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Abstract

Oscillation is an important cellular process that regulates timing of different vital life cycles. 

However, in the noisy cellular environment, oscillations can be highly inaccurate due to phase 

fluctuations. It remains poorly understood how biochemical circuits suppress phase fluctuations 

and what is the incurred thermodynamic cost. Here, we study three different types of biochemical 

oscillations representing three basic oscillation motifs shared by all known oscillatory systems. In 

all the systems studied, we find that the phase diffusion constant depends on the free energy 

dissipation per period following the same inverse relation parameterized by system specific 

constants. This relationship and its range of validity are shown analytically in a model of noisy 

oscillation. Microscopically, we find that the oscillation is driven by multiple irreversible cycles 

that hydrolyze the fuel molecules such as ATP; the number of phase coherent periods is 

proportional to the free energy consumed per period. Experimental evidence in support of this 

general relationship and testable predictions are also presented.
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I. INTRODUCTION

Living systems are dissipative, consuming energy to perform key functions for their survival 

and growth. While it is clear that free energy [1–3] is needed for physical functions, such as 

cell motility [4] and macromolecule synthesis [5], it remains poorly understood whether and 

how regulatory functions are enhanced by free energy consumption. The relationship 

between biological regulatory functions and nonequilibrium thermodynamics has been an 
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active area in biophysics [6–11]. For example, recent studies in different cellular adaptation 

processes demonstrated that the cost-performance trade-off follows a universal relationship, 

independent of the detailed biochemical circuits [8, 9].

Oscillatory behaviors exist in many biological systems, e.g., glycolysis [12], cyclic AMP 

signaling [13], cell cycle [14–16], circadian rhythms [12, 17], and synthetic oscillators [18, 

19]. These biochemical oscillations are crucial in controlling the timing of life processes. 

Much is known now about the structure of biochemical circuits responsible for these 

oscillatory behaviors. There are a few basic network motifs, illustrated in Figure 1a, which 

are responsible for all known biochemical and genetic oscillations [12, 13, 16–18]. These 

network motifs share a few essential features, such as nonlinearity, negative feedback, and a 

time delay, as summarized by Novak and Tyson in [20]. However, in small systems such as 

a single cell, the dynamics of oscillations are subject to large fluctuations from the 

environment, due to their small sizes. Thus, one may ask how biological systems maintain 

coherence of oscillations amidst these fluctuations [21]. Here, we study the thermodynamic 

cost of controlling oscillation coherence in different representative oscillatory systems and 

investigate whether there is a general relationship between the accuracy of the oscillation 

and its minimum free energy cost that may apply to all biochemical oscillations.

We study three specific models, the activator-inhibitor (AI) model, the repressilator model, 

and the allosteric glycolysis model, chosen to exemplify the three different basic oscillation 

motifs, as shown in Fig. 1. For all the systems studied, a finite (critical) amount of free 

energy is needed to drive them to oscillate. Beyond the onset of oscillation, extra free energy 

dissipation must be applied to reduce the phase diffusion constant and thus enhance the 

coherence time and phase accuracy of the oscillations. A general inverse relationship 

between the phase diffusion constant and the free energy dissipation is found in all three 

models studied. The parameters in this inverse relationship and the range of its validity 

depend on the details of the system. This general energy-accuracy relation for noisy 

oscillations is also verified analytically in the noisy complex Stuart-Landau equation. In the 

following, we report these results followed by a in-depth discussion of a plausible general 

microscopic mechanism/strategy for energy-assisted noise suppression.

