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The free compressible viscous vortex 

By TIM COLONIUS, SANJIVA K. LELEt 
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(Received 22 June 1990 and in revised form 21 December 1990) 

The effects of compressibility on free (unsteady) viscous heat-conducting vortices are 
investigated. Analytical solutions are found in the limit of large, but finite, Reynolds 
number, and small, but finite, Mach numbcr. The analysis shows that the spreading 
of the vortex causes a radial flow. This flow is given by the solution of an ordinary 
differential equation (valid for any Mach number), which gives the dependence of the 
radial velocity on the tangential velocity, density, and temperature profiles of the 
vortex ; estimates of the radial velocity found by solving this equation are found to  
be in good agreement with numerical solutions of the full equations. The experiments 
of Mandella (1987) also report a radial flow in the vortex, but their estimates are 
much larger than the analytical predictions, and it is found that the flow inferred 
from the experiments violates the Second Law of Thermodynamics for two- 
dimensional axisymmetric flow. It is speculated that thrcc-dimensionality is the 
cause of this discrepancy. To obtain detailed analytical solutions, the equations for 
the viscous evolution are expanded in powers of Mach number, M .  Solutions valid to 
O ( W ) ,  are discussed for vortices with finite circulation. Two specific initial conditions 
- vortices with initially uniform entropy and with initially uniform density - are 
analysed in detail. It is shown that swirling axisymmetric compressible flows 
generate negative radial velocities far from the vortex core owing to  viscous effects, 
regardless of the initial distributions of vorticity, density and entropy. 

1. Introduction 

Many investigators have studied the two-dimensional axisymmetric vortex a t  
various asymptotic limits of the governing non-dimensional parameters. For inviscid 
flow, vortex solutions are easily found for compressible or incompressible flows. 
There is a class of solutions which satisfy 

ap/& = p v 2 / r ,  (1.1) 

where, r ,  p ,  p,  and v are the distance from the centre of the vortex, the pressure, 
density and tangential velocity respectively. For a compressible vortex, additional 
information must be supplied to specify the inviscid vortex, because the equations 
of motion are satisfied for either arbitrary density or temperature profiles. Taylor 
(1930) considered the inviscid solution for the homentropic case. 

For the incompressible viscous vortex in an unbounded domain and with no radial 
velocity component, no steady solutions are possible. The unsteady equations of 
motion reducc to 

(1.2a, h )  av/at = v a/& ( l / r  (?/& ( rv ) ) ,  ap/ar = p v 2 / r .  

t Also with Department of Aeronautics and Astronautics, Stanford University. 
$ Also with NASA-Ames Research Center. 
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46 T.  Colonius, S. K .  Lele and P. Moin 

Equation ( 1 . 2 ~ )  can be transformed into an equation for the vort,icity, 

which is analogous to the diffusion of heat. The solution to  (1.3) can be found for an 
arbitrary initial distribution of vorticity. De Neufville ( 1957) has found the solutions 
of (1.3) as a sum of Laguerre polynomials with argument r2/4vt: 

where C ,  are determined from the initial condition by orthogonality of the Laguerre 
polynomials, L,, e.g. Abramowitz & Stegun (1972). The case m = 0 corresponds to  
the solution to ( 1 . 2 ~ )  found by Oseen (1912), 

ZI = I‘/2nr (1 - exp ( - r2/4vt)), (1.5) 

which corresponds to the decay of a Gaussian vorticity distribution, or the viscous 
spreading of a line vortex. T is  the circulation a t  infinity, which is an invariant of the 
flow. The m = 1 case corresponds to a solution found by Taylor (1918), 

2 A r  - 

16nv2t2 4vt 
v = -exp (2). 

The circulation of the Taylor swirl is zero, and the invariant of the flow is 

A = 1; 2nrvr dr, (1.7) 

which is the total angular momentum of the flow (the density has been taken to be 
uniform). 

Some solutions for the case of steady, viscous, compressible vortices have been 
found. For example, the solution of Mack (1960) describes a compressible vortex 
which is driven by a solid inner cylinder. Steady state is obtained by equating the 
work done by the shear stress and the heat transferred by conduction. Mack found 
that this solution is not homentropic. Mack’s solution is extended to the case of non- 
zero radial velocity (porous inner cylinder) corresponding to a steady, spiralling flow 
by Bcllamy-Knights (1980). Rott (1959) discusses the temperature distributions for 
the (steady) Burgers vortex a t  low Mach number. Sibulkin (1961) discusses the 
energy transfer associated with the decay of the Taylor swirl for both liquids and 
gases in the low-Mach-number limit. For unsteady, viscous, compressible vortices, 
theoretical predictions for the density profile in the compressible vortex core 
produced by shock tube flow over a vertical wedge are given by Merzkirch (1964). 

Analytical solutions for the case of a free (unsteady), viscous, compressible vortex 
apparently have not been reported. The purpose of this paper is to investigate the 
effects of compressibility of the free, viscous, heat-conducting vortex. The 
experiments of Mandella, Moon & Bershader (1986), Mandella (1987), and Bershader 
(1988) (collectively referred to as M & B hereinafter) examine the structure of 
compressible vortices. They report that the density and pressure within the core of 
the vortex is considerably lower than ambient values, and infer that the spreading 
of the vortex causes a significant inward radial velocity. The present work is 
motivated by thesc experiments and numerical solutions of the full compressible 
Navier-Stokes equat,ions performed by the present authors. The numerical solutions 

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 C

al
te

ch
 L

ib
ra

ry
, o

n 
29

 Ju
l 2

01
9 

at
 2

0:
37

:2
4,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s .
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/S
00

22
11

20
91

00
07

08

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0022112091000708


The free compressible viscous vortex 47 

also generate a radial inflow, but its magnitude is 10 to 100 fold smaller than that 
inferred by the experimental study. 

The presence of a radial component of velocity causes angular momentum to be 
convected into the vortex, counteracting the effect of viscous diffusion of angular 
momentum. The magnitude of the radial velocity in the vortex is, therefore, 
important in determining the balance between the opposing effects of viscous 
diffusion and radial convection of angular momentum. The magnitude of the radial 
velocity in the vortex is also related to the rate of change of density in the vortex. 
A vortex with an initially lower density in the core must gain mass as i t  decays to  
ambient conditions, which results in a negative radial velocity. Since the pressure in 
the core of the vortex is lower than ambient, a homentropic vortex would also have 
lower density in the core, and thus a negative radial velocity. If the vortex remains 
hornentropic, then the pressure and density must both increase with time. M & B  
found that the vortex is not homentropic, but that the density is indeed much lower 
in the core than in the surroundings. From measured density and pressure 
distributions in the core of the vortex, they infer the radial velocity profiles and find 
that the effect of convection of angular momentum is larger than the effect of 
outward diffusion of angular momentum. 

