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Abstract
This article investigates nonlocal, quasilinear generalizations of the classical biharmonic
operator (−�)2. These fractional p -biharmonic operators appear naturally in the variational
characterization of the optimal fractional Poincaré constants in Bessel potential spaces. We
study the following basic questions for anisotropic fractional p -biharmonic systems: exis-
tence and uniqueness of weak solutions to the associated interior source and exterior value
problems, unique continuation properties, monotonicity relations, and inverse problems for
the exterior Dirichlet-to-Neumann maps. Furthermore, we show the UCP for the fractional
Laplacian in all Bessel potential spaces Ht,p for any t ∈ R, 1 ≤ p < ∞ and s ∈ R+\N:
If u ∈ Ht,p(Rn) satisfies (−�)su = u = 0 in a nonempty open set V , then u ≡ 0 in R

n .
This property of the fractional Laplacian is then used to obtain a UCP for the fractional p -
biharmonic systems and plays a central role in the analysis of the associated inverse problems.
Our proofs use variational methods and the Caffarelli–Silvestre extension.
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1 Introduction

The classical p -biharmonic operator is given by

(−�)2pu = �(|�u|p−2�u) (1)

which is a nonlinear, elliptic, fourth order generalization of the well-known biharmonic
operator (−�)2. A general boundary value problem for the p -biharmonic operator could
then be formulated as follows: Find a function u : � → R solving

(−�)2pu = f (x, u) in �,

B j u = g j on ∂�
(2)

for j = 1, 2, where � ⊂ R
n is some domain with sufficiently smooth boundary, f : � ×

R → R a possibly nonlinear function, B j , j = 1, 2, are some boundary operators and
g1, g2 : ∂� → R are given boundary data. Typical boundary conditions which have been
studied in the existing literature are theNavier boundary conditions u = g1, �u = g2 on ∂�,
the Dirichlet boundary conditions u = g1, ∂νu = g2 on ∂�, where ν denotes the unit outer
normal to ∂�, or combinations of them which are called mixed Dirichlet–Navier boundary
conditions. The regularity properties of biharmonic functions, that is solutions to (2) with
f ≡ 0, spectral properties of biharmonic operators, variational formulations and unique
continuation principles have been studied extensively for p = 2 (see e.g. the articles [48]
for well-posedness, regularity properties, [14, 79] for spectral properties and [21, 23, 83] for
the strong unique continuation properties for the fourth order elliptic equation). Moreover,
in the article [20] Caffarelli and Friedman studied the obstacle problem for the biharmonic
operator. In recent years, many of these results have been extended to the case p �= 2. For
example in the works [40, 106] the authors analyzed the spectrum of the p -biharmonic
operator and showed that the eigenvalue problem associated to (1), namely problem (2) with
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f (x, u) = λ|u|p−2u and homogeneous Navier boundary conditions, have a simple, isolated
least positive eigenvalue λ+ > 0.

This work is devoted to the study of the anisotropic fractional p - biharmonic operators

(−�)s
p,Au := (−�)s/2(|A1/2(−�)s/2u|p−2A(−�)s/2u) (3)

where 1 < p < ∞, s > 0 and A ∈ L∞(Rn;Rm×m) is a symmetric, positive definite,
uniformly ellipticmatrix-valued function.Wewill simply call the operator (3) as the fractional
p- biharmonic operator when A = 1m and often restrict to the truly fractional cases s ∈
R+ \ Z or s ∈ R+\2Z. The associated exterior value problem takes the form

(−�)s
p,Au = f (x, u) in �,

u = g in �e
(4)

where �e := R
n \� is the exerior of �, f : Rn ×R → R is a possibly nonlinear function or

f ∈ ( ˜Hs,p(�;Rm))∗ (see Sect. 3), which models an interior source, and g ∈ Hs,p(Rn;Rm)

is the prescribed exterior value of u. As we will see later, in the cases f ≡ 0 (pure exterior
value problem) or f ∈ ( ˜Hs,p(�;Rm))∗ and g ≡ 0 (pure interior source problem), the
solutions u can be obtained by minimizing a related energy functional (called p -energy).
The considered energy functional is similar to the one considered in the work [31] but there s
is fixed to the critical value s = n/p, A = 1m and the authors considered functions u taking
values in a closed Riemannian manifold N ⊂ R

m .
Next, we describe our main contributions (the detailed discussion is given in Sect. 2) and

the structure of this article. We introduce the basic notation and functional setting used in
this work in Sect. 3. We start in Sect. 4 by showing that the fractional p -biharmonic operator
(3) studied in this work naturally appears in the variational characterization of the optimal
fractional Poincaré constants in Bessel potential spaces. In fact, we prove that there is a func-
tion u ∈ Hs,p(Rn) whose p -energy coincides with C−p∗ , where C∗ is the optimal Poincaré
constant, and it solves (4) with f (x, u) = λ|u|p−2u for some λ > 0. In Sect. 5, we establish
the existence and uniqueness of weak solutions to the (anisotropic) fractional p -biharmonic
systems (4) in the two mentioned limiting cases of pure exterior values and interior sources.
We define the exterior Dirichlet-to-Neumann (DN) maps related to the anisotropic fractional
p -biharmonic operators in Sect. 6. We study unique continuation properties (UCP) of these
nonlinear, nonlocal operators, in Sect. 7. Finally, in Sect. 8, we establish monotonicity rela-
tions for the fractional p -biharmonic operators and uniqueness results for the related exterior
data inverse problems in the presence of monotonicity assumptions for certain conformal
coefficients of a priori known anisotropy.

2 Main results of the article and comparison to the literature

In this section, we state and discuss the main results obtained in this work. We also briefly
compare our results to the existing literature on the way. We refer to the following books on
the basics of the fractional Laplacian, fractional Sobolev spaces and their applications [100,
105].
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2.1 On the optimal fractional Poincaré constants

For any bounded open set � ⊂ R
n , 1 < p < ∞ and s ≥ 0 there exists a constant

C(n, p, s,�) > 0 such that

‖u‖L p(�) ≤ C‖(−�)s/2u‖L p(Rn) (5)

for all u ∈ C∞
c (�) (see e.g. [4, Lemma 3.3] or [96, Lemma 5.4]). Later on we will refer to (5)

as the fractional Poincaré inequality. Note that we do not require any boundary regularity of
the domain �, which is similar as for example in the classical Sobolev embedding theorem
for W k,p

0 (�)-functions (see e.g. [101, Theorem A.5]) and hence for the Poincaré inequality
in these spaces. We establish a variational characterization of the optimal fractional Poincaré
constant in (5) when 1 < p < ∞ and s > 0. This characterization is directly related to the
fractional p -biharmonic operator given in (3) and in partmotivates to investigate properties of
the fractional p -biharmonic operators and their other relations with the fractional Laplacians.
Further references on (5) and the higher order fractional Laplacians can be found in [96].

One important application of the fractional Poincaré inequalities is to showwell-posedness
results for certain nonlocal partial differential equations (PDEs). More precisely, these
inequalities allow to obtain coercivity estimates for the weak formulations of some non-
local operators which together with the Lax–Milgram theorem prove existence of unique
solutions (see e.g. [46, 90, 96]). Moreover, we point out that the constant in the stability
estimates of the obtained unique solutions via the Lax–Milgram theorem depend linearly on
the Poincaré constant which further motivates the study of the optimal fractional Poincaré
constants.

The standard examples of nonlocal PDEs are the uniformly elliptic integro-differential
operators which have the form

Lu(x) := p.v.

∫

Rn
(u(x) − u(y))K (x − y) dy,

where the kernel K : Rn → R satisfies

K (x) ≥ 0, K (−x) = K (x),
λ

|x |n+2s
≤ K (x) ≤ �

|x |n+2s

for all x ∈ R
n with 0 < λ < �, 0 < s < 1 and p.v. stands for the Cauchy principal value.

These operators naturally show up as the infinitesimal generators of stable Lévy processes or
more precisely the associated semigroups. A particular simple and well-behaved uniformly
elliptic integro-differential operator is the fractional Laplacian (−�)s for 0 < s < 1, which
corresponds to a stable, radially symmetric Lévy process, and its higher order generalization
to s ∈ R+ (see e.g. [46, 90]). The cases when p �= 2 appear naturally in the studies of
nonlinear PDEs and the standard example is the fractional p -Laplacian which is usually
defined as

(−�p)
su(x) := C1 p.v.

∫

Rn

|u(x) − u(y)|p−2(u(x) − u(y))

|x − y|n+sp
dy (6)

for 0 < s < 1 and some normalizing constant C1 > 0. The constant C1 can be chosen
in such a way that (−�p)

su → −�pu as s ↑ 1 and (−�)s
pu → (−�)su as p ↓ 2 for

sufficiently smooth functions u, where �p denotes the p -Laplacian defined by �pu :=
div(|∇u|p−2∇u) (see e.g. [37] and references therein). The fractional Poincaré inequality,
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the Sobolev embedding theorem and inequalities for closely related operators have been
studied extensively in the literature (see e.g. [33, 46, 66, 80, 88]).

For any 1 < p < ∞, s ≥ 0 and an open bounded set � ⊂ R
n , we define the set

Mp = {u ∈ ˜Hs,p(�); ‖u‖L p(Rn) = 1} ⊂ ˜Hs,p(�)

and the energy functional

Ep : Mp → R+, Ep(u) =
∫

Rn
|(−�)s/2u|p dx .

We have obtained the following result on the optimal fractional Poincaré constants:

Theorem 2.1 Let 1 < p < ∞, s > 0 and � ⊂ R
n be an open bounded set and denote

by C∗ = C∗(n, p, s,�) > 0 the optimal fractional Poincaré constant. Then the following
statements hold:

(i) The constant C∗ satisfies

C−p∗ = inf
v∈Mp

Ep(v).

(ii) There exists a minimizer u ∈ Mp with λ1,s,p := Ep(u) > 0.
(iii) Any minimizer u ∈ Mp solves the following Euler–Lagrange equation

∫

Rn
|(−�)s/2u|p−2(−�)s/2u(−�)s/2v dx = λ1,s,p

∫

Rn
|u|p−2uv dx (7)

for all v ∈ ˜Hs,p(�).
(iv) If 0 �= v ∈ ˜Hs,p(�), μ ∈ C satisfy

∫

Rn
|(−�)s/2v|p−2(−�)s/2v(−�)s/2w dx = μ

∫

Rn
|v|p−2vw dx (8)

for all w ∈ C∞
c (�), then μ ∈ R and there holds μ ≥ λ1,s,p.

Theorem 2.1 is completely analogous to the well-known classical result, which connects
the optimal Poincaré constant in ‖u‖L p(�) ≤ C‖∇u‖L p(�) and the p -Laplace operator
�p (see e.g. [24, 41, 76, 85]). We remark that the fractional p -Laplacian (6) also shows up
similarly in the variational characterization of the optimal Poincaré constants in Slobodeckij–
Gagliardo spaces W s,p(�) (see e.g. [10, Section 3] and [88]). In the setting of Slobodeckij–
Gagliardo spaces, higher order eigenvalues of the fractional p -Laplacians and fractional
capacities of sets are also studied recently (see e.g. [12, 13, 34]). The authors are not aware of
similar studies for the Bessel potential seminorms (i.e. L p norms of the fractional Laplacians)
or for the fractional p -biharmonic operators. In part, these connections and analogies make
it tempting to study the properties of the fractional p -biharmonic operators further.

2.2 On the unique continuation properties of the fractional Laplacians and
p -biharmonic systems

Unique continuation properties for (elliptic) operators have a long history [1, 3, 16, 74] and
dates back at least to Riesz [89]. Roughly speaking this principle states that any solution of
an elliptic equation that vanishes in an open set must be identically zero. It has several appli-
cations in inverse problems, control theory and existence theory for PDEs. There are various
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methods to prove the unique continuation principles for elliptic problems. One could recall
Holmgren’s uniqueness theorem to obtain the UCP for elliptic PDEs involving real analytic
coefficients, see [69]. There are also certain inequalities, such as the doubling inequalities,
three sphere inequalities, frequency function methods and Carleman estimates, that can be
used to establish the UCP for elliptic equations for less regular coeffiecients, see e.g. [77].
However, the method of Carleman estimates has great importance in proving the UCP as
well as solving several inverse problems (see e.g. [35, 68, 73, 102]). In this article, we study
similar properties for the fractional Laplacians and fractional p -biharmonic operators. We
have proved the following UCP result for the fractional Laplacian in all Bessel potential
spaces, excluding the end point p = ∞:

Theorem 2.2 (UCP) Let 1 ≤ p < ∞, s ∈ R+ \ N and r ∈ R. If u ∈ Hr ,p(Rn) satisfies
(−�)su = u = 0 in a nonempty open set V , then u ≡ 0 in R

n.

