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Abstract
Recently Ohsawa (Lett Math Phys 105:1301–1320, 2015) has studied the Marsden–
Weinstein–Meyer quotient of the manifold T ∗

R
n × T ∗

R
2n2 under a O(2n)-symmetry

and has used this quotient to describe the relationship between two different parametri-
sations ofGaussianwavepacket dynamics commonly used in semiclassicalmechanics.
In this paper, we suggest a new interpretation of (a subset of) the unreduced space as
being the frame bundle F(T ∗

R
n) of T ∗

R
n . We outline some advantages of this inter-

pretation and explain how it can be extended to more general symplectic manifolds
using the notion of the diagonal lift of a symplectic form due to Cordero and de León
(Rend Circ Mat Palermo 32:236–271, 1983).

Keywords Frame bundle · Dual pair · Symplectic reduction · Semiclassical
mechanics · Gaussian wave packet
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1 Introduction

1.1 Motivation

The Gaussian wave packet ansatz is frequently used in the study of the time-dependent
Schrödinger equation and its semiclassical limit. In particular, the wave function

ψ(x) = exp

{
i

�

[
1

2
(x − q)�(A + iB)(x − q) + p�(x − q) + (φ + iδ)

]}
,
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parametrised by (q, p) ∈ T ∗
R

n , φ, δ ∈ R andA+ iB ∈ Σn = {W ∈ Mn(C) | W � =
W , Im W > 0}, is well known to be an exact solution of the Schrödinger equation for
quadratic Hamiltonians, provided the parameters satisfy certain ODEs [6].

Faou and Lubich [4,9] have shown that these parameter ODEs constitute a Hamil-
tonian system, and recently, Ohsawa and Leok [13] have clarified the symplectic
structure underlying these Hamiltonian dynamics. Their main observation is that Σn

is a symplectic manifold, the well-studied Siegel upper half plane [17].
In [5], Hagedorn introduced another parametrisation of Gaussian wave functions,

by replacing A+ iB ∈ Σn by P Q−1, where Q, P ∈ Mn(C) satisfy certain algebraic
relations. In this parametrisation, the ODEs governing the parameter evolution are
somewhat simpler. In [12], Ohsawa explained how to interpret the relation between
Q, P and A + iB as an instance of symplectic reduction on the symplectic manifold
T ∗

R
n × T ∗

R
n2 under a certain right O(2n)-action. The matrices Q, P are seen to be

coordinates on a level set of the momentum map corresponding to the O(2n)-action,
and symplectic reduction at this momentum level gives the Siegel upper half planeΣn .
The dynamics in the unreduced and reduced spaces are then related by the quotient
map in the usual way, explaining how the Hagedorn ODEs can also be interpreted as
a Hamiltonian system.

1.2 Main results and outline

The purpose of the present paper is to reinterpret Ohsawa’s results and to suggest some
possible extensions. Specifically, we interpret an open subset of Ohsawa’s unreduced
space T ∗

R
n × T ∗

R
2n2 as the frame bundle F(T ∗

R
n) � T ∗

R
n ×GL(2n, R) of T ∗

R
n

and give an intrinsic description of the symplectic structure on F(T ∗
R

n). There are
several advantages to this picture:

– there exists a dual pair structure on GL(2n, R), generated by left multiplication
by Sp(2n, R) and right multiplication by O(2n) . The existence of this dual pair
allows one to realise the symplectic reduced space of F(T ∗

R
n) at all values of

O(2n)-momentum in terms of adjoint orbits of sp(2n, R). An understanding of all
reduced spaces will be important in any attempt to deduce the semiclassical theory
described here using ideas from geometric quantisation.1

– the physical picture of moving frames on T ∗
R

n is intuitive and gives insight into
the definition of the Hamiltonian on the unreduced space. Through it, we see that
the dynamics of the semiclassical wave function are determined by the underlying
classical dynamics in two ways: The variables z := (q, p) ∈ T ∗

R
n in the semi-

classical wave function evolve according to an underlying classical Hamiltonian
H on T ∗

R
n , modified by an order � correction for non-quadratic Hamiltonians.

Meanwhile, the variables E :=
[
Re Q Im Q
Re P Im P

]
∈ GL(2n, R) evolve according

to the linearisation of the Hamiltonian flow due to H about z. This view of the

1 Although we consider one particular adjoint orbit in this paper, it should be possible to associate semi-
classical wave functions with arbitrary integral adjoint orbits. We hope to explore this possibility in future
work.
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The frame bundle picture of Gaussian wave packet dynamics… 2725

E-dynamics as linearised symplectic flow depends crucially on the interpretation
of E as parametrising the possible frames at z.

– the picture described in the previous point also has overlap with other work on
semiclassicalmechanics, in particular the nearby orbit approximation of Littlejohn
[7].

– the frame bundle picture allows a natural interpretation of the conserved quantity
associated with the O(2n)-invariance of the theory as simply the collection of
symplectic products {ωR2n (Ea, Eb) | 1 ≤ a, b ≤ 2n} corresponding to the frame
E = [

E1 E2 . . . E2n
] ∈ GL(2n, R). In particular, reduction at the particular value

of momentum considered in this paper leads to conservation of symplectic frame.
– the frame bundle picture can be extended to more general symplectic manifolds
than T ∗

R
n , using the results of Cordero et al. [3] on the lifting of symplectic

structures to frame bundles.

We now outline the structure of the paper. In Sect. 2, we describe a symplectic
structure on the set M2n(R) of 2n × 2n-dimensional real matrices, demonstrate that
the obvious left Sp(2n, R)- and right O(2n)-actions are Hamiltonian, and calculate the
corresponding momentum maps and their Lie algebra-valued counterparts. In Sect. 3,
we review some properties of dual pairs that will be needed in the sequel. In Sect. 4, we
restrict our symplecticmanifold toGL(2n, R) ⊂ M2n(R) and demonstrate that the two
group actions give a dual pair structure on this restricted space. In Sect. 5, we discuss
reduction of GL(2n, R) under the O(2n)-action at a particular value of momentum,
use the results of Sect. 3 to describe the reduced space as an adjoint orbit in sp(2n, R),
and give a geometric description of this adjoint orbit as the set of ωR2n -compatible
complex structures,whereωR2n is the canonical symplectic structure onR

2n . In Sect. 6,
we use the standard isomorphism of ωR2n -compatible complex structures with the
positive Lagrangian Grassmannian to introduce coordinates on the adjoint orbit, and
demonstrate that in these coordinates the symplectic projection and reduced symplectic
form agree with those obtained by Ohsawa. In Sect. 7, starting with the cotangent
symplectic structureω = ∑n

α=1 dqα ∧dpα and an arbitrary Hamiltonian H on T ∗
R

n ,
we describe the �-diagonal symplectic structure Ω� and �-lifted Hamiltonian H� on
F(T ∗

R
n), which agree with those defined by Ohsawa on their common domain. We

give a geometric interpretation of H�, demonstrate that for quadratic H one obtains
the dynamics of Hagedorn, and emphasise that the O(2n)-invariance of H� leads to
conservation of symplectic frame.We also describe the dynamics on the reduced space
and show it reproduces those of Heller. Finally in Sect. 8, we explain how the results
of Cordero et al. [3] can be used to extend the construction of a symplectic structure
on the frame bundle to arbitrary symplectic manifolds.

