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Abstract 

The free boundary problem for the die-swell of a viscous fluid 

lC.W. VANVROONHOVEN, A.J.M. SIPERS and W.J.J. KUUPERS· 

Eindhoven University of Technology, (. author for co"espondence) 

Department of Mathematics and CompUJing Science, 

P.O. Box 513,5600 MB Eindhoven, The Netherlands. 

When a viscous fluid is extruded from a capillary or an annular die. the thickness of the fluid jet is 
in general unequal to the width of the die. This phenomenon is called "die-swell" and is studied 
in this paper for a die made up of two parallel plates. It is assumed that no slip will occur between 
the fluid and the plates, and that the pressure in the space into which the fluid is emitted is con
stant and uniform. The fluid surface is a free streamline. Its shape is calculated with the use of 
complex function theory and conformal mapping techniques. The predicted ratio of swell is found 
to be in full agreement with known finite element results. 



1. Introduction. 

For the manufacture of threads and sacks of a thermoplastic material the extrusion process is 
used. The plastic is melted and extruded from a capillary or an annular die. TIlis fluid is emitted 
into a gas (e.g. the aunosphere) or another fluid. In that area the product attains its final shape. 
The intersection of the product will be distinct from the size of the opening of the die or capillary. 
TIlis difference is known as die-swell; the magnitude of the relative thickness of the product is 
called the swell-ratio. 

In this paper we consider the extrusion of an incompressible Newtonian fluid from a die formed 
by two parallel plates. TIlis die geometry is an example of a long and small strip-like capillary. It 
also provides a model for an annular die where the flow takes place in the narrow gap between 
two concentric tubes with large radii. A Newtonian fluid is a linear. homogeneous, isotropic fluid. 
for which there exists a linear relation between the stress tensor and the strain-rate. 1bis type of 
fluid gives a reasonable indication of the behaviour of visco-elastic fluids, for which the depen
dence of the stresses on the strain-rate is more complicated. The fluid flow is governed by the 
incompressibility condition, the equations of motion. and the constitutive equations. We restrict 
ourselves to the isothennal problem. because the influences of the temperature are dominated by 
the viscous effects. The pressure of the environment, into which the fluid is emitted. is assumed 
to be constant and unifonn. The effects of surface-tension are neglected. Further. we assume 
complete adherence between the fluid and the plates. The velocity field far upstream in the die is 
the fully developed Poiseuille flow. The surface of the fluid outside the die has an unknown 
shape. Therefore, the flow problem is a free boundary problem. Since this boundary must be a 
free streamline, we have an extra condition to determine the shape of the fluid surface and also 

the swell-ratio. 

For the solution of this free boundary problem we employ the complex function theory and the 
conformal mapping technique which have successfully been applied to several problems in linear 
elasticity, see Muskhelishvili [5], England [4]. An application of this theory to viscous fluid flow 
in injection moulding is given by van Vroonhoven and Kuijpers [8]. All equations are satisfied 
by the introduction of two independent analytic functions which are completely detennined by 
the boundary conditions. The free boundary is represented by a confonnal mapping which is cal
culated from the free streamline condition. In the final section the results are shown and com
pared to various finite element simulations listed by Tanner [7]. 

2. Formulation of the problem. 

An incompressible Newtonian fluid flows out of a die into an open space where the environmen
tal pressure is constant, Po say. The die is a capillary made of two parallel plates. The problem is 
described in the dimensionless cartesian coordinates x and y. Let B+ and B- be the separation 
JX>ints of the fluid from the die. The x-coordinate in these JX>ints is chosen to be zero. The plane 
y = 0 corresJX>nds to the plane of symmetry. The y-coordinates of the planes A + B+ and A - B- are 
equal to +1 and -1 respectively (see figure 2.1). The shape of the free boundaries B+ C+ and 
B- C- is to be detennined, especially the swell-ratio h which equals the distance from C+ (or 
C-) to the plane of symmetry. 



-3-

Fig. 2.1. The die geometry. 

The dimensionless velocity of the fluid is denoted by 

v=u(x, y)ex + v (,x, y)e, . 

