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ABSTRACT The local fractional derivative (LFD) has attracted wide attention in the field of engineering

application. In this paper, the LFD is used to model the fractional Sallen-Key filter for the first time. The

non-differentiable(ND) transfer function is obtained by using the local fractional Laplace transform(LFLT).

And the amplitude frequency response is analyzed in detail for different fractional order ς . It is found that

the fractional Sallen-Key filter becomes the ordinary one in the special case ς = 1. The obtained results of

this paper show the powerful ability of local fractional calculus in the analysis of complex problems arising

in engineering fields.

INDEX TERMS Local fractional derivative, Sallen-Key filter, fractional circuit systems, local fractional

Laplace transform.

I. INTRODUCTION

As a frequency selection circuit, the filter attenuates the

signal in a certain frequency range very little, making it pass

smoothly; the signal outside this frequency range attenuates

very much, making it difficult to pass, that has been widely

used in various circuits. The Sallen-Key filter is one of the

most widely used filters in engineering. Its circuit prototype

is composed of VFA (voltage feedback operational amplifier)

and RC elements. Its advantages are simple circuit structure,

simple expression of passband gain, pole angle frequency and

quality factors, convenient adjustment of quality factors and

large adjustable range.

The ordinary Sallen-Key filter can be well described by

the integer order derivative, but when the current flows in

a fractal media (such as porous media), the integer order

derivative becomes ineffective. As is known to all, due to the

nonlocal in nature, the fractional calculus is more suitable to

model natural and engineering processes, and has become an

important mathematical tool to describe many complex prob-

lems appearing in science and engineering technology, such

as physics [1]–[3], vibration [4], seismic signals [5], porous

functions [6], [7], batteries [8], control [9], [10], electronic

circuit and filter [11]–[15], heat equation [16], viscoelastic
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wave equation [17], [18], and so on [16]–[21]. Recently, as a

new fractional order theory, the local fractional calculus has

attracted much attention in various fields and is successfully

applied to describe many ND phenomena ranging from the-

ory to applications [22]–[28]. Inspired by recent works in

the fractional filters [12]–[14], we propose a new fractional

Sallen-Key filter model by using the LFD in this paper for

the first time, where the fractional Sallen-Key filter can be

not only used in the complex case of the current flowing

in fractal media, such as porous media, but also be used in

the general case. The influence of different derivative order

0 < ς ≤ 1 on the filter circuit is analyzed in detail. Also,

the concept of ND transfer function is introduced. With the

approach presented in this paper, it will be possible to have

a better study of the filtering effects in the electrical systems

for the current flowing in fractal media, which is expected to

open some new perspectives towards the characterization of

ND filters via LFDs.

II. THE LFD AND LFLT

Definition 2.1: The LFD of function ϑ (σ) with order ς (0 <

ς ≤ 1) is defined as follows [29]:

ϑ (ς )(σ0) =
dςϑ(σ )

dσ ς
|σ=σ0 = lim

σ→σ0

△ς (ϑ(σ ) − ϑ(σ0))

(σ − σ0)ς
,

(2.1)
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TABLE 1. The LFDs of several functions on C-S.

and there is [30], [31]

△ς [ϑ(σ ) − ϑ(σ0)] ∼= Ŵ(1 + ς ) [ϑ(σ ) − ϑ(σ0)] . (2.2)

with the Euler’s Gamma function as Ŵ (1 + ς) =:
∫ ∞

0 ϑς−1exp (−ϑ) dϑ .

If there is ϑ (ς ) (σ ) = D(ς )ϑ(σ ), the LFD of higher order

can be expressed as:

ϑ (kς )(σ ) = D(ς) . . .D(ς)
︸ ︷︷ ︸

k times

ϑ (σ) , (2.3)

That is

∂ (kς )ϑ(σ )

∂σ kς
=

∂ς

∂σ ς
. . .

∂ς

∂σ ς
︸ ︷︷ ︸

k times

ϑ(σ ). (2.4)

The properties of the LFD are:

(a) D(ς ) [ϑ(σ ) ± ν(σ )] = D(ς )ϑ(σ ) ± D(ς )ν(σ ),

(b)D(ς ) [ϑ(σ )ν(σ )] = ν(σ )
[

D(ς )ϑ(σ )
]

+ϑ(σ )
[

D(ς)ν(σ )
]

,

(c) D(ς ) [ϑ(σ )/ν(σ )] =
{[

D(ς )ϑ(σ )
]

ν(σ ) − ϑ(σ )
[

D(ς )ν(σ )
]}

/ν(σ )2, ν(σ ) 6= 0.