2 The symplectic geometry of M2n(R)

In this section, we outline the symplectic structure on M2n(R), describe two natural
symplectic group actions on M2n(R) and calculate the momentum maps associated
with these actions.
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2726 P. Skerritt

2.1 The symplectic form onM2n(R)

Take R
2n with its canonical symplectic structure

ωR2n (v,w) := v�
Jw,

whereJ :=
[
0n In

−In 0n

]
. The 2n-fold direct sumof (R2n, ωR2n ) is naturally isomorphic

to the space M2n(R) of real 2n × 2n matrices with the symplectic form

Ω(E, F) :=
2n∑

a=1

ωR2n (Ea, Fa) = Tr(E�
JF),

where Ea denotes the ath column of E ∈ M2n(R), considered as a vector in R
2n .

We can consider (Ω,M2n(R)) as a symplectic manifold, using the canonical isomor-
phism TEM2n(R) � M2n(R), and we denote the induced symplectic form by Ω also.
Explicitly, if VE = d

dt

∣∣
t=0(E + tV ) for V ∈ M2n(R) etc., then

ΩE (VE , WE ) := Ω(V , W ) = Tr(V �
JW ).

2.2 Commuting symplectic actions

Let L S : M2n(R) → M2n(R) denote left multiplication by S ∈ Sp(2n, R), and
RO : M2n(R) → M2n(R) denote right multiplication by O ∈ O(2n). Using the
expressions for the differentials of these actions

TE L S(VE ) = (SV )SE and TE RO(VE ) = (V O)E O ,

it is straightforward to check that L and R define left and right symplectic actions,
respectively, i.e. for any E ∈ M2n(R),

(L∗
SΩ)E = ΩE and (R∗

OΩ)E = ΩE .

The momentum maps corresponding to these two symplectic actions have a standard
form.

Proposition 2.1 (i) The momentum map JSp : M2n(R) → sp(2n, R)∗ corresponding
to the left Sp(2n, R)-action is given by

〈JSp(E), ζ 〉 = 1

2
Ω(ζ E, E).

(ii) The momentum map JO : M2n(R) → o(2n)∗ corresponding to the right O(2n)-
action is given by

〈JO(E), ξ 〉 = 1

2
Ω(Eξ, E).
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The frame bundle picture of Gaussian wave packet dynamics… 2727

Proof Both results follow from the general expression for the momentum map of a
linear symplectic action on a symplectic vector space—see, for example, [11, Section
12.4, Example (a)]. �
Remark 2.2 Both momentum maps are easily seen to be equivariant,

JSp(SE) = Ad∗
S−1(JSp(E)) and JO(E O) = Ad∗

O(JO(E))

(again, a general result for linear symplectic actions).

2.3 Lie algebra-valuedmomentummaps

For any (real) Lie subalgebrag ⊂ gl(N , C), consider the trace form 〈〈·, ·〉〉 : g×g → C

defined by

〈〈ξ, ζ 〉〉 := 1

2
Tr(ξζ ).

If g is invariant under conjugate transpose, then 〈〈·, ·〉〉 is non-degenerate, as is its real
part, since

〈〈ξ, ξ†〉〉 = Re〈〈ξ, ξ†〉〉 > 0 for ξ �= 0.

In particular, it is non-degenerate and real-valued on sp(2n, R) and o(2n). Using the
trace form to identify Lie algebras with their duals, we can write down Lie algebra-
valued versions of the momentum maps discussed in the previous section.

Proposition 2.3 (i) The sp(2n, R)-valued momentum map jSp : M2n(R) → sp(2n, R)

corresponding to JSp is given by

jSp(E) = −E E�
J.

(ii) The o(2n)-valued momentum map jO : M2n(R) → o(2n) corresponding to JO is
given by

jO(E) = −E�
JE .

Proof (i) Denoting the natural pairing of sp(2n, R)∗ with sp(2n, R) by 〈·, ·〉, we have
that for ζ ∈ sp(2n, R),

〈JSp(E), ζ 〉 = 1

2
Ω(ζ E, E) = 1

2
Tr(E�ζ�

JE)

= 1

2
Tr(E E�ζ�

J) = −1

2
Tr(E E�

Jζ ) since ζ ∈ sp(2n, R)

= 〈〈−E E�
J, ζ 〉〉.
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Also

(−E E�
J)�J + J(−E E�

J) = JE E�
J − JE E�

J = 0.

So −E E�
J ∈ sp(2n, R), and the result follows.

(ii) Similar. �
Remark 2.4 Again, the Lie algebra-valued momentum maps are equivariant

jSp(SE) = AdS(jSp(E)) and jO(E O) = AdO−1(jO(E)).

3 Mutually transitive actions and dual pairs

In Sect. 4, we will demonstrate that the left Sp(2n, R)-action and right O(2n)-action
define a dual pair structure on a suitable subset of M2n(R). In anticipation, we here
introduce the notion of mutually transitive actions. We then explain how mutual tran-
sitivity allows us to view reduced spaces of one action as coadjoint orbits of the other.
Finally, we indicate the relation of mutual transitivity to the more standard notion of
a dual pair.

A fuller treatment of dual pairs and related concepts can be found in [8, Section
IV.7], [14, Chapter 11], and [2]. We also refer to [18] for a more thorough discussion
of mutual transitivity.

3.1 Mutually transitive actions

Let (N ,Ω) be a symplectic manifold, and letΦ1 : G1× N → N andΦ2 : G2× N →
N be symplectic actions. We assume N , G1 and G2 are all finite-dimensional.

Definition 3.1 We say the actionsΦ1, Φ2 are mutually transitive if the following three
properties hold:

– Φ1 and Φ2 commute,
– Φ1 and Φ2 are Hamiltonian actions, with corresponding equivariant momentum
maps J1 and J2,

– each level set of J1 is a G2-orbit and vice versa, i.e. for any x ∈ N ,

J−1
1 (J1(x)) = G2 · x and J−1

2 (J2(x)) = G1 · x .

Denoting the coadjoint orbit in g∗
i through μi by Oμi , we then have

Proposition 3.2 Let Φ1, Φ2 be mutually transitive actions. Then for all x ∈ N,

J−1
1 (OJ1(x)) = J−1

2 (OJ2(x)).
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Proof

J−1
1 (OJ1(x)) = G1 · J−1

1 (J1(x)) since J1 isG1 -equivariant

= G1 · (G2 · x) since Φ2 is transitive on the fibres of J1
= G2 · (G1 · x) since the actionsΦ1 andΦ2 commute

= G2 · J−1
2 (J2(x)) since Φ1 is transitive on the fibres of J2

= J−1
2 (OJ2(x)) since J2 isG2-equivariant.

�
Corollary 3.3 ( [2, Theorem2.8(i)])There exists a one-to-one correspondence between
coadjoint orbits in J1(N ) and J2(N ) given by

Oμ1 �→ J2(J
−1
1 (Oμ1))= J2(J

−1
1 (μ1))

or equivalently

OJ1(x) �→ OJ2(x) for x ∈ N .

3.2 The relation between coadjoint orbits and reduced spaces

From now on, we assume that all group actions Φi are both free and proper (see [18]
for a discussion when these conditions do not hold).

For μ1 ∈ g∗
1, let (G1)μ1 denote the coadjoint stabiliser of μ1 and Nμ1 the quotient

space J−1
1 (μ1)/(G1)μ1 atμ1. It iswell known that Nμ1 may be given a smooth structure

makingσ1 : J−1
1 (μ1) → Nμ1 a submersion and a symplectic structureΩNμ1

satisfying

i∗μ1
Ω = σ ∗

1 ΩNμ1
, (3.1)

where iμ1 : J−1
1 (μ1) → N is the inclusion (see, for example, [14, Theorem 6.1.1

(i)]). The pair (Nμ1 ,ΩNμ1
) is called the reduced space or Marsden–Weinstein–Meyer

quotient.
For mutually transitive actions, it turns out that the reduced space under one action

is symplectomorphic to a coadjoint orbit of the other action:

Proposition 3.4 ([2, Theorem 2.8(iii)]) Let Φ1, Φ2 be mutually transitive actions on
N. Then any reduced space under the G1-action is symplectomorphic to a coadjoint
orbit in J2(N ) ⊂ g∗

2 and similarly with 1 and 2 interchanged. Explicitly, for x ∈ N,

NJ1(x) � OJ2(x), NJ2(x) � OJ1(x),

via a resp. G2- and G1-equivariant symplectomorphism.