This paper presents analytical solutions for free compressible viscous vortices, and 
compares them to numerical solutions of the full equations as well as the experiments 
of M & B. The discrepancy between the experiments and the full solutions is directly 
addressed and is attributed to three-dimensional effects in the experiments. It is 
speculated that similar three-dimensionality may be present in other experiments 
involving ' two-dimensional ' compressible vortices. 

In  $ 2  the full equations are presented. I n  $3, these equations are expanded for high 
Reynolds number, and on two timescales, viz. an acoustic time and a viscous time. 
An ordinary differential equation for the radial velocity is derived, and solutions of 
this equation are compared to numerical computations and the aforementioned 
experiments. In  $4 the equations for evolution on the viscous timescale are expanded 
in powers of M2 where M is the Mach number. Analytical solutions for the O( i) ,  and 
O(Mz) equations are found for particular initial conditions. A summary of the 
conclusions is given in $5.  

2. Governing equations 

of momentum and energy, and an equation of state (perfect gas) are 
For two-dimensional axisymmetric flow, the equations of continuity, conservation 

( 2 . l a )  

(2 . lb )  

(2.1 c) 

(2.1e) 
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48 T .  Colonius, S. K .  Lele and P .  Moin 

where Zi and v" are the radial and tangential velocities respectively, and 

and where the following non-dimensionalization has been used : 

p=" jj=- 
P w  

The Reynolds number and Prandtl number are defined as 

In  the above, aw is the ambient sound speed, L is some lengthscale of the vortex, such 
as the size of the vortex core. For simplicity, p and k are taken to  be the constant 
molecular viscosity and thermal conductivity of the fluid respectively, c p  is the 
specific heat a t  constant pressure which is assumed constant, and R is the gas 

constant, 
In  addition to (2.1), boundary and initial conditions are required for solutions. The 

flow domain extends to infinity, and therefore solutions are required to be bounded 
as 4 + 00. Furthermore, axisymmetry requires that both components of velocity are 
zero at  r^ = 0, and that i3jj/%, a?/ar" and ab/ar^ all vanish as h 0 .  Initial conditions 
are discussed in 54. 

General solutions to the nonlinear equations (2.1) are difficult to find, and one is 

restricted to solving them numerically, or finding asymptotic solutions for small or 
large values of the parameters. 

3. Multiple timescale expansion 

For large Reynolds number, unsteady solutions to (2.1) can vary on three distinct 
timescales - acoustic, convective and viscous. For two-dimensional axisymmetric 
flow, quantities are convected by the radial velocity alone, and if the radial velocity 
is small compared to the tangential velocity, then convection effects are of secondary 
importance. Furthermore, for the present problem? the convecting velocity is set up 
by viscous effects thus making the convective and viscous scales the same. To 
examine the evolution of the vortex on the viscous timescale, we expand (2.1) on two 

timescales ~ the fast acoustic time, and the slow viscous time. Let 

f" = fit", 7, 4), 

where p i s  any of Zi, B , ; ,  $, or p ,  and where, 

7 = i/Re. (3.2) 

We require that the radial velocity, 4, is small, and since Zi must vanish for an 
inviscid vortex as well as for an incompressible vort,ex, we assume that 

zi - l/Re. (3.3) 
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The free compressible viscous vortex 49 

Expanding (2.1) using (3.1)-(3.3) gives, to O ( l ) ,  

Equations (3 .4)  govern the evolution of an inviscid compressible vortex. The 
choice of scaling for 6 gives the desired result of forcing the solutions not to vary on 
the acoustic timescale. Furthermore, the particular dependence of Re chosen in (3.3) 

gives good agreement with numerical solutions to  (2.1) over a large range of Reynolds 
number. The numerical solutions will be described in detail in $3.1. 

Collccting terms of the order 1/Re in the expansion of (2.1) gives 

a6 i a( iq*t)  

a? i at 
-+-- = 0, 

p -+&*-+- =-  - - (rv)  , 
a (i a 

t a t  t a t  

a$ a$ a&* 6* ( y - - l )  i a a@ a6 6 2  
-+G*-+yj j  -+7 =--- t ,  +(y- l )  --- , (3.5c) a? a t  ( a t  r ) Pr p a t (  a r )  (a? t )  

( 3 . 5 ~ )  

(3.5 b )  

and (3 .6)  

where G* = R e & .  
Equations (3 .5)  together with (3.4b) and (3 .4e) ,  describe the evolution of 6*, 6, 6, 

and j i  on the slow time, 7. 

If (3.4b) is differentiated with respect to  7, and (3.5u-c) are substituted into the 
resulting expression, an equation for the evolution of G* in terms of the other 
variables is obtained 

where Ci. is the sound speed relative to a,. This is an ordinary differential equation for 
Zi*, in terms of the profiles of 4, 6, and @. This equation is expected to  hold for any 
Mach number provided that the Reynolds number is sufficiently high. 

3.1. Comparison with experiments and computations 

Equations (3 .4e) ,  (3.5a-c), and (3 .7)  are still difficult to solve analytically. Equation 
(3.7) expresses the dependence of the radial velocity induced by the spreading of the 
vortex on the temperature, density and tangential velocity profiles. Note that there 
is no explicit time dependence in (3 .7) ,  hence it  may be solved as an ordinary 
differential equation. Physically, (3 .7)  gives the necessary radial velocity such that, 
to first order, the centripetal acceleration in the vortex is provided by the radial 
pressure gradient, i.e. (3.4b) is satisfied. The three terms on the right-hand side of 
(3 .7)  represent viscous diffusion of momentum, heat conduction, and viscous 
dissipation, respectively. The radial velocity of the vortex is an effect of 
compressibility (since a strictly incompressible vortex must have zero radial 
velocity) ; however, it is forccd by viscous and heat conduction effects as given by 
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r 

0 1 2  3 4 5 6 7 8 9 10 
i 

FIGURE 1 (a+). For caption see facing page. 