II. MODELS AND RESULTS

A. Three biochemical oscillators representing the basic network motifs

All known biochemical and genetic oscillators contain at least one of the basic motifs (or 

their variance) in network topology [20, 22]. To search for general principles in these noisy 

oscillatory systems, we study three biochemical systems (Fig. 1), each representing one of 

the three basic network motifs responsible for oscillatory behaviors. The rst one is the 

activator-inhibitor (AI) system, where a negative feedback is interlinked with a positive 

feedback (Left panel, Fig. 1a). This regulatory motif is common in biological oscillators, 

like the circadian clock in cyanobacteria [23, 24], cell cycle in frog egg [25, 26], cAMP 

signaling in Dictyostelium, and genetic oscillators in synthetic biology [19, 27, 28]. We 

implement this motif in a simplified biological network with a phosphorylation-

dephosphorylation cycle (Fig. 1b). The second model is a repressilator, which consists of 

three components connected in a negative feedback loop, such that each component 
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represses the next one in the loop, and is itself repressed by the previous one (Middle panel, 

Fig. 1a). The rst synthetic genetic oscillator was built with this motif [18]. Many important 

transcriptional-translational oscillators also use this motif as their backbone, such as 

circadian clock in mammalian cells [17], NF-κB signaling [29], and the p53-mdm2 

oscillations in cancer cells [30]. Here, we take the repressilator composed of CDK1, Plk1, 

and APC in a cell cycle as our case study (Fig. 1c). The third oscillatory network motif we 

studied is the substrate-depletion model [31] (the last panel in Fig. 1a), where substrate S is 

converted by a process that is ampli ed autocatalytically by the product P . Examples of 

substrate-depletion motif are oscillations in glycolysis [12, 32] and Calcium signaling [33]. 

Here, we examine the noise effect in glycolysis oscillations, where the allosteric enzyme 

PFK catalyzes substrate to product in a network shown in Fig. 1d. To show the generality of 

our results, we have also studied the brusselator model, which represents one of the simplest 

chemical systems that can generate sustained oscillations. The brusselator is a special kind 

of substrate-depletion model.

In our study, we introduced a parameter γ to characterize the reversibility of the biochemical 

networks. In a reaction loop, γ corresponds to the ratio of the product of the reaction rates in 

one direction (e.g., counter-clock-wise) and that in the other direction (e.g., clock-wise). 

When γ = 1, the system is in equilibrium without any free energy dissipation. For γ ≠= 1, 

free energy is dissipated. Here, we study the relationship between the dynamics and the 

energetics of the biochemical networks by varying γ. The mathematical details of the four 

models are described in the Supplemental Information (SI); all parameters (e.g., reaction 

rates, concentrations, time, and volumes) are shown here as dimensionless numbers with 

their units explained in SI.

B. Phase diffusion reduces the coherence time

In all four models that we studied, there is an onset of oscillation as γ decreases below a 

critical value γc (< 1). This means that a finite critical free energy dissipation (Wc > 0) is 

needed to generate an oscillatory behavior (see Fig. S1 in SI). In Fig. 2a, two trajectories of 

the concentration of the inhibitor X are shown for γ = 10–5 < γc in the activator-inhibitor 

model, where γc = 2 × 10–3. As evident in Fig. 2a, biochemical oscillations are noisy. To 

characterize the coherence of the oscillation in time, we computed the auto-correlation 

function C(t) for a given concentration variable x in the network. As shown in Fig. 2b, C(t) 

follows a damped oscillation:

(1)

where T is the period and τc defines a coherence time for the oscillation.

The oscillatory state breaks time translation invariance (symmetry) of the underlying 

biochemical system. As a result, the phase of the oscillation is a soft mode and follows 

diffusive dynamics in the presence of noise. To quantify the phase diffusion, we simulated 

many trajectories in the model(s) with the same parameters and the same initial conditions. 

In Fig. 2c, the peak times for 500 trajectories in the AI model are shown in a raster plot 

together with the peak time distributions (red lines). The variance (σ2) of the distribution 
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versus the average peak time is shown in Fig. 2d. It is clear that the variance goes linearly 

with time, confirming the diffusive nature of the phase, and the linear slope deffines a peak 

time diffusion constant D. It is easy to show that the coherence time τc is inversely 

proportional to D:

(2)

where α is a constant dependent on the waveform (α = (2π2)–1 for a sine wave).