In fact, the symplectomorphism from NJ1(x) to OJ2(x) has a simple interpretation:
Since the G1- and G2-actions on N commute, the G2-action drops to the reduced
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space NJ1(x). The resulting momentummap J̌2 : NJ1(x) → OJ2(x) makes the following
diagram commute

J−1
1 (J1(x))

NJ1(x)
J̌2 �

σ1

�

OJ2(x),

J2
�

(3.2)

and can be shown to be a symplectomorphism (in particular, J̌2 is G2-equivariant).

3.3 The relation to dual pairs

In this subsection, we make contact with the notion of dual pair (in the sense of
Weinstein [19]).

Definition 3.5 ([1, Appendix E]) Let N be a symplectic manifold and P1, P2 the
Poisson manifolds. A pair of Poisson maps

P1
J1←− N

J2−→ P2

is called a full dual pair if J1, J2 are submersions, and

(ker T J1)
Ω = ker T J2 .

Proposition 3.6 If Φ1, Φ2 are mutually transitive and free, then their momentum maps
J1, J2 form a full dual pair.

Proof Let x ∈ N . The identity G1 · x = J−1
2 (J2(x)) implies that

g1 · x = Tx (J
−1
2 (J2(x))).

A standard result says that the former equals (ker Tx J1)Ω . Also freeness of Φ1, Φ2
implies that J1, J2 are submersions onto their images [14, Corollary 4.5.13]. Then
J−1
2 (J2(x)) is an embedded submanifold [14, Section 1.1.13], and so,

Tx (J
−1
2 (J2(x))) = ker Tx J2 .

The result follows. �

4 The dual pair structure on GL(2n,R) ⊂ M2n(R)

The subset GL(2n, R) of M2n(R) is open, and hence,Ω restricts to an non-degenerate
formonGL(2n, R). Denote the restriction ofΩ and themomentummaps toGL(2n, R)

by the same symbols for simplicity.
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With this restriction, we can demonstrate that the left Sp(2n, R)- and right O(2n)-
actions are mutually transitive (Definition 3.1). For this, it is more convenient to work
with the equivalent double fibration

GL(2n, R)

sp(2n, R)

jSp

�

o(2n)

jO
�

Proposition 4.1 (i) The left Sp(2n, R)-action acts transitively on the fibres of jO.
(ii) The right O(2n)-action acts transitively on the fibres of jSp.

Proof (i) Using Proposition 2.3, we have that for any E, E ′ ∈ GL(2n, R),

jO(E ′) = jO(E)

⇐⇒ −(E ′)�JE ′ = −E�
JE

⇐⇒ (E ′E−1)�J(E ′E−1) = J

⇐⇒ E ′ = SE for some S ∈ Sp(2n, R).

(ii) Similar. �
Proposition 4.2 The left Sp(2n, R)-action and rightO(2n)-action are free and proper.

Proof We prove the result for the Sp(2n, R)-action only; the O(2n) case is sim-
ilar. Freeness is trivial. To prove properness, suppose we have two convergent
sequences (Ek) and (Sk · Ek) in GL(2n, R) with Ek → E and Sk Ek → E . Then
Sk = Sk Ek E−1

k → E E−1 = I . �
Remark 4.3 For any E ∈ M2n(R), it remains true that E · O(2n) ⊂ j−1

Sp (jSp(E))

and Sp(2n, R) · E ⊂ j−1
O (jO(E)). However, restriction to GL(2n, R) ⊂ M2n(R) is

necessary to get equality in the second inclusion. For example,

j−1
O (0) = {E ∈ M2n(R) | span E is an isotropic subspace of R

2n},

and this is not simply an orbit of Sp(2n, R) (since, for example, the Sp(2n, R)-action
preserves the dimension of span E). It is, however, possible to prove that E ·O(2n) =
j−1
Sp (jSp(E)) for all E ∈ M2n(R).

With the restriction from M2n(R) to GL(2n, R), the momentum map jSp acquires
a nice interpretation. As before, let Ea denote the ath column of E , so {E1, . . . E2n}
defines a basis ofR

2n . Let g(E) denote a metric onR
2n with respect to which the basis

{Ea} is orthonormal. Then any basis related to E by the right O(2n)-action defines
the same metric, i.e.

g(E · O) = g(E) for all O ∈ O(2n),
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and in fact, the set of metrics on R
2n is in one-to-one correspondence with the O(2n)-

orbits of GL(2n, R). We then have the following result:

Proposition 4.4 The metric g(E) and canonical symplectic form ωR2n are related by

ωR2n (u, v) = g(E)(jSp(E)u, v).

Proof If {sa} is the standard basis of R
2n (so Ea = ∑2n

b=1 Ebasb), the definition of
g(E) implies that

g(E)(sa, sb) = [(E E�)−1]ab.

From this, it follows that

g(E)(jSp(E)u, v) = (jSp(E)u)�(E E�)−1v = u�(−E E�
J)�(E E�)−1v

= u�
Jv = ωR2n (u, v).

�
Inverting this identity to give

g(E)(u, v) = ωR2n ((jSp(E))−1u, v),

we see that jSp(E) defines the metric g(E), and so essentially corresponds to it. In
the next section, we will consider this correspondence in the particular case that the
ordered basis (Ea) forms a symplectic frame of (R2n, ωR2n ).

5 Reduction

Following Ohsawa [12], we consider in this section the Marsden–Weinstein quotient
for the right O(2n)-action at a particular value of momentum. Using the correspon-
dence between reduced spaces and coadjoint orbits provided by the dual pair structure,
we will give a geometric characterisation of this space. Using this characterisation,
we will explain how to naturally introduce a global coordinate chart on the reduced
space, reproducing Ohsawa’s description of the space as the Siegel upper half plane.

5.1 Reduction through a general point

It will be more convenient to work with the Lie algebra-valued momentum maps jO
and jSp. For ξ ∈ g, now let Gξ denote the adjoint stabiliser of ξ andOξ ⊂ g the adjoint
orbit through ξ . Writing N = GL(2n, R), the reduced space through E ∈ GL(2n, R)

is

NjO(E) = j−1
O (jO(E))

O(2n)jO(E)

.
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Using the trace form to transfer the Poisson structure from sp(2n, R)∗ to sp(2n, R),
Proposition 3.4 tells use there exists a Sp(2n, R)-equivariant symplectomorphism

ǰSp : NjO(E) → OjSp(E).

5.2 Reduction through the identity

Weconsider the reduced space for the leftO(2n)-action through I = I2n ∈ GL(2n, R).
From Proposition 2.3(ii), we see that the level set of jO through I is the set

j−1
O (jO(I )) = {E ∈ GL(2n, R) | − E�

JE = −J} = Sp(2n, R),

which corresponds to the set of symplectic frames of (R2n, ωR2n ). Meanwhile,

O(2n)jO(I ) = {O ∈ O(2n) |AdO(−J) = −J} = Sp(2n, R) ∩ O(2n) � U(n),

andwe see that the reduced space NjO(I ) is isomorphic toSp(2n, R)/U(n), as originally
obtained by Ohsawa [12].