The dimensionless stress tensor in (x, y) is denoted by t with components lu , Ixy (= Iyx ), tyy . 

For an incompressible Newtonian fluid we have the following equations, 

(i) the incompressibility condition 

div v=O. 

(ii) the constitutive relation 

t=-pI+d, 

(2.1) 

(2.2) 

(2.3) 

where p is the dimensionless hydrostatic pressure and d is the rate of deformation tensor, 

d=l.(L+LT ), L= dV . (2.4) 
2 ax 

(iii) the conservation of momentum 

div'CT =0, 

when body forces are absent and the accelerations can be neglected. 

(2.5) 

As shown in [4. sec. 2.5], [5, 01. 5], [8J the equations (2.2) to (2.5) are satisfied by the introduc
tion of the complex variables z = x=+- i y and z = x - i Y and of two complex functions O(z) and 
ro(z) which are analytic in the domain Gz occupied by the fluid. The general solution of the flow 
problem is then given by 

w = u + i v = z O'(z) + ro'(z) - (l(z) , 

txx + tyy =-2 [O'(z) + O'(z)], 

txx - tyy + 2i try = 2 [z O"(z) + ro"(z) ] . 

Furthermore. the resulting force over an arc PQ can be expressed as 

Q [ - - JQ 
K = - J (til + i ts ) dz = z O'(z) + ro'(z) + O(z~p , 

P 

(2.6) 

(2.7) 

where til and Is are the normal and shear stresses along the arc PQ. see [4. sec. 2.7J, [5, sec. 33J, 
[8]. 

The accent' indicates differentiation with respect to the complex argument. 
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The functions O(z) and ro(z) are completely detennined by the boundary conditions. We need two 
conditions along every part of the boundary. Along the free surface one extra condition is 
required, because its shape is unknown. 

Complete adherence between the fluid and the planes A + B+ and A - B- is assumed. This means 
v = 0 there, and thus 

u=O, v=O, y=±l, x<O. (2.8) 

Because of the constant environmental pressure Po, the nonnal stress til and the shear stress Is 

along the free boundaries B+ C + and B- C - must satisfy 

(2.9) 

Substitution of (2.9) into (2.7) yields 

(2.10) 

where PIe C is an integration constant. 

The extra condition along the free boundaries B+ C+ and B- C- follows from the fact that it is a 
streamline, which means that the nonnal velocity must vanish, 

(v,n)=O. (2.11) 

where n denotes the outer nonnaL 

For a complete determination of the mathematical problem conditions at infinity (x -+ ±oo) are 
required. Since the environmental pressure in the open space is constant, we impose that 

(x -+ 00). (2.12) 

From this conditon it can be derived that there exists a unifonn flow at infinity. 

h- 1 v= ex. (x-+ oo ), (2.13) 

where h is the swell-ratio. 

In the die the flow will resemble the'fully developed Poiseuille flow. which will be denoted by an 
index O. Therefore, the limiting value of the velocity must be 

u-+uo=%0-y2), v-+vo=O, (x-+-oo). (2.14) 

Analogously to [8] the Poiseuille flow is subtracted. We write 

(2.15) 

The velocities Uo and Vo are given by (2.14). while UI and VI are the new unknown functions. We 
replace O(z) and ro(z) by Oo(z) + 0 1 (z) resp. roo(z) + rol (z) with 

(2.16) 

representing the Poiseuille flow and with 0 1 (z) and rol (z) the new unknown functions. The con
stant P2 e R represents a unifonn pressure and is still free to be chosen. 

The boundary conditions (2.8), (2.10), and (2.14) transform into 

y=±I, x<O, 
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(x -+ -00), (2.17) 

K 1 = Z 0; (z) + oft (z) + 0 1 (z) = 
= 3/S(Z2+2zz-z

2
)+(pO-PZ)Z+PI' zeB+C+vB-C-. 