This settles an open problem in [25, Question 7.1] and extends the result [25, Theorem 1.2
and Corollary 3.5] from 1 ≤ p ≤ 2 to the missing cases 2 < p < ∞. The proof strategy
is similar to [56, Theorem 1.2]. The higher order cases are proved by an iteration argument
with the local operators (−�)k , k ∈ N, as in [25, Theorem 1.2]. In particular, the proof
uses the Carleman estimates of Rüland [93, Proposition 2.2] for the Caffarelli–Silvestre (CS)
extension [29, 30]. However, we need to use additional L p estimates and make a specific
localization argument for the extension problem. The proof of Theorem 2.2 is presented in
Sect. 7.

Unique continuation properties for the fractional Laplacian and related nonlocal operators
have been extensively studied in recent years.We summarize some of these results next. There
are strong unique continuation results for 0 < s < 1 when one assumes higher regularity
of the function [43, 93]. In the strong UCP, one replaces the condition u|V = 0 by the
requirement that u vanishes to infinite order at some point x0 ∈ V . The higher order case
s ∈ R

+ \ Z, s > 1, has been studied recently by several authors [44, 47, 108]. These results
however assume some special conditions on the function u, i.e. they require that u is in a L2

Sobolev space which depends on the power s of the fractional Laplacian (−�)s . We also
point the interested reader to the work [72] where the author proves a higher order Runge
approximation property by s-harmonic functions u in the unit ball B1 when s ∈ R

+ \ Z. In
the range 0 < s < 1, this result has already been established in [36]. Similar higher regularity
approximation results are proved in the article [56] for the fractional Schrödinger equation.
The UCP when p = 2 and the closely related Runge approximation have been applied in
several nonlocal inverse problems to obtain uniqueness results (see e.g. [28, 55, 56, 96]).
Another interesting application of the UCP comes from computed tomography [25, 67] as
the Riesz potentials (i.e. the inverses of fractional Laplacians) naturally appear after the so
called backprojections in different tomographies.

We denote by S
m+ the class of functions A ∈ L∞(Rn;Rm×m) taking values in the set of

symmetric, positive definite matrices and satisfying the uniform ellipticity condition

λ2|v|2 ≤ 〈Av, v〉 ≤ �2|v|2 a.e. in R
n

for all v ∈ R
m and a pair of real numbers 0 < λ < �. The anisotropic fractional p -

biharmonic operator (−�)s
p,A is given weakly by

〈(−�)s
p,Au, v〉 =

∫

Rn
|A1/2(−�)s/2u|p−2A(−�)s/2u · (−�)s/2v dx
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for all u, v ∈ Hs,p(Rn;Rm) and maps Hs,p(Rn;Rm) to (Hs,p(Rn;Rm))∗. Using Theorem
2.2, we are able to prove the followingUCP result for the anisotropic fractional p -biharmonic
systems:

Theorem 2.3 (UCP for the anisotropic fractional p -biharmonic operator) Let m ∈ N, 1 <

p < ∞, s > 0 with s /∈ 2N and A ∈ S
m+. Assume that � ⊂ R

n is an open set, let

u1, u2 ∈ Hs,p(Rn;Rm) and define the functions vi ∈ L p′
(Rn;Rm) by

vi := |A1/2(−�)s/2ui |p−2A(−�)s/2ui

for i = 1, 2. If there holds

(−�)s
p,Au1 = (−�)s

p,Au2 and v1 = v2 in �,

then u1 ≡ u2 in R
n.

Theorem2.3 is proved in Sect. 7. See alsoCorollary 7.7 for some simpler special cases, and
Proposition 7.9 for a measurable UCP with some additional restrictions on the paramaters.
We use Theorem 2.3 to show uniqueness in our inverse problems.

2.3 The exterior data inverse problem andmonotonicity relations

Ghosh, Salo and Uhlmann showed in [56] that partial exterior DN data associated with the
fractional Schrödinger equation of order 0 < s < 1

((−�)s + q)u = 0 in �,

u = f in �e
(9)

determines uniquely the potential q ∈ L∞(�). The typical solution to the inverse problem is
based on the Runge approximation property for the forward model, which follows from the
unique continuation principle of the fractional Laplacian and a nonconstructiveHahn–Banach
argument. One may determine the potential q from a single measurement [55, 94] and the
inverse problem is exponentially instable [91, 92]. Generalizations of the model problem (9)
have been studied extensively in the literature in the elliptic cases [22, 26, 27, 58, 81, 92, 96]
and the inverse problem is known to be uniquely solvable for local perturbations of any fixed
nonlocal operator with the UCP whenever the forward problem is well-posed [96]. There is
also a comprehensive literature considering inverse problems for time-dependent equations
with nonlocality, these examples include time-fractional, space-fractional and spacetime-
fractional equations [9, 63, 70, 71, 82]. Inverse problems for nonlocal operators such as the
fractional conductivity equation, fractional powers of elliptic operators and fractional spectral
Laplacians have been recently studied in [28, 45, 58, 95]. More references can be found from
the surveys [97, 107] and the aforementioned works.

Let m ∈ N, 1 < p < ∞, s > 0 and A ∈ S
m+. If � ⊂ R

n is an open bounded set and f ∈
Hs,p(Rn;Rm), then by Theorem 5.8 there exists a unique weak solution u ∈ Hs,p(Rn;Rm)

to the exterior value problem

(−�)s
p,Au = 0, in �,

u = f , in �e.
(10)

We define the so called abstract trace space as the quotient X p = Hs,p(Rn;Rm )/˜Hs,p(�;Rm ). We
then define the exterior DN map �p,A : X p → X∗

p associated with (10) by

〈�p,A( f ), g〉 = Ap,A(u f , g)
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for all f , g ∈ X p , where u f is the unique weak solution to the homogeneous fractional
p -biharmonic system (10) and Ap,A : Hs,p(Rn;Rm) × Hs,p(Rn;Rm) → R is defined as

Ap,A(u, v) =
∫

Rn
|A1/2(−�)s/2u|p−2A(−�)s/2u · (−�)s/2v dx

for all u, v ∈ Hs,p(Rn;Rm). More details are given in Sects. 5 and 6. Given a conformal
factor σ ∈ L∞(Rn) with σ(x) ≥ σ0 > 0 and a fixed anisotropy A ∈ S

m+, we shortly
write �σ = �p,σ 2/p A (cf. Sect. 8). Our main theorem on the related inverse problem is the
following single measurement result:

Theorem 2.4 Let 1 < p < ∞ and s > 0with s /∈ 2N. Suppose that W ⊂ �e and D ⊂ R
n are

given nonempty open sets. Let σ1, σ2 ∈ L∞(Rn) satisfy σ1(x), σ2(x) ≥ σ0 > 0 and σ1 ≥ σ2
in R

n. Moreover, suppose that σ1 is lower semicontinuous and σ2 upper semicontinuous in
D. If �σ1u0|W = �σ2u0|W holds for some nonzero u0 ∈ C∞

c (W ;Rm), then σ1 = σ2 in
D \ W .

We get a global uniqueness result for classes of conductivities which are assumed to be
nontrivial in the whole Euclidean space R

n . In the linear case, without any monotonicity
assumptions, the first corresponding result with infinitely many measurements was obtained
very recently in [28] by Covi and the two last named authors. Theorem 2.4 directly implies
the global uniqueness result (which uses two measurements):

Theorem 2.5 Let 1 < p < ∞ and s > 0 with s /∈ 2N. Suppose that W ⊂ �e is a
nonempty open set. Let σ1, σ2 ∈ L∞(Rn) satisfy σ1(x), σ2(x) ≥ σ0 > 0 and σ1 ≥ σ2 in R

n.
Moreover, suppose that σ1 is lower semicontinuous and σ2 upper semicontinuous in R

n. If
�σ1 f |W = �σ2 f |W for all f ∈ C∞

c (W ;Rm), then σ1 = σ2 in R
n.

We remark our main theorem related to this inverse problem assumes the global mono-
tonicity relation σ1 ≥ σ2 in Rn . Similar limitations are also present in the known uniqueness
results for the p -Calderón problem, which can be thought as a practically relevant local,
quasilinear, model problem sharing many similarities with the nonlocal problem studied in
our article (see Sect. 2.3.1 for details). On the other hand, many variants of the fractional
Calderón problems for linear equations have very strong uniqueness results and the frame-
work of [56] has been very robust to solve many modified problems. Inverse problems for the
fractional p -biharmonic systems require further studies and it remains a partly open ques-
tion whether nonlocality permits stronger results also for quasilinear nonlocal equations. The
proof of Theorem 2.4 is given in Sect. 8 and it relies on the UCP (Theorems 2.2 and 2.3) and
adapts different methods appearing in the studies of fractional Calderón problems and the
classical p -Calderón problem.

Monotonicitymethods have been applied earlier in the fractional Calderón problem for the
linear equation (9). In particular, Harrach and Lin showed in [61, 62] that q1 ≤ q2 if and only
if �q1 ≤ �q2 . Very recently, Lin considered semilinear equations and used monotonicity
arguments in the studies of the Calderón problem for nonlinear perturbations of the fractional
Laplacians [78]. See also [65, 104] for other accounts of the monotonicity methods in inverse
problems.
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2.3.1 Further motivation and comparison with the p -Calderón problem

For 1 < p < ∞, consider the Dirichlet problem for the anisotropic p -Laplace equation

div(σ |A∇u · ∇u|(p−2)/2 A∇u) = 0 in �,

u = f on ∂�,
(11)

where A ∈ S
n+ and σ ∈ L∞(�) with σ ≥ σ0 > 0. The solution of (11) is the unique

minimizer of the p -Dirichlet energy

E p(v) =
∫

�

σ |A∇v · ∇v|p/2 dx

over all v ∈ W 1,p(�) with v − f ∈ W 1,p
0 (�), see [60, 103]. Now, let Xp be the abstract

trace space, i.e. Xp := W 1,p(�)/W 1,p
0 (�). Then the related DN map �

p
σ : Xp → X ∗

p is
weakly defined by

〈�p
σ f , g〉 =

∫

�

σ
∣

∣A∇u f · ∇u f
∣

∣

(p−2)/2
A∇u f · ∇vg dx

for all f , g ∈ Xp , where u f ∈ W 1,p(�) is the unique solution of (11) and g = vg|∂�

with vg ∈ W 1,p(�). The p -Laplace equation is useful in studying certain nonlinear phe-
nomena appearing in nonlinear dielectrics, plastic moulding, nonlinear fluids including
electro-rheological and thermo-rheological fluids, fluids governed by a power law, viscous
flows in glaciology, or plasticity (see e.g. [8] and the references therein). The n-Laplace
equation has also a connection to the conformal geometry [84].

The inverse problem corresponding to the anisotropic p -Laplace equation is called the
p -Calderón problem and asks to recover the conductivity σ from the DN map �

p
σ . This

quasilinear variant of the Calderón problem was introduced by Salo and Zhong in [103],
where they proved the boundary uniqueness result stating that �

p
σ determines σ |∂�. First

order boundary uniqueness was proved by Brander [15]. Other results include inclusion
detection and inverse problems in the presence of obstacles [8, 75]. Numerical studies and
linearization approaches were implemented in [59].

In [51], Guo, Salo and the first named author showed that if the two conductivities σ1
and σ2 are monotonic in the sense that σ1 ≥ σ2 in � and if A ∈ W 1,∞(�;Rn×n) has
values in S

n+, then the DN map is injective for Lipschitz conductivites when n = 2 for
1 < p < ∞. When n ≥ 3, similar uniqueness results hold under the assumption that one of
the conductivities must be close to a constant and a C1,α regular matrix A is close to identity
matrix. Further references on the monotonicity methods include [6, 19]. Interior uniqueness
for the p -Calderón problem is still open without monotonicity assumptions, which is one
motivation to consider nonlocal analogues of this problem. The proof in [51] is based on the
UCP and a monotonicity inequality for the DN maps (a nonlocal version of this inequality
is proved in Lemma 8.3).

