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ABSTRACT

Satellite radiance observations combine global coveragewith high temporal and spatial resolution, and bring vital

information to NWP analyses especially in areas where conventional data are sparse. However, most satellite

observations that are actively assimilated have been limited to clear-sky conditions due to difficulties associatedwith

accounting for non-Gaussian error characteristics, nonlinearity, and the development of appropriate observation

operators for cloud- and precipitation-affected satellite radiance data. This article provides an overview of the

development of the Gridpoint Statistical Interpolation (GSI) configurations to assimilate all-sky data from mi-

crowave imagers such as the GPM Microwave Imager (GMI) in the NASA Goddard Earth Observing System

(GEOS). Electromagnetic characteristics associated with their wavelengths allow microwave imager data to be

highly sensitive to precipitation. Therefore, all-sky data assimilation efforts described in this study are primarily

focused on utilizing these data in precipitating regions. To utilize data in cloudy and precipitating regions, state and

analysis variables have been added for ice cloud, liquid cloud, rain, and snow. This required enhancing the obser-

vation operator to simulate radiances in heavy precipitation, including frozen precipitation. Background error

covariances in both the central analysis and EnKF analysis in the GEOS hybrid 4D-EnVar system have been

expanded to includehydrometeors. In addition, the bias correction schemewas enhanced to reducebiases associated

with thick clouds and precipitation. The results from single observation experiments demonstrate the capability of

assimilating all-sky microwave brightness temperature data in GEOS both when the model forecast produces ex-

cessive precipitation and too little precipitation. Additional experiments show that hydrometeors and dynamic

variables such as winds and pressure are adjusted in physically consistent ways in response to the assimilation.
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1. Introduction

Numerical weather prediction (NWP) has evolved

at a relatively rapid pace during recent decades, leading

to significantly improved forecasts of essential weather

variables such as wind, temperature and pressure (Bauer

et al. 2015). Forecasting the intensity and spatial distri-

bution of precipitation, on the other hand, remains a

significant challenge even on large scales. The reasons

for this are numerous, but generally involve difficulties

in both modeling the underlying moist physical pro-

cesses (Sellers 1965; Hartmann 1994; Pedder et al. 2000)

and providing adequately constrained initial conditions

in cloudy and precipitating regions. With regard to the

latter, millions of observations are now actively assimi-

lated during each analysis cycle in most modern NWP

systems. These data play a critical role in constraining

initial conditions globally, but especially over oceanic

regions where limited conventional observations are

available. Until recently, however, data affected by

clouds and precipitation have been discarded in large

numbers due to the additional challenges affecting

their use, including large systematic errors in the

background forecast state, complexity of the required

observation operators (i.e., radiative transfer models)

and non-Gaussianity of the model and observation

errors involved in assimilating these data directly

(Bauer et al. 2010).

The above challenges notwithstanding, several fore-

cast centers are pursuing efforts to assimilate radiances

affected by clouds and precipitation from microwave

sensors, with the expectation that these data can pro-

vide critical constraints on meteorological parame-

ters in dynamically sensitive regions and thus lead

to improved forecast accuracy for precipitation (Geer

et al. 2018). The European Centre for Medium-Range

Weather Forecasts (ECMWF) assimilates Advanced

Microwave Scanning Radiometer 2 (AMSR2), GPM

Microwave Imager (GMI), and Special SensorMicrowave

Image/Sounder (SSMIS) radiance data at frequencies from

19 to 90GHz over ocean and Microwave Humidity

Sounder (MHS), SSMIS, and Microwave Humidity

Sounder (MWHS) radiance data at 183GHz over ocean,

land, snow-covered land, and sea ice. These data have

become one of the main observational constraints to

define moisture initial conditions for the forecasts

(Bauer et al. 2010; Geer et al. 2010, 2014; Baordo and

Geer 2016). The Environmental Modeling Center

(EMC) at the National Centers for Environmental

Prediction (NCEP) assimilates AMSU-A radiances in

nonprecipitating cloudy conditions over ocean in ad-

dition to other clear-sky satellite radiance data and

report improvements in analyzed lower-tropospheric

temperature and humidity off the west coasts of the

continents as well as reduced bias in the depiction of

stratus clouds (Zhu et al. 2016). The operational Met

Office Unified Model system also showed significant im-

provements in the short-range forecasts by assimilating

AMSU-A data in nonprecipitating cloudy conditions

(Migliorini and Candy 2019). The Japan Meteorological

Agency (JMA) assimilates microwave imager radiances

in clear-sky conditions and retrieved precipitation from

the radiances in rainy conditions in their mesoscale NWP

system (Kazumori 2014). An all-sky radiance framework

for microwave imagers such as AMSR-2, GMI, and

SSMIS is also under development in the JMA 4D-Var

system (Kazumori 2016).

This article describes the effort undertaken by the

Global Modeling and Assimilation Office (GMAO) to

assimilate cloud- and precipitation-affected microwave

radiances in NASA’s Goddard Earth Observing System

(GEOS) data assimilation system (Rienecker et al. 2008;

Todling and El Akkraoui 2018). The key components of

the system in this regard are the GEOS atmospheric

model (Molod et al. 2012, 2015) and the Gridpoint

Statistical Interpolation (GSI) atmospheric analysis

scheme (Derber and Wu 1998; Kleist et al. 2009). Initial

efforts have focused on all-sky assimilation of GMI ra-

diances, which became operational in the GEOS real-

time production system in July 2018. This paper focuses

on the framework developed for assimilating all-sky

GMI radiance data in GEOS and evaluates the per-

formance of various components of the system in a

simplified experimental setting. Results from a more

comprehensive assessment of the impact of GMI all-sky

radiances on GEOS analyses and forecasts, including

examination of statistics of background departures and

analysis increments, forecast skill scores, and forecast

sensitivity observation impact calculations, are presented

in a follow-on paper (M.-J. Kim et al. 2020, unpublished

manuscript).

The paper is organized as follows. Section 2 provides a

brief overview of the GEOS data assimilation system,

while section 3 introduces the GPM satellite and GMI

data. In section 4, extensions to GEOS to assimilate all-

sky microwave radiance data are described. These ex-

tensions include the selection of water control variables

and definition of background error covariances for

these control variables, the observation operator, the

characterization of observation error, the development

of quality control procedures and bias corrections.

Section 5 examines the performance of the all-sky mi-

crowave radiance assimilation in GEOS using single-

observation experiments, while section 6 shows how

the initial wind, temperature, and pressure fields un-

dergo significant dynamic adjustments in response to the
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analyzed cloud and precipitation features. Finally,

section 7 presents a discussion and conclusions.

2. Assimilation system

TheGEOS atmospheric general circulationmodel is a

weather- and climate-capable model used for weather

analysis and forecasting, reanalysis, and climate simu-

lations at various horizontal resolutions. The model has

72 vertical layers and a top at 0.01 hPa. It employs a

finite-volume cubed-sphere dynamical core (Putman

and Lin 2007) for hydrodynamics and includes pa-

rameterization schemes for moist processes, radia-

tion, turbulent mixing and surface processes (Molod

et al. 2015).

The GEOS data assimilation algorithm employed in

this study is based on the hybrid four-dimensional

ensemble–variational (4D-EnVar) configuration of GSI

currently operational atGMAO(Todling andElAkkraoui

2018). The hybrid 4D-EnVar assimilation method in-

troduces flow dependency to the background error co-

variance by using a hybrid combination of a fixed

climatological model of background error covariances

with localized covariances from an ensemble of current

forecasts (Lorenc et al. 2015). The 4D data assimilation

methods seek to find a 4D incremental correction dx to a

4D background state xb using observations yo covering

the time interval associated with the 4D problem by

minimizing a cost function written as

JðdxÞ5
1

2
dxTB21

dx1
1

2

�

y2 yo
�T

R
21
�

y2 yo
�

, (1)

where an underline was used here to extend the standard

notation of Ide et al. (1997) to four dimensions following

Lorenc et al. (2015). In Eq. (1), the first term represents

the guess fit to the backgrounds taking into account prior

and background information, and the second term rep-

resents the observational penalty measuring the guess

fit to the observations. The B and R are 4D weighting

error covariance matrices associated with backgrounds

and observations, respectively. The background error

covariance matrix B in a hybrid 4D-EnVar method

can be expressed as a weighted combination of the cli-

matological covariance matrix Bc, which is based on the

National Meteorological Center (NMC)method (Parrish

and Derber 1992), and a localized ensemble-based co-

variance matrix Be:

B5b2
cBc

1b2
eBe

, (2)

where bc and be are weighting coefficients for static

background error covariances and flow dependent en-

semble background error covariances, respectively.