5.3 Geometric interpretation of the adjoint orbitOjSp(I)

As explained above, there is a Sp(2n, R)-equivariant map

ǰSp : NjO(I ) → OjSp(I ).

We now give an alternative geometric characterisation of OjSp(I ) in terms of complex

structures on R
2n .

Definition 5.1 Let j : R
2n → R

2n be a complex structure on R
2n , i.e. an R-linear

map satisfying j2 = −I . The map j is called ωR2n -compatible if it satisfies the two
properties

(i) j is symplectic (i.e. j ∈ Sp(2n, R)), and
(ii) the bilinear form g j (u, v) := ωR2n (u, jv) is positive definite.

Denote the set of ωR2n -compatible complex structures on R
2n by J (R2n, ωR2n ).

Proposition 5.2 The adjoint orbitOjSp(I ) ⊂sp(2n, R) is precisely the setJ (R2n, ωR2n ).

Proof An arbitrary element of ζ ∈ OjSp(I ) is of the form ζ = AdS[jSp(I )] = AdS[−J].
Since (−J)2 = −I , we have ζ 2 = −I , and since −J ∈ Sp(2n, R), we have ζ =
AdS(−J) ∈ Sp(2n, R). Finally, writing ζ = −SS�

J, we see that for u ∈ R
2n − {0},

gζ (u, u) = ωR2n (u, ζu) = u�
J(−SS�

J)u = u�(S�
J)�(S�

J)u > 0.

So we have that OjSp(I2n) ⊂ J (R2n, ωR2n ).
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2734 P. Skerritt

Conversely, suppose j ∈ J (R2n, ωR2n ). Then

g j ( ju, jv) = ωR2n ( ju, j2v) = ωR2n (u, jv) = g j (u, v),

the second identity following since j is symplectic. Hence, j is orthogonal with respect
to the metric g j . A standard theorem guarantees the existence of a real orthonormal
basis {uα, vα | α = 1, . . . , n} of R

2n such that j(uα − ivα) = eiθα (uα − ivα). The
identity j2 = −I implies that eiθα = ±i for all α, and by switching uα and vα if
necessary, we can choose eiθα = i for all α. So

juα = vα, jvα = −uα.

It can be verified that (u1, . . . , un, v1, . . . , vn) forms a symplectic basis for
(R2n, ωR2n ). For example,

ωR2n (uα, vβ) = ωR2n (uα, juβ) = g j (uα, uβ) = δαβ

by orthonormality. Taking E = [
u1 . . . un v1 . . . vn

] ∈ Sp(2n, R), the above rela-
tions can be written j E = −EJ, which implies

j = −EJE−1 = AdE [−J] = AdE [jSp(I )].

Thus J (R2n, ωR2n ) ⊂ OjSp(I ). �

Adapting diagram (3.2) to our case, we obtain

j−1
O (jO(I )) = Sp(2n, R)

NjO(I )
ǰSp �

σO

�
OjSp(I ) = J (R2n, ωR2n )

jSp
�

(5.1)

with ǰSp an Sp(2n, R)-equivariant symplectomorphism. An equivalent diagram was
recently obtained independently by Ohsawa and Tronci [15].

6 The upper half plane coordinates

As demonstrated in the previous section, the adjoint orbit OjSp(I ) can be naturally

viewed as the space ofωR2n -compatible complex structuresJ (R2n, ωR2n ). It is a stan-
dard result that J (R2n, ωR2n ) has another natural interpretation, that of the negative
Lagrangian Grassmannian G−(C2n, ωR2n ). In this section, we outline this correspon-
dence and explain how it can be used to introduce a coordinate system on OjSp(I ).
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6.1 The negative Lagrangian Grassmannian

Consider the complexification (R2n)⊗RC � C
2n ofR

2n . Real linear functions onR
2n

extend to complex linear functions on C
2n in the obvious way, and we will generally

use the same symbol to denote both a function and its complex extension.
Define a sesquilinear form s : C

2n × C
2n → C by

s(w, z) := −iωR2n (w, z).

Definition 6.1 The negative Lagrangian Grassmannian G−(C2n, ωR2n ) is the set of
(complex) Lagrangian subspaces of C

2n on which s restricts to a negative definite
form,

G−(C2n, ωR2n ) := {Γ a subspace of C
2n | Γ is Lagrangian, s|Γ < 0}.

Proposition 6.2 ([16, Chapter II, Lemma 7.1]) There is a bijection between
J (R2n, ωR2n ) and G−(C2n, ωR2n ).

Proof (Sketch) For any j ∈ J (R2n, ωR2n ), j symplectic implies that it is diagonalis-
able, and j2 = −I implies that its eigenvalues are ±i . The −i-eigenspace is simply

Γ j = 1

2
(I + i j)R2n ⊂ C

2n .

It is straightforward to verify that Γ j ∈ G−(C2n, ωR2n ), and so, we obtain a map

Γ · : J (R2n, ωR2n ) → G−(C2n, ωR2n ).

Conversely, suppose Γ ∈ G−(C2n, ωR2n ). For any w ∈ Γ − {0}, the negative
definite condition implies that −iω(w,w) < 0. Since Γ is Lagrangian, it follows that
w /∈ Γ . Hence, Γ ∩ Γ = {0}, and C

2n = Γ ⊕ Γ . Define the complex linear map
jΓ : C

2n → C
2n by

jΓ (w) =
{

−iw w ∈ Γ

iw w ∈ Γ
.

Since it commutes with complex commutation, jΓ restricts to a real linear map jΓ :
R
2n → R

2n . It is straightforward to verify that jΓ ∈ J (R2n, ωR2n ), and so, we obtain
a map

j· : G−(C2n, ωR2n ) → J (R2n, ωR2n ).

It may be checked that Γ · : J (R2n, ωR2n ) → G−(C2n, ωR2n ) and j· :
G−(C2n, ωR2n ) → J (R2n, ωR2n ) are inverses of each other. �
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Following Proposition 6.2, we may extend the commutative diagram (5.1) to

j−1
O (jO(I )) = Sp(2n, R)

NjO(I )
ǰSp �

σO

�
OjSp(I ) = J (R2n, ωR2n )

Γ ·
�

jSp
�

G−(C2n, ωR2n )

Γ jSp(·)

�
(6.1)

We note that for S ∈ Sp(2n, R),

Γ AdS j = 1

2
(I + i AdS j)R2n = 1

2
(I + i AdS j)SR

2n = S

(
1

2
(I + i j)R2n

)
= SΓ j ,

where we have used the invertibility of S to write R
2n = SR

2n in the second equality.
Hence, Γ · is Sp(2n, R)-equivariant with respect to the natural left action of Sp(2n, R)

on G−(C2n, ωR2n ).

6.2 Coordinates onG−(C2n,!R2n)

In order to introduce coordinates onG−(C2n, ωR2n ), we first introduce the two complex
Lagrangian subspaces of C

2n

Γ1 = spanC{e1, . . . , en} and Γ2 = spanC{en+1, . . . , e2n},

where {e1, . . . , e2n} is the canonical basis of R
2n . Note that C

2n = Γ1 ⊕ Γ2, and
denote the direct sum projections by pi : C

2n → Γi . We use the following lemma.

Lemma 6.3 Let Γ ∈ G−(C2n, ωR2n ). Then the projection pi : C
2n → Γi restricts to

a bijection on Γ , for i = 1, 2.

Proof Since all three are Lagrangian, Γ , Γ1, Γ2 all have complex dimension n. So we
just need to prove that pi |Γ : Γ → Γi is injective.