The UCP of the p -Laplace equation in three and higher dimensions is an open problem to
the best of our knowledge (see [53, Theorem 2.7] for a partial result). In two dimensions, the
UCP is fairly well understood, see the works of Alessandrini [2], Bojarski–Iwaniec [7] and
Manfredi [86]. In the variable coefficient case, see [5, Proposition 3.3] and [50]. Due to the
lack of the UCP in three and higher dimensional domains for the equation (11), the interior
uniqueness result for the higher dimensional p -Calderón problem in [51] has the mentioned,
additional, limitations. However, the UCP for our fractional p-biharmonic systems (Theorem
2.3) holds in any dimension and is suitable for the analysis of the related inverse problem.
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Interestingly, the analogous results for our nonlocal problem (Theorems 2.4 and 2.5) hold in
any dimension without making any additional stronger assumptions.

3 Preliminaries

In this section we first introduce the relevant function spaces used throughout this article and
recall the mapping properties of the fractional Laplacians. Finally, we state the (fractional)
Poincaré inequality on Bessel potential spaces and the Rellich–Kondrachov theorem which
will be essential to prove existence (and uniqueness) of solutions to the variational problems
and nonlocal, nonlinear, partial differential equations (PDEs) studied in this work.

3.1 Bessel potential spaces and fractional Laplacians

Throughout the article n, m ∈ N are fixed natural numbers specifying the dimension of the
domain and range of the functions under consideration. We denote the space of Schwartz
functions byS (Rn) and its dual, the space of tempered distributions, byS ′(Rn). We define
the Fourier transform on S (Rn) by

Fu(ξ) := û(ξ) :=
∫

Rn
u(x)e−i x ·ξ dx

and extend it by duality to S ′(Rn). The Fourier transform F acts as an isomorphism on the
spaces S (Rn), S ′(Rn) and we denote its inverse by F−1u or ǔ. The Bessel potential of
order s ∈ R is the Fourier multiplier 〈D〉s : S ′(Rn) → S ′(Rn), that is

〈D〉s u := F−1(〈ξ 〉s û),

where 〈ξ 〉 := (1 + |ξ |2)1/2 is the so-called Japanese bracket. If s ∈ R and 1 ≤ p < ∞, the
Bessel potential space Hs,p(Rn) is given by

Hs,p(Rn) := {u ∈ S ′(Rn) ; 〈D〉s u ∈ L p(Rn)},
endowed with the norm

‖u‖Hs,p(Rn) := ‖〈D〉s u‖L p(Rn).

For any open set � ⊂ R
n and closed set F ⊂ R

n , we introduce the following local Bessel
potential spaces:

˜Hs,p(�) := closure of C∞
c (�;Rm) in Hs,p(Rn),

Hs,p
F (Rn) := { u ∈ Hs,p(Rn) ; supp(u) ⊂ F }.

If u ∈ S ′(Rn) is a tempered distribution and s ≥ 0, the fractional Laplacian of order s of
u is the Fourier multiplier

(−�)su := F−1(|ξ |2s û),

whenever the right hand side is well-defined. If p ≥ 1 and t ∈ R, the fractional Laplacian is
a bounded linear operator (−�)s : Ht,p(Rn) → Ht−2s,p(Rn).

Moreover, we denote by Hs,p(Rn;Rm), ˜Hs,p(�;Rm), Hs,p
F (Rn;Rm) them−fold carte-

sian product of the above scalar valued spaces and they are naturally endowed with the norm

‖u‖Hs,p(Rn;Rm ) := ‖〈D〉s u‖L p(Rn;Rm ).
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We extend the Bessel potential operator 〈D〉s and the fractional Laplacian (−�)s to these
spaces by acting componentwise. Clearly, these operators share the same mapping properties
on these vectorial spaces as in the scalar valued setting.

3.2 Poincaré inequalities on Bessel potential spaces and the Rellich–Kondrachov
theorem

In this subsection we state a fractional Poincaré inequality and a variant of the Rellich–
Kondrachov theorem which are adapted to our functional setting. The first result directly
follows from Lemma 5.4 in [96]. The second one can be proved, as is done below, using
compact embeddings in Besov-type and Triebel–Lizorkin-type spaces on smooth bounded
domains [49].

Theorem 3.1 (Fractional Poincaré inequality on bounded sets) Let � ⊂ R
n be a bounded

open set, s > 0, 1 < p < ∞ and K = C or K = R
m. Then there exists C(n, p, s,�,K) > 0

such that
‖u‖L p(Rn;K) ≤ C‖(−�)s/2u‖L p(Rn;K)

for all u ∈ ˜Hs,p(�;K).

Theorem 3.2 (Rellich–Kondrachov theorem) Let � ⊂ R
n be a bounded open set, s > 0,

1 < p < ∞ and K = C or K = R
m. Then the embedding ˜Hs,p(�;K) ↪→ L p(Rn;K) is

compact.

Proof Without loss of generality we can restrict ourselves to the complex valued case. Let
� ⊂ �′ where�′ is a smooth bounded domain. By [49, Remark 2.6, Definition 2.10] one has
Fs,0

p,q(�′) = Fs
p,q(�′) for s ∈ R, 1 < p < ∞, 0 < q ≤ ∞, where Fs,τ

p,q(�′), 0 ≤ τ ≤ ∞,
denotes the generalized Triebel-Lizorkin space. Since the Triebel–Lizorkin spaces coincide
with the Bessel potential space for q = 2 we have the identification Fs,0

p,2(�
′) = Hs,p(�′)

for s ∈ R, 1 < p < ∞. Therefore, [49, Corollary 3.5] shows that Hs,p(�′) ↪→ L p(�′) is
compact. By the embeddings ˜Hs,p(�) ↪→ ˜Hs,p(�′) ↪→ Hs,p(�′) and u = 0 a.e. in Rn \ �

for all u ∈ ˜Hs,p(�) with s ≥ 0, it follows that ˜Hs,p(�) ↪→ L p(Rn) is compact. ��

3.3 Caffarelli–Silvestre extension problems

The purpose of this section is to recall the extension technique introduced by Caffarelli and
Silvestre in [29]. More precisely, they showed in their celebrated work that the fractional
Laplacian of a smooth bounded function f : Rn → R can be obtained as a weighted normal
derivative of a function u : Rn+1+ → R solving a degenerate elliptic equation in R

n+1+ =
R

n × (0,∞).
To make the presentation more transpartent we first fix some notation. We will always

use the variable x to label points in R
n , the variable y for points in R+ and capital letters X

when we refer to points in R
n+1. Moreover, to highlight that a partial differential operator

(PDO) P = P(∂) acts on Rn+1+ we will use the symbol P . In particular, we write ∇, div and
� to denote the gradient, the diveregence and the Laplacian on Rn+1+ . Of particular interest,
related to extension problems, is the following PDO

div(y1−2s ∇ u(x, y)),

when 0 < s < 1. A straight forward computation shows the identity
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y−(1−2s) div(y1−2s ∇ u(x, y)) = �su(x, y) with �s := � + 1 − 2s

y
∂y .

Nextwe recall the notion ofMuckenhouptweights and introduce a particular class ofweighted
Sobolev spaces (cf. [57]). For any 1 < p < ∞, we say that a weight w : Rn → [0,∞)

belongs to the Muckenhoupt class Ap if there holds

(

1

|B|
∫

B
w dx

)(

1

|B|
∫

B
w−p′/p dx

)p/p′

≤ C < ∞

for all balls B ⊂ R
n , where 1 < p′ < ∞ satisfies 1/p + 1/p′ = 1. A direct calculation

shows that |y|1−2s dxdy is an A2 weight in R
n+1. By [54, Proposition 7.1.5] we deduce

that |y|1−2s is an Ap weight for p ≥ 2. Therefore, following [57] we can define for any

0 < s < 1, 2 ≤ p < ∞ and (relatively) open sets � ⊂ R
n+1+ the weighted Sobolev spaces

W 1,p(�, y1−2s) as the set of all measurable functions u : � → R satisfying

‖u‖W 1,p(�,y1−2s ) := ‖u‖L p(�,y1−2s ) + ‖ ∇ u‖L p(�,y1−2s )

with

‖u‖L p(�,y1−2s ) :=
(∫

�

|u|p y1−2s d X

)1/p

.

As shown in [57] the spaces W 1,p(�, y1−2s) endowed with ‖ · ‖W 1,p(�,y1−2s ) are Banach

spaces. Moreover, we say that u ∈ W 1,p
loc (Rn+1+ , y1−2s) if there holds u ∈ W 1,p(Br ×

(0, r), y1−2s) for any r > 0, where Br denotes the open ball at the origin with radius r > 0 in

R
n . As usual for p = 2 we set W 1,2(�, y1−2s) = H1(�, y1−2s) and W 1,2

loc (Rn+1+ , y1−2s) =
H1

loc(R
n+1+ , y1−2s).

Now we are ready to state the aforementioned result of Caffarelli and Silvestre:

Theorem 3.3 Let 0 < s < 1. Then for any u ∈ Hs(Rn) there is a unique function U ∈
H1

loc(R
n+1+ , y1−2 s), which solves the extension problem

�sU = 0 in R
n+1+ ,

U = u on R
n × {0},

and there exists a constant cn,s > 0 such that there holds

(−�)su(x) = −cn,s lim
y→0

y1−2s∂yU (x, y)

in H−s(Rn). Moreover, the unique extension U can be represented as the convolution U =
Cn,s P(·, y) ∗ u, where

P(x, y) = y2s

(|x |2 + y2)
n+2s
2

is the so called generalized Poisson kernel and Cn,s := ‖P(·, 1)‖−1
L1(Rn)

.

Later on in Sect. 7 we will use this explicit representation of the extension U via the
generalized Poisson kernel P to show that the CS extension can be extended to the L p

setting when p > 2.
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Conventions

Throughout the whole article we denote by 1 < p′ < ∞ the Hölder conjugated exponent to
1 < p < ∞. Moreover, the dimension n of the domain is fixed to be any natural number but
since the results are independent of n we do not further specify it. Furthermore, we denote by
Br (x0) the ball of radius r > 0 around x0 ∈ R

n in R
n and by Bn+1(X0) around X0 ∈ R

n+1

in R
n+1, we set Br := Br (0), Bn+1

r := Bn+1
r (0) and Bn+1

r ,+ := Bn+1
r ∩ R

n+1+ .

4 A variational characterization of the fractional Poincaré constant on
Bessel potential spaces

In this section, we show that the fractional p -biharmonic operator, whose related inverse
problem is studied later on, naturally appears when one wants to obtain a variational charac-
terization of the fractional Poincaré constant in Theorem 3.1.

Proof of Theorem 2.1 (i) This is immediate from the definition of the optimal Poincaré con-
stant.

(ii) Using the fractional Poincaré inequality (Theorem 3.1 ) and the splitting of the Bessel
norm ‖u‖Hs,p(Rn) ∼ ‖u‖L p(Rn) + ‖(−�)s/2u‖L p(Rn) we can endow ˜Hs,p(�) with the
equivalent norm ‖u‖

˜Hs,p(�) := ‖(−�)s/2u‖L p(Rn) for u ∈ ˜Hs,p(�). Then ( ˜Hs,p(�), ‖·
‖

˜Hs,p(�)) is clearly a reflexiveBanach space as a closed subspace of a reflexive space.Next

we show that Mp ⊂ ˜Hs,p(�) is weakly closed in ˜Hs,p(�). Assume (un)n∈N ⊂ Mp

converges weakly to u ∈ ˜Hs,p(�). By the Rellich-Kondrachov theorem (Theorem 3.2),
the embedding ˜Hs,p(�) ↪→ L p(Rn) is compact and thus un → u strongly in L p(Rn),
but this guarantees that u ∈ Mp . By the very definition of Ep , it is a coercive and
sequentially lower semi-continuous functional onMp and hence by [101, Theorem 1.2]
there exists a minimizer u ∈ Mp of Ep such that Ep(u) > 0. The strict positivity follows
from the fact that Ep(u) = 0 would imply by the fractional Poincaré inequality that u = 0
and so u could not belong to Mp .