Definition 2.2: The definitions of several common func-

tions that on Cantor sets(C-S) with a fractional dimension

ς , such as Mittag-Leffler function-Eς (kσ ς ), Sine function-

sinς (kσ
ς ) and Cosine function-cosς (kσ

ς ) are given as fol-

lows [32]:

Eς

(

kσ ς
)

=

∞
∑

m=0

kςσmς

Ŵ (1 + mς)
, (2.5)

sinς (kσ
ς ) =

∞
∑

m=0

(−k)ς σ (2m+1)ς

Ŵ [1 + (2m+ 1)ς ]
, (2.6)

cosς (kσ
ς ) =

∞
∑

m=0

(−k)ς σ 2mς

Ŵ (1 + 2mς)
. (2.7)

wherem, k ∈ N . And the LFDs of several functions are given

in Table 1.

Definition 2.3: Here we note the LFLT of function ϑ (σ)

as Lς [ϑ (σ)] = S
ϑ
ς (ǫ), then LFLT is defined as [32]:

Lς [ϑ (σ)]

= S
ϑ
ς (ǫ)=

1

Ŵ(1 + ς )

∫ ∞

0

ϑ (σ)Eς (−σ ςǫς )(dσ )ς . (2.8)

where Lς is the LFLT operator.

Theorem 1: There is the following theorem for the LFLT:

Lς

[

ϑ (iς) (σ )

]

= ǫiςς [ϑ (σ)] −

i−1
∑

j=0

ǫ(i−1−j)ϑ (iς )(0).

(2.9)

TABLE 2. The LFLTs of several functions on C-S.

The LFLTs of several functions on C-S are presented

in Table 2.

III. THE ND LUMPED ELEMENTS AND KIRCHHOFF’s

CURRENT LAW

A. THE ND RESISTOR

Definition 3.1: The Ohm’s Law of the ND resistor in the

fractional circuit systems is defined as [33], [34]:

iς,R(σ ) =
uς,R(σ )

Rς

. (3.1)

where uς,R(σ ) and iς,R(σ ) are the ND voltage and ND current

of the ND resistor Rς respectively.

B. THE ND CAPACITOR

The capacitors play an important role in tuning, bypass, cou-

pling, filtering and other circuits. According to the definition

of current, we define the ND current by LFD as follow [33],

[34]:

iς (σ ) =
dς

∅ς (σ )

dσ ς
, (3.2)

where ∅ς (σ ) is the ND charge.

Definition 3.2: The ND capacitance of the ND capacitor

can be defined as [33], [34]:

Cς =
∅ς,C (σ )

uς,C (σ )
, (3.3)

where uς,C (σ ) indicates the ND voltage.

Using Eq.(3.2) and Eq.(3.3), yields:

iς,C (σ ) = Cς

dςuς,C (σ )

dσ ς
. (3.4)

C. THE KIRCHHOFF’s CURRENT LAW

Kirchhoff’s current law is also known as the node current law.

It states that at any time on any node in the circuit, the sum

of the current flowing into the node is equal to the sum of

the current flowing out of the node (see Fig.1), which can be

expressed as:

n
∑

m=1

iς,m(σ ) = 0. (3.5)

where iς,m(σ ) is the m
th current entering or leaving the node,

and it is the current flowing through themth branch connected

with the node.
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FIGURE 1. The KCL within LFD.

IV. THE SALLEN-KEY FILTER WITHIN LFD

The ND Sallen-Key filter described by the LFD is shown

in Fig.2, where all the voltage and current directions we

used are reference directions. Applying the concept of virtual

open, we have

iς,+(σ ) = iς,−(σ ) = 0, (4.1)

there is

iς,R1 (σ ) = iς,RF (σ ), (4.2)

which leads to

uς,o (σ ) =

(

1 +
Rς,1

Rς,F

)

u
ς,R1

(σ ) . (4.3)

Using the virtual short theory, it gives

uς,− (σ ) = uς,+ (σ ) , (4.4)