Choosing P'l = Po and omitting the irrelevant constant PI • we have 

Kl = %(z2+2zz_z
2
), zeB+C+vB-C-. (2.18) 

The equations (2.17) and (2.18) show great resemblance with the formulation of the free boun
dary problem in injection moulding as stated in [8]. Therefore, the procedure for the solution of 
the die-swell problem will be completely analogous. There are only two differences between 
these free boundary problems. Firstly, the die-swell geometry stretches out to infinity at two 
sides. Secondly. the subtracted Poiseuille flow slightly differs because of the use of a moving 
frame of reference in [8]. 

3. The conformal mapping. 

The problem stated above will be treated with conformal mapping techniques as has been done in 
[8]. The domain G, occupied by the fluid is transformed into the interior of the unit circle, 
G t + := { ~e C I I ~ I < I} (see figures 3.1 and 3.2). 

The mapping function is denoted by 

z =m(O. (3.1) 

Since this transformation is conformal. the function m(O is analytic and univalent for ~e G ~ + . 
Further, the mapping function is assumed to be continuous on G t + • except in the points 
A, ~ = -1 , and C, ~ = + 1 , where logarithmic singularities occur. 

Fig. 3.1. The domain Gz . 

Fig. 3.2. The ~-plane. 

As a result from the Riemann mapping theorem the conformal mapping function exists and is 
uniquely determined by the choice of the points A (=A+ ,A-). B+ and C (=C+ ,C-) on the unit 
circle. The following relation for the normal vector n = nJ; eJ; + fly ey along the boundary of Gz 

can be derived, see [8], 



nX. + i fly ~ m'+(~) 

nX. - i fly ~ml+(~) 
(3.2) 

where m'+~) denotes the limiting value of the derivative m/(O for Ce G t + tending to a point ~ on 
the unit circle, I ~ I = I, ~ -:I: ± 1. 

We follow \he conformal mapping technique and the method of analytic continuation to the exte
rior of the unit circle G t - := { Ce C I I C I > 1 } t as applied to certain problems in the theory of 
linear elasticity [4, Ch. 5], [5, Ch. 15. 21] and to a free boundary problem in viscous flow theory 
[8]. The conformal mapping function m(O is approximated by a polynomial mN(O of degree Nt 

N l 
mN(O= L ~C . (3.3) 

l=O 

For reasons of symmelI)' the coefficients ~ t OS kS N. are real but yet unknown. 

The points C = ± 1 are mapped onto infinity in the complex z-plane by the exact mapping function 
z = m(O. whereas the polynomial mN(O remains finite in these points. From this we conclude 
that the polynomial mN(O can only produce a good approximation of m(O near the separation 
points B+ and B-. while the approximation will not suffice near the points A, C=-l, and 
C, C = + 1. This assertion can be formalized by the introduction of the points p+ , C = eifl , and 
p- , C:: e-ifl • 0 < a < VZ'It. on the unit circle, having the following properties. Fustly, the points 
P + and P - are mapped onto two points of the free boundaries B+ C + and B- C- by the exact con
formal mapping function z = m(O. Therefore, we assume that a reliable approximation of the free 
boundary is given by the image of the arcs B+ P + and B- P - under the polynomial mapping func
tion z :: mN(O. Le. by 

Z :: mN( eie ) = i J.l.k eile 
• 0. S 181 S ~ 'It . (3.4) 

k=O 

Secondly. the image of the arc P- C P+ ( C = eie , -as 8S 0.) under the approximative mapping 
z = mN(O is a bounded curve in the complex z-plane (see figure 3.3). This curve will not 
correspond to the parts P+ C+ and P- C- of the exact free boundary. In order to obtain the com
plete shape of the fluid surface, we 'can add two straight horizontaIlines from P+ and P- to the 
right as shown in figure 3.3. 

Fig. 3.3. ThedomainGz undermN(O. 

In the approximation theory the angle 0., 0 < 0. < 112 'It, is determined by the condition that the y
coordinate along the boundary CPT B+ attains its maximum in the point P+; so 

~ =Im[dZ]=Im[ieiam~(eia)]=o, O<o.<%'It. (3.5) 
do. do. 