Suppose p1(w) = 0 for w ∈ Γ . Then w ∈ Γ2, and so, w ∈ Γ 2 = Γ2. Since Γ2 is
Lagrangian, we have that −iωR2n (w,w) = 0, i.e. s(w,w) = 0. But since s|Γ < 0,
this implies that w = 0.

The same argument shows that p2|Γ : Γ → Γ2 is a bijection. �
In light of Lemma 6.3, for any Γ ∈ G−(C2n, ωR2n ) we may define a map ŴΓ :

Γ1 → Γ2 by

ŴΓ = (p2|Γ ) ◦ (p1|Γ )−1.

Then for any w ∈ Γ ,

w = (p1 + p2)|Γ (w) = (I + ŴΓ )((p1|Γ )(w)),
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demonstrating that

Γ = (I + ŴΓ )Γ1. (6.2)

It follows from identity (6.2) that the map Γ �→ ŴΓ is injective. We now use
this representation of G−(C2n, ωR2n ) as linear maps to introduce coordinates on
G−(C2n, ωR2n ). The following lemma is straightforward to verify.

Lemma 6.4 ([16, Chapter II, Lemma 7.2’]) Let Ŵ : Γ1 → Γ2 be a linear map, and
define the matrix W ∈ Mn(C) by

Ŵ (eα) =
n∑

β=1

Wβα en+β for α = 1, . . . , n.

Then

(I + Ŵ )Γ1 ∈ G−(C2n, ωR2n ) ⇐⇒ W � = W and Im W > 0.

The set

Σn = {W ∈ Mn(C) | W � = W , Im W > 0}

arising in Lemma 6.4 is traditionally referred to as the Siegel upper half plane. It
has a well-known symplectic structure. In Sect. 6.5, we show this structure is the
pushforward of the usual Kostant–Kirillov–Souriau symplectic structure on OjSp(I )

under the bijection Γ · of diagram (6.1).

6.3 The action of Sp(2n,R) in upper half plane coordinates

There is a natural action of Sp(2n, R) on G−(C2n, ωR2n ), given by (S, Γ ) �→ SΓ .
We wish to express this action in terms of upper half plane coordinates, i.e. to express
WSΓ in terms of S and WΓ .

Since Γ1 = spanC{e1, . . . , en}, we see from Eq. (6.2) that a basis for Γ ∈
G−(C2n, ωR2n ) is given by

e′
α := (I + ŴΓ )eα = eα +

n∑
β=1

(WΓ )βαen+β, α = 1, . . . , n.

It follows that SΓ has basis

e′′
α = Se′

α = Seα +
n∑

β=1

(WΓ )βα Sen+β, α = 1, . . . , n.
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Writing S =
[

A B
C D

]
, this becomes

e′′
α =

n∑
γ=1

[
(A + BWΓ )γαeγ + (C + DWΓ )γαen+γ

]
, α = 1, . . . , n.

Now recall that the coordinates WSΓ of SΓ are simply the matrix elements of
ŴSΓ = (p2|SΓ ) ◦ (p1|SΓ )−1 : Γ1 → Γ2. We have

p1(e
′′
α) =

n∑
γ=1

(A + BWΓ )γαeγ

�⇒ (p1|SΓ )−1(eδ) =
n∑

α=1

[(A + BWΓ )−1]αδ e′′
α

�⇒ ŴSΓ (eδ)=(p2|SΓ )
(
(p1|SΓ )−1(eδ)

)
=

n∑
α=1

[(A + BWΓ )−1]αδ(p2(e
′′
α))

=
n∑

γ=1

[(C + DWΓ )(A + BWΓ )−1]γ δ en+γ .

It follows that for S =
[

A B
C D

]
,

WSΓ = (C + DWΓ )(A + BWΓ )−1. (6.3)

6.4 The projection in upper half plane coordinates

Referring again to diagram (6.1), we have demonstrated the existence of an Sp(2n, R)-
equivariant map

Γ jSp(·) : j−1
O (jO(I )) → G−(C2n, ωR2n ).

The set j−1
O (jO(I )) ⊂ GL(2n, R) is simply Sp(2n, R), and we have shown that

the Siegel upper half plane provides a global coordinate chart on the manifold
G−(C2n, ωR2n ). Using the results of the previous section, we can derive an expression
for the projectionΓ jSp(·) in terms of the coordinates on its domain and rangemanifolds.

First note that Γ jSp(I ) = 1
2 (I + i jSp(I ))R2n = 1

2 (I − iJ)R2n has a basis

{eα + ien+α | α = 1, . . . n}.

It follows easily from Eq. (6.2) that

W
Γ

jSp(I ) = i I ∈ Mn(C).
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By equivariance ofΓ jSp(·), we have thatΓ jSp(S) = SΓ jSp(I ) for any S ∈ j−1
Sp (jSp(I )),

and so, W
Γ

jSp(S) = W
SΓ

jSp(I ) . Writing S =
[

Q1 Q2
P1 P2

]
for the coordinates on

j−1
Sp (jSp(I )), and using Eq. (6.3), this becomes

W
Γ

jSp(S) = (P1 + P2W
Γ

jSp(I ) )(Q1 + Q2W
Γ

jSp(I ) )
−1 = (P1 + i P2)(Q1 + i Q2)

−1.

In summary, the projection written in (global) coordinates is

Γ jSp(·) :
[

Q1 Q2
P1 P2

]
�→ (P1 + i P2)(Q1 + i Q2)

−1. (6.4)

6.5 Upper half plane coordinates onOjSp(I)

Using Γ · : OjO(I ) → G−(C2n, ωR2n ) to pull coordinates back to OjO(I ), we
may instead interpret (6.4) as the coordinate expression for the momentum map
jSp : j−1

O (jO(I )) → OjSp(I )

jSp :
[

Q1 Q2
P1 P2

]
�→ (P1 + i P2)(Q1 + i Q2)

−1. (6.5)

This is in agreement with [12, Equation (21)], which was obtained by amethod involv-
ing the Iwasawa decomposition of Sp(2n, R).

For η ∈ OjSp(I ), let Wη ∈ Σn denote the corresponding coordinate. Then Eq. (6.3)
becomes

WAdSη = (C + DWη)(A + BWη)
−1. (6.6)

It was shown by Siegel (see, for example, [17, Chapter 6, Section 3]) that Σn is a
Kähler manifold, with Hermitian form HΣn = Tr(B−1dW ⊗B−1dW ) and symplectic
form ΩΣn = Im HΣn , i.e.

ΩΣn = Tr(B−1dA ⊗ B−1dB − B−1dB ⊗ B−1dA).

(We remind thatA := Re W , B := Im W .) Siegel also proves that the forms HΣn , and
so ΩΣn , are invariant under pullback by the Sp(2n, R)-action W �→ (C + DW )(A +
BW )−1.

Correspondingly, the standard Kostant–Kirillov–Souriau symplectic form Ω+
O on

the adjoint orbit OjSp(I ) = O−J, given by

(Ω+
O)η(adξ η, adζ η) = 〈〈η, [ξ, ζ ]〉〉,

for η ∈ O−J, ξ, ζ ∈ sp(2n, R), is invariant under the adjoint Sp(2n, R)-action.
Hence, if we can show that ΩΣn and Ω+

O are proportional at −J (corresponding to
coordinate W = i I ), then they are proportional on the entire adjoint orbit O−J.
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To see this is the case, let ξ =
[
ξ11 ξ12
ξ21 ξ22

]
∈ sp(2n, R). From (6.6), we deduce

d

dt

∣∣∣∣
t=0

WAdexp tξ (−J) = (ξ21 + iξ22) − i(ξ11 + iξ12),

implying that

adξ (−J) = (ξ12 + ξ21)
∂

∂A
∣∣∣∣
i I

+ (ξ22 − ξ11)
∂

∂B
∣∣∣∣
i I

. (6.7)

Note that ξ�
J + Jξ = 0 �⇒ ξ�

12 = ξ12, ξ�
21 = ξ21, ξ�

22 = −ξ11, and so, both
coefficient matrices in (6.7) are symmetric.