C. Free energy dissipation suppresses phase diffusion

As γ decreases below γc, more free energy is dissipated. What is the effect of the additional 

free energy dissipation beyond the onset of oscillation? From the chemical reaction rates, we 

can compute the free energy dissipation rate [34]:

(3)

where  and  are the forward and backward fluxes of the ith reaction, and free energy is 

in units of thermal energy. For the activator-inhibitor and glycolysis models, we calculated 

the energy dissipation rate using Eq. 3. For systems with continuum stochastic dynamics 

described by Langevin equations (e.g., the brusselator and the repressilator models), we can 

obtain the steady-state distribution  by solving the corresponding Fokker-Planck 

equation or by direct stochastic simulations (see Fig. S2 in SI for an example). From , 

we computed the phase space uxes and the free energy dissipation rate following [9] (see the 

Methods section and SI for details). For oscillatory systems, the dissipation rate Ẇ varies in 

a period T. We define  to characterize the free energy dissipation per period 

per volume.

For each of the four models, ΔW and the dimensionless peak time diffusion constant D/T 

were computed for different parameter values (reaction rates, protein concentrations) in the 

oscillatory regime γ < γc and for different volume V. As shown in Fig. 3a for the activator-

inhibitor model, D/T decreases as the energy dissipation ΔW increases and eventually 

saturates to a fixed value when ΔW → ∞ (i.e., γ = 0). The phase diffusion constants scale 

inversely with the volume V. As shown in Fig. 3b, V × D/T for different volumes collapsed 

onto a simple curve, which can be approximated by:

(4)

where Wc is the critical free energy, and W0 and C are intensive constants (independent of 

volume), whose values are given in the legend of Fig. 3. Eq.4 also holds true for the other 

models (repressilator, brusselator and glycolysis) we studied, see Fig. 3c and Fig. S3 in SI 

for details.
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D. The free energy sources and experimental evidence

What is the free energy source driving the biochemical oscillations? For the activator-

inhibitor model, the free energy is provided by ATP hydrolysis in the phosphorylation-

dephosphorylation (PdP) cycle (see Fig. 1a). Besides the standard free energy ΔG0 of ATP 

hydrolysis, the total free energy dissipation per period ΔW also depends on (and thus can be 

controlled by) the concentrations of ATP, ADP and the inorganic phosphate Pi. In the 

activator-inhibitor model, we can include ATP, ADP, and Pi explicitly in the reactions (see 

Method). Here, we study how these concentrations ([ATP], [ADP], and [Pi]) affect the phase 

diffusion of the oscillation. In Fig. 4a, we show the phase diffusion constant (D/T) versus the 

dissipation per period (ΔW) for 300 sets of randomly chosen concentrations [ATP], [ADP], 

and [Pi]. Remarkably, all the points lie above an envelope curve (the dotted line), which 

follows Eq.4. This envelope curve de nes the best performance of the biochemical network, 

i.e., the minimum free energy ΔWm needed to achieve a given level of phase coherence. For 

each choice of the concentrations ([ATP], [ADP], [Pi]), a functional efficiency E can be 

defined as the ratio of ΔWm and the actual cost ΔW for the same performance (D/T). The 

efficiency is represented by color in Fig. 4a&b. We investigated how efficiency depends on 

the three concentrations. As shown in Fig. 4b&c, the efficiency E does not simply increase 

with the ATP concentration; instead it peaks near a particular level of [ATP], at which the 

forward (counter-clock-wise in Fig. 1b) rates along different steps of the PdP cycle are 

matched. Similarly, E does not have any clear dependence on [ADP] or [Pi] level, it is high 

near a fixed ratio of [ADP]/[Pi], when the backward (clock-wise in Fig. 1b) rates along the 

different steps of the PdP cycle are matched. In SI we show in a simple model of chemical 

reaction cycles that with a constant energy dissipation, i.e., a fixed γ, phase diffusion 

approaches its minimum when the forward and the backward rates along different steps of 

the cycle, e.g., the PdP cycle, are matched.