Currently, the hybrid configuration consists of two

data assimilation systems cycling in parallel: a varia-

tional part (called central) uses the hybrid 4DEnVar

formulation to define background error covariances and

produce the main analysis called ‘‘central analysis,’’

and an ensemble part consisting of 32 ensemble mem-

bers used for the square root ensemble Kalman filter

(EnSRF) analysis (Whitaker and Hamill 2002). The

weighting coefficients bc and be are vertically varying

such that they are both set to 0.5 in the troposphere

and lower stratosphere, and smoothly transition to

1 and 0, respectively, above 5 hPa. The assimilation

window is 6 h. Hourly analysis increments are ap-

plied to the model forecasts through a nudged incre-

mental analysis update (IAU) procedure (Takacs

et al. 2018). Additional details are provided in the con-

text of the all-sky development described in section 4,

while a comprehensive description of GMAO’s hy-

brid 4D-EnVar scheme can be found in Todling and

El Akkraoui (2018).

3. GPM Microwave Imager (GMI) radiance data

Launched in 2014, theGlobalPrecipitationMeasurement

Mission (GPM) uses a dual-frequency radar and mi-

crowave imager in a non-sun-synchronous orbit. Its

658 orbit inclination allows to measure precipitation

at different times of day from the tropics to the Arctic

and Antarctic circles (Skofronick Jackson et al. 2017).

Compared to its predecessor TropicalRainfallMeasuring

Mission (TRMM), GPM offers broader spatial coverage

and enhanced capability to measure light rain and falling

snow, among other enhancements (Hou et al. 2014).

This study focuses on the use of observations from the

GPM Microwave Imager (GMI), a conically scanning

microwave radiometer with 13 channels and a swath

width of 885 km and fields of view ranging from 5 to

25 km, depending on frequency. The radiance data used

are the GMI level 1 1C-R, version 4 data product that

coregisters the pixels of the GMI low-frequency and

high-frequency channels using a nearest-neighbor ap-

proach.More details aboutGPMand its instruments can

be found in Hou et al. (2014) and Skofronick-Jackson

et al. (2017).

Owing to the difficulties of modeling surface emis-

sivities over land and ice, the initial implementation

described here is limited to the use of GMI data over

ocean surfaces. The relatively low microwave sur-

face emissivity of the ocean allows low-frequency

(,89GHz) microwave radiance data to have large

sensitivity to clouds and precipitation compared to data

over land (Bauer et al. 2010). The GEOS all-sky system

uses brightness temperature (TB) observations fromGMI
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channels 3 (18.7GHzV), 5 (23.8GHzV), 6 (36.5GHzV),

10 (166GHzV), 12 (183.316 3GHzV), and 13 (183.316

7GHzV), where V andH indicate vertical and horizontal

polarization, respectively. It is noted that the raw obser-

vations were used without any superobbing procedures.

Channels 1 (10.65GHzV) and 2 (10.65GHz H) are ex-

cluded in this study and all-sky data from these channels

will be tested as part of ongoing efforts to improve sea

surface temperature analysis in GEOS in future. In

addition, Channels 4 (18.7GHz H), 7 (36.5GHz H), 8

(89GHzV), 9 (89GHz H), and 11 (166GHz H) are ex-

cluded owing to relatively large first-guess departures

and identified non-Gaussianity that may be related to a

known error in the Community Radiative Transfer

Model (CRTM) version 2.2.3 (Han et al. 2006). The

known error is caused by missing the off-diagonal

terms of the reflective matrix and results in no contri-

bution from diffuse reflection in its multiple-scattering

radiative transfer algorithm (Liu et al. 2019). A more

recent version of CRTM corrects this error by includ-

ing reflection correction (Liu et al. 2019) but was un-

available for use in this study.

4. Framework for all-sky microwave radiance

assimilation

Various components of the GEOS data assimila-

tion system have been modified to assimilate cloud-

and precipitation-affected microwave radiance data.

The modifications are summarized in Table 1, which

compares the clear-sky and all-sky configurations of

these components, while detailed descriptions are

provided below.

a. Extended model state and analysis control

variables

To utilize data in cloudy and precipitating regions,

additional variables such as ice cloud (qi), liquid cloud

(ql), rain (qr), and snow (qs) mixing ratios were included

in background vector. This was required for the obser-

vation operator to simulate radiances in cloudy and

precipitating conditions via the CRTM. In the atmo-

spheric model, liquid and ice clouds are prognostic

variables, while rain and snow are diagnostic variables.

Furthermore, the analysis control vector has been ex-

tended in both the central and ensemble components of

the hybrid analysis system to update these variables as

part of the assimilation solution. There is no variable

transformation between the model state and analysis

control variables for hydrometeors. It is noted that

analysis increments of hydrometeors are not fed back to

the initial conditions for subsequent forecasts. However,

hydrometeor increments induce adjustments to other

variables such as moisture, wind and pressure in the

hybrid 4D-EnVar system and increments of these other

variables are fed back to forecast model as discussed

in section 6.

b. Background error covariance

The analysis control vector in the current GEOS

analysis scheme includes streamfunction, unbalanced

velocity potential, unbalanced virtual temperature,

TABLE 1. Comparison of clear-sky and all-sky microwave TB assimilation framework in GEOS-5 ADAS (T: atmospheric temperature,

q: specific humidity, Tskin: skin temperature, Ps: surface pressure, oz: ozone mixing ratio, u: zonal wind, y: meridional wind, ql: liquid

cloud mixing ratio, qi: ice cloud mixing ratio, qr: rainwater mixing ratio, and qs: snow water mixing ratio, C: stramfunction, Xunblanced:

unbalanced velocity potential, Tunblanced: unbalanced temperature, Psunbalanced: unbalanced surface pressure, RH: relative humidity).

Clear sky All sky

State variables T, q, Ps, oz, Tskin, u, and y T, q, Ps, oz, Tskin, u, y, ql, qi, qr, and qs

Analysis variables C, Xunblanced, Tunblanced, Psunbalanced, RH,

oz, and Tskin

C, Xunblanced, Tunblanced, Psunbalanced, RH,

oz, Tskin, ql, qi, qr, and qs (see section 4a)

Background error C, Xunblanced, Tunblanced, Psunbalanced, RH,

oz, and Tskin

C, Xunblanced, Tunblanced, Psunbalanced, RH,

oz, Tskin, ql, qi, qr, and qs (see section 4b)

Observation operator CRTM (version 2.2.3) CRTM (version 2.2.3) with a reconstructed

cloud coefficient file of this study

(section 4c)

Observation error Constant (and inflated during quality

control process)

Symmetric error model (Geer and Bauer

2011) (see section 4d)

Quality control Screen out cloud affected radiance Keep cloud and precipitation affected

radiance. Screen out data over ocean if

SST , 278K. Screen out data if absolute

value of first-guess departure is greater

than 2. (see section 4d)

Bias correction predictors in VarBC Constant, lapse rate, square of lapse rate,

cosine of the zenith angle, and cloud

liquid water path

Constant, lapse rate, lapse rate2, cos (zenith

angle), CIavg, CIavg2 (see section 4e)
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unbalanced surface pressure, relative humidity, ozone

mixing ratio, and skin temperature (Wu et al. 2002;

Rienecker et al. 2008; Akella et al. 2017). As described

earlier, the hybrid data assimilation system combines

flow-dependent ensemble-based estimates of background

error covariances and climatological time-independent

background error covariances. For the assimilation of all-

sky microwave radiances, the control vector has been

extended to include cloud liquid, cloud ice, rain, and snow

water mixing ratio.

With the newly added control variables, the corre-

sponding static and flow-dependent background error

covariances are generated. Climatological statistics

were estimated following the NMCmethod (Parrish and

Derber 1992) using pairs of 24-h and 48-h GEOS fore-

casts between 1 June 2016 and 16 January 2017. During

this period, the extra variables were added as outputs of

the forecast model without being assimilated. Ensemble

covariances are based on the spread of the 32 ensemble

forecasts from the GEOS hybrid scheme during each

analysis cycle.

The panels on the left side of Fig. 1 show the verti-

cal distribution of the climatological background error

standard deviations for cloud liquid, cloud ice, rain, and

snow water. It is noted that there are no background

error correlations between the hydrometeor variables or

other variables. Aside from the fact that the estimated

error statistics are by construction meridionally invari-

ant, they have generally smooth spatial structure due to

the averaging and smoothing applied. Relatively large

error standard deviations for cloud liquid are seen

in the storm tracks in midlatitudes. Climatological

background errors in the Southern Hemisphere are

slightly larger than in the Northern Hemisphere. This

is likely reflecting the fact that the statistics were drawn

from Southern Hemispheric fall–winter season fore-

casts. Generally speaking, the maximum errors for

cloud liquid water occur in the layer between 900 and

850 hPa. Climatological background error standard

deviations for cloud ice show large values near the

tropical tropopause, where large amounts of cloud ice

exist in the anvils of convective clouds. Climatological

background errors for rain and snow are larger in the

tropics than other latitudes. Large background errors

for rain occur in the tropical lower troposphere be-

tween sea level and 600 hPa, while large errors for

snow occur in the tropical middle troposphere between

600 and 450 hPa.