(3 .7) .  Note that because of the multiple timescale expansions, (3.4), (3 .5a-c)  and (3.7) 
are valid only after initial acoustic disturbances have propagated away from the 
vortex, since general initial conditions to (2.1) will produce an acoustic wave which 
propagates away from P = 0 at the sonic velocity. At any radial location, the 
equations are valid if T^ + at!. 
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The free compressible viscous vortex 51 

i i x  10' 

i 

FIGURE 1. Evolution of (a) density, (b) pressure, ( c )  tangential velocity, and ( f )  radial velocity from 
computations six times during acoust$ transient. !nitial condition ( t  = 0) is inviscjd and 
homentropic. Re = 50v, M =  0.5: -, t = 0; ----, t = 2.5; ---, t^= 5.0; - - - - - - - - ,  t = 7.5;  

, i =  10.0; -, t = 12.5. 

_ _ _ _ _ _ _ _ _ - - - - - - - -  ___- - - -  

-10 - 

-40 ' ~ ' ' ' i ' I ' l " ' i ' ~ " '  

0 1 2  3 4 5 6 7 8 9 10 
i 

FIGURE ?I. Comparison of radial velocity from the computed full solution (same condition as in 
figure 1, t = 12.5) and radial velocity computed from equation (3.7) : -, simulation after acoustic 
transient; ----, numerical solution of (3.7). 

-5 

- 10 

- 15 

ii x 10' -20 

- 25 

- 30 

- 35 

-40'"""""""""' 
0 1 2  3 4 5 6 7 8 9 10 

i 

FIGURE ?I. Comparison of radial velocity from the computed full solution (same condition as in 
figure 1, t = 12.5) and radial velocity computed from equation (3.7) : -, simulation after acoustic 
transient; ----, numerical solution of (3.7). 

The validity of (3.7) is checked by comparing its numerical solution with numerical 
solutions of the full equations (2.1). For solving the full compressible equations a grid 
of 151 mesh points extending to +lo  core radii in each spatial dimension is 
used. A sixth-order modified Pad6 scheme (Lele 1990) is used to compute spatial 
derivatives, and the equations are advanced with a fourth-order Runge-Kutta 
scheme. Non-reflecting boundary conditions (Thompson 1987 and Colonius, Lele & 
Moin 1991) are used a t  the computational boundaries. At the boundary, the 
conservation equations are solved in characteristic form (e.g. Thompson 1987) where 
terms representing the amplitude of different waves crossing the boundary are 
isolated. These characteristic amplitudes are then specified either by computation 
from interior grid points via one-sided differences if the wave is propagating out of 
the domain, or are specified independently of the interior numerical solution for 
waves propagating into the domain. In the absence of a detailed knowledge of the 
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-0.2 - 

0 I 2  3 4 5 6 7 8 9 10 

r 

FIGURE 3 (a-c). For caption see facing page. 

flow field outside the computational domain, one specifies the amplitudes of the 
incoming characteristic waves to be zero for all times (Thompson 1987). I n  the case 
of the vortex, the mean flow gradients are not zero a t  the boundary, and such 
boundary specifications are not appropriate. Since the vortex flow is irrotational 
outside the core, the mean flow a t  the boundary is essentially inviscid and steady 
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0 

-2 

-4  

a x  10' 

- 6  

- 8  

- 10 
0 1 2  3 4 5 6 7 8 9 10 

i 

FIGURE 3. Comparison of (a) density, (6) pressure, (c) tangential velocity, and (d) radial velocity 
from computations and experiments of Mandella (1987). z= 20800, M = 0.67: -, data of 
Mandella (1987) ; ----, numerical solution. 

until the viscous vortex core has spread to near the boundary. The amplitudes of the 
incoming characteristics are then approximated with the gradients of the 
homentropic, irrotational initial condition at the boundary. We note that the 
resulting boundary conditions are not perfectly non-reflecting to acoustic disturb- 
ances, but reasonable accuracy near the computational boundaries is verified by 
performing computations on different-sized computational domains (Colonius et al. 
1991), and errors due to the boundary conditions are localized near the computational 
boundary. 

The computations are initialized with an inviscid solution to (1.1). The initial 
vorticity profile is assumed to be Gaussian, and homentropic. The radial velocity is 
initially set to zero. Since the pressure is initially lower than ambient in the core of 
the vortex, the density is also lower than ambient; for M = v,/a, > 1.211 (when y 

= 1.4) (where v, is the maximum tangential velocity and a, the ambient sonic 
velocity) the vortex core is evacuated in the initial condition. (In terms of the 
maximum local Mach number, M *  = v,/a, > 2.276 for evacuation of the core.) 

Since the initial condition is not a solution to the viscous equations (2.1), there is 
a transient period in which an acoustic wave is generated at the vortex centre and 
travels radially outward at the speed of sound. Figure 1 shows the evolution of the 

density, pressure, tangential velocity and radial velocities during the acoustic 
transient. The Reynolds number is sufficiently high (& = pm v, L/,u = 5000, where 
L is the radial position where the tangential velocity attains a maximum, urn) that 
the change in the pressure, density, and tangential velocity over the acoustic 
timescale is negligible. However, the radial velocity adjusts from zero to the profile 
shown in the figure. All variables in the figures are made non-dimensional as in (2.3). 

In figure 2 the quasi-steady radial velocity obtained from the full solution is 
compared to that predicted by (3.7). For this comparison, (3.7) is solved numerically 
for the given pressure, density and tangential velocity profiles of figure 1. The 
agreement is good, except near i? = 10, where the numerical solution diverges from 
the solution of (3.7). This discrepancy is due to small errors in the numerical solutions 
at  the artificial numerical boundary located a t  r" = 10, due to the approximations 
mentioned above. This procedure is repeated for several Reynolds numbers, and the 
agreement is quantitatively accurate to within 10 % for > 1000. Only qualitative 
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i 

FIQURE 4. Evolution of radial velocity from computation. Initial condition (i= 0) for density 

pressure and taneential velocity from Mandell: (1987), radial veJocity is initiallxzero. = 20800, 

12.5. 
M = 0.67: -, t = 0;  ----, t = 2.5; -.-, t = 5.0; --------,  t = 7.5; t = 10.0. - E =  

_._.__-...--- 

0 1 2 3 4 5 6 7 8  
i 

FIQURE 5. Comparison of radial velocity of computed vortex of figure 4 at t^= 12.5 and radial 
velocity computed from (3.7) : -, simulation after acoustic transient; ----, numerical solution 
of (3.7). 

agreement is observed for Reynolds numbers as low as 100. Similarly, (3.7) is solved 
over a range of Mach numbers (M = vm/a,) from 0.0625 to 0.67, and the agreement 
is good over the entire range. 