(iii) Fix φ ∈ C∞
c (�) and let |ε| ≤ ε0, where ε0 > 0 is chosen in such a way that

ε0‖φ‖L p(Rn) ≤ 1/2. Note that this guarantees by the triangle inequality

‖u + εφ‖L p(Rn) ≥ ‖u‖L p(Rn) − |ε|‖φ‖L p(Rn) ≥ 1 − ε0‖φ‖L p(Rn) ≥ 1/2

for all |ε| ≤ ε0. Hence, we have uε = u+εφ
‖u+εφ‖L p (Rn )

∈ Mp . Next note that

d

dε

∣

∣

∣

∣

ε=0
|z + εw|p = p|z|p−2(z1w1 + z2w2) = p|z|p−2Re(z̄w)

for all z = z1 + i z2, w = w1 + iw2 ∈ C, since p > 1. Thus, using the dominated
convergence theorem and the fact that u is a minimizer, we obtain

0 = d

dε

∣

∣

∣

∣

ε=0
Ep(uε) = d

dε

∣

∣

∣

∣

ε=0

∫

Rn |(−�)s/2u + ε(−�)s/2φ|p dx
∫

Rn |u + εφ|p dx

= p

(∫

Rn
|(−�)s/2u|p−2Re((−�)s/2u(−�)s/2φ) dx − λ1,s,p

∫

Rn
|u|p−2Re(uφ) dx

)

for all φ ∈ C∞
c (�), where we have used ‖u‖L p(Rn) = 1 and set λ1,s,p =

‖(−�)s/2u‖p
L p(Rn)

. Since the fractional Laplacian is generated by a real-valued, radial
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multiplier we have (−�)s/2u = (−�)s/2ū for all u ∈ Hs,p(Rn), and thus we deduce
∫

Rn
|(−�)s/2u|p−2((−�)s/2u(−�)s/2φ + (−�)s/2u(−�)s/2φ) dx

= λ1,s,p

∫

Rn
|u|p−2(uφ + uφ) dx,

∫

Rn
|(−�)s/2u|p−2((−�)s/2u(−�)s/2φ + (−�)s/2u(−�)s/2φ) dx

= λ1,s,p

∫

Rn
|u|p−2(uφ + uφ) dx .

The second identity follows from the first one by replacing φ by φ̄. Adding, subtracting
these two identities, respectively, we have

∫

Rn
|(−�)s/2u|p−2((−�)s/2u + (−�)s/2u)((−�)s/2φ + (−�)s/2φ) dx

= λ1,s,p

∫

Rn
|u|p−2(u + u)(φ + φ) dx,

∫

Rn
|(−�)s/2u|p−2((−�)s/2u − (−�)s/2u)((−�)s/2φ − (−�)s/2φ) dx

= λ1,s,p

∫

Rn
|u|p−2(u − u)(φ − φ) dx .

Choosing φ real-valued, purely imaginary valued in the first and second equation, respec-
tively, we get

Re

(∫

Rn

(|(−�)s/2u|p−2(−�)s/2u(−�)s/2φ − λ1,s,p|u|p−2uφ
)

dx

)

= 0

Im

(∫

Rn

(|(−�)s/2u|p−2(−�)s/2u(−�)s/2φ − λ1,s,p|u|p−2uφ
)

dx

)

= 0

for all φ ∈ C∞
c (�;R) and therefore there holds

∫

Rn
|(−�)s/2u|p−2(−�)s/2u(−�)s/2φ dx = λ1,s,p

∫

Rn
|u|p−2uφ dx

for all φ ∈ C∞
c (�). Hence, we have established (7) for all φ ∈ C∞

c (�). Next, we show
that it in fact holds for all φ ∈ ˜Hs,p(�). If u ∈ Hs,p(Rn) then we deduce from Hölder’s
inequality that

U := |(−�)s/2u|p−2(−�)s/2u ∈ L p′
(Rn) with ‖U‖L p′

(Rn)
= ‖(−�)s/2u‖p−1

L p(Rn)
< ∞,

where 1 < p′ < ∞ satisfies 1/p + 1/p′ = 1. Using the mapping properties of the
fractional Laplacian and Hölder’s inequality, we see that the derived identity holds for
all φ ∈ ˜Hs,p(�).

(iv) Since v ∈ ˜Hs,p(�), we can test (8) by v̄ to obtain
∫

Rn
|(−�)s/2v|p dx = μ

∫

Rn
|v|p dx

and hence μ ∈ R+. Therefore w = v/‖v‖L p(Rn) ∈ Mp satisfies

μ = Ep(w) ≥ Ep(u) = λ1,s,p
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for any minimizer u ∈ Mp . ��
Remark 4.1 The applied methods can be adapted to construct minimizers of energy function-
als which has an additional term involving a weighted Lq norm of u similarly as in [39] or
even more general situations.

5 Existence theory for fractional p -biharmonic type equations

In Sect. 5.1, we first introduce a class of anisotropic fractional p -biharmonic operators, which
naturally arise in the Euler–Lagrange equations of certain energy functionals. In Sect. 5.2, we
then prove well-posedness results for these anisotropic fractional p -biharmonic operators in
the cases of pure interior source and pure exterior value as discussed in the introduction.

5.1 Anisotropic fractional p -biharmonic operators

We first define a class of matrices which will be used throughout this article and introduce the
associated energy functionals. Then we introduce the anisotropic fractional p -biharmonic
operators and make several remarks in which we explain briefly the used terminology and
discuss other possibilities of defining anisotropic fractional p -biharmonic operators.

Definition 5.1 (Anisotropic p -energies) Let m ∈ N, s > 0 and 1 < p < ∞. We denote by
S

m+ the class of functions A ∈ L∞(Rn;Rm×m) taking values in the set of symmetric, positive
definite matrices and satisfying the ellipticity condition

λ2|v|2 ≤ 〈Av, v〉 ≤ �2|v|2 a.e. in R
n (12)

for all v ∈ R
m and a pair of real numbers 0 < λ < �. For all A ∈ S

m+, we define the related
anisotropic p -energy by

Ep,A : Hs,p(Rn;Rm) → R, Ep,A(u) = 1

p

∫

Rn
|A1/2(−�)s/2u|p dx

for all u ∈ Hs,p(Rn;Rm), where A1/2 is the unique square root of A.

Proposition 5.2 (Anisotropic fractional p -biharmonic operators) Let m ∈ N, 1 < p < ∞,
s > 0 and A ∈ S

m+ with ellipticity constants 0 < λ < �. Then the anisotropic fractional
p -biharmonic operator (−�)s

p,A is given by

〈(−�)s
p,Au, v〉 =

∫

Rn
|A1/2(−�)s/2u|p−2A(−�)s/2u · (−�)s/2v dx

for all u, v ∈ Hs,p(Rn;Rm) and maps Hs,p(Rn;Rm) to (Hs,p(Rn;Rm))∗. Moreover, there
holds

‖(−�)s
p,Au‖(Hs,p(Rn;Rm ))∗ ≤ C0�

p‖(−�)s/2u‖p−1
L p(Rn)

(13)

for all u ∈ Hs,p(Rn;Rm) for some C0 > 0.

Remark 5.3 If m = 1 and A = 1, then we set (−�)s
p := (−�)s

p,1 and call it fractional p -
biharmonic operator. This terminology ismotivatedby the fact that the classical p -biharmonic
operator is given by

(−�)2p := �(|�u|p−2�u),
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which is a nonlinear variant of the usual biharmonic operator�2, and this operator coincides
with (−�)s

p for s = 2.

Remark 5.4 Here we want to highlight that one could define other variants of anisotropic
fractional p -biharmonic operators solely based on the fractional Laplacian and a coefficient
field A as:

(i) A(−�)s
p,mu or (−�)s

p,m Au, where (−�)s
p,m := (−�)s

p,1m
.

(ii) or (−�)s/2
(|(−�)s/2u|p−2A(−�)s/2u

)

As long as A ∈ S
m+ is sufficiently smooth the behaviour of solutions to the associated boundary

value problem of the first two alternatives are quite similar as for the usual fractional p -
biharmonic operator and thus we think there do not arise new interesting phenomena. On the
other hand in the case (iii), we observe

∫

Rn
|(−�)s/2u|p−2A(−�)s/2u · (−�)s/2v dx

=
∫

Rn
|(−�)s/2u|p−2(−�)s/2u · ([AT , (−�)s/2]v + (−�)s/2(AT v) dx

for all u ∈ Hs,p(Rn;Rm), v ∈ C∞
c (�;Rm). If [AT , (−�)s/2] = 0 then the solution to the

associated boundary value problem can again be easily obtained, but if the commutator is
nonzero then this definition could still lead to interesting, nontrivial solutions.

Proof Let u ∈ Hs,p(Rn;Rm) and note that the assumptions on A guarantee the estimate
|A1/2w| ≤ �|w| for all w ∈ R

m . Then the Cauchy–Schwartz inequality, Hölder’s inequality
and the mapping properties of the fractional Laplacian imply

|〈(−�)s
p,Au, v〉| =

∣

∣

∣

∣

∫

Rn
|A1/2(−�)s/2u|p−2A1/2(−�)s/2u · A1/2(−�)s/2v dx

∣

∣

∣

∣

≤ ‖|A1/2(−�)s/2u|p−1‖L p′
(R;Rm )

‖A1/2(−�)s/2v‖L p(Rn;Rm )

≤ �p‖(−�)s/2u‖p−1
L p(Rn;Rm )

‖(−�)s/2v‖L p(Rn;Rm )

≤ C0�
p‖(−�)s/2u‖p−1

L p(Rn;Rm )
‖v‖Hs,p(Rn;Rm )

for all v ∈ Hs,p(Rn;Rm). Taking the supremum over all nonzero v ∈ Hs,p(Rn;Rm), we
obtain the estimate (13). The rest of the statement now follows from the mapping properties
of the fractional Laplacian and we can conclude the proof. ��

5.2 Well-posedness results for anisotropic fractional p -biharmonic operators

Next we introduce the used notion of weak solutions and show two closely related well-
posedness results for the anisotropic fractional p -biharmonic operators. The second well-
posedness result will then be used later to define the DN maps related to the exterior value
problems for these operators.

Definition 5.5 (Weak solutions) Let m ∈ N, 1 < p < ∞, s > 0 and A ∈ S
m+. Suppose that

f ∈ Hs,p(Rn;Rm) and F ∈ ( ˜Hs,p(�;Rm))∗. Then we say that u ∈ Hs,p(Rn;Rm) is a
weak solution to the exterior value problem

(−�)s
p,Au = F, in �

u = f , in �e,
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if there holds

〈(−�)s
p,Au, v〉 = 〈F, v〉 and u − f ∈ ˜Hs,p(�;Rm)

for all v ∈ ˜Hs,p(�;Rm).

Before proceeding we recall the following well-known estimates:

Lemma 5.6 (cf. [98, eq. (2.2)], [52, Lemma 5.1−5.2]) Let m ∈ N, 1 < p < ∞, then there
exists cp > 0 such that for all x, y ∈ R

m there holds

(|x |p−2x − |y|p−2y) · (x − y) ≥ cp|x − y|p

if p ≥ 2 and

(|x |p−2x − |y|p−2y) · (x − y) ≥ cp
|x − y|2

(|x | + |y|)2−p

if 1 < p < 2.

Theorem 5.7 (Inhomogeneous equations with zero Dirichlet condition) Let m ∈ N, 1 <

p < ∞, s > 0 and A ∈ S
m+. If � ⊂ R

n is an open bounded set and F ∈ ( ˜Hs,p(�;Rm))∗,
then there exists a unique weak solution u ∈ ˜Hs,p(�;Rm) of

(−�)s
p,Au = F, in �,

u = 0, in �e.
(14)

Moreover, the solution u ∈ ˜Hs,p(�;Rm) satisfies

‖u‖Hs,p(Rn;Rm ) ≤ C‖F‖1/(p−1)
( ˜Hs,p(�;Rm ))∗ (15)

for some C > 0.

Proof Assume that A ∈ S
m+ satisfies (12) with ellipticity constants 0 < λ < �. Using the

fractional Poincaré inequality (Theorem 3.1) and the splitting

‖u‖Hs,p(Rn;Rm ) ∼ ‖u‖L p(Rn;Rm ) + ‖(−�)s/2u‖L p(Rn;Rm ) for all u ∈ Hs,p(Rn;Rm),

we can endow ˜Hs,p(�;Rm) with the equivalent norm

‖u‖
˜Hs,p(�;Rm ) := ‖(−�)s/2u‖L p(Rn;Rm ).