The panels on the right side of Fig. 1 show example

cross sections of ensemble background error standard

deviations for hydrometeors taken from GEOS at

1200 UTC 12 December 2015, while Fig. 2 shows the

ensemble spread of cloud liquid water at 850 hPa for the

same analysis cycle. Significant differences can be seen

between the climatological- and ensemble-based esti-

mates, with the latter unsurprisingly exhibiting more

flow-dependent structures. In some regions for instance,

nearly zero ensemble spread is shown, corresponding to

areas where the ensemble members forecasted nearly

zero clouds for that particular date. In contrast, the static

background errors (left column) show nonzero values

over broad ranges of latitudes regardless of the meteo-

rological conditions of the day, which may increase the

probability of generating erroneous cloud increments

over broad areas. Generally speaking, climatological

error statistics may not be well suited to capture the

often-localized distributions and rapid intensity changes

exhibited by clouds and precipitation features. As

mentioned earlier, the cross correlations between

moisture and other analysis variables are not considered

in the current static background error covariance model.

Ensemble-based statistics, on the other hand, can pro-

vide realistic looking flow-dependent structures with

implicit, model-generated cross correlations between

variables, but are subject to deficiencies associated with

small ensembles and possibly low-resolution ensembles,

too. The impacts of these different background error

properties are discussed further in sections 5 and 6.

c. Observation operator

For satellite radiance observations, the observation

operator consists of spatiotemporal interpolation of the

background fields to observation space and the CRTM

version 2.2.3. The observation operator that simulates

radiance data in the GSI has been extended to include

cloud and precipitation fields. Therefore, hydrometeors

including profiles of ql, qi, qr, and qs from the GEOS

model have been incorporated into first-guess fields

and used in the radiative transfer calculations by the

CRTM. When the single-scattering albedo is nonzero,

the CRTM computes radiances using the adding dou-

bling solver (Liu and Weng 2006) in which the number

of streams is determined with respect to the unitless size

parameter x5 2pReff/l, where Reff is an effective radius

of clouds and l is a wavelength. Two streams are used if

x is less than 0.01; four streams are used when x is greater

than 0.01 and less than 1; and six streams are used if x

is greater than 1 to resolve the angular dependence of

radiation propagation caused by multiple scattering. In

CRTM version 2.2.3, scattering and extinction coeffi-

cients, asymmetry factor, and phase functions for mi-

crowave wavelengths are read from a lookup table that

was built using the Mie calculation for various cloud

types (i.e., cloud ice, cloud liquid, rain, snow, graupel,

and hail) and for various effective radii assuming a

Gamma size distribution.
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FIG. 1. Comparisons of (left) climatological background error standard deviations and (right)

ensemble background error standard deviations as a function of latitude and vertical level.

Ensemble background errors shown here are the cross-sectional views along the dotted line in

Fig. 2. (a),(b) ql, (c),(d) qi, (e),(f) qr, and (g),(h) qs.
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Due to the known limitations of Mie scattering

parameters for frozen hydrometeors, especially at

high-frequency (.85GHz) microwave channels (Kim

2006; Liu 2008; Geer and Baordo 2014), standard

CRTM configuration was modified: scattering pa-

rameters for nonspherical frozen precipitation are

calculated using the Liu optical properties database,

which was computed using discrete dipole approxi-

mation (DDA) method (Draine and Flatau 1994) and

used to construct a lookup table for the CRTM in this

study. In the scattering database described in Liu

(2008), optical properties of randomly oriented snow

particles are tabulated as a function of frequency,

temperature, and particle size for a variety of ice

crystal shapes such as hexagonal ice columns, plates,

rosettes, dendrites, etc.

Analogous to Geer and Baordo (2014), optical prop-

erties of 11 different nonspherical ice crystal shapes in

Liu’s database, in addition to scattering properties of

spherical ice crystals calculated with the Mie method,

were examined to find an optimal choice of ice crystal

shape to reconstruct CRTM cloud scattering coefficients

needed as part of the GSI observation operator. For

each shape of ice crystal, a CRTM cloud coefficient

lookup table was generated for 33microwave frequencies

between 10.65 and 190.31GHz, seven atmospheric

temperatures between 243 and 303K, and 405 effective

radius sizes starting from 0.005mm. The maximum ef-

fective radius considered for rain in the updated CRTM

coefficients used in this study is 1.191mm. For snow

crystals, the maximum effective radius considered in the

new CRTM cloud coefficient databases ranges from

0.664 to 1.278mm, depending on snow crystal shape.

Field et al. (2007) particle size distribution is assumed

for frozen hydrometeors and Marshall-Palmer size dis-

tribution (Marshall and Palmer 1948) is assumed for

liquid hydrometeors. The minimum effective radius

in Liu’s database ranges 0.025 to 0.033mm depending

on snow crystal shape. Mie scattering coefficients for

spherical ice particles with 0.005, 0.015, and 0.030mm

effective radius were included at the beginning of optical

properties for Liu(2008) nonspherical snow shape in the

CRTM lookup table so that the scattering lookup table

can be used both for cloud ice and snow hydrometeor. In

implementing all-sky GMI data, we assumed effective

radius for cloud ice as 0.005mm. It is noted that optical

properties are not sensitive to ice crystal shapes for

cloud ice because of its very small particle size compared

to the wavelengths of GMI channels considered in this

study (Kim 2006).

FIG. 2. Ensemble spread of cloud liquid water (g kg21) at 850 hPa calculated with 32 ensemble member back-

grounds fromGEOS at 1200 UTC 12 Dec 2015. Vertical cross sections of ensemble spread for hydrometeors along

the dotted line are shown in Fig. 1.
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The CRTM requires effective radius profiles as inputs

in addition to the cloud water content (kgm22) profiles.

Using the input effective radius and the input sensor’s

frequency, CRTM calculates optical properties by in-

terpolating scattering coefficient values stored in the

CRTM lookup table. Therefore, the input effective ra-

dius is expected to be consistent with effective radius

and water content used to calculate the optical proper-

ties for the CRTM lookup table. In integrating radiative

transfer processes, CRTM uses these optical properties

and input water contents to compute the optical depth

(t) contributed from each cloud type in an atmo-

spheric layer:

t5 r3 k
e
, (3)

where r is integrated cloud water content for a layer

(kgm22) provided as input and ke is mass extinction

coefficient (m2 kg21) calculated using the CRTM

lookup table.

To ensure the consistency between input cloud water

content and input effective radius for a given size dis-

tribution (e.g., Field et al. (2007) for frozen hydrome-

teors and Marshall Palmer for rain in this study), fitting

functions were derived and prescribed in a GSI code

for each shape of Liu (2008)’s snow particles and rain

(see appendix). Using these fitting functions, the input

effective radius values are calculated depending on in-

put cloud water contents efficiently in the GSI. This al-

lows the CRTM to utilize Liu’s DDA optical properties

precalculated with Field et al. particle size distributions

that are consistently applied to input water content and

input effective radius relations.

Figure 3 compares spatial distribution of monthly

mean jO2 Fj ofGMI channel 10 where background files

were taken from GEOS-FP for a month of December

2017. Nonspherical ice crystal shapes from Liu (2008)

and spherical shape were used to generate different sets

of first-guess departure data. The number on top of

each panel represents the spatial average of all the

monthly mean absolute first-guess departure shown in

each panel. In general, three-bullet rosettes produces

the smallest mean of absolute first-guess departures and

bias (not shown) among all shapes considered in this

study. Therefore, this study employs DDA method-

calculated scattering parameters of three-bullet rosettes

among various ice crystal shapes in the Liu (2008)

database because they generated simulated TBs close

to observed TBs especially for high-frequency GMI

channels.

Figure 4 compares GMI observations with CRTM-

simulated GMI radiances using Mie scattering parame-

ters and DDA method-based scattering parameters of

three-bullet rosettes near Hurricane Celia at 0000 UTC

12 July 2016. The horizontal resolution of the GEOS

background fields used in the simulations is 25 km.

Figure 4a shows GMI channel 10 observed TBs. The

dynamic range of TBs near the storm is large, ranging

from 280K in clear-sky conditions to less than 200K

near the storm center where large precipitating particles

exist. This suggests that it is critical to have reasonably

accurate scattering parameters in the observation op-

erator to be able to utilize high-frequency microwave

TB observations in the analysis process. Figure 4b shows

simulated GMI channel TBs based on the original

CRTM cloud scattering coefficients from Mie-derived

cloud optical properties. They are too warm compared

to the GMI observations at high frequencies. Figure 4c

shows that simulated GMI TBs are much closer to the

observations in precipitating regions when the original

cloud coefficients are replaced with the new cloud co-

efficients reconstructed using the Liu optical properties

database, which was computed using DDA methods.