Experiments performed by M & B, however, show a much larger radial velocity 
than predicted by the numerical solutions, and estimated by (3.7). In the experiments 
of M & B a shock wave is passed over an airfoil at  large angle of att'ack. The resulting 
starting vortex is convected downstream of the airfoil. Measurements of the density 
and pressure distributions inside the vortex were made; the density was measured by 
the method of double-pulsed holographic interferometry, and the pressure was 
measured by a pressure transducer mounted flush on one of the sidewalls of the test 
section. The measured density and pressure distributions are used to infer values of 
the radial and tangential velocity profiles through the use of the continuity equation 
(equation (2.1 a ) ) ,  and (3.4b), respectively. Figure 3 shows the distribution of the 
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The free compressible viscous vortex 55 

r (m) 

FIGURE 6. Balance of terms in the Second Law of Thermodynamics, equation (3.8), computed from 

data of Mandella (1987): -, pTas/at; ----, pTuas/ar; -.-, ( l / r ) (a /ar)rkaT/ar;  - - - - - - - - ,  
sum of terms. 

density, pressure, and velocities at one measurement time ( t  = 500 ps, t^ = 191) from 
the experiment. The Reynolds number Re and Mach number are 20800 and 0.67 
respectively a t  this measurement time. Superimposed on these distributions are 
computational results for an initially homentropic vortex at the same Reynolds and 
Mach numbers. The computed vortex which is plotted on the figure has undergone 
the acoustic transient described above. The distributions of the pressure, density, 
and tangential velocity are qualitatively similar to the experimental vortex. 
However, the radial velocity inferred from the experimental data is two orders of 
magnitude larger than the computed radial velocity. (The radial velocity compared 
to the tangential velocity inferred from the experiment and from the full solution are 

and lo-’, respectively.) The difference between the distribution of density, 
pressure, and tangential velocities between the experiments and computations is at 
most 50%, and cannot account for a 100 fold change in radial velocity. 

This is borne out by computations where the initial condition for the pressure, 
density, and tangential velocity are taken from the experiments, whereas the initial 
radial velocity was set to zero. Figure 4 shows the distribution of radial velocity 
during the acoustic transient. The computed values of 6, $, and b do not change 
significantly. During a similar time period M & B report a significant change in the 
measured values of 8. Figure 5 shows the resulting radial velocity distribution from 
the computations compared with the profile predicted by (3.7) solved using for the 
experimental distributions of density, pressure, and tangential velocity. Again the 
agreement is good. However, the radial velocity predicted by the computation and 
(3.7) is still two orders of magnitude smaller than that inferred by the solution of the 

continuity equation from the measured distributions of density. 
Is it  possible that both radial velocity distributions are correct, since the solutions 

depend on initial conditions? To address this issue, a computation is conducted 
where the initial conditions for all four variables (density, pressure, tangential and 
radial velocities) are taken from the experiments. During the time interval computed 
(corresponding approximately to the length of time in the experiment) the pressure, 
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density, and tangential velocity decay negligibly, while the radial velocity undergoes 
a large transient. The values of the radial velocity after the transient wave leaves the 
computational domain (t^ = 12.5) are two orders of magnitude smaller than the initial 
distribution (i = 0). 

To further investigate this inconsistency, the Sccond Law of Thermodynamics is 
employed. For two-dimensional axisymmetric flow, in dimensional form, the Second 
Law is 

where s is the entropy. Equation (3.8) is exact; the inequality results from the 
positive definite viscous dissipation associated with the motion. Ideal gas relations 

pTas/at + p T u  as/&- 1 / r  (rktIT/ar) > 0, (3.8) 

yield 

( 3 . 9 ~ 4  b )  

And with the use of (3.4b), which M & B use to dctcrminc the tangential velocity from 
the measured pressure profile, 

(3.10) 

All of the quantities on the right-hand sides of (3.9) and (3.10) are computed from 
the experimental data reported by M & B. The density, radial velocity and 
temperature distributions in (3.8) are also computed from the experimental data. 
The conductivity, k, is assumed to vary linearly with temperature over the range of 
temperatures in the experiments (Incropera & DeWitt 1985). These terms are then 
substituted into the Second Law (3.8). Each of the three terms on the left-hand side 
of (3.8) is plotted in figure 6, as well as the sum of the three terms. Since the sum is 
less than zero for all P ,  the distributions of density, pressure: and radial and 
tangential velocity measured and inferred in the experiments are not valid for two- 
dimensional axisymmetric flow since they violate the Second Law. 

The experimental vortex could not have been two-dimensional and axisymmetric. 
The measured rate of change of density cannot be only due to the radial velocity. In 
the framework of (3.7), viscous effects alone cannot generate a radial velocity large 
enough to balance the measured rate of change of density. The presence of a third 
velocity component (along the vortex axis) is a possible explanation for the 
discrepancy. The experimental vortex could have been influenced by the boundary 
layers on the sidewalls of the wind tunnel. Rott  & Lewellen (1966) show that the flow 
induced into the boundary layer by the vortex may be sufficiently large to have a 
dominant role in the conservation of angular momentum in the vortex. We speculate 
that similar deviations from two-dimensionality may be present in other ‘two- 
dimensional ’ experiments involving compressible vortices. 

Equation (3.7) is useful in estimating the magnitude of the radial velocity in the 
vortex given the distributions of tangential velocity and temperature. However, 
general solutions to  (3.4e), (3.5a-c), and (3.7) are still difficult to  find. In  the next 
section we expand these equations in powers of M2 and find exact solutions for the 
O( 1) base flow and the O(M2) perturbations. 

4. Low-Mach-number expansion 

In  $3  the full equations for two-dimensional axisymmetric flow of an ideal gas 
(equations (2.1)) were expanded on two timescales, an acoustic time and a viscous 
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The free compressible viscous vortex 57 

time. The evolution of the density, tangential velocity, radial velocity, and pressure 
on the viscous timescale are given by (3 .4e ) ,  (3.5a-c), and (3 .7 ) .  These equations are 
now expanded in powers of Mach number squared. First the equations are rewritten 
using the following (incompressible) non-dimensionalization : 

and 

where L is again some lengthscale of the vortex such as the core size, and v, is the 
reference tangential velocity, v. We obtain 

( 4 . 3 a )  

- aa ;; ac) 1 a (1 a ,-I 
- -2v"wa 1 a 

Re G2p"? a? ? a? 

p -+S-+; ==- --(rzI) , (4.3 b )  (at" r Reap ? a ?  

u=-- (- - (?a)) 

(4 .3c )  

aP aP - ac 4 1 a a "  wy(y-1) aa v" 
-++-+((Y- l )T  at" a? (a? -+- P) =---- RePrp"?a i (  ?- a$ + Rep (---) a? ? , ( 4 . 3 4  

pT = 1 + yW@.  (4 .3e )  

