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THE FREE ENTROPY DIMENSION
OF HYPERFINITE VON NEUMANN ALGEBRAS

KENLEY JUNG

For my parents

Abstract. Suppose M is a hyperfinite von Neumann algebra with a normal,
tracial state ϕ and {a1, . . . , an} is a set of selfadjoint generators for M . We
calculate δ0(a1, . . . , an), the modified free entropy dimension of {a1, . . . , an}.
Moreover, we show that δ0(a1, . . . , an) depends only on M and ϕ. Conse-
quently, δ0(a1, . . . , an) is independent of the choice of generators for M . In
the course of the argument we show that if {b1, . . . , bn} is a set of selfadjoint
generators for a von Neumann algebra R with a normal, tracial state and
{b1, . . . , bn} has finite-dimensional approximants, then δ0(N) ≤ δ0(b1, . . . , bn)
for any hyperfinite von Neumann subalgebra N of R. Combined with a re-
sult by Voiculescu, this implies that if R has a regular diffuse hyperfinite von
Neumann subalgebra, then δ0(b1, . . . , bn) = 1.

1. Introduction

Suppose G is a group. Consider the Hilbert space L2(G) where G is endowed
with counting measure and for each g ∈ G write ug for the unitary operator on
L2(G) defined by (ug(f))(a) = f(g−1a). Define the group von Neumann algebra
L(G) to be the von Neumann algebra generated by {ug : g ∈ G}. It is not too hard
to show that L(G) is a factor (i.e, a von Neumann algebra such that if x ∈ L(G)
commutes with every other element in L(G), then x is a scalar multiple of the
identity function) iff every nontrivial conjugacy class of G is infinite. By definition
the free group factor on m generators is L(Fm) where Fm is the free group on m
generators.

Almost two decades ago Dan Voiculescu began to develop a noncommutative
probability theory modeling the free group factors. The theory takes the notions of
classical probability and transforms them into ones suited for noncommutative anal-
ysis. Random variables become elements in von Neumann algebras, expectations
turn into normal, tracial states, and in this particular probability theory, indepen-
dence always immediately follows the word “free”. To clarify the last statement
suppose M is a von Neumann algebra with a normal, tracial state ϕ and 〈Aj〉j∈J
is a family of unital ∗-subalgebras of M . 〈Aj〉j∈J is a freely independent family
provided that for any j1, . . . , jp ∈ J with j1 6= j2, . . . , jp−1 6= jp, and ai ∈ Aji ,

ϕ(a1) = · · · = ϕ(ap) = 0⇒ ϕ(a1 · · · ap) = 0.
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A family of subsets of M is freely independent if the corresponding family of unital
∗-subalgebras that the subsets generate is freely independent. The definition gen-
eralizes the situation in L(Fm). L(Fm) has a unique normal, faithful, tracial state
given by ϕ(x) = 〈xξ, ξ〉 where ξ is the characteristic function of the identity of Fm. If
the generators for Fm are g1, . . . , gm, then one easily checks that {ug1}′′, . . . , {ugm}′′
are freely independent. The parallels between classical and free probability go far
and the interested reader can consult [8] for a general introduction.

On the operator algebra side, free probability has answered some open prob-
lems in operator algebras. Developing the ideas of free entropy and free entropy
dimension, Voiculescu shows in [10] that the free group factors possess no Car-
tan subalgebras (the first known kind with separable predual). Ge shows in [3]
that the free group factors cannot be decomposed into a tensor product of two
infinite-dimensional factors (again, the first known kind with separable predual)
and similarly in [6] Stefan shows that the free group factors are not the 2-norm
closure of the linear span of a product of abelian ∗-subalgebras.

In this paper we take a look at what free entropy dimension has in store for the
most tractable kind of von Neumann algebras: those that are hyperfinite and have
a tracial state. However, free entropy dimension being the nontrivial machine that
it is, we review its definition and basic properties before stating our results.

1.1. Definitions and Properties. We recall the concepts of free entropy and
modified free entropy dimension introduced in [9]. For k, n ∈ N write Msa

k (C) for
the set of k × k selfadjoint matrices with complex entries and (M sa

k (C))n for the
set of n-tuples of elements in M sa

k (C). Suppose a1, . . . , an ∈ M are selfadjoint.
Given R > 0,m, k ∈ N, and γ > 0, define ΓR(a1, . . . , an;m, k, γ) to be the set of
(x1, . . . , xn) ∈ (M sa

k (C))n such that for each j, ‖xj‖ ≤ R and for any 1 ≤ p ≤ m
and 1 ≤ j1, . . . , jp ≤ n,

|trk(xj1 · · ·xjp)− ϕ(aj1 · · · ajp)| < γ.

Here trk denotes the tracial state on Mk(C), the k × k matrices over C.
If b1, . . . , bl ∈ M , then ΓR(a1, . . . , an : b1, . . . , bl;m, k, γ) denotes the set of all
(x1, . . . , xn) ∈ (M sa

k (C))n such that there exists a (y1, . . . , yl) ∈ (M sa
k (C))l satisfy-

ing
(x1, . . . , xn, y1, . . . , yl) ∈ ΓR(a1, . . . , an, b1, . . . , bl;m, k, γ).