For other frequencies such as GMI channels 12 and

13 (not shown), the comparison results were similar

to channel 10. For lower-frequency GMI channels, TB

differences caused by the choice of ice crystal shape

were small (figure not shown) because low-frequency

channels have large sensitivity to radiance emission

caused by rain drops rather than ice particles. It is noted

that the current version of CRTM does not consider

cloud fraction. This limitation is partially accounted

for by inflating the observation errors in precipitating

regions and by considering cloud-dependent bias cor-

rections. This will be discussed further in sections 4d

and 4e, respectively.

d. Observation error covariance and quality control

procedures

To consider non-Gaussian characteristics, relatively

large representativeness errors, and complexities of ob-

servation operators for cloud- and precipitation-affected

radiance data, the observation errors estimated in this

study for all-sky GMI radiances (sall-sky) are based on a

symmetric observation error model, suggested in Geer

and Bauer (2011) and estimated with standard devia-

tions of first-guess departures (observed minus calcu-

lated TBs) as a function of symmetric cloud amount.

For this purpose, cloud amount is estimated with a

cloud index (CI) based on the TB differences between

horizontal and vertical polarizations at 37GHz (Geer

et al. 2010). CI can be calculated for the observed TB,

defined as

CI
o
5 12

TBObs
37V 2TBObs

37H

TBClear
37V 2TBClear

37H

, (4)
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FIG. 3. Spatial distribution of monthly mean jO 2 Fj of GMI channel 10 where background fields were taken from GEOS-FP for

the month of December 2017. Nonspherical ice crystal shapes from Liu (2008) and spherical shape were used to generate different sets of

first-guess departures.
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and for the all-sky TB derived from the background,

defined as

CI
B
5 12

TBCalc
37V 2TBCalc

37H

TBClear
37V 2TBClear

37H

, (5)

where observed or simulated TB37V and TB37H are

vertically polarized and horizontally polarized 37GHz

TBs, respectively. Both TBClear
37V and TBClear

37H are simu-

lated TBs from the same first-guess profiles but without

clouds or precipitation. The symmetric cloud amount is

defined as the average of the observed and simulated

cloud amounts:

CI
avg

5
CI

o
1CI

B

2
. (6)

Although we consider only observation error variance

and ignore observation error correlations in this study, it

should be noted that Bormann et al. (2011) examined

the error correlations (i.e., off-diagonal terms in the

observation error covariance matrix) in all-sky radiance

data assimilation and found considerable interchannel

and spatial correlations especially in cloudy and rainy

situations.

Figure 5 shows the standard deviation of GMI first-

guess departures binned as a function of CIavg for se-

lected channels. The background fields were taken every

6 h from a cycled data assimilation experiment between

1 December and 31 December 2015 and GMI first-guess

departures were calculated offline. For the cycle ex-

periment, where the background fields were taken from,

GEOS was initialized at 2100 UTC 15 November 2015

and run in a hybrid 4D-EnVar configuration with a

horizontal resolution of 0.5° for the analysis and 0.258

for the forecast. All the data used routinely in GEOS

such as conventional data, clear-sky satellite radiance

data from microwave and infrared sounders, GPS radio

occultation data, and satellite wind data were assimi-

lated. Standard deviations of all GMI observations

before quality control (open circle), which will be de-

scribed in the later part of this section, show much

larger standard deviations than those of only assimilated

GMI observations (closed circle) for high-frequency

channels. The observation error model used in this

study was fitted to the standard deviation of FG depar-

tures before quality control procedures and is indicated

FIG. 4. Comparisons of simulated GMI 166 GHz vertically

polarized TBs with the observations near Hurricane Celia at

0000UTC 12 Jul 2016: (a) observedTBs, (b) CRTM-simulated TBs

with original scattering coefficients based on Mie method, and

 
(c) CRTM-simulated TBs with the DDA method calculated scat-

tering properties of three-bullet rosette snow crystals. The color bar

shown in (c) works for (a) and (b) as well.
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FIG. 5. Standard deviation (STD) of first-guess departures of all GMI observations (open circles) and

assimilated GMI observations only (closed circles) binned as a function of averaged cloud index for ob-

servations between 1 and 31 Dec 2015. Bin size is 0.05. The observation error model applied in this study is

shown as a solid line.
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by the solid line in Fig. 5. Current implementation of

all-sky GMI data assimilation in the operational GEOS

using these observation error functions made significant

positive impacts as briefly described in section 7 and we

are planning to tune even further and to consider cor-

related observation errors.

To utilize all-sky GMI radiance data, quality control

procedures were modified to keep as many cloud and

precipitation affected observations as possible. All-sky

data over oceanwith SST lower than 278Kwere screened

out to avoid sea ice affected radiance data. In addition,

gross check in quality control procedures screen out all-

sky GMI data with absolute value of first-guess departure

is greater than 2 times of observation error. About 24%

of data were screened out due to the quality control

procedures.

Variances of theGMI first-guess departures provide an

estimate of the total error that is the sum of the obser-

vation and forecast error variance in observation space.

The standard deviation of the first-guess departures is

considered as the upper bound of the observation error

for unbiased observations under the assumption that

observation errors are uncorrelated. To account for re-

sidual biases and correlated observation errors, the

modeled observation errors for initial implementation

in GEOS are inflated as denoted by the solid lines in

Fig. 5. Figure 6 shows the probability distribution func-

tion of first-guess departures normalized by themodeled

observation error values for channels 3 and 12. For

comparison, the dashed line shows a Gaussian function.

Normalizing with respect to the symmetric observation

error model results in a more Gaussian distribution of

first-guess departure values as compared with the con-

stant observation error values used for clear-sky satellite

radiances. This is consistent with the results shown in

Geer and Bauer (2011).

e. Bias correction

As with clear-sky radiances in GEOS, bias correction

for all-sky microwave radiances is performed using a

variational bias correction scheme (VarBC; Derber and

Wu 1998) that estimates bias correction coefficients as

FIG. 6. Histograms of (left) absolute first-guess departures and (right) normalized first-guess departures for all

GMI channels 3 and 12 observations between 1 and 31 Dec 2015. The dashed lines in the right column show the

Gaussian distribution with corresponding standard deviations for comparison.
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part of the variational assimilation. For clear-sky mi-

crowave radiances, the bias predictors include a con-

stant, the scan angle, a second-order polynomial of the

atmospheric temperature lapse rate weighted by the

radiance weighting function, and the retrieved cloud

water path. For the all-sky implementation, three

changes were made to VarBC. First, the retrieved cloud

liquid water path is excluded as a predictor. Second, only

near-clear-sky observations with near-clear-sky back-

ground profiles are used in updating the bias correction

coefficients. Data used for bias correction coefficient

updates are restricted to regions where (i) the observed

cloud index, CIo, is less than 0.05; (ii) the simulated cloud

index, CIg, is less than 0.05; and (iii) the absolute dif-

ference between CIo and CIg is less than 0.005. The

enhanced radiance bias correction scheme (Zhu et al.

2014), which adjusts the background error covariances

for the bias correction coefficients automatically using

an approximation of the analysis-error variances from

the previous cycle, is being tested in the GEOS ADAS.

The scheme was not applied yet in this study and it is

expected to be included in the GEOS all-sky system in

near future.

Figure 7 compares histograms of first-guess depar-

tures of all assimilated GMI TB data for two channels

before (dashed line) and after (solid line) bias correc-

tions for a low-frequency channel sensitive to emission

from precipitation (channel 3), and a high-frequency

channel sensitive to scattering caused by precipitation

(channel 13). Roughly 35% of the assimilated observa-

tions for each channel are used to update the bias cor-

rection coefficients. Before bias correction is applied,

the mode of the channel 3 first-guess departures is 4.0K

and the mode of channel 13 first-guess departures

is22.2K. TheVarBC system performs well, as indicated

by reduction of the channel 3 mode to 20.4K and

channel 13 mode to 0.2K after the correction is applied.

Of the original bias correction coefficients, the scan

angle bias predictor provides the largest contribution to

the total bias correction (not shown). However, re-

maining biases associated with thick cloud and heavy

precipitation were identified. In Fig. 8, the thin curves

show the first-guess departure biases calculated with all

assimilated data, binned as a function the CIavg, for

the same two channels as in Fig. 7. First-guess departure

bias increases with cloud index, reaching values close

to 110K for channel 3 (19GHz), which has large sen-

sitivity to emission from rain, and values close to210K

for channel 13, which has large sensitivity to scattering

caused by precipitation. Similar behavior occurs for

other low- and high-frequency channels (not shown).

Geer andBauer (2011) showed that removing sampling

bias from the observations in an all-sky assimilation

framework reduces the impact of the observations by

removing real information, and therefore recommended

using the symmetric cloud amount, CIavg, as a predictor

for bias correction. Similarly, Chambon et al. (2014)

used an averaged scattering index as the predictor for an

empirical bias correction model in assimilating all-sky

SSMIS 150GHz TB observations in the Goddard WRF

Ensemble Data Assimilation System. Therefore, we

made a third change to the VarBC by using CIavg and

CIavg
2 as two additional bias correction predictors in the

existingVarBC algorithm to correct the aforementioned

cloud amount-dependent first-guess bias. The coeffi-

cients for these new predictors interact with coefficients

for the bias predictors used to assimilate clear-sky ra-

diance data in a way to minimize the cost function.