Furthermore, suppose that 

f=f;,+WX+. . . , (4 .4 )  

where f is any of 6, 6, p", @, or ?. This perturbation expansion is akin to a 

Rayleigh-Janson expansion, applied to a viscous flow. 
Retaining terms of O(1) in (4 .3 )  leads to 

ap, 1 a(po c, T") -+- = 0, at" a? ( 4 . 5 ~ )  

(4 .5b )  

(4 .5c)  

(4 .54  

poG = 1. (4 .5e)  
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For an incompressible vortex the dilatation must vanish and therefore the left-hand 
side of ( 4 . 5 ~ )  must vanish. Furthermore, if the dilatation vanishes, 

6, = C(t")/P. (4.6) 

But the radial velocity, 6, must go to zero at r" = 0, and therefore Go = 0. Then ( 4 . 5 ~ )  

and (4.5e) yield 
ap,/at"= 0, aF0/at"= 0. (4.7) 

Hence, 

If Po is to be bounded as r"+O and ?+ CO, then = 1, and (4.5) reduce to 

p o -  - p -  o - l ,  6 , = 0 ,  (4.9a, b )  

Equations (4.9) are the well-known equations for the evolution of an in- 
compressible, uniform-density vortex, and permit an infinite number solutions for 
which Go + 0 as ?+ 0, and which are bounded as r"+ co . The general solution in terms 
of vorticity (Go = (l/?)(a/a?)(?fio)) was found by de Neufville (1957): 

(4.10) 

- -  
where T = t/Re, 7 = P/4r, and L ,  is the Laguerre polynomial of degree m. Mode 
m = 0 has finite circulation, and infinite angular momentum. Mode m = 1 has zero 
circulation, and finite total angular momentum. Higher modes have zero circulation 
and zero total angular momentum. The vorticity in the zeroth mode has the same 
sign everywhere, while in general mode m has m zero crossings of vorticity. The decay 
of an arbitrary initial distribution of vorticity can be found as a superposition of the 
various modes, because ( 4 . 9 ~ )  is linear. The constants C, are then determined by the 
initial distribution, using the orthogonality property of the Laguerre polynomials. 
Let the initial time be denoted by r = Ti, where ri + 0. Then 

(4.11) 

And ji, can be found: (4.13) 

The shapes of the first few modes of the vorticity, tangential velocity and pressure 
are shown in figure 7. (C, = 1,  and T = 1 in figure 7.) Mode 1 corresponds to  the 
solution due to Oseen (1912), and mode 2 corresponds to  the solution due to  Taylor 
(1918), and also studied by Long (1961), Sibulkin (1961), Morton (1969), and Uberoi 
(1979). 
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-0.1 " ' " " ' " " ' " ' " 
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-0.25 

-0.50 

1 

FIGURE 7. First four modes of the analytical solution for an incompressible vortex, 
( b )  tangential velocity, (c) vorticity: -, m = 0;  ----, m = I ; - . -  m = 2 . - - - -  

pressure, 
-, m = 3. 
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Terms of O(M2) in (4.3) are given by 

( 4 . 1 4 ~ )  

(4.14 b) 

( 4 . 1 4 ~ )  

(4.14ef) 

Equations (4.14) are now sufficiently simple to yield analytical solutions. 
Integrating ( 4 . 1 4 ~ )  twice gives the radial velocity, S,, in terms of the density 

perturbation and the O( 1 )  solutions : 

(4.15) 

where (4.14e) and the requirement that the radial velocity vanish as ? + O  and ?+ 

00 have been used. 
Rearranging ( 4 . 1 4 ~ )  and substituting for S, from (4.15), where (4.14e) and (4 .94  

have been used, gives 

Finally, (4.14b) is differentiated to give an equation for the vorticity perturbation 
in terms of thc density perturbation, the radial velocity, and the O( 1) vorticity : 

(4.17) 

Initial and boundary conditions are needed for both and 6,. It is required that 
fil decay and 6,+0 exponentially fast as ?-+ co. Owing to the cylindrical geometry, 
the slope of p1 and 3, must go to zero as r" goes to zero. Initial conditions are also 
expanded in terms of Mach number as 

( 4 . 1 8 ~ )  

(4.18b) 

We note that initial conditions such as (4.18) should be determined by matching 
a solution to (2.1) for small times (inner solution) from an arbitrary initial condition, 
to the solutions to (4.3), the outer solution. Such an inner solution which resolves the 
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The free compressible viscous vortex 61 

acoustic transient, varies on two distinct spatial scales - the near vortex region of 
scale L ,  and a far-field region of scale a,  t .  This asymptotic matching procedure is not 
attempted here, but useful information can be gained without it. Assume that the 
initial conditions for the outer solution are known, then solutions to (4.14) can be 
found in terms of the arbitrary functions pl(?, T ~ ) ,  Go(?, Ti), and Gl(T", T ~ ) .  In the next 
section, the behaviour of the solution for particular initial conditions will be 
examined. 

4.1. Low-Mach-number corrections to the Oseen vortex 

We now restrict our attention to the case where the (O(1)) vorticity, Go, is given by 

r 

(4.19) 

which corresponds to the incompressible solution found by Oseen (1912). r is the 
circulation of the vortex as defined by r = $ A  w dA. Hence the constants in (4.10) are 

(4.20 a,  b)  
given by P 

(4.21 a )  

(4.21 b) 
where Ei is the exponential integral, e.g. Abramowitz & Stegun (1972). 

If vm is chosen to be the maximum tangential velocity at  r = Ti, and L to be the 
radius at  the point where the velocity is maximum at 7 = T ~ ,  Co and Ti are fixed and 

Co x 0.699, Ti x 0.197. (4.22) 

If (4.19) and (4.21 a) are substituted into the right-hand side of (4.16) the result is 

P p - _  
0 - 16n2vk L27 ($ (1 - 2 exp ( -7) + exp ( - 27)) + Ei ( - 27) - Ei (-7) 

(exp ( - 7) - exp ( - 27)) 

(1-2exp(-7)+exp(-27)) . 1 (4.23) 

p1 is now split into a homogeneous and particular solution to (4.23), i.e. 