These predicted dependence of oscillatory behaviors on [ATP], [ADP], and [Pi] 

concentrations, as shown in Fig. 4, may be tested experimentally by measuring peak-to-peak 

time variations or equivalently the correlation time for different nucleotide concentrations. 

As reported in two recent studies [35, 36], the oscillatory dynamics of the phosophorylated 

KaiC protein in a reconstituted circadian clock from cyanobacteria (the Kai system) have 

been measured in media with different ATP/ADP ratios. We analysed the data according to 

Eq. 1 and obtained the correlation time (τc) and the period (T) for different ATP/ADT ratios 

(see SI and Fig. S4 in SI for details). In Fig. 5, we plotted the period and the phase diffusion 

versus ln([ATP]/[ADP]), which is the entropic contribution to the free energy dissipation. As 

the ATP/ADP ratio increases, the period changes little. In contrast, the phase diffusion T/τc 

≡ α–1D/T decreases significantly and eventually saturates at high ATP/ADP ratios, 

consistent with the relationship between energy dissipation and phase diffusion discovered 

here.

E. Analytical results from the noisy Stuart-Landau equation

To understand the relationship between phase accuracy and energy dissipation, we consider 

the noisy Stuart-Landau equation for x,y:
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(5)

where a, b, c, d, (b, c, d > 0) are real variables, and 〈ηi(t)ηj(t′)〈 = 2Δδijδ(t – t′). The 

corresponding equation in polar coordinates are:

(6)

where ηr = η1(t) cos θ + η2(t) sin θ, and ηθ = –η1(t) sin θ/r + η2(t) cos θ/r. For a > 0, the 

system starts to oscillate with a mean amplitude .

Phase can be de ned without ambiguity when the amplitude fluctuation 

is smaller than . This leads to . When Δ is small, the phase diffusion constant is 

determined by expanding the phase velocity around r = rs. This leads to 

, with . Approximately we have 

. The phase fluctuation δθ ≡ θ – 

Ω(rs)t follows a diffusive behavior with the diffusion constant given by:

(7)

where .

It is clear from Eq. 5 that detailed balance is broken and the system is dissipative. To 

compute the free energy dissipation, we rst determine the phase-space probability 

distribution function P (x, y, t). Solving the Fokker-Planck equation in polar coordinate, we 

obtain the steady state probability Ps(r,θ):

(8)

where  is the normalization constant.

We compute the system's entropy production rate Ṡ [37, 38], from which we obtain the 

minimum free energy dissipation (see SI for details): , where Te is 

an (effective) temperature of the environment and kB the Boltzmann constant, we set kBTe = 

1 here. The period of the oscillation is T = 2π/〈Ω(r)〉. The energy dissipated in one cycle is:

(9)

Under the conditions of  and small Δ, we have (see SI for details):

Cao et al. Page 6

Nat Phys. Author manuscript; available in PMC 2016 March 01.

A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t



(10)

When , higher order terms can be neglected, and ΔW is linearly dependent on a:

(11)

where ξ = 2πb/(cΔ) + 2πd2/(bc2), and Wc = 8πd/c > 0.

Eliminating a from Eq. 7&11, the relation between phase diffusion and energy dissipation 

emerges:

(12)

where C = 0, W0 = ξκΔ. The region where Eq.12 holds is given by , where 

the lower bound is limited by phase ambiguity, and the upper bound is given by the linear 

regime of ΔW. The noise strength affects the lower bound. The phase-amplitude correlation 

parameter d controls the upper bound (see SI and Fig. S5 for details).