The bias correction coefficients for these predictors are

updated each cycle using only data where both the ob-

served and simulated cloud indices are greater than

0.05 and their absolute difference is less than 0.005.

After adding this CI-dependent bias correction, the first-

guess departure biases are reduced to less than 2K in all

FIG. 7. Histograms of all-sky first-guess departures in GMI

(a) channel 3 and (b) channel 13 before (dashed line) and after

(solid line) bias correction is applied.
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CI ranges for both low- and high-frequency GMI chan-

nels, as indicated by the thick curves in Fig. 8. The os-

cillations in bias seen in high CIavg (Fig. 8) are caused by

small samples with large observed or model clouds col-

lected each cycle. It is noted that there are some points

missing above CI_avg. 0.7 in the before-cloud predictor

results, but not in the ‘‘after’’ results because more ob-

servations were thrown out through quality control pro-

cedures when using original bias correction scheme.

5. Performance of all-sky system:

Single-observation experiments

To demonstrate the performance of the all-sky radiance

framework developed in this study, single observation

experiments are conducted (i.e., using the full analysis

scheme but assimilating only GMI observations at a sin-

gle location and time). Here, cloud- and precipitation-

affectedGMI TBs from channels 3, 5, 6, 10, 12, and 13 are

assimilated at a selected single-observation location. All

six GMI channels at each selected observation location

are assimilated simultaneously. A particular focus is on

examining the sensitivity of analysis increments of hy-

drometeors to the representation of the background error

covariance matrix in its climatological, flow-dependent,

or hybrid form. These experiments use the modified ob-

servation error, VarBC, and CRTM formulations as dis-

cussed earlier.

Two observation points were selected at 1200 UTC

12 December 2015 near Typhoon Melor. Melor was a

powerful tropical cyclone that made landfall on the

Philippines at 0543 UTC 14 December 2015. The storm

developed as a low pressure area 120 km east of Chuuk

on 7 December 2015. It intensified into a tropical de-

pression on 10 December, and then into a named trop-

ical storm south of Yap. At 0000 UTC 13 December

2015,Melor became a typhoon andmade its first landfall

on northern Samar. Figure 9 shows observed TB and

the first-guess departures fields of GMI channel 6 near

the storm and two single observation locations (marked

in white star symbols) selected for two cases:

d Case A: The observations are located near the outer

edge of the storm (11.18N, 130.98E). The first-guess

profiles from GEOS have large amounts of precipi-

tation and cloud, which results in an emission signal

in the CRTM-calculated first-guess TBs in the low-

frequency channels. These are warmer than the GMI-

observed TBs, indicating that the observations lack

the emission from cloud and rain. First-guess TBs in

high-frequency channels are much lower than GMI

observations due to scattering effects related to frozen

precipitation. Table 2 shows the departure between

the GMI observations and the first-guess TBs.
d Case B: The observations are located near the center

of the storm (12.418N, 134.08E). GMI observes thick

cloud and precipitation while the model has too little

precipitation compared with the observations, as ev-

ident by the positive first-guess departures at low

frequencies in Table 4. Also, GMI shows the presence

of large amounts of frozen precipitation as indicated

by the large negative first-guess departures at high

frequencies (Table 4).

Figure 10 shows first-guess hydrometeor profiles (left

column) for both cases and CRTM-calculated TB hy-

drometeor Jacobians (right column) for case A. There

is a large amount of liquid cloud and rainwater in the

first guess in case A (solid lines) compared to case B

FIG. 8. Bias of first-guess departure as a function of CIavg for

GMI channels (a) 3 and (b) 13. Thin solid (thick solid) lines show

the biases before (after) using CIavg as additional predictors in Var

BC. All assimilated data points between 1 and 31 Dec 2015 were

used. Bin size is 0.05. Results only in the bins that have the number

of data points greater than 5 are shown in this figure. The biases

were computed from the same experiments using same background

fields and observation error models except using symmetric cloud

as an additional bias correction predictor.
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(dashed lines). For liquid cloud (Fig. 9e), channels 3–6

show positive TB sensitivity and channels 10–13 show

large negative TB sensitivity, especially in the mid-

to upper troposphere. For ice cloud (Fig. 9f), high-

frequency channels 10–13 show negative sensitivity.

For emission channels, TB sensitivity to ice cloud is

negligibly small. For rain (Fig. 9g), TBs for channels 3–5

show positive sensitivity in most layers with rain hy-

drometeors present in the first guess. Among the high-

frequency channels used in this study, channel 10 shows

the largest negative sensitivity to rain, with maximum

values at 600 hPa. Channels 12 and 13 show much

smaller sensitivity to rainwater than channel 10 in both

case A and case B. For snow (Fig. 9h), channels 10–12

show large negative TB sensitivity that increases with

altitude, while channels 3–6 show negligibly small sen-

sitivity to snow in both case A and case B.

For each of these cases, the analysis sensitivity to

the different choices of background error covariance is

examined hereafter by applying different weights to the

climatological and ensemble background error covari-

ances. This is done by applying different sets of values

for bc and be in Eq. (2): (i) pure climatological back-

ground error covariance (bc 5 1 and be 5 0), (ii) pure

ensemble background error covariance (bc 5 0, be 5 1),

and (iii) hybrid background error covariance (bc 5 0.5,

be 5 0.5).

Tables 2–5 list observed TBs, departures, observed,

and modeled CI, the value of total column water vapor

(TCWV) and total column hydrometeor amount at

the observation point and time in both the first-guess

and analysis when using the three different background

error configurations.

At observation location A, where first-guess depar-

tures for emission channels show large negative values,

the observed CI is much smaller than first-guess CI, in-

dicating the model has much larger amounts of hydro-

meteors compared to the observations. Assimilating

GMI TBs at observation location A reduces the first-

guess departures, which in turn leads to reduced rain,

snow, and ice cloud in the background fields. As sum-

marized in Table 2, the reductions in the first-guess de-

partures for all assimilated GMI channels are largest

when pure Be is used and smallest when pure Bc is used.

In some cases, the use of Bc only even deteriorates

the analysis results. While this is not desirable, it is

not surprising considering the properties of the clima-

tological statistics. and will be discussed next. The use of

hybrid covariances on the other hand offers a compro-

mise between the two scenarios.

Figures 11 and 12 compare the vertical distribution

of analysis increments of temperature, humidity, and

hydrometeors from the different background error

configurations at observation locations A and B re-

spectively. The similarities in the vertical structure of

the analysis increments can be explained by examining

the vertical structure of error covariances themselves

and shown in Fig. 13 where the vertical distribution

of climatological background error standard deviations

(Bc) is compared to ensemble standard deviations of

TABLE 2. Brightness temperatures in single observation case A.

Departure (K)

First guess

Analysis

Pure Bc Pure Be Hybrid B

CH3 223.3 217.6 213.2 215.9

CH5 213.0 211.0 29.2 210.3

CH6 217.7 216.7 216.0 216.6

CH10 11.9 11.7 9.1 10.4

CH12 0.68 0.64 0.1 0.4

CH13 3.44 3.3 1.8 2.6

FIG. 9. (a) Channel 6 Tb observations (K) and (b) first-guess

departure fields (K) near Hurricane Melor (1200 UTC 12 Dec

2015). White star symbols in the figures show the locations of case

A and case B selected for single observation tests in this study.
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FIG. 10. (a)–(d) GEOS-5 first-guess hydrometeor profiles at locations A (solid line) and B (dashed

line), (e)–(h) CRTM calculated TB Jacobian of hydrometeors at location A for GMI channels 3, 5, 6,

10, 12, and 13.
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hydrometeors (Be) at observation location A. Although

the altitude with maximum Be for snow water is slightly

higher than the altitude with maximum Bc for snow

water, both Be and Bc show generally similar vertical

structures for all four hydrometeors. This is not partic-

ularly surprising as both methods represent relatively

well the vertical distribution of predominance of rain,

snow, liquid cloud, and ice cloud in the atmosphere. The

difference is, however, more apparent in terms of mag-

nitude, where Be standard deviations are shown to be

larger than those of Bc, especially for rainwater and

snow water in the tropical cyclone location selected for

the single observation case. Such differences will inevi-

tably be reflected in the analysis increments and on the

first-guess departures in each of the three scenarios. The

takeaway here is that the smoothing, and time/zonal-

averaging needed to produce the staticB statistics would

render them inadequate for representing error covari-

ances in highly evolving weather conditions; such is the

case for the localized and rapidly changing hydrome-

teors; This was one of our motivation in this paper to

examine the all-sky analysis sensitivity in a hybrid data

assimilation framework rather than a strict 3D-var for

instance where the covariances are inherently static.