PI(?, 7 )  = p;(?, 7 )  +W(?, 7 ) .  (4.24) 

A particular solution which satisfies (4.23) and decays as ?+ a0 has been found (the 

details have been omitted). It is 

C'Pr [exp (-Pry) ( c ,  Ei (Pr 7) + c2 Ei ( (Pr-  1) 7) + c ,  Ei ((Pr-2) 7)) p y = 7  

1 
c4 1 

+-( 1-2 exp (-q)+exp (-27)) +-(Ei (-7) -Ei (-27)) , (4.25) 7 P r  

3-2 
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where 

T .  Colonius, S. K .  Lele and P. Moin 

1 

Pr 
c, =-(y- l ) (Pr-1) ,  c2 = - (y- l ) (Pr- l ) (2Pr- l ) ,  (4.26a, b )  

Y (4.26c, d )  
1 

c3 =-- (y- l ) (Pr- l )z ,  c4 = (y-1)-- 
Pr 2Pr ' 

The homogeneous problem is now 

(4.27) 

and the initial condition is now 

p":(r"> Ti) = p1(r", Ti)-R(r"> Ti) ,  (4.28) 

and 6: must decay as ?+-a. The general solution to  (4.27) is well known and its 
solution can be written as 

(4.29) 

where &(q, T ~ )  is the Hankel transform of the initial condition, 

P l ( q , T i )  = 2xJyP:(X>7i) Jo(2~qx)xdx. (4.30) 

Combining (4.29) and (4.30) and performing one of the integrations gives 

where lo is the modified Bessel function. 
can now be substituted into the right-hand side of (4.15), and 

the radial velocity '12, is determined. Likewise, the temperature perturbation can 
be determined from (4.14e). The right-hand side of (4.17) is also known in terms of 
the solutions for p",, C1 and the 0(1) solutions, and the vorticity perturbation 5, can 
be found by solving the (4.17) subject to the boundary and initial conditions. 

The solution for 

We proceed by taking the Hankel transform of (4.17) : 

dai/d7 (q ,  7 )  + 4xq2%(q, 7 )  = &(q, 7), 

where o,(q, 7) = 2x IOm G1(r", 7) J0(27cr"q) Fdr" 

is the Hankel transform of the vorticity perturbation, and 

(4.32) 

(4.33) 

is the Hankel transform of the right-hand side of (4.17). Solving the ODE (4.32), 
gives 

is1(q,7) = exp(-4nq27) exp(4xq27')&(q,~')d7'+B,(q,7i)exp(-4xq2(7-7i)), 

(4.35) 
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FIGURE S(a-c). For caption see p. 65. 

where ij(q, 7J is the Hankel transform of the initial condition GI(?, 7J. Finally, the 
solution for the vorticity perturbation is given by the inverse Hankel transform of 

GI(?, 7 )  = 27C ijl(p, 7 )  J0(27C?q) qdq. (4.36) 

(4.35) : 

J0- 
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FIQURE S(d-f). For caption see facing page. 

The quadratures in (4.31) and (4.36) can be performed given the initial conditions for 
the density and vorticity perturbations respectively. In $84.2 and 4.3, solutions are 

given for the density, radial velocity, and temperature perturbations for two 
particular initial conditions - a vortex which is initially hornentropic, and a vortex 
which initially has a uniform density. 
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FIGURE 8. Evolution of (a) density perturbation, (b) radial velocity perturbation, (e) temperature 
perturbation, (d )  entropy perturbation, (e) vorticity, (f) tangential velocity, and (9) pressure : -, 
7 = Ti ; ---- , ~ = 0 . 2 1 7 ; - - . - - , ~ = 0 . 2 7 7 ;  - - - - - - - - , ~ = 0 . 5 1 7 ; - - - ~ , ~ = 0 . 8 3 7 ; - , 7 =  1.477; 

, T = 5.317; -.-, T = 10.437. _ _ _ _  

4.2. Evolution of an  initially homentropic vortex 

The entropy distribution to O(M2) in the vortex is determined from the 
incompressible pressure and the O(M2) density by 

= W(@, -pl) + O(M4). 

z1 = j5,-p1. 

Therefore the initial condition for p1 for an initially homentropic vortex is 

7i) = j5o(r", 71) 

(4.37) 

(4.38) 

The particular solution (4.25) at T = 7i is subtracted from (4.38) and the result, 
p"!(r", 7i), is substituted into (4.31). The quadrature in (4.31) is performed numerically 
by first mapping the infinite domain to (- 1,l) and using Gaussian quadrature with 
as many as 500 quadrature points depending on the values of r" and 7 in (4.31). Pr and 
y are taken to be 4 and 1.4 respectively. 

The radial velocity C, is determined by substituting (4.31), (4.25), (4.21~) and 
(4.19) into the right-hand side of (4.16). The quadratures are again performed 
numerically. The temperature perturbation is found by substituting the 
expressions for p1 and j5, into (4.14e). 

and .Fl are shown in figure 8 versus r" a t  
various times. In order to show all phases of the vortex evolution on one plot, the 
time increment in the figure is not uniform. For reference, the distributions of the 
first-order variables Go, fro, and F0 are also shown in figure 8. 

In the incompressible Oseen solution, viscous effects are limited to a region in the 

The resulting distributions of pl, GI, 
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._ 
1 00 10' 

log i 

FIGURE 9. Evolution of entropy perturbation : -, 7 = 0.207 ; ----, 7 = 0.217 ; 
-.- , T =  0.237; --------,  7 = 0.277; ---, 7 = 0.357. 

core of the vortex. The viscous region spreads outward like a - 7 ; .  The pressure 
(figure 8g) is initially lower than ambient and decays to the ambient conditions on 
the viscous timescale. For r" 9 74 the pressure does not change in time, and decays as 
l / P .  For the initially homentropic vortex, the O(M2) density correction (figure 8a)  
is initially equal to the pressure. The density decays in time in a manner similar to 
the incompressible pressure, but a t  a slightly different rate such that the entropy in 
the core (figure 8 d )  does not remain uniform. Far from the core the density changes 
in time to O ( l / P ) ,  and therefore the entropy also changes in time to O(i/Y4). This is 
due to the viscous dissipation of energy and heat conduction which create entropy 
even far from the core of the vortex. To O(M2) the entropy change is given by 

(4.39) 

Both terms on the right-hand side of (4.39) decay like l / P  far from the core, which 
gives the i /F4  entropy decay shown in figure 9 where logs", has been plotted versus 
log r";  the slope of the curves is - 4 away from the core. 