We have that

(Ω+
O)−J(adξ (−J), adζ (−J)) = 〈〈−J, [ξ, ζ ]〉〉
= 1

2
Tr (−(ξ21ζ11 + ξ22ζ21) + (ξ11ζ12 + ξ12ζ22) − (ξ ↔ ζ )) . (6.8)

Meanwhile, at W = i I the symplectic form on Σn simplifies to

(ΩΣn )i I = Tr(dA ⊗ dB − dB ⊗ dA)i I ,

and so, (6.7) gives

(ΩΣn )i I (adξ (−J), adζ (−J)) = Tr((ξ12 + ξ21)(ζ22 − ζ11) − (ξ22 − ξ11)(ζ12 + ζ21)).

Comparison with (6.8) shows that (Ω+
O)−J = 1

2 (ΩΣn )i I , and therefore,

Ω+
O = 1

2
ΩΣn .

7 Dynamics

In this section, we finally come to the main point of the previous constructions, namely
to describe the dynamics of semiclassical Gaussian wave packets in terms of Hamil-
tonian dynamics on the frame bundle of T ∗

R
n , and its symplectic reduction.

7.1 The Gaussian wave packet ansatz

Consider the time-dependent Schrödinger equation on R
n ,

i�
∂ψ

∂t
(x, t) = − �

2

2m
Δψ(x, t) + V (x) ψ(x, t), (7.1)
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where the potential V (x) is at most quadratic in x . Following [9], we recall here the
Gaussianwave packet ansatz, in both theHeller [6] andHagedorn [5] parametrisations.

In Heller’s parametrisation, the wave function is written

ψ(x, t) =
(
det B(t)

(π�)n

) 1
4

exp

{
i

�

[
1

2
(x − q(t))�(A(t) + iB(t))(x − q(t))

+ p(t)�(x − q(t)) + φ(t)

]}
,

(7.2)

with (q, p) ∈ T ∗
R

n � R
2n , φ a real phase, and A + iB ∈ Σn with A,B real.

Substitution of the ansatz into Eq. (7.1) shows that it produces a solution provided the
following equations are satisfied

q̇ = p

m
, ṗ = −Dq V ,

Ȧ = − 1

m
(A2 − B2) − D2

q V , Ḃ = − 1

m
(AB + BA),

φ̇ = p2

2m
− V (q) − �

2m
Tr B. (7.3)

Here, D2V denotes the Hessian of V .
In Hagedorn’s parametrisation, the wave function is

ψ(x, t) = 1

(π�)
n
4

1

(det Q(t))
1
2

exp

{
i

�

[
1

2
(x − q(t))� P(t)Q(t)−1(x − q(t))

+ p(t)�(x − q(t)) + S(t)

]}
,

(7.4)

for some appropriate choice of the square root in the denominator, with (q, p) ∈ R
2n ,

S a real phase, and Q, P ∈ Mn(C) satisfying

Q� P − P�Q = 0 and Q†P − P†Q = 2i In .

Substitution into Eq. (7.1) yields

q̇ = p

m
, ṗ = −Dq V , Q̇ = P

m
, Ṗ = −D2

q V Q, Ṡ = p2

2m
− V (q). (7.5)

The two parametrisations (7.2) and (7.4) are related by

W = P Q−1, S = φ − �

2
arg(det Q). (7.6)
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7.2 Description as Hamiltonian dynamics on the frame bundle

Given a symplectic manifold (M, ω), recall that the a frame at z ∈ M is an ordered
basis of Tz M , and the frame bundle F(M) consists of all such ordered bases as z
ranges over M . F(M) is naturally a right principal GL(2n, R)-bundle, with group
action

(v1, . . . , v2n) · E =
(

2n∑
a=1

va Ea1,

2n∑
a=1

va Ea2, . . . ,

2n∑
a=1

va Ea,2n

)
. (7.7)

We say that a frame (va) at z ∈ M is symplectic if

ωz(va, vb) = Jab a, b = 1, . . . , 2n,

and a local section s : U ⊂ M → F(M) of the frame bundle is symplectic if s(z) is
a symplectic frame for each z ∈ U .

Consider now the case when M = T ∗
R

n and ω = ∑n
α=1 dqα ∧ dpα is the usual

cotangent bundle symplectic form. We will write the natural coordinates on T ∗
R

n as
either (z1, . . . , z2n) or (q1, . . . , qn, p1, . . . , pn), depending on situation. The bundle
F(T ∗

R
n) has a global symplectic frame s : T ∗

R
n → F(T ∗

R
n), given by

s(z) :=
(

∂

∂q1

∣∣∣∣
z
, . . . ,

∂

∂qn

∣∣∣∣
z
,

∂

∂ p1

∣∣∣∣
z
, . . . ,

∂

∂ pn

∣∣∣∣
z

)
=

(
∂

∂z1

∣∣∣∣
z
, . . . ,

∂

∂z2n

∣∣∣∣
z

)
,

which induces a global trivialisation Λ : T ∗
R

n × GL(2n, R) → F(T ∗
R

n) of the
frame bundle, given by

Λ(z, E) = s(z) · E =
(

2n∑
a=1

Ea1
∂

∂za

∣∣∣∣
z
, . . . ,

2n∑
a=1

Ea,2n
∂

∂za

∣∣∣∣
z

)
.

We define the �-diagonal lifted symplectic form Ω� on T ∗
R

n × GL(2n, R) by

Ω�

(z,E)((vz, VE ), (wz, WE )) := ωz(vz, wz) + �

2
ΩE (VE , WE ). (7.8)

By analogy with [12], for any Hamiltonian H : T ∗
R

n → R we define the lifted
Hamiltonian on the frame bundle H� : T ∗

R × GL(2n, R) → R to be

H�(z, E) := H(z) + �

4
Tr(E�D2

z H E), (7.9)

where D2
z H denotes the Hessian of H evaluated at z.

We can give a more geometric interpretation to (7.9) as follows: For any E ∈
GL(2n, R), let g(E) denote the metric on T ∗

R
n with respect to which the global

frame Λ(z, E) = s(z) · E is orthonormal, i.e. the vector fields
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ea(z) =
2n∑

b=1

Eba
∂

∂zb
, a = 1, . . . , 2n,

form an orthonormal basis at each point. Explicitly

g(E)

(
∂

∂za
,

∂

∂zb

)
= [(E E�)−1]ab. (7.10)

Then the Laplacian Δg(E) : C∞(T ∗
R

n) → C∞(T ∗
R

n) associated with the metric
g(E) is given for H ∈ C∞(T ∗

R
n) by

Δg(E)H =
2n∑

a=1

ea(ea H) =
2n∑

a,b,c=1

Eba Eca
∂2H

∂zb∂zc
= Tr(E� D2H E),

and so, (7.9) can be alternatively written as

H�(z, E) = H(z) + �

4
(Δg(E)H)(z). (7.11)

To find the Hamiltonian vector field corresponding to H�, note that

d(z,E) H� = (d1)z

(
H + �

4
Δg(E)H

)
+ (d2)E

(
�

4
Δg(·) H(z)

)
,

where d1, d2 denote the exterior derivatives in T ∗
R

n and GL(2n, R), respectively. The
first term can be written

iX
H+ �

4 Δg(E) H
ω.