It is worth mentioning here that the difference in the

impact is due not only to the difference in the error var-

iances (standard deviations), but also to the localization

function/correlation scales (not shown) associated with

Be/Bc, respectively, which control the spatial distribution

of the analysis increment, and finally to the implicit cross

correlations featured in ensemble covariances between

the hydrometeors and other variables.

At observation location B, the first-guess departures

for emission channels show large positive values and the

observed CI is much larger than the first-guess CI, in-

dicating that the model has too little precipitation

(Table 3). As shown in Fig. 12, assimilating GMI TBs at

observation location B increases cloud and hydrometeor

amounts, which corresponds to the reduction in the

analysis departures as well as in the difference between

the observed and modeled CI. Again, the reductions

in the first-guess departures for all assimilated GMI

channels for Case B are largest when pure Be is used

and smallest when pure Bc is used, indicating the sub-

optimality of the latter. Accordingly, bc will be set to

zero for hydrometeors in the production version of

GEOS, while bc for all other analysis variables is set to

0.5. Note though that with such a choice, one needs to be

cautious about the possibility of sharply localized anal-

ysis increment corrections that may affect the condi-

tioning of the all-sky data assimilation problem.

6. Impacts on dynamic variables

As shown in Figs. 11 and 12, the temperature and

humidity analysis increments using pure Be have much

more distinct vertical structures and larger magnitude

than those using the pure Bc configuration. The former

implicitly incorporates correlations between different

analysis variables in GEOS and implicitly generates

analysis increments for other dynamic variables such

as humidity, wind, temperature, and surface pressure.

The magnitudes of these increments depend on the

correlations between the hydrometeors and dynamic

variables, and on the magnitude of the ensemble spread.

Geer et al. (2014) report that the impact of the all-sky

microwave TB data assimilation in the ECMWF 4D-Var

system comes through the ‘model tracing’ effect of

water vapor, cloud, and precipitation (i.e., inferring winds

from the motion of humidity, clouds, and precipitation).

TABLE 3. Moisture variables in single observation case A

(Here, CI: cloud index, TCWV: total column water vapor, CLW:

cloud liquid water, CIW: cloud ice water, RW: rainwater, SW:

snow water).

First guess

Analysis

Pure Bc Pure Be Hybrid B

CI observed: 0.91 0.87 0.79 0.70 0.76

TCWV (g kg21) 330.80 330.77 325.95 328.77

CLW (kgm22) 0.32 0.32 0.32 0.32

CIW (kgm22) 0.091 0.090 0.084 0.088

RW (kgm22) 0.091 0.60 0.48 0.56

SW (kgm22) 0.091 0.15 0.09 0.11

TABLE 4. TBs in single observation case B.

Departure (K)

First guess

Analysis

Pure Bc Pure Be Hybrid B

CH3 43.1 45.1 32.3 43.5

CH5 4.4 5.3 20.1 4.5

CH6 6.9 6.3 2.5 4.7

CH10 253.0 258.7 245.4 257.4

CH12 224.6 227.8 222.2 227.5

CH13 239.2 247.1 233.8 246.5

TABLE 5. Moisture variables in single observation case B.

First guess

Analysis

Pure Bc Pure Be Hybrid B

CI observed: 0.91 0.41 0.53 0.60 0.58

TCWV (g kg21) 342.1 342.2 344.6 343.0

CLW (kgm22) 0.25 0.25 0.25 0.25

CIW (kgm22) 0.23 0.24 0.25 0.24

RW (kgm22) 0.32 0.47 0.60 0.56

SW (kgm22) 0.43 0.43 0.55 0.50
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FIG. 11. Analysis increments at observation location A from experiments using three different

background error configurations: pure climatological B (green solid), pure ensemble B (black

dashed), and hybrid B (red solid). (a) temperature, (b) water vapor mixing ratio, (c) liquid cloud,

(d) ice cloud, (e) rainwater content, and (f) snow water content.
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FIG. 12. As in Fig. 11, but for analysis increments at observation location B.
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For example, they found that the benefit of all-sky hu-

midity sounder data was greatest in the southern mid-

latitudes, where the storm tracks provide ideal conditions

for model tracing. Since a hybrid 4D-EnVar system

utilizes flow dependent background error distributions

that evolve with time, it is worthwhile checking if similar

model tracing effects can be identified here. To examine

the impact of all-sky GMI TB data assimilation on wind

analyses in GEOS, a case study of Hurricane Gaston in

2016 is presented. Here, the full complement of all-sky

GMI data only are assimilated with hybrid 4DEnVar

GSI system during the 6-h assimilation window from

0300 to 0900 UTC 30 August 2016. Here bc is set to zero

for hydrometeors, same as in the production version

of GEOS, while bc for all other analysis variables is

set to 0.5. The background fields and bias correction

coefficients were taken from the cycled experiments

assimilated all the data used routinely in GEOS (con-

ventional data, satellite radiance data from microwave

and infrared sounders, GPS radio occultation data, and

satellite wind data) and all-sky GMI data.

Figure 14a shows the location of Hurricane Gaston in

GOES East satellite imagery while Fig. 14b shows the

all-sky GMI observations assimilated in this case study.

Figures 14c–e show the horizontal distribution of anal-

ysis increments of 850 hPa rainwater mixing ratio and

specific humidity near the storm system at different

analysis times in response to the assimilation of GMI all-

sky radiances. The assimilation moves precipitation

originally mislocated in the forecast toward the obser-

vations via generation and removal of precipitation near

the storm (Figs. 13c,d, shaded contours). At the same

time, moisture fields (lined contours) are adjusted in

the analyses by generating positive (negative) analysis

increments of 850 hPa specific humidity in the re-

gions of positive (negative) rain analysis increments.

Similarly, surface pressure is adjusted in the analysis

(Figs. 13e,f) in conjunction with cyclonic wind incre-

ments (Figs. 13e,f, vectors) where large precipitation

increments are generated near the center of the hurri-

cane. These changes in both the analyzed moisture and

dynamic variables through assimilation of GMI data

make impacts on GEOS forecasts, which will be dis-

cussed in the companion paper.

7. Summary and discussion

A framework for assimilating all-sky microwave ra-

diance data has been developed in the GEOS atmo-

spheric data assimilation system. The performance

of various components of the system was examined us-

ing reduced observing system experiments. The results

demonstrated the capability of the all-sky assimilation to

make appropriate changes to the model background

state both when the forecast produces excessive pre-

cipitation and too little precipitation. The sensitivity of

analysis increments of water variables to the represen-

tation of the background error covariance matrix in its

climatological, flow-dependent (i.e., ensemble-based),

and hybrid forms was also examined. Vertical distribu-

tions of analysis increments from the hybrid configura-

tion were similar to the analysis increments from the

pure ensemble-based configuration, but significant dif-

ferences in the magnitude of the first-guess departure

reduction and analysis increments between the cli-

matological and ensemble-based configurations were

identified: The reductions in the first-guess departures

for all assimilated GMI channels are largest when pure

Be is used and smallest when pure Bc is used. Results

suggested that the use of Bc only even deteriorates the

FIG. 13. (a) Static climatological background error standard

deviations (Bc) and (b) ensemble background error standard de-

viations of rain (thick solid line), snow (thick dashed line), liquid

cloud (thin solid line), and ice cloud (thin dashed line) at obser-

vation locations A.
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analysis results in some cases. Finally, it was seen that

the ensemble background error incorporates correla-

tions between different analysis variables implicitly in

the GEOS analysis system and generates analysis in-

crements for other dynamic variables such as humidity,

wind, temperature, and surface pressure.

Analysis increments of hydrometeors are not fed back

to the forecast model in the current implementation of

all-sky radiance assimilation in GEOS. It should be

noted that hydrometeor increments induce adjustments

to dynamic variables such as wind and pressure in the

hybrid 4D-EnVar system. These adjustments in both

FIG. 14. (a) GOES-East IR imagery at 1015 UTC 30 Aug 2016, (b) 12GMI observed 37GHz TBs polarization

differences at 0300–0900 UTC 30 Aug 2016, (c),(d) analysis increments of 850 hPa rain (g kg21) and specific

humidity (g kg21) at 0300 and 0800 UTC 30 Aug 2016. (e),(f) Analysis increments of surface pressure (Pa) and

850 hPa wind (m s21) generated by assimilating all-sky GMI radiance data at 0300 and 0800 UTC 30 Aug 2016.

In addition to hydrometeors, dynamic variables such as wind, temperature, and pressure are adjusted by assimi-

lation of GMI all-sky radiances in hybrid 4D-EnVar. For this specific case study, an adaptive thinning method

(more data being used in the presence of clouds and precipitation) was applied as seen in (b).
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the analyzed moisture and dynamic variables through

assimilation of all-sky GMI data contribute to GEOS

forecast improvements. In the current operational

GEOS-FP system, the addition of all-sky GMI radi-

ances has the largest impact in the tropics. Specific

humidity is significantly improved in the short-term

(0–72 h) forecasts. Similar improvements are seen in

the Tropical and lower-tropospheric temperature and

winds. More detailed results on all-sky GMI data im-

pact on GEOS forecasts and analyses will be discussed

in the companion paper.