Inside the vortex core, the entropy first increases with time, but eventually peaks 
and begins to decay. This can be understood by examining the balance of terms on 
the right-hand side of (4.39). The viscous dissipation term is always positive, while 
the heat conduction term can be positive or negative. For the initial temperature 
profile (figure 8c) ,  the heat conduction term is positive in the core and negative away 
from it. Away from the core the viscous dissipation term dominates the balance, and 
the entropy increases everywhere initially. Eventually, as the density and pressure 
decay a t  different rates, the temperature becomes greater than ambient in the core, 
and the sign of the heat conduction term in (4.39) is reversed, and therefore the 
entropy in the core begins to decrease in time. Thus we may think of the evolution 
of the vortex to be in two phases. First, the core region relaxes from the 'non- 
equilibrium ' initial condition, so that the entropy is larger than ambient. Then the 
entropy in the core decays, so that the entropy returns to  its ambient value as the 
vortex dies out. A t  this stage, a t  a given observation point outside thc vortex core, 
the entropy is always increasing owing to the dominant viscous dissipation term in 
(4.39), but eventually the viscous core (which spreads as 7:) reaches the observation 
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10. Evolution of (a) radial velocity, (b )  entropy. Lines from analytical solution: ----, 

Symbols from numerical solution: 0,  7 = 7i; 0,  7 = 0.207; A, 7 = 0.217; +, 7 = 0.277; x ,  7 = 

0.357; 0, r = 0.512. 

7=71; .-, 7 3 0 . 2 0 7 ;  --------,  7=0.217;  ---, ~ = 0 . 2 7 7 ;  -, 7 = 0 . 3 5 7 ;  ----, 7=0.512. 

The free compressible viscous vortex 

0.175 . I . I . s . t ~ ~ ~ > . ~ ~ ~ ~ ~ ' 4  

(b) - 

- 2. -. -. - 

67 

point and the entropy decays. Note that the second phase, where the entropy is 
decaying in the core, occurs after long times when the vorticity at  r" = 0 has decayed 
to about 25% of its initial value. 

The induced radial velocity (figure 8 b )  is negative and has a profile which is similar 
to the tangential velocity. The magnitude of the radial velocity reaches a maximum 
near the edge of the vortex core, which spreads outward at  a rate proportional to 7:. 

Far from the core the radial velocity decays as l/?, but, unlike the tangential 
velocity, also decays in time like 1/7. 

We note that the preceding arguments for the far field are valid far from the vortex 
core, but not so far as the acoustic disturbance which propagates away from the 
vortex at the sonic velocity, i.e. (vt)' + r + a,t. It is of interest, at  this point, to 
compare the solutions given above with a numerical solution to the full equations 
(2.1) which resolves the acoustic disturbance. A numerical solution to the full 
equations is found forM = 0.125 and Re = 125 (the details of our numerical solution 
scheme were given in $3.1). The initial condition is hornentropic, and the velocity, 
and pressure given by (4.21) are used as initial conditions. The radial velocity is 
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initially set to zero. In figure 10 the radial velocity 5, and the entropy 8, from the 
numerical solution are compared with the analytical solution for several times. The 
agreement in the entropy profiles is good, including the l / P  decay of entropy away 
from the vortex core. The radial velocity from the numerical solution a t  7 = 0.207 

shows the acoustic disturbance created a t  r = ri which has travelled away from the 
core a t  the sonic velocity. Behind the disturbance (7 > 0.207), the agreement 
between the numerical and analytical solutions is again good. The agreement 
between the numerical and analytical solutions for C0, fjo, q, and p”, is also good. 

4.3. Evolution of an initially uniform-density vortex 

For a vortex which initially has a uniform density, 

#G1(P,T1) = 0. (4.40) 

Following the same procedure as in $4.2, we solve for the evolution of pl, C,, and E .  
The resulting distributions of pl, C,, and 8, are shown in figure 11 versus P at  
various times (the first-order variables, Po,  C0, and Go, are identical to those shown in 
figure 8). 

Since the density is initially uniform, the entropy perturbation (figure l l d )  is 
initially equal to  the pressure. The entropy in the core decays to ambient on the 
viscous timescale, in the same manner as the incompressible pressure. Outside the 
vortex core, viscous dissipation and heat conduction again cause the entropy to 
change with time to  O ( i / P ) ,  as in the initially homentropic vortex. This causes the 
density (figure l l a )  away from the vortex core to increase as O ( l / P ) .  Near the core 
region, the density profile is more complicated. At early times, the density becomes 
lower than ambient inside the core, and higher than ambient further away. As time 
increases, the density ‘well’ fills up and the density becomes larger than ambient 
everywhere in the vortex. Eventually, the density in the core of the vortex reaches 
a maximum, and begins to decay, Outside the spreading vortex core, the density is 
always increasing in time at a rate proportional to i /P4 .  Again, this phase of the 
evolution occurs after long times, when the centreline vorticity has decays to  25% 
of its initial value. Note that the density is very small (20 fold smaller) for all times 
compared to the density for the homentropic initial condition. 

The radial velocity (figure 11 b) is initially positive in the core, and negative outside 
it. As the vortex core spreads, the radial velocity near its edge changes sign to 
positive values, which is consistent with the eventual decrease of the density in the 
core, as the vortex decays. 

4.4. Discussion 

We have determined the evolution of the O(M2) corrections to the distributions of the 
density, temperature, entropy, and radial velocity for the Oseen vortex, for two 
specific initial conditions, i.e. uniform entropy and uniform density. The framework 
of the analysis, however, is sufficiently general to compute the evolution from any 
arbitrary initial condition, subject to the constraints of low Mach number, and the 
neglect of acoustic transients. 

Furthermore, the analysis can be easily generalized to O( 1 )  two-dimensional 
axisymmetric vortex flows other than the Oseen vortex. From (4.10) any of these 
flows can be expressed as a superposition of an infinite number of vorticity modes. 
The Oseen vortex corresponds to the first mode, and is the only mode which has a 
non-zero circulation and hence an algebraically decaying tangential velocity in the far 
field. All other modes have velocity profiles which decay exponentially fast in the far 
field. Hence the particular solution to (4.16) for other O(1) flows must also decay 
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FIGURE 1 1  (u-c). For caption see facing page. 

exponentially fast. Therefore homogeneous solutions to (4.16) and the particular 
solution for the 0(1) Oseen vortex are the only axisymmetric solutions to (4.16) 
which will decay algebraically in the far field. Physically, the l/r" tangential velocity 
of the Oseen vortex produces viscous effects (i.e. viscous dissipation and heat 
conduction) which are not limited to the vortex core. As we discuss later in this 
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FIGURE 11. Evolution of perturbation (a) density, (b) radial velocity, ( c )  temperature, ( d )  entropy: 
~ 7 = 7 . ---- 

1.477; ----, 7 = 5.317: -.-, 7 = 10.437. 
7 = 0.217; -.-, 7 = 0.277; - - - - - - - - ,  7 = 0.517; ---, 7 = 0.837; -, 7 = 1 3  

section, the l/r" decay in velocity is not necessary to generate radial inflow - any 
swirling axisymmetric compressible flow generates a radial inflow due to viscous 
effects. 