The second term satisfies

(d2)E

(
�

4
Δg(·) H(z)

)
(VE ) = �

4
Tr

(
V �D2

z H E + E� D2
z H V

)

= �

2
Tr

(
E� D2

z H V
)

= �

2
ΩE ((JD2

z H) · E, VE )

= �

2

(
i(JD2

z H)·EΩE

)
(VE ).

Here we have used the identity ζ · E = (ζ E)E . Overall

d(z,E) H� = i(X
H+ �

4 Δg(E) H
(z),(JD2

Z H)·E)Ω
�

(z,E),
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i.e.

X H�(z, E) =
(

X H+ �

4 Δg(E) H (z), (JD2
z H) · E

)
. (7.12)

In the situation where H : T ∗
R

n → R is at most quadratic in the coordinates
(q1, . . . , qn, p1, . . . , pn), the Hessian D2

z H , and hence Δg(E)H , will be constant,
and the Hamiltonian vector field X H� simplifies to

X H�(z, E) =
(

X H (z), (JD2
z H) · E

)
=

(
JDz H , (JD2

z H) · E
)

.

In this case, motion on the frame bundle consists of classical motion on the base
space T ∗

R
n and the corresponding induced linearised motion on the frame. This

picture of semiclassical wave mechanics has much in common with the nearby orbit
approximation discussed by Littlejohn [7, Section 7]— semiclassical motion consists
of the classical motion, plus motion of a frame moving along the classical trajectory,
and describing to first order the classical flow relative to it.

In particular, taking the standard Hamiltonian

H(q, p) = p2

2m
+ V (q)

and writing E =
[

Q1 Q2
P1 P2

]
yields the first four equations of the Hagedorn equations

(7.5).
In the general case (7.12) where H is not quadratic, there is an additional correction

term in the motion on the base space, leading to a deviation from strictly classical
motion. This deviation has recently been proposed as a means of introducing quantum
tunnelling into semiclassical quantum mechanics [13].

7.3 O(2n)-invariance and conservation of symplectic frame

The right GL(2n, R)-action (7.7) on the bundle F(T ∗
R

n) � T ∗
R

n × GL(2n, R)

restricts to a right O(2n)-action, and the lifted Hamiltonian H� is easily seen to
be invariant under this restricted action. By Noether’s theorem, the corresponding
momentummap jO ◦π2 : T ∗

R
n ×GL(2n, R) → o(2n) is conserved under the dynam-

ical evolution corresponding to H�, i.e.

jO(E) = −E�
JE

is conserved. In particular, the previously considered level set

j−1
O (jO(I )) = {E ∈ GL(2n, R) | − E�

JE = −J}

simply corresponds to the collection of symplectic frames at a point, and conservation
of jO says that such a frame remains symplectic under dynamical evolution.
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7.4 Description in the reduced space

Since we have a Hamiltonian H� that is invariant under the right O(2n)-action, the
dynamics on F(T ∗

R
n) will drop to the symplectic quotient. Taking the symplectic

quotient at momentum jO(I ) = −J, and using the notation of diagram (6.1), gives

(jO ◦π2)
−1(jO(I ))

O(2n)jO(I )
= T ∗

R
n × j−1

O (jO(I ))

O(2n)jO(I )
= T ∗

R
n × NjO(I ),

and we have the corresponding extension of diagram (5.1)

T ∗
R

n × j−1
O (jO(I ))

T ∗
R

n × NjO(I )
id×ǰSp �

id×σO

�
T ∗

R
n × OjSp(I ).

id× jSp
�

The map id×ǰSp is a symplectomorphism, and so, we can equivalently describe the
reduced dynamics on T ∗

R
n × OjSp(I ). Rewriting Eq. (7.9) as

H�(z, E) = H(z) + �

4
Tr(−E E�

J
2D2

z H) = H(z) + �

4
Tr(jSp(E) JD2

z H),

we see that

H� = Ȟ� ◦ (id× jSp),

where Ȟ� : T ∗
R

n × OjSp(I ) → R is the reduced Hamiltonian

Ȟ�(z, ζ ) := H(z) + �

4
Tr(ζ JD2

z H). (7.13)

In fact, from the expression (7.10) for the metric g(E), we see that

g(E)

(
∂

∂za
,

∂

∂zb

)
= [(jSp(E)J)−1]ab,

and so, the metric g(E) drops to a metric ǧ(ζ ) on T ∗
R

n , depending on ζ ∈ sp(2n, R),

ǧ(ζ )

(
∂

∂za
,

∂

∂zb

)
= [(ζJ)−1]ab.

Then the reduced Hamiltonian (7.13) can be written, analogously to (7.11), as

Ȟ�(z, ζ ) := H(z) + �

4
(Δǧ(ζ ) H)(z). (7.14)
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Since H� = Ȟ� ◦ (id× jSp), and id× jSp is a Poisson map, the Hamiltonian vector
fields

X H�(z, E) =
(

X H+ �

4 Δg(E) H (z), (JD2
z H) · E

)

and

X Ȟ�(z, ζ ) =
(

X H+ �

4 Δĝ(ζ ) H (z), adJD2
z H ζ

)

are (id× jSp)-related,

T (id× jSp) ◦ X H� = X Ȟ� ◦ (id× jSp).

Again specialising to quadratic Hamiltonians, these (id× jSp)-related vector fields are

X H�(z, E) = (X H (z), (JD2
z H) · E)

and

X Ȟ�(z, ζ ) = (X H (z), adJD2
z H ζ ).

The unreduced dynamics, generated by X H� and reproducing the Hagedorn equa-
tions (7.5), will drop to the reduced dynamics generated by X Ȟ� , and these will
reproduce the Heller equations (7.3), by virtue of the relationship (6.5) expressing jSp
in coordinates on j−1

O (jO(I )) and OjSp(I ).

8 Generalisation to other symplectic manifolds

Now that we have outlined the construction of a Hamiltonian system on the frame
bundle of T ∗

R
n , an obvious question is whether this construction can be extended

to more general symplectic manifolds. In this section, we suggest a generalisation by
employing the results of Cordero and de León [3]. Essentially they show that the frame
bundle can be provided with a symplectic structure if it has a trivialisation compatible
with the symplectic structure, encoded in the form of a symplectic connection. Their
construction may be seen as the symplectic analogue of the Sasaki–Mok metric on the
frame bundle of a Riemannian manifold [10].

8.1 The almost-symplectic form on the frame bundle

Let (M, ω) be an arbitrary 2n-dimensional symplectic manifold, and let π : F(M) →
M denote its frame bundle, which is a principal right GL(2n, R)-bundle in the usual
way. For a frame e = (e1, . . . , e2n) ∈ F(M), and ξ ∈ gl(2n, R), define
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e · ξ := d

ds

∣∣∣∣
s=0

e · exp(sξ) ∈ VeF(M) ⊂ TeF(M),

where Ve denotes the vertical space at e ∈ F(M). Given a connection 1-form
A ∈ Ω2(F(M), gl(2n, R)), Cordero and de León [3] define two natural lifts of the
symplectic 2-form ω to the frame bundle F(M):

– the vertical lift ωver = π∗ω;
– the horizontal lift ωhor, given by

ωhor
e (Xe, Ye) :=

(
2n⊕

a=1

ω

)

e

(e · Ae(Xe), e · Ae(Xe)).