The swell-ratio h is then calculated as the maximum value of the y-coordinate, 
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(3.6) 

Finally, we remarlc that the polynomial mapping z = mN(O must be confonnal, i.e. analtyic and 
univalent for te G ~ + • Since mN(O is an analytic function for all ~e C, only the univalence has to 
be shown. This property is equivalent to the statement that the derivative mN(O doesn't vanish. 
This condition will be verified in the final section after the detennination of the coefficients 
~k' OSkSN. 

4. Solution of the problem. 

We follow Ibe procedure of solution as employed in [8]. Approximating the exact mapping func
tion z = m{O by a polynomial mN(O. we replace the functions 0 1 (z) and CJ)1 (z) by ~(O resp. 
CJ)N(O. These two functions are analytic for ~e G ~ + • but will not be polynomials in general. The 
boundary conditions as fonnulated in section 2 must be transfonned properly to the unit circle, 
I ~ I = 1 . From a combination of (2.17) (i) and (ii) we find 

mN(~ 'l'~(~ + CJ)'~(~) + 
Wi = - ON(~) = 0, 

m~~) 
(4.1) 

The arcs B+ P+ and B- P- correspond to a part of the fluid surface; so boundary condition (2.9) 
holds along these arcs. The arc P - C P + does not correspond to the free boundary which stretches 
out to infinity. Since this arc is situated far from the die opening, we impose condition (2.12) 
there. Consequently, condition (2.9) also holds on P- CP+. Because of the continuity of the nor
mal and shear stresses along the arcs B- P - , P - C P + , and B+ P + of the unit circle, boundary con
ditions (2.12) and (2.18) transfonn into 

Kl = 
m~~ O'~(~) + CJ)'~(~) 
~---------- + Of-,(~) = gN(~) , 

m';(~) 

with gN (l;) defined by 

gN (~) := 3/. ( [m f-,(l;)]2 +"2 m f-,(~) m f-,(;) - [m f-,(~)]2 ) , 

(4.2) 

(4.3) 

The problem stated above can be solved by an analytic continuation of ON(O to the exterior of 
the unit cilXIe G ~ - . This continuation is denoted by '¥ N(O and is defined by 

----.=-- -
m;..,(O ON(11 t) + CJ)NOI ~) 
------==~~------, ~eG~-. 

mN(11 ') 

(4.4) 

The function '¥N(~) is analytic for ~eG~+vG( and must satisfy the holomorphy condition, see 
[4, sec. 5.4], [8], 

ro'N(O=mN(~)'¥N(l/~)-mN(l/~)'¥N(O =0(1), (~~O). (4.5) 

By definition (4.4) the boundary conditions (4.1) and (4.2) become 
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'II HC;) - 'II ArC;) = 0, ; e B+ A B- , 

'¥H(I;) + 'II Ar(I;) = gN(;) , I;e B-CB+ , 

Near the separation points B+ and B- the velocity must remain finite. Therefore, we have 

(t-+±i)· 

(4.6) 

(4.7) 

(4.8) 

The condition (4.6) implies that the function 'II N(O is analytic for te C \ B- C B+. The jump 
condition (4.7) over the arc B- CB+ and the condition (4.8) near the endpoints B- and B+ deter
mine a so-called Hilbenproblem for the function '¥N(O. For a detailed description of the theory 
for the solution of Hilbert problems we refer to Muskhelishvili [5, CII. 18J and England [4, Ch. 
1]. The solution of this Hilbert problem is derived in [8] and can be represented by 

'¥N(O = X(O~(O+X(OFN(O, teC\ B-CB+. (4.9) 

where ~ (0 is defined by_ 

_ _1_ I &r (1;) d 
~ (0 - 27ti B-CB+ x+(;) (1;-0 1;, 

teC\ B-CB+ . (4.10) 

Evaluating the integral (4.10) by means of comour integration, we can express the function ~ (0 
in the coefficients J.l.k , OS k S N, of the conformal mapping. The function X (0 is the characteristic 
Plemelj function defined by 

X(O = (C-o"o (t+t)'I·, teC\ B-CB+, (4.11) 

and has a branch cut along the arc B- C B+. The function FN (0 is a polynomial of degree N -I, 

N-l 
FN (0 = ~ /;. elc • tee. (4.12) 

k=O 

The coefficients of this function are determined by the holomorphy condition (4.5). 1bis condi
tion yields N linear equations for the unknown coefficients It , OS kS N -1 . Solving these equa
tions we find an explicit formula for the function '¥N(O in terms of the coefficients J.l.t, OS kS N, 
from the relations (4.9) and (4.10) .. 