For both initial conditions studied in the previous sections, the Oseen vortex 
produced entropy far from the core, and gained mass due to a negative radial 
velocity far from the core. For an arbitrary swirling flow, to O(M2), the total change 
in entropy of the vortex is given by integrating (4.39) over the entire area of the 
vortex 

(4.41) 

(Owing to  the multiple lengthscales (acoustic and viscous) in the problem, the upper 
limits in these integrals must be interpreted as the outer limit of the inner variable, 
( a , t ) / L ,  where L is the (time-dependent) location of the maximum tangential 
velocity.) Equation (4.15) shows that the total entropy of the vortex increases in 
time, regardless of the initial distribution of vorticity, density and entropy. For vortices 
with finite circulation, the total change in entropy increases as ln r ,  while for higher 
vorticity modes ( ( m  > 0) in (4 .12) )  the total entropy increases a t  a rate proportional 
to  

The thermal energy equation, to O(M2),  is 

Physically, equation (4.42) gives the increase in total enthalpy of the fluid due to 
pressure work and viscous dissipation. But since the radial pressure gradient of the 
vortex must be provided by the centripetal acceleration, the pressure work term in 
(4.42) is given, by integration by parts of ( 4 . 9 4 ,  by 

(4.43) 
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The free compressible viscous vortex 71 

Therefore the pressure work term in the thermal energy equation is opposite in sign 
but equal in magnitude to the change in kinetic energy of the vortex. Since the 
kinetic energy of the vortex decreases as the vortex decays, the pressure work term 
is positive, and hence the vortex is compressed. Substituting (4.43) and using (4.14a), 

(4.14 e )  in (4.42) gives the necessary radial velocity at infinity for such a compression : 

(4.44) 

Hence the compressible axisymmetric vortex has a negative radial velocity far  from the 
core, regardless of the initial distributions of vorticity, density and entropy. 

The specific form of the radial velocity can be found by substituting (4.12) into 
(4.44). For the Oseen vortex (C, =I= 0, C, = 0, n = 1 ,2 , .  . .), far from the core 

(4.45) 

If v ,  = v,(t) is chosen to  be the maximum velocity of the vortex at time t ,  and L ( t )  
the radius where the maximum occurs then (4.45) can be written 

(4.46) 

where M *  = vm(t) /am,  Re* = r / v ,  r* = r /L ( t ) ,  and a x 3.433 is a constant. Thus the 
radial velocity only depends on the local (in time) characteristics of the vortex. Far 
from the core v - r /2m and the ratio of the radial velocity to  tangential velocity is 

--- u 2~/3M*’(2-7) 

Re* 
9 

V 
(4.47) 

where /3 x 2.455 is a constant. Equation (4.47) shows that u / v  + 1 when M*2/Re* -4 
1,  which is consistent with the multiple-timescale and low-Mach-number expansions. 
For the Taylor swirl (C,, = 0, Cl + 0, C, = 0, n = 2,3 , .  . .) the radial velocity far from 
the core is 

(4.48) 

When scaled with the (time-dependent) Mach and Reynolds numbers, the radial 
velocity is 

K M * 2 ( 2  - y )  U 

v,o- Re*r* ’ 
(4.49) 

where M * = vm(t)/aao, Re* = A Y / ( L ( ~ ) ~ V ) ,  r* = r /L( t ) ,  and K x 4.482 is a constant. AY 
is the (constant) total angular momentum as defined by (1.7).  The radial velocity is 
again dependent on only the local characteristics of the vortex. 

5. Conclusions 

Analytical solutions for the evolution of a free, compressible, viscous, heat- 
conducting vortex are found in the limit of large, but finite, Reynolds number, and 
small, but finite Mach-number. The full equations of motion for two-dimensional 
axisymmetric flow are expanded on an acoustic and a viscous timescale. An ordinary 
differential equation giving the dependence of the radial velocity on the tangential 
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velocity, density, and temperature of the compressible vortex is derived. Estimates 
of the radial velocity, found by integrating this equation, are in good agreement with 
numerical solutions of the full equations. Agreement with the experiments of M & B 
is poor, and the discrepancy is attributed to three-dimensionality in the experiments. 
It is shown that the profiles reported by M&B violate the Second Law of 
Thermodynamics for two-dimensional axisymmetric flow. The radial velocity in the 
two-dimensional compressible vortex is generated by viscous effects. It is small 
( - P / R e )  and hence does not play an important role in the decay of the vorticity 
over long times. 

The equations for the evolution of the vortex on the viscous timescale are 
expanded in powers ofAP. The base flow (O(1)) is chosen to be an Oseen vortex. O(M2) 
corrections for the density, temperature, entropy and radial velocities are found for 
a vortex which is initially homentropic, and for a vortex which initially has a uniform 
density . 

In the case of an initially homentropic vortex, the density decays like l/r2 far from 
the vortex core. The entropy far from the core is proportional to l/r4 and increases 
with time. This entropy production is the result of viscous dissipation and heat 
conduction produced by the 1 / r  decay of the Oseen tangential velocity profile. In the 
vortex core, the entropy is found to first increase with time, and eventually decay 
back to zero as the core of the vortex spreads. In  the case of a vortex which initially 
has uniform density, the entropy decays like l/r2 far from the vortex core. The 
entropy changes in time to O(l/r4), again due to viscous effects. The density at first 
decreases in the core, but later builds up there due to the negative radial velocity 
induced by viscous effects outside the core. Eventually the spreading of the core 
changes the sign of the radial velocity and an outflow of mass allows the density in 
the core to decay to ambient conditions. 

The analysis shows that, to O ( W ) ,  compressible axisymmetric swirling flows are 
compressed, regardless of the initial distributions of vorticity, density, and entropy. 
The compression is the result of pressure work which is required to balance the 
viscously decaying kinetic energy of the vortex. Mass is convected into the 
compressible vortex by a small negative radial velocity far from the vortex core. The 
radial velocity is described in terms of an arbitrary distribution of tangential 
velocity. When scaled with the (time-dependent) maximum tangential velocity of 
the vortex, the radial velocity is proportional to M*2/(r*Re*), whereM* and Re* are 
the relevant (time-dependent) Mach and Reynolds numbers of the swirling flow, and 
r* is the distance from the core relative to the location where the maximum 
tangential velocity occurs. 

This work was supported by the Office of Naval Research under contract number 
ONR-N00014-88-K-0592. The computer time was provided by NASA Ames Research 
Center. 
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