Then ˜Hs,p(�;Rm)with the norm ‖·‖
˜Hs,p(�;Rm ) is a reflexive Banach space. More precisely,

this follows from the fact that ˜Hs,p(�;Rm)with‖·‖Hs,p(Rn;Rm ) is a reflexiveBanach spaces as
a closed subspace of a reflexive Banach space, but the first one is isomorphic to ˜Hs,p(�;Rm)

endowed with ‖ · ‖
˜Hs,p(�;Rm ) and so the latter is itself a reflexive Banach space. Next, we

define

Ep,A,F (u) = Ep,A(u) − 〈F, u〉
for all u ∈ ˜Hs,p(�;Rm), where Ep,A is the anisotropic p -energy from Definition 5.1. By
assumption we have |A1/2w| ≥ λ|w| for all w ∈ R

m , and hence Young’s inequality implies

|Ep,A,F (u)| ≥ λp

p
‖u‖p

˜Hs,p(�;Rm )
− ‖F‖( ˜Hs,p(�;Rm ))∗‖u‖

˜Hs,p(�;Rm )

≥ (

λp/p − ε
) ‖u‖p

˜Hs,p(�;Rm )
− Cε‖F‖p′

( ˜Hs,p(�;Rm ))∗
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for all ε > 0 and Cε = (ε p)−p′/p/p′. Hence by choosing ε = λp/(2p), we obtain

‖u‖p
˜Hs,p(�;Rm )

≤ C
(

|Ep,A,F (u)| + ‖F‖p′
( ˜Hs,p(�;Rm ))∗

)

for some C > 0 and therefore Ep,A,F is coercive, in the sense that

Ep,A,F (u) → ∞ if ‖u‖
˜Hs,p(�;Rm ) → ∞.

Next note that Ep,A is a convex, continuous functional on ˜Hs,p(�;Rm) and hence using [11,
Proposition 2.10], we deduce that Ep,A,F is weakly lower semi-continuous on ˜Hs,p(�;Rm).
Therefore, by [101, Theorem 1.2] there is a minimizer u ∈ ˜Hs,p(�;Rm) of Ep,A,F for all
1 < p < ∞.

By Hölder’s inequality and the dominated convergence theorem, we see that Ep,A,F is a
C1−functional for all 1 < p < ∞. Let uε = u + εφ with φ ∈ C∞

c (�;Rm) and ε ∈ R.
Since u is a minimizer of Ep,A,F , the function ε �→ Ep,A,F (uε) attains its minimum at ε = 0.
Therefore, by Hölder’s inequality and the dominated convergence theorem, we obtain

0 = d

dε

∣

∣

∣

∣

ε=0
Ep,A,F (uε) =

∫

Rn
|A1/2(−�)s/2u|p−2 A1/2(−�)s/2u · A1/2(−�)s/2φ dx − 〈F, φ〉

=
∫

Rn
|A1/2(−�)s/2u|p−2 A(−�)s/2u · (−�)s/2φ dx − 〈F, φ〉.

By approximation, we deduce that theminimizer u solves (14) as asserted. For the uniqueness
statement, we distinguish the two cases 2 ≤ p < ∞ and 1 < p < 2:

(i) First assume that 2 ≤ p < ∞. By applying Lemma 5.6 to the vectors x = us, y = vs ,
where us = A1/2(−�)s/2u and vs = A1/2(−�)s/2v with u, v ∈ Hs,p(Rn;Rm), we
obtain the following strong monotonicity property

∫

Rn
(|A1/2(−�)s/2u|p−2A(−�)s/2u − |A1/2(−�)s/2v|p−2A(−�)s/2v)

· ((−�)s/2u − (−�)s/2v) dx

≥ λcp‖(−�)s/2u − (−�)s/2v‖p
L p(Rn;Rm )

(16)

for allu, v ∈ Hs,p(Rn;Rm). Ifu, v ∈ ˜Hs,p(�;Rm) thenw = u−v ∈ ˜Hs,p(�;Rm) and
hence if they solve (14) the left hand side of (16) is zero and therefore‖u−v‖

˜Hs,p(�;Rm ) =
0, which in turn implies u = v in ˜Hs,p(�;Rm). Thus, the constructed minimizer is the
unique solution.

(ii) Next let 1 < p < 2. We apply the second identity in Lemma 5.6 to x = us, y = vs ,
where us = A1/2(−�)s/2u, vs = A1/2(−�)s/2v with u, v ∈ Hs,p(Rn;Rm), raise it to
the power p/2, integrate over Rn and use Hölder’s inequality to obtain

cp/2
p

∫

Rn
|us − vs |p dx ≤

∫

Rn
((|us |p−2us − |vs |p−2vs) · (us − vs))

p/2

(|us | + |vs |)(2−p)p/2 dx

≤ ‖(|us |p−2us − |vs |p−2vs) · (us − vs)‖p/2
L1(Rn )

‖|us | + |vs |‖p(2−p)/2
L p(Rn )

≤
(∫

Rn
(|us |p−2us − |vs |p−2vs) · (us − vs) dx

)p/2

(‖us‖L p(Rn ;Rm )

+ ‖vs‖L p(Rn ;Rm ))
p(2−p)/2

where we used 2−p
2 + p

2 = 1 and

(|us |p−2us − |vs |p−2vs) · (us − vs)
p/2 ∈ L2/p(Rn), (|us | + |vs |)(2−p)p/2 ∈ L2/(2−p)(Rn).
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Hence, by the ellipticity condition on A there holds

‖u − v‖
˜Hs,p(�;Rm )

≤ �1−p/2

c1/2p λ
(‖u‖

˜Hs,p(�;Rm ) + ‖v‖
˜Hs,p(�;Rm ))

1−p/2

·
(∫

Rn
(|A1/2(−�)s/2u|p−2A(−�)s/2u

−|A1/2(−�)s/2v|p−2A(−�)s/2v) · ((−�)s/2u − (−�)s/2v) dx
)1/2

(17)

for all u, v ∈ Hs,p(Rn;Rm). If u, v ∈ ˜Hs,p(�;Rm) then w = u − v ∈ ˜Hs,p(�;Rm)

and hence if they satisfy (14) the second term on the right hand side of (17) is zero and
hence ‖u − v‖

˜Hs,p(�;Rm ) = 0, which in turn implies u = v in ˜Hs,p(�;Rm). Therefore,
the constructed minimizer is the unique solution.

Estimate (15) follows directly by testing (14) with u ∈ ˜Hs,p(�) and using A ∈ S
m+. In

fact, by Poincaré’s inequality we have

λp‖(−�)s/2u‖p
L p(Rn;Rm )

≤
∫

Rn
|A1/2(−�)s/2u|p−2A(−�)s/2u · (−�)s/2u dx

= 〈F, u〉 ≤ ‖F‖( ˜Hs,p(�;Rm ))∗‖u‖Hs,p(Rn;Rm )

≤ C‖F‖( ˜Hs,p(�;Rm ))∗‖(−�)s/2u‖L p(Rn;Rm ).

This shows the estimate (15) and we can conclude the proof. ��
Theorem 5.8 (Homogeneous equations with nonzero Dirichlet condition) Let m ∈ N, 1 <

p < ∞, s > 0 and A ∈ S
m+. If � ⊂ R

n is an open bounded set and u0 ∈ Hs,p(Rn;Rm),
then there exists a unique weak solution u ∈ Hs,p(Rn;Rm) of

(−�)s
p,Au = 0, in �,

u = u0, in �e.
(18)

Moreover, the unique solution u ∈ Hs,p(Rn;Rm) satisfies the estimate

‖(−�)s/2u‖L p(Rn;Rm ) ≤ (�/λ)p‖(−�)s/2u0‖L p(Rn;Rm ). (19)

Proof Assume that the ellipticity condition for A holds with parameters 0 < λ < � < ∞.
Let us define the affine subspace

˜Hs,p
u0 (�;Rm) = {u ∈ Hs,p(Rn;Rm) : u − u0 ∈ ˜Hs,p(�;Rm)} ⊂ Hs,p(Rn;Rm)

and denote by E ′
p,A the restriction of Ep,A to ˜Hs,p

u0 (�;Rm). First observe that ˜Hs,p
u0 (�;Rm)

is weakly closed in the reflexive Banach space Hs,p(Rn;Rm). In fact, if (un)n∈N ⊂
˜Hs,p

u0 (�;Rm) converges weakly to u ∈ Hs,p(Rn;Rm) in Hs,p(Rn;Rm), then un − u0 con-
verges weakly to u − u0 ∈ Hs,p(Rn;Rm) in Hs,p(Rn;Rm). As weak limits are contained
in the weak closure, the weak closure of convex sets coincide with the strong closure and
˜Hs,p(�;Rm) is closed in Hs,p(Rn;Rm) we deduce that u − u0 ∈ ˜Hs,p(�;Rm). Therefore
we have shown that ˜Hs,p

u0 (�;Rm) is weakly closed in Hs,p(Rn;Rm).
Using |A1/2w| ≥ λ|w| for all w ∈ R

m , the fractional Poincaré inequality (Theorem 3.1 ),
the usual splitting of the Bessel potential norm ‖·‖Hs,p(Rn;Rm ) and the convexity of x �→ |x |p

we deduce

|E ′
p,A(u)| ≥ C‖u‖p

Hs,p(Rn;Rm )
− C ′‖u0‖p

Hs,p(Rn;Rm )
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for all u ∈ ˜Hs,p
u0 (�;Rm) and hence E ′

p,A is coercive on ˜Hs,p
u0 (�;Rm). By the same argu-

ment as in the proof of Theorem 5.7 the functional E ′
p,A is weakly lower semi-continuous

on ˜Hs,p
u0 (�;Rm) with respect to the norm of the space Hs,p(Rn;Rm). Therefore by [101,

Theorem 1.2] there is a minimizer u ∈ ˜Hs,p
u0 (�;Rm) of E ′

p,A for all 1 < p < ∞. Repeating
the argument of Theorem 5.7 we see that the minimizer is unique.

To show the estimate (19) we proceed similarly as in the proof of Theorem 5.7, namely
we test (18) by u −u0 ∈ ˜Hs,p(�;Rm), use A ∈ S

m+ and apply Hölder’s inequality to deduce

λp‖(−�)s/2u‖p
L p(Rn;Rm )

≤
∫

Rn
|A1/2(−�)s/2u|p−2A(−�)s/2u · (−�)s/2u dx

=
∫

Rn
|A1/2(−�)s/2u|p−2A(−�)s/2u · (−�)s/2(u − u0) dx

+
∫

Rn
|A1/2(−�)s/2u|p−2A(−�)s/2u · (−�)s/2u0 dx

=
∫

Rn
|A1/2(−�)s/2u|p−2A(−�)s/2u · (−�)s/2u0 dx

≤ �p‖(−�)s/2u‖p−1
L p(Rn;Rm )

‖(−�)s/2u0‖L p(Rn;Rm )

which in turn implies (19). ��

6 Abstract trace space and DNmaps for anisotropic fractional
p -biharmonic operator

In this section, we introduce the basic notions needed to set up the inverse problem related
to the anisotropic fractional p -biharmonic operators, namely the abstract trace space and the
DN map.

Definition 6.1 Let m ∈ N, 1 < p < ∞, s > 0 and � ⊂ R
n be an open set. Then we define

the abstract trace space as X p = Hs,p(Rn;Rm )/˜Hs,p(�;Rm ) and endow it with the quotient norm

‖[ f ]‖X p = inf
φ∈ ˜Hs,p(�;Rm )

‖ f − φ‖Hs,p(Rn;Rm )

for all [ f ] ∈ X p .

Remark 6.2 By standard arguments, one can easily show that X p is a Banach space as long as
˜Hs,p(�;Rm) �= Hs,p(Rn;Rm). To simplify the notation, we will usually denote elements
in X p by f instead of the more precise notation [ f ].

In the next lemma, we show that for any u0 ∈ X p there is a unique solution u ∈
Hs,p(Rn;Rm) of the related pure exterior value problem for any anisotropic fractional p -
biharmonic operator.

Lemma 6.3 Let m ∈ N, 1 < p < ∞, s > 0, A ∈ S
m+ and assume � ⊂ R

n is an open
bounded set. If u1

0, u2
0 ∈ Hs,p(Rn;Rm) are such that u1

0 − u2
0 ∈ ˜Hs,p(�;Rm) and suppose

u1, u2 ∈ Hs,p(Rn;Rm) are the unique solutions of the exterior value problems

(−�)s
p,Au1 = 0, in �,

u = u1
0, in �e,
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and

(−�)s
p,Au2 = 0, in �,

u = u2
0, in �e,

then u1 ≡ u2 in R
n.

Proof First of all note that by assumption, we have

u1 − u2 = (u1 − u1
0) − (u2 − u2

0) + (u1
0 − u2

0) ∈ ˜Hs,p(�;Rm).