The current all-sky framework will be enhanced by

various updates both in the forecast model and analysis

scheme in the near future. For example, the inclusion

of a two-moment microphysics scheme (Barahona et al.

2014) in GEOS will provide estimates of cloud particle

size distributions to the all-sky observation operator.

In addition, future versions of the CRTM will account

for cloud fraction in calculating radiances. This should

improve the simulation of brightness temperature com-

pared with the current version of CRTM,which considers

only clear-sky or completely overcast conditions. All

these enhancements are expected to extend the scope of

all-sky radiance assimilation to include more microwave

measurements and, in turn, lead to improved analyses

and forecasts.
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APPENDIX

Coefficients Used for Fitting Effective Radius

Values and Water Contents

Table A1 shows the fitting coefficients for the fol-

lowing fitting functions that we used in the GSI to define

an input effective radius (Reff) for a given input water

content (WC) value to read in consistent optical prop-

erties from the CRTM lookup table:

R
eff

5A(log
10
WC)3 1B(log

10
WC)2 1C(log

10
WC)1D .

(A1)

REFERENCES

Akella, S., R. Todling, andM. J. Suarez, 2017: Assimilation for skin

SST in the NASA GEOS atmospheric data assimilation sys-

tem. Quart. J. Roy. Meteor. Soc., 143, 1032–1046, https://

doi.org/10.1002/qj.2988.

Baordo, F., and A. J. Geer, 2016: All-sky assimilation of SSMIS

humidity sounding channels in all-sky conditions over land

using a dynamic emissivity retrieval. Quart. J. Roy. Meteor.

Soc., 142, 2854–2866, https://doi.org/10.1002/qj.2873.

Barahona,D.,A.Molod, J.Bacmeister,A.N.Gettelman,H.Morrison,

V. Phillips, and A. Eichmann, 2014: Development of two-

moment cloud microphysics for liquid and ice within the

NASA Goddard Earth Observing System model (GEOS-5).

Geosci. Model Dev., 7, 1733–1766, https://doi.org/10.5194/

gmd-7-1733-2014.

Bauer, P., A. J. Geer, P. Lopez, andD. Salmod, 2010: Direct 4D-Var

assimilation of all-sky radiances. Part I: Implementation.Quart.

J. Roy. Meteor. Soc., 136, 1868–1885, https://doi.org/10.1002/qj.659.

——, A. Thorpe, and G. Brunet, 2015: The quiet revolution of

numerical weather prediction. Nature, 525, 47–55, https://

doi.org/10.1038/nature14956.

Bormann, N., A. J. Geer, and P. Bauer, 2011: Estimates of obser-

vation error characteristics in clear and cloudy regions of mi-

crowave imager radiances from numerical weather prediction.

Quart. J. Roy. Meteor. Soc., 137, 2014–2023, https://doi.org/

10.1002/qj.833.

Chambon, P., S. Q. Zhang, A. Y. Hou, M. Zupanski, and

S. Cheung, 2014: Assessing the impact of pre-GPMmicrowave

precipitation observations in the Goddard WRF ensemble

data assimilation system. Quart. J. Roy. Meteor. Soc., 140,

1219–1235, https://doi.org/10.1002/qj.2215.

Derber, J. C., and W.-S. Wu, 1998: The use of TOVS cloud-

cleared radiances in the NCEP SSI analysis system. Mon.

Wea. Rev., 126, 2287–2299, https://doi.org/10.1175/1520-

0493(1998)126,2287:TUOTCC.2.0.CO;2.

Draine, B. T., and P. J. Flatau, 1994: Discrete-dipole approxi-

mation for scattering calculations. J. Opt. Soc. Amer., 11A,

1491–1499, https://doi.org/10.1364/JOSAA.11.001491.

Field, P. R., A. J. Heymsfield, and A. Bansemer, 2007: Snow size

distribution parameterization for midlatitude and tropical ice

clouds. J. Atmos. Sci., 64, 4346–4365, https://doi.org/10.1175/

2007JAS2344.1.

Geer, A. J., and P. Bauer, 2011: Observation errors in all-sky data

assimilation. Quart. J. Roy. Meteor. Soc., 137, 2024–2037,

https://doi.org/10.1002/qj.830.

TABLE A1. Fitting coefficients for Eq. (A1) used in this study to

calculate input effective radius values (mm) depending on input

water contents (gm23) in GSI.

A B C D

Rain 7.93 90.86 387.81 679.94

Long hexagonal column 5.71 56.94 268.22 607.41

Short hexagonal column 4.60 45.81 215.81 488.72

Block hexagonal column 4.04 40.23 189.52 429.17

Thick hexagonal plate 4.55 45.34 213.57 483.64

Thin hexagonal plate 5.86 58.44 275.29 623.40

Three-bullet rosette 9.33 84.78 351.14 691.39

Four-bullet rosette 10.61 93.34 368.99 690.09

Five-bullet rosette 10.24 90.09 356.15 666.08

Six-bullet rosette 9.77 86.06 340.83 638.71

Sector-like snowflake 12.43 102.87 372.06 629.84

Dendrite snowflake 12.64 108.25 411.81 747.96

2454 MONTHLY WEATHER REV IEW VOLUME 148

Unauthenticated | Downloaded 08/27/22 07:43 PM UTC

https://doi.org/10.1002/qj.2988
https://doi.org/10.1002/qj.2988
https://doi.org/10.1002/qj.2873
https://doi.org/10.5194/gmd-7-1733-2014
https://doi.org/10.5194/gmd-7-1733-2014
https://doi.org/10.1002/qj.659
https://doi.org/10.1038/nature14956
https://doi.org/10.1038/nature14956
https://doi.org/10.1002/qj.833
https://doi.org/10.1002/qj.833
https://doi.org/10.1002/qj.2215
https://doi.org/10.1175/1520-0493(1998)126<2287:TUOTCC>2.0.CO;2
https://doi.org/10.1175/1520-0493(1998)126<2287:TUOTCC>2.0.CO;2
https://doi.org/10.1364/JOSAA.11.001491
https://doi.org/10.1175/2007JAS2344.1
https://doi.org/10.1175/2007JAS2344.1
https://doi.org/10.1002/qj.830


——, and F. Baordo, 2014: Improved scattering radiative transfer for

frozen hydrometeors at microwave frequencies. Atmos. Meas.

Tech., 7, 1839–1860, https://doi.org/10.5194/amt-7-1839-2014.

——, P. Bauer, and P. Lopez, 2010: Direct 4D-Var assimilation of

all-sky radiances. Part II: Assessment. Quart. J. Roy. Meteor.

Soc., 136, 1886–1905, https://doi.org/10.1002/qj.681.

——, F. Baordo, N. Bormann, and S. English, 2014: All-sky as-

similation of microwave humidity sounders. ECMWF Tech.

Memo. 741, 57 pp., https://www.ecmwf.int/sites/default/files/

elibrary/2014/9507-all-sky-assimilation-microwave-humidity-

sounders.pdf.

——, and Coauthors, 2018: All-sky satellite data assimilation at

operational forecasting centres. Quart. J. Roy. Meteor. Soc.,

144, 1191–1217, https://doi.org/10.1002/qj.3202.

Han, Y., P. van Delst, Q. Liu, F. Weng, B. Yan, R. Treadon, and

J. Derber, 2006: JCSDA Community Radiative Transfer

Model (CRTM): Version 1. NOAA Tech. Rep. NESDIS 122,

33 pp., https://repository.library.noaa.gov/view/noaa/1157.

Hartmann, D. L., 1994: Global Physical Climatology. Academic

Press, 411 pp.

Hou, A. Y., and Coauthors, 2014: The Global Precipitation

Measurement mission. Bull. Amer. Meteor. Soc., 95, 701–722,

https://doi.org/10.1175/BAMS-D-13-00164.1.

Ide, K., P. Courtier,M. Ghil, andA. Lorenc, 1997: Unified notation

for data assimilation: Operational, sequential and variational.

J. Meteor. Soc. Japan, 75, 181–189, https://doi.org/10.2151/

jmsj1965.75.1B_181.

Kazumori, M., 2014: Satellite radiance assimilation in the JMA

operational mesoscale 4DVar system. Mon. Wea. Rev., 142,

1361–1381, https://doi.org/10.1175/MWR-D-13-00135.1.

——, 2016: Assimilation of cloud and precipitation affected mi-

crowave radiance data using the JMA’s global NWP system.

Eighth IPWG and Fifth IWSSM Joint Workshop Abstracts,

Bologna, Italy, IPWG and IWSSM, p. 74.

Kim, M.-J., 2006: Comparisons of single scattering approxima-

tions of randomly oriented ice crystals at microwave fre-

quencies. J. Geophys. Res., 111, D14201, https://doi.org/

10.1029/2005JD006892.