In the definition of the horizontal lift, we have used the canonical isomorphism
⊕2n

a=1Tz M � VeF(M) (for z = π(e)) given by

(v1, . . . , v2n) ∈
2n⊕

a=1

Tz M ←→ d

ds

∣∣∣∣
s=0

(e1 + sv1, . . . e2n + sv2n) ∈ VeF(M),

and here, e · Ae(Xe) is the infinitesimal generator at e ∈ F(M) corresponding to
Ae(Xe) ∈ gl(2n, R). We then define the �-diagonal lift ω� of the symplectic form ω

by

ω� := ωver + �

2
ωhor.

This is essentially the diagonal lift defined in [3], up to a factor of �

2 .
Denote the horizontal lift of a vector field X ∈ X(M) to F(M) by Xhor and the

infinitesimal generator on F(M) corresponding to ξ ∈ gl(2n, R) by ξF(M). Then it is
straightforward to verify

– ω�(Xhor, Y hor) = ω(X , Y ) ◦ π ,
– ω�(Zhor, ξF(M)) = 0 and
–

ω�(ξF(M), ζF(M))(e) = �

2

2n∑
a=1

ωz((e · ξ)a, (e · ζ )a)

= �

2

2n∑
a,b,c=1

ωz(eb, ec) ξbaζca .

Using the non-degeneracy of ω to infer that ωz(eb, ec) is an invertible matrix in the
last identity, it follows that the 2-form ω� is non-degenerate, and so defines an almost-
symplectic form on F(M).
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8.2 Conditions for the lifted form to be closed

In order for the almost-symplectic form ω� to be a symplectic form, it must satisfy
the additional condition dω� = 0. The conditions for this to be the case are computed
in [3].

Proposition 8.1 ([3, Proposition 6.1])

(i) dω�(Xhor, Y hor, Zhor) = (dω(X , Y , Z)) ◦ π ;
(ii) dω�(Xhor, Y hor, ξF(M)) = �

2ωver(F A(Xhor, Y hor)F(M), ξF(M));

(iii) dω�(Xhor, ξF(M), ζF(M)) = �

2 (∇ A
X ω)ver(ξF(M), ζF(M));

(iv) dω�(ξF(M), ζF(M), χF(M)) = 0.

Here, F A ∈ Ω2(F(M), gl(2n, R)) denotes the curvature 2-form of A, and ∇ A denotes
the covariant derivative associated with A.

Corollary 8.2

dω� = 0 ⇐⇒ dω = 0, F A = 0, ∇ Aω = 0,

i.e. ω� is closed if and only if ω is closed and A is a flat, symplectic (i.e. ω-preserving)
connection.

8.3 Consequences of the condition

Assuming the conditions in Corollary 8.2 hold, the frame bundle F(M) has a partic-
ularly simple description. Firstly, F A = 0 implies that the horizontal distribution on
F(M) is involutive and hence integrable. If we further assume the absence of mon-
odromy,2 this implies the existence of a global horizontal section s : M → F(M)

through any point of F(M). Since the connection A is symplectic, the frames
s(z) = (s1(z), . . . , s2n(z)) are such that ωz(sa(z), sb(z)) is independent of z. Let
us arrange for these frames to be symplectic, i.e.

ωz(sa(z), sb(z)) = Jab.

ThenF(M) is trivial, and we have a bundle morphism Λ : M ×GL(2n, R) → F(M)

given by

Λ(z, E) = s(z) · E .

We use Λ to pull back the symplectic form ω�. Firstly,

Ωver := Λ∗ωver = (π ◦ Λ)∗ω = π∗
1ω,

2 This is the case, for example, if M is simply connected—if not, we can always go to universal cover.

123



The frame bundle picture of Gaussian wave packet dynamics… 2749

where π1 : M × GL(2n, R) → M is projection onto the first factor. Also, defining
Ωhor := Λ∗ωhor, and using

T(z,E)Λ(vz, VE ) = Tz s(vz) · E + s(z) · V ,

we get

Ωhor
(z,E)((vz, VE ), (wz, WE )) = ωhor

s(z)·E (s(z) · V , s(z) · W )

since Tz s(vz) · E is horizontal

=
2n∑

a,b,c=1

ωz((sb(z), sc(z))Vba Wca

= Tr(V �
JW ).

Thus we have shown

Λ∗ωhor =: Ωhor = π∗
2Ω,

where π2 : M × GL(2n, R) → GL(2n, R) is projection onto the second factor and
Ω is the symplectic 2-form on GL(2n, R) defined in Sect. 2.

Overall, we obtain the symplectic form Ω� := Λ∗ω� on M × GL(2n, R), given
explicitly by

Ω� = Ωver + �

2
Ωver = π∗

1ω + �

2
π∗
2Ω = ω ⊕ �

2
Ω,

i.e.

Ω�

(z,E)((vz, VE ), (wz, WE )) = ωz(vz, wz) + �

2
ΩE (VE , WE )

= ωz(vz, wz) + �

2
Tr(V �

JW ).

(8.1)

We see that Eq. (8.1) agrees with Eq. (7.8), which corresponds to applying the above
construction with A the obvious global flat connection on T ∗

R
n , and global horizontal

section

s(z) =
(

∂

∂q1

∣∣∣∣
z
, . . . ,

∂

∂qn

∣∣∣∣
z
,

∂

∂ p1

∣∣∣∣
z
, . . . ,

∂

∂ pn

∣∣∣∣
z

)
.

8.4 The frame bundle Hamiltonian

Again assuming the conditions in Corollary 8.2 hold, and given a Hamiltonian H :
M → R, definition (7.11) of the lifted Hamiltonian carries over directly. To recap,
a choice of connection A ∈ Ω1(F(M), gl(2n, R)) and global horizontal section s :
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M → F(M) induces a global bundle morphism Λ(z, E) = s(z) · E . For every
E ∈ GL(2n, R), we define g(E) to be the metric on M with respect to which the
frame Λ(z, E) is orthonormal. The lifted Hamiltonian H� : M ×GL(2n, R) → R is
then defined by

H�(z, E) := H(z) + �

4

(
Δg(E)H

)
(z).

As before, this may also be written

H�(z, E) := H(z) + �

4
Tr(E�D2

z H E),

where now D2H : M → gl(2n, R) is given by

(D2
z H)ab := sa(z) (sb H) .

Note, however, that by contrast to Eq. (7.9), here D2H is not necessarily symmetric,
since sb is also a function of z. Using a similar analysis to that in Sect. 7 gives the
Hamiltonian vector field generated by H� as

X H�(z, E) =
(

X H+ �

4 Δg(E)
(z),

1

2
J(D2

z H + (D2
z H)�) · E

)
. (8.2)

Symmetry of D2H may be recovered by imposing a further condition on the con-
nection A, viz. that it be torsionless. For then, applying the torsionless condition to
the individual (covariantly constant) vectors of the global frame s yields

0 = ∇ A
sa

sb − ∇ A
sb

sa − [sa, sb] �⇒ [sa, sb] = 0,

and it follows that

(D2
z H)ab = sa(z) (sb H) = sb(z) (sa H) = (D2

z H)ba .

Hence, Eq. (8.2) reduces to Eq. (7.12).
From here on, the analysis is identical to Sect. 7. In particular, Λ intertwines the

right O(2n)-actions on the frame bundle F(M) and M × GL(2n, R)

Λ(z, E) · O = (s(z) · E) · O = s(z) · (E O) = Λ(z, E O),

and the latter action has a momentum map jO : M × GL(2n, R) → o(2n) as before.
Also the (s-dependent) left Sp(2n, R)-action

S · (s(z) · E) = s · (SE)

is intertwinedwith the left Sp(2n, R)-action on M×GL(2n, R) and gives amomentum
map jSp : M × GL(2n, R) → sp(2n, R) as before.
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