In general, C > 0 when the noise strength of the two variables (x and y) vary independently, 

see SI for an analytical derivation (based on small noise expansion) and Fig. S6 for a direct 

simulation demonstration. In a system with multiple variables, large energy dissipation may 

completely suppress fluctuations in some of the variables. However, other variables, which 

are not subject to the energy-assisted noise control mechanism, can introduce a finite 

contribution to the phase diffusion resulting in a finite C.

Eq.12 has the same form as Eq. 4 obtained empirically from studying different biochemical 

networks. Analysis of the noisy Stuart-Landau equation clearly shows that free energy 

dissipation is used to suppress phase diffusion. The parameters in this relationship and the 

range of its validity depend on the details of the system. However, the inverse dependence of 

phase diffusion on energy dissipation appears to be general.

III. DISCUSSION

Oscillations are critical for many biological functions that require accurate time control, 

such as circadian clock, cell cycle, and development. However, biological systems are 

inherently noisy. The phase of a noisy oscillator uctuates (diffuses) without bound and 

eventually destroys the coherence (accuracy) of the oscillation. Specifically, the number of 

periods Nc in which the oscillation maintains its phase coherence is given by Nc = τc/T = 

αT/D, which decreases with the phase diffusion constant. Here, our study shows that free 

energy dissipation can be used to reduce phase diffusion and thus prolong the coherence of 

the oscillation. A general relationship between the phase diffusion constant and the 

minimum free energy cost, as given in Eq. 4, holds true for all the oscillatory systems we 

studied here. The amplitude fluctuations also decrease with free energy dissipation (see Fig. 
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S7 in SI for details), as fluctuations in phase and amplitude are coupled in realistic systems. 

Our study thus establishes a cost-performance tradeoff for noisy biochemical oscillations.

How do biological systems use their free energy sources (e.g., ATP) to enhance the accuracy 

of the biochemical oscillations? As illustrated in Fig. 6a, a biochemical oscillation can be 

considered as a clock, which goes through a series of time-ordered chemical states (green 

dots) during each period. These chemical states are characterized by the conformational and 

chemical modification (e.g., phosphorylation) states of the key proteins or protein 

complexes in the system. The forward transition from one state to the next is coupled to a 

PdP cycle (blue arrowed circle) driven by hydrolysis of one ATP molecule. For each 

forward step, the reverse transition introduces a large error in the clock. The system 

suppresses these backward transitions by utilizing the ATP hydrolysis free energy. However, 

this is just one half of the story. Even in the absence of the reverse transition, the time 

duration between two consecutive states is highly variable due to the stochastic nature 

(Poisson process) of the chemical transitions. A general strategy of increasing accuracy is 

averaging [39]. In the case of biochemical oscillations, each period may consist of multiple 

steps, each powered by at least one ATP molecule. As a result of averaging, the error in the 

period should go down as the number of steps increases. Specifically, we expect that the 

variance of the period  should be inversely proportional to the total number of 

ATP hydrolyzed NATP ∝ T/τcyc in each period T, where τcyc is the average PdP cycle time, 

which is essentially the ATP turnover time. Consequently, the number of coherent period Nc 

= αT/D should be proportional to the number of ATP hydrolyzed in each period. We 

checked this prediction by varying the kinetic rates in the PdP cycle to change τcyc (see 

Methods section for details). In Fig. 6b, it is shown that the accuracy of the oscillation 

(clock), as measured by Nc, is enhanced by the number of ATP molecules hydrolyzed in 

each period. This result reveals a general strategy for oscillatory biochemical networks to 

enhance their phase coherence by coupling to multiple energy consuming cycles in each 

period. For the cyanobacteria circadian clock, each KaiC molecule has two phosphorylation 

sites. In principle a full circadian cycle should consume 2 ATP molecules per KaiC 

monomer. Interestingly, approximately 15 ATP molecules are consumed per KaiC molecule 

per period [40]. Our study suggests that the extra ATP molecules may be used to increase 

the phase coherence of the circadian clock.