Based on the above expression, we get

u
ς,R1

(σ ) = u
ς,C2

(σ ) , (4.5)

The Eq.(4.3) takes the following form by using the above

expression

uς,o (σ ) =

(

1 +
Rς,1

Rς,F

)

u
ς,C2

(σ ) . (4.6)

With the help of Eq.(3.4), there is the following expression

iς,C2
(σ ) = Cς

dςuς,C2
(σ )

dσ ς
, (4.7)

According to Eq.(4.1), we obtain

iς,2(σ ) = iς,C2
(σ ). (4.8)

Then the expression of uς,2(σ ) is given as

uς,2(σ ) = RςCς

dςuς,C2
(σ )

dσ ς
, (4.9)

By inspection, there is

uς,C1 (σ ) = uς,2 (σ ) + uς,C2 (σ ) − uς,o (σ ) , (4.10)

Substituting Eqs.(4.3), (4.5) and (4.9) into Eq.(4.10), and

taking a simplify yields

uς,C1 (σ ) = RςCς

dςuς,C2
(σ )

dσ ς
−
Rς,F

Rς,1
uς,c2 (σ ) , (4.11)

Similarly, we get the following expression

iς,C1
(σ ) = Cς

dςuς,C1
(σ )

dσ ς
, (4.12)

By taking Eq.(4.11) into Eq.(4.12), there is the following

result

iς,C1
(σ ) = RςC

2
ς

d2ςuς,C2
(σ )

dσ 2ς
− Cς

Rς,F

Rς,1

dςuς,C2 (σ )

dσ ς
,

(4.13)

We now use the KCL, then there is

iς,1(σ ) = iς,C1
(σ ) + iς,2(σ ), (4.14)

Substitution of Eqs.(4.7), (4.8) and (4.13) into the above

equation, which results in

iς,1(σ ) = RςC
2
ς

d2ςuς,C2
(σ )

dσ 2ς
− Cς

Rς,F

Rς,1

dςuς,C2 (σ )

dσ ς

+Cς

dςuς,C2
(σ )

dσ ς
, (4.15)

The expression for the input signal uς,i(σ ) is given as

uς,i(σ ) = uς,1(σ ) + uς,2(σ ) + uς,C2
(σ ), (4.16)

where

uς,1(σ ) = iς,1(σ )Rς , (4.17)

We now plug Eq.(4.15) into the Eq.(4.17), giving that

uς,1(σ ) = R2ςC
2
ς

d2ςuς,C2
(σ )

dσ 2ς
− RςCς

Rς,F

Rς,1

dςuς,C2 (σ )

dσ ς

+RςCς

dςuς,C2
(σ )

dσ ς
, (4.18)

By using Eq.(4.9) and Eq.(4.18), the Eq.(4.16) becomes

uς,i(σ ) = R2ςC
2
ς

d2ςuς,C2
(σ )

dσ 2ς
− RςCς

Rς,F

Rς,1

dςuς,C2 (σ )

dσ ς

+2RςCς

dςuς,C2
(σ )

dσ ς
+ uς,C2

(σ ), (4.19)

The above expression can be rewritten as

uς,i(σ ) = R2ςC
2
ς

d2ςuς,C2
(σ )

dσ 2ς

+
(

3 − Aς

)

RςCς

dςuς,C2 (σ )

dσ ς
+ uς,C2

(σ ), (4.20)

where

Aς = 1 +
Rς,F

Rς,1
. (4.21)

Applying the LFLT to Eq.(4.6) and Eq.(4.20) respectively,

yields the results as [35]

S
uς,o
ς (ǫ) = AςS

uς,C2
ς (ǫ) , (4.22)
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FIGURE 2. The Salen-Key filter model within LFD.

FIGURE 3. The curve of the ND logarithmic AFC with ς = 0.2, 0.4, 0.7, 0.9, 1.0 at Zς = 1 and Aς = 1.

And

S
uς,i
ς (ǫ)

= R2ςC
2
ς

[

ǫ2ςS
uς,C2
ς (ǫ) − ǫςu

(ς )
ς,C2

(0) − uς,C2 (0)
]

+
(

3 − Aς

)

RςCς

[

ǫς
S
uς,C2
ς (ǫ) − uς,C2 (0)

]

+S
uς,C2
ς (ǫ). (4.23)

The Eq.(4.23) can be rewritten as the following form by

using the zero-state of uς,C2 (0) = 0.