Kleist, D. T., D. F. Parrish, J. C.Derber, R. Treadon,W.-S.Wu, and

S. Lord, 2009: Introduction of the GSI into the NCEP Global

Data Assimilation System. Wea. Forecasting, 24, 1691–1705,

https://doi.org/10.1175/2009WAF2222201.1.

Liu, E. H., and Coauthors, 2019: EMC contributions to CRTM

development and validation. JCSDAQuarterly, No. 63, Spring

2019, 30 pp., https://doi.org/10.25923/c23x-ac34.

Liu, G., 2008: A database of microwave single-scattering properties

for nonspherical ice particles. Bull. Amer. Meteor. Soc., 89,

1563–1570, https://doi.org/10.1175/2008BAMS2486.1.

Liu, Q., and F.Weng, 2006: Advanced doubling-adding method for

radiative transfer in planetary atmospheres. J. Atmos. Sci., 63,

3459–3465, https://doi.org/10.1175/JAS3808.1.

Lorenc, A. C., N. E. Bowler, A. M. Clayton, and S. R. Pring, 2015:

Comparison of hybrid-4DEnVar and hybrid-4D Var data

assimilation methods for global NWP. Mon. Wea. Rev., 143,

212–229, https://doi.org/10.1175/MWR-D-14-00195.1.

Marshall, J. S., and W. M. Palmer, 1948: The distribution of rain-

drops with size. J. Meteor., 5, 165–166, https://doi.org/10.1175/

1520-0469(1948)005,0165:TDORWS.2.0.CO;2.

Migliorini, S., and B. Candy, 2019: All-sky satellite data assimila-

tion of microwave temperature sounding channels at the Met

Office.Quart. J. Roy.Meteor. Soc., 145, 867–883, https://doi.org/

10.1002/qj.3470.

Molod, A., L. Takacs, M. Suarez, J. Bacmeister, I.-S. Song, and

A. Eichmann, 2012: The GEOS-5 Atmospheric General

Circulation Model: Mean climate and development from

MERRA to Fortuna. NASATM-2012-104606, Vol. 28, 115 pp.,

https://gmao.gsfc.nasa.gov/pubs/docs/tm28.pdf.

——, ——, ——, and ——, 2015: Development of the GEOS-5

Atmospheric General Circulation Model: Evolution from

MERRA to MERRA2. Geosci. Model Dev., 8, 1339–1356,

https://doi.org/10.5194/gmd-8-1339-2015.

Parrish, D. F., and J. C. Derber, 1992: The National Meteorological

Center’s spectral statistical interpolation analysis system.

Mon. Wea. Rev., 120, 1747–1763, https://doi.org/10.1175/1520-

0493(1992)120,1747:TNMCSS.2.0.CO;2.

Pedder, M., M. Haile, and A. J. Thorpe, 2000: Short period fore-

casting of catchment-scale precipitation. Part I: The role

of numerical weather prediction. Hydrol. Earth Syst. Sci., 4,

627–633, https://doi.org/10.5194/hess-4-627-2000.

Putman, W. M., and S.-J. Lin, 2007: Finite-volume transport on

various cubed-sphere grids. J. Comput. Phys., 227, 55–78,

https://doi.org/10.1016/j.jcp.2007.07.022.

Rienecker, M. M., and Coauthors, 2008. The GEOS-5 data as-

similation system—Documentation of versions 5.0.1, 5.1.0,

and 5.2.0. NASA/TM-2008-104606, Vol. 27, 118 pp., https://

gmao.gsfc.nasa.gov/pubs/docs/GEOS5_104606-Vol27.pdf.

Sellers, W. D., 1965: Physical Climatology. University of Chicago

Press, 272 pp.

Skofronick-Jackson,G., andCoauthors, 2017: TheGlobal Precipitation

Measurement (GPM) mission for science and society. Bull.

Amer. Meteor. Soc., 98, 1679–1695, https://doi.org/10.1175/

BAMS-D-15-00306.1.

Takacs, L. L., M. J. Suárez, and R. Todling, 2018: The stability of

incremental analysis update.Mon. Wea. Rev., 146, 3259–3275,

https://doi.org/10.1175/MWR-D-18-0117.1.

Todling, R., and A. El Akkraoui, 2018: The GMAO hybrid

ensemble-variational atmospheric data assimilation system:

Version 2.0. NASA/TM-2018-104606, Vol. 50, 184 pp., https://

gmao.gsfc.nasa.gov/pubs/docs/Todling1019.pdf.

Whitaker, J. S., and T. H. Hamill, 2002: Ensemble data assimi-

lation without perturbed observations. Mon. Wea. Rev., 130,

1913–1924, https://doi.org/10.1175/1520-0493(2002)130,1913:

EDAWPO.2.0.CO;2.

Wu, W., R. J. Purser, and D. F. Parrish, 2002: Three-dimensional

variational analysis with spatially inhomogeneous covariances.

Mon. Wea. Rev., 130, 2905–2916, https://doi.org/10.1175/1520-

0493(2002)130,2905:TDVAWS.2.0.CO;2.

Zhu, Y., J. Derber, A. Collard, D. Dee, R. Treadon, G. Gayno,

and J. A. Jung, 2014: Enhanced radiance bias correction

in the National Centers for Environmental Prediction’s

Gridpoint Statistical Interpolation data assimilation system.

Quart. J. Roy. Meteor. Soc., 140, 1479–1492, https://doi.org/

10.1002/qj.2233.

——, and Coauthors, 2016: All-sky microwave radiance assimila-

tion in NCEP’s GSI analysis system. Mon. Wea. Rev., 144,

4709–4735, https://doi.org/10.1175/MWR-D-15-0445.1.

JUNE 2020 K IM ET AL . 2455

Unauthenticated | Downloaded 08/27/22 07:43 PM UTC

https://doi.org/10.5194/amt-7-1839-2014
https://doi.org/10.1002/qj.681
https://www.ecmwf.int/sites/default/files/elibrary/2014/9507-all-sky-assimilation-microwave-humidity-sounders.pdf
https://www.ecmwf.int/sites/default/files/elibrary/2014/9507-all-sky-assimilation-microwave-humidity-sounders.pdf
https://www.ecmwf.int/sites/default/files/elibrary/2014/9507-all-sky-assimilation-microwave-humidity-sounders.pdf
https://doi.org/10.1002/qj.3202
https://repository.library.noaa.gov/view/noaa/1157
https://doi.org/10.1175/BAMS-D-13-00164.1
https://doi.org/10.2151/jmsj1965.75.1B_181
https://doi.org/10.2151/jmsj1965.75.1B_181
https://doi.org/10.1175/MWR-D-13-00135.1
https://doi.org/10.1029/2005JD006892
https://doi.org/10.1029/2005JD006892
https://doi.org/10.1175/2009WAF2222201.1
https://doi.org/10.25923/c23x-ac34
https://doi.org/10.1175/2008BAMS2486.1
https://doi.org/10.1175/JAS3808.1
https://doi.org/10.1175/MWR-D-14-00195.1
https://doi.org/10.1175/1520-0469(1948)005<0165:TDORWS>2.0.CO;2
https://doi.org/10.1175/1520-0469(1948)005<0165:TDORWS>2.0.CO;2
https://doi.org/10.1002/qj.3470
https://doi.org/10.1002/qj.3470
https://gmao.gsfc.nasa.gov/pubs/docs/tm28.pdf
https://doi.org/10.5194/gmd-8-1339-2015
https://doi.org/10.1175/1520-0493(1992)120<1747:TNMCSS>2.0.CO;2
https://doi.org/10.1175/1520-0493(1992)120<1747:TNMCSS>2.0.CO;2
https://doi.org/10.5194/hess-4-627-2000
https://doi.org/10.1016/j.jcp.2007.07.022
https://gmao.gsfc.nasa.gov/pubs/docs/GEOS5_104606-Vol27.pdf
https://gmao.gsfc.nasa.gov/pubs/docs/GEOS5_104606-Vol27.pdf
https://doi.org/10.1175/BAMS-D-15-00306.1
https://doi.org/10.1175/BAMS-D-15-00306.1
https://doi.org/10.1175/MWR-D-18-0117.1
https://gmao.gsfc.nasa.gov/pubs/docs/Todling1019.pdf
https://gmao.gsfc.nasa.gov/pubs/docs/Todling1019.pdf
https://doi.org/10.1175/1520-0493(2002)130<1913:EDAWPO>2.0.CO;2
https://doi.org/10.1175/1520-0493(2002)130<1913:EDAWPO>2.0.CO;2
https://doi.org/10.1175/1520-0493(2002)130<2905:TDVAWS>2.0.CO;2
https://doi.org/10.1175/1520-0493(2002)130<2905:TDVAWS>2.0.CO;2
https://doi.org/10.1002/qj.2233
https://doi.org/10.1002/qj.2233
https://doi.org/10.1175/MWR-D-15-0445.1