Biological systems need to function robustly against variations in its underlying biochemical 

parameters (rates, concentrations) [41, 42]. For oscillatory networks, the free energy 

dissipation needs to reach a critical value (Wc) to drive the system to oscillate. We showed 

here that additional free energy cost in excess of Wc is needed to make the oscillation more 

accurate, as demonstrated explicitly in Eq. 4. In addition to this accuracy-energy tradeoff, 

we found that larger energy dissipation can also enhance the system's robustness against its 

parameter variations. Take the activator-inhibitor model, for example: the concentrations of 

enzyme M (MT) and phosphatase K (KT) may vary from cell to cell. We search for the 

existence of oscillation in the (MT, KT) space for different values of γ. Robustness is de ned 

as the area of the parameter space where oscillation exists. As shown in Fig. S8 in the SI, the 

robustness increases as the system becomes more irreversible, i.e., when more free energy is 
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dissipated. This suggests a possible general tradeoff between the functional robustness and 

energy dissipation in biological networks.

IV. METHODS

Simulation Methods

The Gillespie algorithm [43] is used for the stochastic simulations of the reaction kinetics. 

The parameters in Fig. 2 and Fig. 3 for the activator-inhibitor model is k0 = k1 = k3 = 1(t–1), 

k2 = 1(c–1t–1), k4 = 0.5(t–1), S = 0.4(c), KT = 1(c), MT = 10(c), a1 = a2 = 100(c–1t–1), f1 = f2 = 

d1 = d2 = 15(t–1), , with c the arbitrary concentration and t 

the time. Parameters for the other three models are given in SI. For given kinetic rates and 

the volume V , we simulated 1000 trajectories starting with the same initial condition. For 

the jth trajectory, we obtained its ith peak time tij from the trajectory xj(t) after smoothing 

(smooth function in MATLAB was used). The peak positions for two trajectories are shown 

in Fig. 2a. For all the trajectories, we computed the mean of their ith peak time 

, and variance , where N is the total number of 

trajectories. The average period T is given by T = mi/i. Asymptotically,  depends linearly 

on mi (Fig. 2d), and the slope of this linear dependence is the peak time diffusion constant 

D, which has the dimension of time. The phase diffusion constant Dϕ is linearly proportional 

to D: Dϕ = (2π)2D/T. For the repressilator and the brusselator models, we simulated the 

stochastic kinetic equations to a sufficiently long time (10000 periods) to obtain the time-

averaged distribution , where  represents the phase space. We used  to 

compute free energy dissipation.

Random Sampling

We can include ATP, ADP, and Pi explicitly in the reactions: M + R + ATP ⇀ M · R · ATP 

⇀ Mp + R + ADP and MpK ⇀ M + K + Pi. The affected kinetic rates are a1 = a1,0[ATP], f–1 

= f–1,0[ADP], f–2 = f–2,0[Pi], where a1,0 = 0.1, f–1,0 = f–2,0 = 1 are constants. The energy 

parameter γ for the PdP cycle can now be expressed as: γ = (d1d2f–1,0f–2,0[ADP][Pi])/

(a1,0a2f1f2[ATP]). Random sampling in the ([ATP], [ADP], [Pi]) space is performed (in log 

scale) in the region  by using 

Latin hypercube sampling (the lhs-design function in MATLAB). The reference 

concentrations [ATP]0, [ADP]0, and [Pi]0 are set to unity and their actual values are 

absorbed into the baseline reaction rates a1,0, f–1,0 and f–2,0, which are given in the legend of 

Fig. 4.