Therefore using the strong monotonicity property (eq. (16) and (17)) and the fact that u1, u2

are solutions of (−�)s
p,Av = 0 in �, we deduce u1 ≡ u2 in R

n . ��

Lemma 6.4 (DN map) Let m ∈ N, 1 < p < ∞, s > 0, A ∈ S
m+ and assume � ⊂ R

n is an
open bounded set. Then the DN map �p,A : X p → X∗

p given by

〈�p,A( f ), g〉 = Ap,A(u f , g)

for f , g ∈ X p is well-defined, where u f is the unique weak solution to the homoge-
neous fractional p -biharmonic system with exterior value f and Ap,A : Hs,p(Rn;Rm) ×
Hs,p(Rn;Rm) → R is defined as

Ap,A(u, v) =
∫

Rn
|A1/2(−�)s/2u|p−2A(−�)s/2u · (−�)s/2v dx

for all u, v ∈ Hs,p(Rn;Rm). Moreover, there exists C > 0 such that

|〈�p,A( f ), g〉| ≤ C‖ f ‖p−1
X p

‖g‖X p

for all f , g ∈ X p.

Proof Let us assume that A ∈ S
m+ has ellipticity constants 0 < λ < �. By Lemma 6.3, we

know that u f is independent of the chosen representative and since u f is a solution to the
homogeneous fractional p -biharmonic systems, we see thatAp,A(u f , g) is as well indepen-
dent of the representative of g. We now proceed similarly as in the proof of Proposition 5.2.
Using Hölder’s inequality, A ∈ S

m+, Theorem 5.8, the continuity of the fractional Laplacian,
we deduce the estimate

|〈�p,A( f ), g〉| ≤ �p−1‖(−�)s/2u
˜f ‖p−1

L p(Rn;Rm )
‖(−�)s/2 g̃‖L p(Rn;Rm )

≤ C‖(−�)s/2
˜f ‖p−1

L p(Rn;Rm )
‖g̃‖Hs,p(Rn;Rm )

≤ C‖ ˜f ‖p−1
Hs,p(Rn;Rm )

‖g̃‖Hs,p(Rn;Rm )

for all f , g ∈ X p and all representative ˜f , g̃ of f and g. This in turn implies

|〈�p,A( f ), g〉| ≤ C‖ f ‖p−1
X p

‖g‖X p

and thus �p,A is indeed well-defined. ��
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7 Caffarelli–Silvestre extension and unique continuation principles for
nonlocal operators in Bessel potential spaces

7.1 Caffarelli–Silvestre extension in Lp for p �= 2

Wefirst show a preliminary lemmawhich deals with elementary properties of the generalized
Poisson kernel. The proof of (iii) strongly follows the one of [17, Proposition B.1], where
also the estimate in (iv) is stated.

Lemma 7.1 (Properties of the Poisson kernel) Let 0 < s < 1 and denote by P the generalized
Poisson kernel. Then the following statements hold:

(i) P(·, y) ∈ Lq(Rn) for all 1 ≤ q < ∞ and y > 0 with

‖P(·, y)‖q
Lq (Rn)

= ωn

2
yn(1−q) B

(

n

2
,

n(q − 1)

2
+ sp

)

,

where B(x, y) denotes the Euler Beta function,
(ii) (Cn,s P(·, y))y>0 is a Dirac sequence,

(iii) P ∈ C∞(Rn+1+ ) solves �s P = 0 in R
n+1+ ,

(iv) For all k ∈ N, there exists Ck > 0 such that

|∂k
y P(x, y)| ≤ Ck

y2s−k

(|x |2 + y2)
n+2s
2

for all (x, y) ∈ R
n+1+ and ∂y P is radially symmetric in x ∈ R

n.

Proof (i) Fix y > 0 and 1 ≤ q < ∞, then using the change of variables z = x/y, we obtain
∫

Rn
|P(x, y)|q dx = yn(1−q)

∫

Rn

1

(|x |2 + 1)
n+2s
2 q

dz = ωn yn(1−q)

∫ ∞

0

rn−1

(1 + r2)
n+2s
2 q

dr

= ωn

2
yn(1−q)

∫ 1

0
(1 − t)

n
2 (q−1)+sq−1t

n
2 −1 dt

= ωn

2
yn(1−q) B

(n

2
,

n

2
(q − 1) + sq

)

,

where in the second equalitywe used polar coordinates, thenmade the change of variables

r2 = t
1−t with dr = 1

2(1−t)2

√

1−t
t dt and finally used the product rule for the Beta

function, which is given by B(x, y) = ∫ 1
0 t x−1(1 − t)y−1 dt for all x, y > 0.

(ii) For all (x, y) ∈ R
n+1+ , we have P(x, y) ≥ 0 and by the definition of Cn,s there holds

‖Cn,s P(·, y)‖L1(Rn) = 1.Moreover, by Lebesgue’s dominated convergence theorem, we
have ‖P(·, y)‖L1(Rn\Bε )

→ 0 as y → 0 for any ε > 0 and therefore the claim follows.
(iii) The smoothness of P directly follows from the assumption that y > 0. Since for y > 0,

there holds

∂i |X |−γ = −γ Xi |X |−(γ+2)

for all 1 ≤ i ≤ n + 1 and γ > 0. Hence, we have

�|X |−γ = γ (γ + 2)|X |−γ+2 − (n + 1)γ |X |−(γ+2)

= γ (γ − (n − 1))|X |−(γ+2).
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Therefore, for γ, β > 0, we obtain

�s

(

yβ

|X |γ
)

= �

(

yβ

|X |γ
)

+ 1 − 2s

y
∂y

(

yβ

|X |γ
)

= γ (γ − (n − 1))
yβ

|X |γ+2 + β(β − 1)
yβ−2

|X |γ

− 2βγ
yβ

|X |γ+2 + (1 − 2s)β
yβ−2

|X |γ − (1 − 2s)γ
yβ

|X |γ+2

= β(β − 1 + (1 − 2s)
yβ−2

|X |γ + γ (γ − 2β − (n − 1) − (1 − 2s))
yβ

|X |γ+2 .

If we take β = 2s, γ = n +2s, then both coefficients are zero and we see that �s P = 0.
This shows �s P = 0 in R

n+1+ .
(iv) This estimate is stated in [17, Proposition B.1, eq. (78)]. It can be proved by a direct, but

a bit lengthy, computation using the generalized Leibniz rule and the formula of Faà di
Bruno or induction. ��

Lemma 7.2 Let 0 < s < 1, 1 < p < ∞, denote by P the generalized Poisson kernel, assume
u ∈ L p(Rn) and let U (·, y) := Cn,s P(·, y) ∗ u. Then

‖U (·, y)‖L p(Rn) ≤ ‖u‖L p(Rn), (20)

where Cn,s = ‖P(·, 1)‖−1
L1(Rn)

, and U ∈ L p
loc(R

n+1+ , y1−2 s). Moreover, U solves

�sU = 0 in R
n+1+ ,

U = u on R
n × {0}.

Remark 7.3 The estimate ‖P(·, y) ∗ u‖L p(Rn) ≤ C‖u‖L p(Rn) also follows from [99, Theo-
rem 2.1], but since our proof is less involved we presented the argument here.

Proof The estimate (20) follows by Young’s inequality and the property (i) of Lemma 7.1.
This estimate implies

(∫ R

0

∫

Rn
|U |p y1−2s dxdy

)1/p

=
(∫ R

0
y1−2s‖U (·, y)‖p

L p(Rn)
dy

)1/p

≤ ‖u‖L p(Rn)

(∫ R

0
y1−2s dy

)1/p

= Cs R2(1−s)/p‖u‖L p(Rn)

for any R > 0 and some Cs > 0. Therefore there holds U ∈ L p
loc(R

n+1+ , y1−2 s). Next, we
verify that U solves �sU = 0 in R

n+1. By the assertions (i) and (iii) of Lemma 7.1, we
have ∂k

y P ∈ Lq(Rn) for all 1 ≤ q ≤ ∞. Moreover, it follows by a direct calculation that

|�P(x, y)| = y1−2s
∣

∣

∣−n(n + 2s)|X |−(n+2s+2) + (n + 2s)(n + 2s + 2)|x |2|X |−(n+2s+4)
∣

∣

∣

≤ Cy1−2s |X |−(n+2s+2) ≤ Cy−(1+4s) P(x, y)

which again belongs to Lq(Rn) whenever 1 ≤ q ≤ ∞ and y > 0. Therefore, the assertion
follows by Young’s inequality, the dominated convergence theorem and the property (i) of
Lemma 7.1. Finally, the boundary condition is a consequence of (ii) in Lemma 7.1. ��
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Next we recall the following basic properties of the CS extension from [18, Section 5.1]:

Lemma 7.4 Let 0 < s < 1 and u ∈ C∞(Rn)∩W 2,∞(Rn). Then the CS extension U (·, y) :=
Cn,s P(·, y) ∗ u ∈ C∞(Rn+1+ ) ∩ C(Rn+1+ ) is the unique bounded solution of

�sU = 0 in R
n+1+ ,

U = u on R
n × {0} (21)

and there holds
−cn,s lim

y→0
y1−2s∂yU = (−�)su.

7.2 Unique continuation principles for the fractional Laplacian

In the study of nonlocal inverse problems, one important property of the fractional Laplacian
is the unique continuation principle (UCP) (cf. [25, Theorem 1.2]):

Let r ∈ R, s ∈ R+ \N. If u ∈ Hr (Rn) satisfies (−�)su = u = 0 in a nonempty open set
V , then u ≡ 0 in R

n .
Theorem 2.2 shows that the UCP holds also in the Bessel potential spaces Hr ,p(Rn) for

p �= 2 and r ∈ R. For 1 ≤ p < 2 this is well-known (see [25, Corollary 3.5]) but for
2 < p < ∞ this result is to the best of our knowledge new. We first prove the following
reduction lemma:

Lemma 7.5 Let 2 < p < ∞, 0 < s < 1 and define W ∞,p(Rn) = ⋂

k∈N W k,p(Rn). Suppose
that (−�)su = u = 0 in a nonempty open set V and u ∈ C∞

b (Rn)∩ W ∞,p(Rn) implies that
u ≡ 0 in R

n. Then Theorem 2.2 holds true.

Proof As already noted, we can assume without loss of generality that 2 < p < ∞ and
s ∈ R+\N. We first show that it suffices to prove Theorem 2.2 for functions u in the class
C∞

b (Rn) ∩ W ∞,p(Rn). For this purpose let (ρε)ε>0 be a sequence of standard mollifiers
and fix u ∈ Hr ,p(Rn) with r ∈ R satisfying (−�)su = u = 0 in some nonempty open
subset V ⊂ R

n . Since the Bessel potential operator commutes with convolution, we have
uε := u∗ρε ∈ Ht,p(Rn) for all t ∈ R and thus theSobolev embedding impliesuε ∈ C∞

b (Rn).
This shows uε ∈ C∞

b (Rn) ∩ W ∞,p(Rn). Next fix some precompact open subset � with
� ⊂ V and choose ε0 > 0 such that Bε0(x) ⊂ V for all x ∈ �. Then we clearly have
φ ∗ ρε ∈ C∞

c (V ) for all φ ∈ C∞
c (�), 0 < ε < ε0, and therefore (−�)suε = uε = 0 in �

as the fractional Laplacian commutes with mollification. Now if this implies uε = 0 then
the convergence uε → u in Hr ,p(Rn) shows u = 0. This shows that it is enough to prove
Theorem 2.2 for functions u ∈ C∞

b (Rn) ∩ W ∞,p(Rn).
Next, following [25], we show that Theorem 2.2 holds. If 0 < s < 1, then Theorem 2.2

holds by assumption of Lemma 7.5 and the first part of the proof. Thus we can assume
s > 1. Suppose that u ∈ C∞

b (Rn) ∩ W ∞,p(Rn) satisfies (−�)su = u = 0 in some
nonempty open set V ⊂ R

n . We set t := s − k ∈ (0, 1), where k ∈ N is the unique integer
such that k < s < s = k + 1. As in the proof of [25, Theorem 1.2], we can see that
(−�)ku ∈ C∞

b (Rn) ∩ W ∞,p(Rn) satisfies (−�)t u = u = 0 in V , since (−�)k is a local
operator. Now by assumption there holds (−�)ku ≡ 0 in R

n . Using [25, Lemma 3.1], we
deduce u ≡ 0 in R

n . Therefore, we can conclude the proof. ��
Proof of Theorem 2.2 As noted earlier it is sufficient to consider the case 2 < p < ∞. By
Lemma 7.5, we can assume without loss of generality that u ∈ C∞

b (Rn) ∩ Ht,p(Rn) for
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any t ∈ R and assume that u = (−�)su = 0 in some nonempty open set V ⊂ R
n . Let us

denote by U ∈ L p
loc(R

n+1+ , y1−2 s) the CS extension of u, where the regularity follows from
Lemma 7.2. Then by Lemma 7.4, we know that U solves (21) and there holds

−cn,s lim
y→0

y1−2s∂yU = (−�)su.