S
uς,i
ς (ǫ) = R2ςC

2
ςǫ2ςS

uς,C2
ς (ǫ)

+
(

3 − Aς

)

RςCςǫς
S
uς,C2
ς (ǫ) + S

uς,C2
ς (ǫ), (4.24)

Then there is

Tς (ǫ) =
S
uς,o
ς (ǫ)

S
uς,i
ς (ǫ)

=
Aς

R2ςC
2
ςǫ2ς +

(

3 − Aς

)

RςCςǫς + 1
, (4.25)

We now apply the ǫ = i̟ and Zς = RςCς to Eq.(4.25),

which gives ND transfer function as

Tς (i̟) =
Aς

Z2
ς (i̟)2ς +

(

3 − Aς

)

Zς (i̟)ς + 1
, (4.26)
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FIGURE 4. The 3-D graph of ND logarithmic AFC with different fractional orders ς at
Zς = 1 and Aς = 1.

FIGURE 5. Curve of the ND logarithmic AFC with different Aς = 2.9, 2.5, 2.0, 1.0 at Zς = 1 and ς = 0.4.

From which, we get the expressions of ND amplitude-

frequency characteristic(AFC) and ND phase-frequency

characteristics(PFC) as:

∣
∣Tς (i̟)

∣
∣=

Aς
√

(

1 − Z2
ς̟ 2ς

)2
+

(

3−Aς

)2
Z2

ς̟ 2ς

, (4.27)

and

8ς (̟ ) = −arctan

[(

3 − Aς

)

Zς̟ ς

1 − Z2
ς̟ 2ς

]

. (4.28)

It should be noted that the fractional Sallen-Key filter

becomes to the ordinary one for the special case ς = 1.

V. ANALYSIS OF THE ND AFC

By letting Zς = 1 and Aς = 1, we illustrate the curves of the

ND logarithmic AFC with different fractional orders ς at Zς

= 1 andAς = 1 in Fig.3. It can be seen that the NDSallen-Key

filter has the low-pass filtering characteristics.

By careful observation, it is found that the attenuation of

the curves decreases as the angular frequency ̟ increases.

VOLUME 8, 2020 166381
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FIGURE 6. Curve of the ND logarithmic AFC with different Aς = 2.9, 2.5, 2.0, 1.0 at Zς = 1 and ς = 0.7.

Besides that, the larger the value of the fractional order ς is,

the faster the curve decays as the angular frequency decreases,

That is, the better the frequency selection characteristics is.

And the three dimensional(3-D) ND logarithmic AFC graph

versus the fractional orders ς when Zς = 1 and Aς = 1 is

shown in fig 4.

By using Zς = 1 and ς = 0.4, fig.5 plots the curves of

the ND logarithmic AFC with different values of the Aς .

Obviously, there is an obvious protuberance in the falling

area of the curves and the larger the value of Aς is, the more

severe the protuberance is, which directly affects the filtering

effect of the filter. Therefore, the ND Sallen-Key filter is

also called ND voltage controlled voltage source low-pass

active filter. When the value of Aς is small, it can not only

maintains the gain of pass-band, but also quickly attenuates

the ND AFC of the high frequency band, and avoid the large

convex seal of the ND AFC in the falling area of the curves,

so the filtering effect is better. When ς = 0.7, the curves are

illustrated in fig.6, where we get the similar conclusions.

VI. CONCLUSION

In this paper, the fractional Sallen-Key filter modeled by LFD

is proposed for the first time, where the ND transfer function

is obtained by using the LFLT, and the corresponding ND

AFC is also presented and studied in detail. By comparing

different derivative order, it found that the larger the value of

the fractional order ς is, the better the frequency selection

characteristics of the filter is. Also, the ND logarithmic AFC

of different Aς is discussed, which shows the larger the value

of Aς is, the more severe the protuberance is, which directly

affects the filtering effect of the filter. It is noteworthy that

the fractional Sallen-Key filter becomes the ordinary one for

ς = 1. The fractional model of the Sallen-Key filter we

proposed can be not only used to describe the complex case of

the current flowing in fractal media, such as porousmedia, but

also be used to describe the general case. The all results given

in this paper are expected to shed a new light of applications

of fractional calculus to the study of ND filters via LFDs.
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