ATP consumption

In the activator-inhibitor model, the ATP consumption rate is , where 

 and  are the uxes for the M → Mp and Mp → M reactions, respectively. We varied the 

overall reaction kinetics, e.g., τcyc and the ATP consumption rate, by introducing a timescale 

factor B for all four rates d1 = d2 = Bd, f1 = f2 = Bf, where d = 15, f = 15 are the original 

values used in this paper (see SI). By changing the rates this way, the free energy release of 
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ATP hydrolysis ΔG = –ln γ = ln(a1f1a2f2/(d1f–1d2f–2)) is unchanged. We varied B ∈ [0.2.2], 

and computed the total number of ATP consumed per period  and Nc for Fig. 6b.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Different network motifs and the corresponding biochemical oscillatory systems. (a) 

Illustrations of three network motifs for oscillation: activator-inhibitor, repressilator, and 

substrate-depletion. Lines with different colors stand for different reactions. (b) The 

activator-inhibitor model with a phosphorylation-dephosphorylation (PdP) cycle. R and K 

catalyse two opposing reactions M ↔ Mp (phosphorylation and dephosphorylation) through 

different intermediate complexes MR and MpK. Mp activates both R (activator) and X 

(inhibitor). X inhibits R by enhancing its degradation. Parameter γ = d1f–1d2f–2/(a1f1a2f2) is 
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introduced to characterize the reversibility of the system. S is the basic synthesis rate. (c) 

The “repressilator” model of cell cycle in eukaryotic cells. In the simplified network, CDK1 

activates Plk1, Plk1 activates APC by suppressing the inhibitor of APC, XErp1, and APC 

degrades CDK1, forming the mutually activing/inhibiting loop. (d) The glycolysis network. 

The allosteric enzyme's protomer has two states, R (binding with P) and T (unbinding with 

P), and only R has the catalysis activity. Each Ri,j, with i = 1,2, ···, ni and j = 1,2, ···, nj 

represent the number of P and S bound to R, here we used ni = nj = 2. Each Ri,j can undergo 

reactions of Ri,j + S ↔ Ri,j+1 ↔ Ri,j + P. Detailed descriptions and rate values are given in 

SI.
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Figure 2. 
Correlation and phase diffusion of the noisy oscillations in the activator-inhibitor model. (a) 

Two noisy oscillation time series (trajectories) of the inhibitor (X) concentration, with the 

peaks labeled by circles and squares. (b) The auto-correlation function C(t) (defined in Eq. 

1) decays exponentially with a correlation time τc = 37.7. (c) Raster plot of the peak times 

for 500 different trajectories starting with the same initial condition. The distributions of the 

peak times for each consecutive peaks are shown by red lines. The peak time variance δ2 is 

shown. (d) Peak time variance δ2 goes linearly with the average peak time, with the linear 

coefficient defined as the peak time diffusion constant. Here, parameters are V = 50, γ = 

10–5. We nd D = 0.2 and α ≡ D/T2 ≈ 0.07.
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Figure 3. 
Relation between the dimensionless diffusion constant (D/T) and free energy dissipation per 

period per volume (ΔW, in units of thermal energy kBTr with Tr the room temperature). 

Detailed descriptions of the models and parameters can be found in SI. (a) D/T versus ΔW 

for the activator-inhibitor model with different volume V. The black dashed line indicates 

the hydrolysis free energy of one ATP molecule ΔG(0) ≈ 12kBTr, which corresponds to γ ≈ 

10–5.2 in our model. (b) Results from (a) for different volumes collapseonto the same curve 

when D/T is scaled by V. The data, plotted in log-log scale, is fitted well by the scaling form 

V × D/T–C = W0 × (W – Wc)
α (black line). The fitting parameters are: Wc = 360.4,W0 = 

379.7 ± 89.6, α = –0.988 ± 0.114, C = 0.6 ± 0.2. (c) The scaling plot, ln(V D/T – C) versus 

ln(ΔW – Wc), for all oscillatory models studied in this paper (see Fig. 1 and SI for details). 