Next we show that ∇ U ∈ L2
loc(R

n+1+ , y1−2 s). Since U ∈ C∞
b (Rn) and there holds

(−�)su ∈ L∞(Rn) (cf. [32, Lemma 3.2]), we have y1−2s∂yU ∈ C(Rn+1+ ). Hence,
by [30, Proposition 3.6], we deduce ‖y1−2s∂yU‖L∞(Rn+1+ )

≤ C . Therefore, there holds

∂yU ∈ L2
loc(R

n+1+ , y1−2 s). In fact for any R > 0, � � R
n we have

∫ R

0

∫

�

y1−2s |∂yU |2 dxdy ≤ ‖y1−2s∂yU‖2
L∞(Rn+1+ )

|�|
∫ R

0
y−(1−2s) dy < ∞,

since 1 − 2s ∈ (−1, 1). By Young’s inequality and ‖Cn,s P(·, y)‖L1(Rn) = 1, we obtain

‖∇U‖p
L p(Rn×(0,R),y1−2s )

=
∫ R

0
y1−2s‖∇U (·, y)‖p

L p(Rn)
dy

≤ C
∫ R

0
y1−2s‖P(·, y) ∗ ∇u‖p

L p(Rn)
dy

≤ Cn,s,R‖∇u‖p
L p(Rn)

< ∞

for any R > 0. Since p > 2 and the calculation above, Hölder’s inequality implies ∇ U ∈
L2

loc(R
n+1+ , y1−2 s) and therefore U ∈ H1

loc(R
n+1+ , y1−2 s) ∩ L∞(Rn+1+ ). Next fix r > 0,

x0 ∈ R
n such that B2r (x0) ⊂ V . By assumption there holds

u = 0 and lim
y→0

y1−2s∂yU = 0 in Br (x0).

Therefore, we can apply [93, Proposition 2.2] to deduce U = 0 in Bn+1
r ,+ (X0), where X0 =

(x0, 0). Since U solves an elliptic PDE with real analytic coefficients, we deduce from the
analytic regularity theory that U is real analytic in R

n+1+ (see e.g. [64, Chapter 8 and 9]).
Now as U vanishes on an open set we deduce that U = 0 in R

n+1+ but this implies u = 0 in
R

n . ��

Remark 7.6 One could also consider the following localization argument: Letη ∈ C∞
c (Rn+1+ )

be a cutoff function supported in Bn+1
2r ,+(X0) with η|Bn+1

r,+ (X0)
= 1. Now the function ˜U :=

ηU ∈ H1
loc(R

n+1+ , y1−2 s) ∩ L∞(Rn+1+ ) solves

�s ˜U = g in R
n+1+ ,

˜U = f on R
n × {0},

where f := η(·, 0)u and g := U�η+2∇ U ·∇ η+ 1−2 s
y U∂yη. By this localization method

one has actually that ˜U ∈ H1(Rn+1+ , y1−2 s). Note that g vanishes in Bn+1
r ,+ (X0) and by the

product rule we deduce f = (−�)s f = 0 in Br (x0). Therefore, ˜U ∈ H1(Rn+1+ , y1−2 s) ∩
L∞(Rn+1+ ) solves
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�s ˜U = 0 in Bn+1
r ,+ (X0),

˜U = 0 in Br (x0),
lim
y→0

y1−2s∂y ˜U = 0 in Br (x0).

7.3 Unique continuation principles for the anisotropic fractional p -biharmonic
operator

Similarly as for the uniqueness results for the inverse problems related to the fractional
Schrödinger equations, an important role is played by the unique continuation properties of
the anisotropic fractional p -biharmonic operator (−�)s

p,A. In this section, we show that the
UCP for the fractional Laplacians naturally lead to certain variants of unique continuation
principles for the operators (−�)s

p,A. Under additional monotonicity properties on the coef-
ficient fields A, this nonlocal phenomenon allows us to deduce uniqueness statements for
the related inverse problems of anisotropic fractional p -biharmonic systems with monotonic
classes of coefficients.

Proof of Theorem 2.3 We assume throughout the proof that the matrix valued function A
satisfies the ellipticity condition with parameters 0 < λ < �. First, consider the case
p ≥ 2 and note that this implies 1 < p′ ≤ 2 and therefore applying [25, Corollary 3.5]
componentwise, we deduce that there holds v1 = v2 in R

n . By integrating the first identity
in Lemma 5.6 with x = (−�)s/2u1, y = (−�)s/2u2 over all of Rn , we obtain the following
strong monotonicity property

0 =
∫

Rn
(v1 − v2)((−�)s/2u1 − (−�)s/2u2) dx

=
∫

Rn
(|A1/2(−�)s/2u1|p−2A1/2(−�)s/2u1 − |A1/2(−�)s/2u2|p−2A1/2(−�)s/2u2)

· (A1/2(−�)s/2u1 − A1/2(−�)s/2u2) dx

≥cp

∫

Rn
|A1/2(−�)s/2u1 − A1/2(−�)s/2u2|p dx

≥cpλ
p
∫

Rn
|(−�)s/2u1 − (−�)s/2u2|p dx .

If sp < n, then the Hardy–Littlewood–Sobolev lemma shows u1 = u2 a.e. in R
n . On the

other hand, if sp ≥ n, then the above calculation ensures (−�)s/2u1 = (−�)s/2u2 in R
n .

Now we set ui := ui
1 − ui

2 ∈ Hs,p(Rn), i = 1, . . . , m, and claim that the support of F−1ui

is contained in {0}. In fact, if ψ ∈ C∞
c (Rn\{0}), then φ = |ξ |−sψ ∈ C∞

c (Rn\{0}), and
therefore there holds

〈F−1ui , ψ〉 = 〈F−1ui , |ξ |sφ〉 = 〈ui , (−�)s/2φ̌〉 = 〈(−�)s/2ui , φ̌〉 = 0,

since φ̌ ∈ S0(R
n). By [87, Exercise 2.67], we deduce thatF−1ui has a unique representation

of the form

F−1ui =
∑

|α|≤Ni

ai
α Dα

ξ δ0

for some ai
α ∈ C and Ni ∈ N0. Therefore

ui =
∑

|α|≤Ni

ai
αxα,
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but since ui ∈ L p(Rn), we deduce ui ≡ 0 in Rn for all 1 ≤ i ≤ m and therefore u1 ≡ u2 in
R

n .
Next consider the case 1 < p < 2. Then using Theorem 2.2, we deduce v1 = v2 in R

n .
Similarly as in the previous case, we derive, by integrating the second identity in Lemma 5.6
with x = (−�)s/2u1, y = (−�)s/2u2 over all of Rn , the estimate

0 =
∫

Rn
(v1 − v2)((−�)s/2u1 − (−�)s/2u2) dx

=
∫

Rn

(|A1/2(−�)s/2u1|p−2A1/2(−�)s/2u1 − |A1/2(−�)s/2u2|p−2A1/2(−�)s/2u2
)

· (A1/2(−�)s/2u1 − A1/2(−�)s/2u2) dx

≥cp

∫

Rn

|A1/2(−�)s/2u1 − A1/2(−�)s/2u2|2
(|A1/2(−�)s/2u1| + |A1/2(−�)s/2u1|)2−p

dx

≥cp
λ2

�p−2

∫

Rn

|(−�)s/2u1 − (−�)s/2u2|2
(|(−�)s/2u1| + |(−�)s/2u1|)2−p

dx .

This can only hold if (−�)s/2u1 = (−�)s/2u2 a.e. in R
n . By the same argument as in the

case 2 ≤ p < ∞, we have u1 = u2 a.e. in R
n . Therefore, we can conclude the proof. ��

Corollary 7.7 (Special cases) Let 1 < p < ∞, s > 0 with s /∈ 2N and � ⊂ R
n be an open

set. Moreover, assume that Theorem 2.2 holds.

(i) If u ∈ Hs,p(Rn) satisfies

(−�)s
pu = (−�)s/2u = 0 in �,

then u ≡ 0 in R
n.

(ii) If u1, u2 ∈ Hs,p(Rn) satisfy

(−�)s
p(u1 − u2) = (−�)s/2(u1 − u2) = 0 in �,

then u1 ≡ u2 in R
n.

Proof The assertions directly follow from Theorem 2.3. ��
To prove a measurable UCP for anisotropic fractional p -biharmonic operators, we will

need the following estimate:

Lemma 7.8 ( [52, Lemma 5.3]) Let 2 ≤ p < ∞, then there exists C > 0 such that

||x |p−2x − |y|p−2y| ≤ C |x − y|(|x | + |y|)p−2

for all x, y ∈ R.

Proposition 7.9 (Measurable UCP for anisotropic fractional p -biharmonic operator) Let
� ⊂ R

n be an open set, 0 < s < 2, 2 < p < ∞ and one of the following conditions hold

(i) n = 1, 0 < s ≤ 1 + 2/p
(ii) n = 2, 0 < s ≤ 4/p

(iii) n ≥ 3, 2 < p < 2∗ = 2n
n−2 , 0 < s ≤ 2(1 + n( 1p − 1

2 )).

If there exists a measurable subset �′ ⊂ � of positive measure and u ∈ H1+s,p(Rn) satisfies

(−�)s
pu = 0 in � and (−�)s/2u = 0 in �′,

then u ≡ 0 in R
n.
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Proof Without loss of generality, we can assume that �′ is a compact set of positive mea-
sure and � is precompact. By mapping properties of the fractional Laplacian, we have
v = (−�)s/2u ∈ W 1,p(Rn) and using Hölder’s inequality, we deduce |v|p−2v ∈ L p′

(Rn).
We claim that |v|p−2v ∈ W 1,p′

(Rn). This follows by using standard methods, but for the
convenience of the reader, we give here some details of the argument. Fix a sequence of
standard mollifiers ρε ∈ C∞

c (Rn) and define vε = ρε ∗ v ∈ C∞
b (Rn) ∩ W 1,p(Rn). The

function f (x) = |x |p−2x is of class C1 with derivative f ′(x) = (p − 1)|x |p−2. Therefore,
by the the chain rule and integration by parts, there holds

∫

Rn
|vε |p−2vε∂iφ dx = −(p − 1)

∫

Rn
|vε |p−2∂ivεφ dx

for all ε > 0, φ ∈ C∞
c (Rn) and 1 ≤ i ≤ n. Since vε → v in L p(Rn), we deduce by Hölder’s

inequality with 1
p′ = p−2

p + 1
p and Lemma 7.8 that

∣

∣

∣

∣

∫

Rn
|vε |p−2vε∂iφ dx −

∫

Rn
|v|p−2v∂iφ dx

∣

∣

∣

∣

≤ ‖|vε |p−2vε − |v|p−2v‖L p′
(Rn)

‖∂iφ‖L p(Rn)

≤ C‖vε − v‖L p(Rn)(‖vε‖L p(Rn) + ‖v‖L p(Rn))
p−2‖∂iφ‖L p(Rn) → 0

as ε → 0. Similarly, we obtain

∣

∣

∣

∣

∫

Rn
|vε |p−2∂ivεφ dx −

∫

Rn
|v|p−2∂ivφ dx

∣

∣

∣

∣

=
∣

∣

∣

∣

∫

Rn
(|vε |p−2(∂ivε − ∂iv) − (|v|p−2 − |vε |p−2)∂iv)φ dx

∣

∣

∣

∣

≤ (‖vε‖p−2
L p(Rn)

‖∂ivε − ∂iv‖L p(Rn) + ‖|vε |p−2 − |v|p−2‖
L

p
p−2 (Rn)

)‖∂iv‖L p(Rn)‖φ‖L p(Rn).