In order to determine the coefficients Ilk, OS kS N, of the conformal mapping function mNCC) and 
thereby the shape of the fluid surface, we need N + 1 algebraic equations. Since the pow C = i 
corresponds to the separation pow B+ , Z = i , we have 

(4.13) 

The point C = - i , is then mapped onto B- , Z = - i. Two equations are supplied by the real and 
imaginary parts of (4.13), so N -1 more equations are required. The boundary B+ P + forms a free 
streamline, whose shape is determined by condition (2.11). Therefore, we demand that the normal 
velocity vanishes in N -1 points of the boundary B+ P+ . This condition is then also satisfied on 
the arc B- P - as a consequence of the symmetry of the problem. We choose the following points 

-9 11 k 
;k:=e'l, 9t :=Cl+(I21t-a) N' lSkSN-l, (4.14) 

where Cl is the angle introduced in section 3. 

The free streamline condition (2.11) is transformed to the C-plane with relation (3.2). The 
coefficients Ilk , OS k S N, are now determined by (4.13) and by the conditions 

------------------
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l~;;k~N-l , (4.15) 

where WN is the complex velocity 

WN = % + %( [m~~)f - 2m~(;)mf-,(;) + [mf-,(;)}2) + 'f'N~) - 'f'~(;). (4.16) 

These equations are solved by a numerical procedure for the solution of systems of non-linear 
equations. An approximation of the shape of the free boundary B+ P+ (B- P-) is then given by 
the relation (3.4). The results are presented in the final section. 

5. Results and conclusions. 

In this section we present the results of the polynomial approximation of the conformal mapping 
function. The coefficients Ilk, o~ k~ N, of the function mN(O and the angle a defined by equation 
(3.5) are calculated for N = 6, 7, and 8 and are listed in table 5.1. Estimates of the errors in the 
values of the coefficients J"* are in the order of 1 O-S , if N = 6, and in the order of 10-4 , if N = 7 
or 8. lbis means that the error in ~ is 0.1 % or less. Taking N~5, we did not obtain any 
trustworthy outcome, because the degree of approximation was apparently too low. On the other 
hand, no improvement was observed in the case N = 9 or 10. So we conclude that the approxima
tions for N = 6, 7, 8 produce reliable results with rather little calculus. 

k 6 7 8 

0 1.0088 1.2603 1.1586 
1 0.1509 -0.1395 -0.0760 
2 1.7929 2.2748 2.2280 
3 -1.1489 -1.6110 -1.6411 
4 0.8997 1.2085 1.3723 
5 -0.2998 -0.5032 -0.6470 
6 0.1157 0.1941 0.3261 
7 -0.0307 -0.0812 
8 0.0234 

a/x 0.2514 0.2761 0.2540 

Table 5.1. The coefficients Ilk and the angle a for several values of N. 

The mapping function z = mN") has to be conformal, see section 3. Therefore, it must be exam
ined, if zeroes of the derivative mN(O occur in the domain G ~ + • The total number of zeroes of 
mN(O inside the unit circle r is given by the integral 

1 mN(~) 
11 = 2Xi) mN(~) d~. (5.1) 

Calculation of the integral 11 yields that there is one single zero in G ~ + for N = 6, 7 as well as 
N = 8. The position of the zero ~ = 1:0 is given by the integral 

1 ~mN(~) 
12 = 2Xi) mN(~) d~. (5.2) 

We find 1:0 = -0.04 , 1:0 = +0.03 , 1:0 = +0.02 for N = 6, 7, 8 respectively. These points are all 
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situated near the origin C = 0 and so they are mappet1 onto points in the neighbourhood of 
z = mN(O) = J.Io in the domain Gz • Since the points z = J.Io have great distance to the separation 
points B+ and B- • we conclude that the mapping function z = mN(O is conformal near the arcs 
B+ P + and B- P - . 