different symbols represent different models, red circle: activator-inhibitor; cyan squares: 

repressilator; blue triangles: brusselator; green triangles: glycolysis. For each model, the data 

is shifted by ln(Wc/W0) to align. All data points lie close to the black line with a slope of –1, 

showing the generality of the inverse dependence of phase diffusion on free energy 

dissipation (Eq. 4). The fitting parameters are given in (b) for the activator-inhibitor model 

and in Fig. S3 for the other models.
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Figure 4. 
The dependence of phase diffusion on the ATP, ADP, and Pi concentrations. We studied the 

activator-inhibitor model with 300 randomly chosen parameters of dimensionless [ATP], 

[ADP] and [Pi] (see Methods). We chose V = 100. (a) D/T versus ΔW for the 300 different 

parameter choices. All the points lie above an envelope curve, which follows Eq. 4 with D/T 

= 1.94/(ΔW–400)+0.0036. Points in square indicate the points shown in Fig. 3. For a given 

value of D/T , the corresponding minimal energy dissipation ΔWmin is computed according 

to the fitted envelope curve. The efficiency is defined as E ≡ ΔWmin/ΔW. Colors of the 

points indicate the efficiency. (b) Distribution of the 300 randomly sampled points in the 

parameter space ([ATP], [ADP]/[Pi]). Colors of the points indicate the efficiency as in (a). 

Points with high efficiency are clustered. (c) Distribution of [ATP], and [ADP]/[Pi] for 

parameter choices with high efficiency E ≥ 0.75. The most probable parameter values for 

high efficiency are [ATP] ≈ 103, [ADP] ≈ [Pi], which corresponds to a1 = a2, f–1 = f–2 in the 

kinetic equations. This result indicates that high efficiency is achieved when the kinetic rates 

in the two halves of the PdP cycle (phosphorylation and dephosphorylation) are matched.
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Figure 5. 
Experimental evidence from Ref.[36] (blue curve) and Ref.[35] (Red curve). The two 

experiments measured the oscillation of KaiC phosphorylation in vitro in media with 

different ATP/ADP ratios. The autocorrelation functions were calculated from the original 

data and fitted by a exponential decay cosine function A cos (2πt/T)e–t/τc, where T is the 

period, and τc is the correlation time. ln(ATP/ADP) represents the entropic contribution to 

the free energy. (a) The period T is robust against changes in the ATP/ADP ratio. Error bars 

represent standard deviations. (b) T/τc ≡ α–1D/T decreases with ln(ATP/ADP) and 

eventually saturates at large ATP/ADP ratio, consistent with our theoretical prediction. The 

data can be fitted by Eq. (4): T/τc = C + 0.28/(ln(ATP/ADP) ln(ATP/ADP)c), as represented 

by the thick blue line (line width comparable to the average standard deviation in the 

experimental data), with ln(ATP/ADP)c = –1.4 and C = 0.04. Taking the standard hydrolysis 

free energy of ATP, ΔG(0), to be 12kBTr (Tr is the room temperature), we have Wc/(kBTr) = 

ΔG(0)/(kBTr) + ln(ATP=ADP)c = 10.6.
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Figure 6. 
Oscillation coherence increases with the number of ATP hydrolyzed per period. (a) 

Illustration of a biochemical oscillation as a clock in phase space. The intermediate states 

(green dots) are represented as the “hour ticks” of the clock. The transition from one tick to 

the next is coupled with a ATP hydrolysis cycle. The free energy release ΔG from the 

hydrolysis cycle powers the forward transition (thick solid arrow) and/or suppresses the 

backward transition (thin dotted arrow). The number of ATP consumed per enzyme 

molecule in each period T is given by T/τcyc, where τcyc is the average cycle time. (b) The 

accuracy of the oscillation, characterized by the number of correlated (coherent) periods Nc, 

increases linearly with the total number of ATP consumed per period NATP before saturating 

at very high NATP. We varied NATP by changing the cycle time (see Methods for details), we 

used V = 100 here.
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