Since v ∈ W 1,p(Rn) we have vε → v in W 1,p(Rn) and thus the first term vanishs as ε → 0.
The second term converges to zero by the Radon–Riesz theorem (cf. [42, Chapter 1, Theorem
1]). Hence, we have proved that

∂i (|v|p−2v) = (p − 1)|v|p−2∂iv ∈ L p′
(Rn),

which in turn implies |v|p−2v ∈ W 1,p′
(Rn). By (i)–(iii) we have

1 < p′ < 2 and
s

2
− n

2
≤ 1 − n

p′

and therefore the Sobolev embedding shows W 1,p′
(Rn) ↪→ Hs/2(Rn). Therefore, we can

apply [55, Proposition 5.1, Remark 5.6] to deduce that v ≡ 0 inRn and therefore (−�)s/2u ≡
0 in R

n . Now one can repeat the argument in the proof of Theorem 2.3 to deduce that
supp(F−1u) ⊂ {0} and, therefore, by the integrability assumption of u that u ≡ 0 in R

n . ��

8 Inverse problem for the anisotropic fractional p -biharmonic operator
under monotonicity assumptions

In this section, we prove uniqueness results for the inverse problem related to anisotropic
fractional p -biharmonic operators under a monotonicity assumption.
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8.1 Setup of the inverse problem

From now on let � ⊂ R
n be a given bounded open set, m ∈ N and assume A ∈ S

m+ is a given
matrix valued function.

Definition 8.1 Let σ ∈ L∞(Rn) satisfy σ(x) ≥ σ0 > 0 a.e. in R
n . Then we introduce the

following rescaled quantities

Ep,σ : Hs,p(Rn;Rm) → R+, Ap,σ : Hs,p(Rn;Rm) × Hs,p(Rn;Rm) → R,

(−�)s
p,σ : Hs,p(Rn;Rm) → (Hs,p(Rn;Rm))∗, �σ : X p → X∗

p

by

Ep,σ (u) := Ep,σ 2/p A(u) = 1

p

∫

Rn
σ |A1/2(−�)s/2u|p dx

Ap,σ (u, v) :=
∫

Rn
σ |A1/2(−�)s/2u|p−2A(−�)s/2u · (−�)s/2v dx

〈(−�)s
p,σ u, v〉 := Ap,σ (u, v) and 〈�σ f , g〉 := Ap,σ (u f , g)

for all u, v ∈ Hs,p(Rn;Rm) and f , g ∈ X p , where u f is the unique solution of

(−�)s
p,σ u = 0, in �,

u = f , in �e

(cf. Sects. 5 and 6).

Question 8.2 (Inverse problem) Let σ ∈ L∞(Rn) satisfy σ(x) ≥ σ0 > 0. Can we uniquely
determine σ in R

n from the knowledge of the nonlinear DN map �σ under some mild
structural conditions on σ?

8.2 Pointwise two sided estimate for difference of DNmaps

Lemma 8.3 Let 1 < p < ∞, s > 0 and assume that σ1, σ2 ∈ L∞(Rn) satisfy σ1(x), σ2(x) ≥
σ0 > 0 in R

n. If u0 ∈ X p, then

(p − 1)
∫

Rn

σ2

σ
1/(p−1)
1

(σ
1

p−1
1 − σ

1
p−1
2 )|A1/2(−�)s/2u2|p dx

≤ 〈(�σ1 − �σ2)u0, u0〉 ≤
∫

Rn
(σ1 − σ2)|A1/2(−�)s/2u2|p dx,

where u2 ∈ Hs,p(Rn;Rm) uniquely solves

(−�)s
p,σ2

u2 = 0, in �,

u2 = u0, in �e.
(22)

Remark 8.4 Weemphasize that ifσ1 ≥ σ2, then all the terms in the inequality are nonnegative,
while if σ1 ≤ σ2, then they are nonpositive.

Proof Let u1, u2 ∈ Hs,p(Rn;Rm) be the unique solutions of the exterior value problems

(−�)s
p,σi

u = 0, in �,

u = u0, in �e
(23)
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for i = 1, 2. Note that the solution of (23) can be characterized as the unique minimizer of
the energy functional Ep,σi over the affine subspace ˜Hs,p

u0 (�;Rm). Therefore, by Lemma 6.4,
we obtain the following one sided inequality for the difference of DN maps:

〈(�σ1 − �σ2)u0, u0〉 = Ap,σ1(u1, u0) − Ap,σ2(u2, u0)

=
∫

Rn
σ1|A1/2(−�)s/2u1|p−2A(−�)s/2u1 · (−�)s/2u1 dx

−
∫

Rn
σ2|A1/2(−�)s/2u2|p−2A(−�)s/2u2 · (−�)s/2u2 dx

=
∫

Rn
σ1|A1/2(−�)s/2u1|p dx −

∫

Rn
σ2|A1/2(−�)s/2u2|p dx

≤
∫

Rn
(σ1 − σ2)|A1/2(−�)s/2u2|p dx .

Next we show the lower bound. Let β > 0 be a real number whose value will be fixed later.
Using the definition of DNmap several times together with the fact that u1|�e = u2|�e = u0,
we may rewrite the difference of the DN maps as follows:

〈(�σ1 − �σ2)u0, u0〉 =
∫

Rn
σ1|A1/2(−�)s/2u1|p−2A(−�)s/2u1 · (−�)s/2u1 dx

−
∫

Rn
σ2|A1/2(−�)s/2u2|p−2A(−�)s/2u2 · (−�)s/2u2 dx

=
∫

Rn
βσ2|A1/2(−�)s/2u2|p dx

−
∫

Rn

(

(1 + β)σ2|A1/2(−�)s/2u2|p−2A1/2

×(−�)s/2u2 · A1/2(−�)s/2u2 − σ1|A1/2(−�)s/2u1|p) dx

=
∫

Rn
βσ2|A1/2(−�)s/2u2|p dx

−
∫

Rn

(

(1 + β)σ2|A1/2(−�)s/2u2|p−2A1/2

×(−�)s/2u2 · A1/2(−�)s/2u1 − σ1|A1/2(−�)s/2u1|p) dx .

In the last step, we used that u1 and u2 have the same exterior value u0. Now, by applying
Young’s inequality |ab| ≤ |a|p /p + |b|p′

/p′, we have

(1 + β)σ2|A1/2(−�)s/2u2|p−2A1/2(−�)s/2u2 · A1/2(−�)s/2u1 − σ1|A1/2(−�)s/2u1|p

= 1 + β

p1/p

σ2

σ
1/p
1

|A1/2(−�)s/2u2|p−2A1/2(−�)s/2u2 · p1/pσ
1/p
1 A1/2(−�)s/2u1

− σ1|A1/2(−�)s/2u1|p

≤ 1

p′

(

1 + β

p1/p

)p′
σ

p′
2

σ
1/(p−1)
1

|A1/2(−�)s/2u2|p + σ1|A1/2(−�)s/2u1|p

− σ1|A1/2(−�)s/2u1|p

= 1

p′ (1 + β)p′ 1

p1/(p−1)

σ
p′
2

σ
1/(p−1)
1

|A1/2(−�)s/2u2|p.
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Therefore, we obtain the lower bound

〈(�σ1 − �σ2 )u0, u0〉 ≥
∫

Rn

(

βσ2 − 1

p′ (1 + β)p′ 1

p1/(p−1)

σ
p′
2

σ
1/(p−1)
1

)

|A1/2(−�)s/2u2|pdx

=
∫

Rn

βσ2

σ
1/(p−1)
1

(

σ
1

p−1
1 − 1

p′
(1 + β)p′

β

(

1

p

) 1
p−1

σ
1

p−1
2

)

|A1/2(−�)s/2u2|pdx .

(24)

Note that (1+β)p′
β

→ ∞ as β → ∞ or β → 0. So, the function β → (1+β)p′
β

attains its
minimum at β = p−1. Thus, we choose β = p−1 so that from (24), we obtain the required
inequality. ��

8.3 Uniqueness results

Proof of Theorem 2.4 Without loss of generality, we can assume D\W �= ∅ as otherewise
there is nothing to prove. We show the result by a contradiction argument. Let us consider
a point x0 ∈ D\W and suppose that σ1(x0) > σ2(x0). By assumption σ1 − σ2 is lower
semicontinuous in D which means that the superlevel sets {σ1 − σ2 > a}, a ∈ R, are open,
but then this implies that there exists some open ball Br (x0) ⊂ D such that σ1 − σ2 > 0 in
Br (x0).

Next let u2 ∈ Hs,p(Rn;Rm) be the unique solution of

(−�)s
p,σ2

u2 = 0, in �

u2 = u0, in �e.
(25)

Up to shrinking the ball Br (x0), we can assume that Br (x0) ⊂ D \ supp(u0) since
dist(∂W , supp(u0)) > 0 and by the minimum principle for lower semicontinuous functions
that there holds

σ
1

p−1
1 − σ

1
p−1
2 ≥ c0 > 0 in Br (x0),

which can be applied as g : R+ → R+, g(t) := t1/(p−1) is a nondecreasing continuous
function and so σ

1/(p−1)
1 − σ

1/(p−1)
2 is still a lower semicontinuous function. Using the left

hand side of themonotonicity inequality (Lemma 8.3), the assumptions on σ1, σ2 and A ∈ S
m+

as well as �σ1u0|W = �σ2u0|W , we deduce that
∫

Br (x0)
|(−�)s/2u2|pdx ≤ C(p − 1)

∫

Br (x0)

σ2

σ
1/(p−1)
1

(σ
1

p−1
1 − σ

1
p−1
2 )|A1/2(−�)s/2u2|p dx

≤ C(p − 1)
∫

Rn

σ2

σ
1/(p−1)
1

(σ
1

p−1
1 − σ

1
p−1
2 )|A1/2(−�)s/2u2|p dx

≤ C〈(�σ1 − �σ2)u0, u0〉 = 0
(26)

for some C > 0. This implies (−�)s/2u2 = 0 a.e. Br (x0) ⊂ D \ supp(u0).
Now we distinguish two cases. If x0 ∈ �, then there exists ρ > 0, x1 ∈ � such that

Bρ(x1) ⊂ �∩Br (x0). By (25), (26) the function u2 ∈ Hs,p(Rn;Rm) satisfies (−�)s
p,σ2

u2 =
0, (−�)s/2u2 = 0 in Bρ(x1).Hence, the unique continuationprinciple (Theorem2.3) implies
u2 = 0 in Rn which contradicts the assumption u0 �= 0. On the other hand, if x0 ∈ �e, then
we can shrink Br (x0) such that Br (x0) ⊂ �e ∩ (D \ supp(u0)) but in this set we have
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u2 = 0 since u2 = u0 in �e. Therefore, u2 ∈ Hs,p(Rn;Rm) satisfies (−�)s/2u2 = u2 = 0
in Br (x0). Hence, we deduce u2 = 0 in R

n by the unique continuation principle for the
fractional Laplacian (Theorem 2.2). This again contradicts the assumption u0 �= 0 and we
can conclude the proof. ��
Proof of Theorem 2.5 Let W1, W2 ⊂ �e be two disjoint open sets. Applying Theorem 2.4 on
these two respective sets with D = R

n we obtain σ1 = σ2 on R
n \ W1 and R

n\W2. Since
W1, W2 are disjoint, this implies σ1 = σ2 in R

n . ��
Corollary 8.5 Let 2 < p < ∞, s > 0 with s /∈ 2N satisfy one of the conditions (i)–(iii)
in Proposition 7.9. Suppose that there is a nonempty open set W ⊂ �e, a nonzero u0 ∈
C∞

c (W ;Rm) and a solution u2 ∈ H1+s,p(Rn;Rm) of (22). Assume that σ1, σ2 ∈ L∞(Rn)

satisfy σ1(x), σ2(x) ≥ σ0 > 0 and σ1 ≥ σ2 in R
n. If 〈�σ1u0, u0〉 = 〈�σ2u0, u0〉, then

σ1 = σ2 a.e. in �.

Proof Suppose by contradiction that there is a set of positive measure A ⊂ � such that
σ1 > σ2 in A. By Lusin’s theorem (cf. [38, Theorem 1.14]), there is a compact set K ⊂ A of

positive measure such that σ
1

p−1
1 − σ

1
p−1
2 > 0 is continous on K . By the minimum principle,

we again have

σ
1

p−1
1 − σ

1
p−1
2 ≥ c0 > 0 on K .

Now repeating the proof of Theorem 2.4 gives (−�)s/2u = 0 a.e. in K . Now we can apply
Proposition 7.9 to conclude that u2 = 0 in R

n , which again condradicts the assumption
u0 �= 0. ��
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