Fig. 5.1. The free boundary. 

The shape of the free boundaries B+ P + and B- P - is calculated with relation (3.4) and is shown 

in figure 5.1. The difference between the approximations of the free boundary is about 3-4 %. The 
approximation h for the swell-ratio follows from equation (3.6). Another estimate H for the 
swell-ratio is based on the property (2.13) that the velocity at infinity is uniform. This estimate H 
is then defined as the reciprocal value of the velocity in the point C. C = + 1. The values of h and 
H are listed in table 5.2. 

N h H 

6 1.1835 1.1982 
7 1.2245 1.2247 
g 1.2026 1.2027 

Table S.2. Estimates for the swell-ratio. 

The results are compared with swell-ratios tabulated by Tanner [7. sec. 8.3], who gives finite ele
ment simulations obtained by the foRowing authors. Crochet and Keunings found a swell-ratio of 
1.188 in [2] and several values between 1.196 and 1.227 in [3]. Chang. Patten and Finlayson [1] 
calculated a swell-ratio of 1.206. while Reddy and Tanner [6] obtained 1.199. So we conclude, 
that the exact swell-ratio for an incompressible Newtonian fluid will be 1.20 with an error of 2 % 
at most. This is in full agreement with the numerical results which lie in the same range. 



-11-

References 

1. Chang, P.W., T.W. Patten and B.A. Finlayson, Computers & Fluids 7 (1979), 285. 

2. Crochet, MJ. and R. Keunings, J. Non-Newt. Fluid Mech. 7 (1980), 199. 

3. Crochet, MJ. and R. Keunings, J. Non-Newt. Fluid Mech. 10 (1982), 85. 

4. England. AH.. Complex Variable Methods in Elasticity, London: Wlley-!nterscience 
(1971). 

5. Muskhelishvili. N.I.. Some basic problems of the mathematical theory of elastiCity, 
Groningen: Noon1hoff (1953). 

6. Reddy, K.R. and R.I. Tanner, J. Rheol. 22 (1978), 661. 

7. Tanner, R.I.. Engineering Rheology, Oxford: Carendon Press (1985). 

8. Vroonhoven, J.C.W. van and W.J.J. Kuijpers. A free boundary problem for viscous fiuid 
fiow in injection moulding. J. Engng. Math., in print 



A -_.+--
-1 

-i B-

Fig. 3.2 

h 

c-

Fig. 2.1 



p+ 

c __ ._.-1..-_'_' __ .-

p- c-
Fig. 3.3 

B+~ 
-------------------

B-~ ------------------c-

Fig.3.l 



x 
(J) 
-i 
l> 

hj 5:/ z x 
(J) 
l> 
A 

'C .... 
C .... 
D. • .... ... · a. • .... 
:;e 
~ 
'< I ..... .... 
c: • 
f ., 
N 
CI) 

-.5 -.3 -.1 .1 .3 .5 .7 .9 1.1 1.3 .... 1.3 1.3 ~ 
CIJ 1.2 1.2 w 
0 1.1 1.1 CI) 

-0 
1 1 

CIJ .9 .9 \u 
ell .B .8 \... en .7 .7 I\) 
CI) 
CJl .6 .6 ~ 

.5 .5 

.4 .4 

.3 .3 

.2 .2 

.1 .1 
Y 0 0 

- .1 -.1 

-.2 -.2 
-.3 -.3 
-.4 -.4 
-.5 -.5 
-.6 -.6 
-.7 -.7 
-.8 -.8 
-.9 -.9 

-1 -1 

-1.1 -1.1 
-1.2 -1.2 
-1.3 -1.3 

-.5 -.3 -.1 .1 .3 .5 .7 .9 1.1 1.3 
x 


