ]

n=0
©_n

= Z o] (—a(25 + k) — ﬁ/{i)n Yaj ke
n=0

— o—ia(2j+k) ,—ifk boje

and similarly

ei(faH+ﬁF)[ efia(2j+1+k) 6i6(k+m7

1
Yoi11 k0] = ) V241 ke



THE FRACTIONAL CLIFFORD-FOURIER TRANSFORM 15

7.2. Series approach. In this subsection we consider a general kernel of the fol-
lowing form

(71) K(g, y) = (14(11}7 z) + (@/\g) B(w’ 2’)) e%(COta)(|£‘2+|ﬂ|2)
with

Alw, z) = Zak (2) M a(2)Cp (w)

(w,2) = Zﬁk ) M T (R) ot (w)

k=1
and ay, B € C, Z = (|zlly))/sina, w = (& n) (@ = [zl¢ y = |yln, &n € S,
A=(m—2)/2.
We define the integral transform
1
Flfl(y) = K(z,y) f(z) dx.

Y= (m(1 — e—2ia))m/2 R
Now we calculate the action of this transform on the basis (2.3) of S(R™) ® Clo.,.

We start with the following auxiliary result expressing the radial behavior of the
integral transform.

Proposition 7.1. Let My € My, be a spherical monogenic of degree k. Let f(z) =
Jo(|z|) be a real-valued radial function in S(R™). Further, put §{ = x/|z|, n = y/|yl
and r = |z|. Then one has

i

Flfr)Me(2)] (y) = cm ()\j\—kak —sina (kli )\)Bk> L (cot a)y|? My,(n)

400 )
/ PR () (B) M aa(B) e dr
0

and

Flf(r)zMy(2)] (y)

k+142\ i
Qg1 +sina T )ﬂk+1>62(°°m)y2

A
m()\+k+1 2(k+1+ A

+oo )
xn Mi(n) / PR fo(r) (2) A prpa(3) e300 g
0

withs= "4\ = (m—2)/2 and
2
F(g) (1 Byn/e

Cm =

Proof. The proof goes along similar lines as the proof of Theorem 6.4 in [10]. O
We then have the following theorem.
Theorem 7.2. One has, putting 5y = 0,

2 A b i .
) — e ik —ia(k+27) )
Fl2jk,0)(y) T+ 1) (/\ Lk sina (}\ ) 5k> i"e Y2jk,0(Y)

2—>\

A k4142
FA+1) \A+k+1

20+ k+1)

Flbojt1,k,el(y) = k41 +sina

Bein ) k1 p—ia(k+25+1) Y241,k (y)-
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Proof. This follows from the explicit expression (2.3) of the basis and the identity
(see [14, p. 847, formula 7.421, number 4 with a = 1]):

“+o0 2 2
qurle*ﬂmzLZ 2132 JI/ a0 dr — 271/71 —v—n—1 1) Ve—Z—ﬂL:L |: Yy :l )
/ ()7, () R LRV e

]

The fractional Clifford-Fourier kernel K, g has the same structure as the kernel
in (7.1), because of Theorem 3.2. The action of the fractional CFT F, g on the basis
{j k,¢} can hence be determined by substituting the corresponding coefficients c,
and Sy in Theorem 7.2. This yields the following result.

Theorem 7.3. For the basis {1 ¢} of S(R™) ® Clo,m , one has

Fop[hoj ] = e CITR =ik 4y,

ia(2j+14k) yiB(k+m—1

Foplh2j41,k0) =€ ) a1k

In particular, the action of Fo 5 coincides with the operator e (=aH+BL) yhen re-
stricted to the basis {1; ¢} and

(7.2) FapF-a—p=1d

on the basis {1jr.e}. Moreover, when m is even, (7.2) holds for all f € S(R™) ®
Clom-

Proof. We only need to prove the last statement, for m being even. This follows
from Theorem 6.5 and the fact that {1, x ¢} is a dense subset of S(R™)®Cly . O

7.3. Exceptional parameters and the fractional CFT. Using Theorem 7.3 we
are able to explain what happens for the exceptional parameter values = 0 and
a = +7. First we write the fractional CFT as the composition of two operators:

Fa,p=FoFa0

icvm

with Fo 5 = €T and F, 0 = e o5 (A=zl®)
When o = 0, we observe that F, o becomes the identity operator. Using the
eigenvalues computed in Theorem 7.3, we moreover find that

Farmolfly) = f(=y).

Note that in both cases, the resulting operators can no longer be written as integral
operators with kernel given by Theorem 4.2.

We still need to consider the operator Fy 5 = €' for these cases. This is a purely
angular operator, which can be written as a singular integral operator acting on
the sphere. Its detailed study will be presented elsewhere.
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