For any d ∈ N denote by vol the Lebesgue measure on (M sa
k (C))d (or a subspace

thereof) with respect to the unnormalized Hilbert-Schmidt norm ‖(z1, . . . , zd)‖2 =
(
∑d

j=1 Tr(z
2
j ))

1
2 where Tr is the unnormalized trace. One successively defines for

any R, γ > 0 and m, k ∈ N,
χR(a1, . . . ,an : b1, . . . , bl;m, k, γ)

= k−2 · log(vol(ΓR(a1, . . . , an : b1, . . . , bl;m, k, γ))) +
n

2
log k,

χR(a1, . . . , an : b1, . . . , bl;m, γ) = lim sup
k→∞

χR(a1, . . . , zn : b1, . . . , bl;m, k, γ),

χR(a1, . . . , an : b1, . . . , bl) = inf{χR(a1, . . . , an : b1, . . . , bl;m, γ) : m ∈ N, γ > 0},
χ(a1, . . . , an : b1, . . . , bl) = sup

R>0
χR(a1, . . . , an : b1, . . . , bl).

χ(a1, . . . , an : b1, . . . , bl) is called the free entropy of a1, . . . , an in the presence of
b1, . . . , bl. Replacing the microstate spaces above with ΓR(a1, . . . , an;m, k, γ) yields
χ(a1, . . . , an), which is simply called the free entropy of a1, . . . , an.
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Now suppose {s1, . . . , sn} is a set of freely independent semicircular elements in
M (by this we mean that 〈{si}〉ni=1 is a family of freely independent sets such that
for each 1 ≤ j ≤ n, sj is selfadjoint and for any d ∈ N, ϕ(sdj ) = 2

π

∫ 1

−1
td
√

1− t2dt)
such that the von Neumann algebra they generate is freely independent with respect
to the strongly closed algebra generated by {a1, . . . , an}. Define the modified free
entropy dimension of {a1, . . . , an} by

δ0(a1, . . . , an) = n+ lim sup
ε→0

χ(a1 + εs1, . . . , an + εsn : s1, . . . , sn)
| log ε| .

One can view the modified free entropy dimension as a noncommutative analogue
of the Minkowski dimension. Given S ⊂ Rd the Minkowski dimension of S is
d + lim supε→0

µ(Nε(S))
| log ε| where µ is Lebesgue measure on Rd and Nε(S) is the ε-

neighborhood of S (technically this is the upper Minkowski dimension of S). The
Minkowski dimension defined for S turns out to be the same as the metric entropy
quantity lim supε→0

logPε(S)
| log ε| where Pε(S) is the maximum number of points in an ε

separated subset of S (the ε packing number of S). We will have more to say about
the connections between Minkowski/metric entropy and free entropy dimension.

Here are a few basic properties of δ0, all of which are proven in [10]:

• For 1 ≤ j ≤ n, δ0(a1, . . . , an) ≤ δ0(a1, . . . , aj) + δ0(aj+1, . . . , an).
• For any a = a∗ ∈ M , δ0(a) = 1 −

∑
t∈sp(a)(λ({t}))2 where λ is the Borel

measure on sp(a) induced by ϕ.
• If χ(a1, . . . , an) > −∞, then δ0(a1, . . . , an) = n.
• If a1, . . . , an are freely independent, then δ0(a1, . . . , an) = δ0(a1) + · · ·

+ δ0(an).

Unfortunately, it is not known whether δ0 is an invariant of von Neumann alge-
bras with tracial states, i.e., if {b1, . . . , bp} and {a1, . . . , an} are two sets of selfad-
joint generators for M(this means that each set generates a strongly closed algebra
equal to M and each element of the set is selfadjoint), then does it follow that
δ0(a1, . . . , an) = δ0(b1, . . . , bp)? An affirmative answer to this question would show
that for m 6= n, L(Fm) is not ∗-isomorphic to L(Fn), for it is well known that for
any m ∈ N there exist m semicircular generators s1, . . . , sm for L(Fm) that satisfy
δ0(s1, . . . , sm) = m.

1.2. Results. We show that for hyperfinite von Neumann algebras with specified
tracial state, δ0 is an invariant. More specifically, suppose M is a hyperfinite von
Neumann algebra with normal, tracial state ϕ. By decomposing M over its center
it follows that

M 'M0 ⊕ (
s⊕
i=1

Mki(C))⊕M∞,

ϕ ' α0ϕ0 ⊕ (
s⊕
i=1

αitrki)⊕ 0

where s ∈ N∪{0}∪{∞}, αi > 0 for 1 ≤ i ≤ s (i ∈ N), M0 is a diffuse von Neumann
algebra or {0}, ϕ0 is a faithful, tracial state on M0 and α0 > 0 if M0 6= {0}, ϕ0 = 0
and α0 = 0 if M0 = {0}, and M∞ is a von Neumann algebra or {0}. We show that
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for any selfadjoint generators a1, . . . , an for M ,

δ0(a1, . . . , an) = 1−
s∑
i=1

α2
i

k2
i

.

Because every such M has a finite set of selfadjoint generators, it makes sense to
define δ0(M) = δ0(a1, . . . , an) where {a1, . . . , an} is a set of selfadjoint generators
for M. It follows that for any k ∈ N, δ0(Mk(C)) = 1− 1

k2 and if M is the hyperfinite
II1-factor, then δ0(M) = 1. The calculations also show that for hyperfinite M the
free entropy dimension number we obtain for M coincides with the “free dimension”
number for M which appears in Dykema’s work [2].

As a consequence of the arguments leading towards the above result we obtain
a “hyperfinite monotonicity” property of δ0 which says the following. Suppose M
is an arbitrary von Neumann algebra with specified tracial state and selfadjoint
generators a1, . . . , an. Assume moreover that {a1, . . . , an} has finite-dimensional
approximants, i.e., for any m ∈ N, ε > 0, and L > max{‖ai‖}1≤i≤n there exists an
N ∈ N such that for all k ≥ N , ΓL(a1, . . . , an;m, k, ε) 6= ∅. If N is a hyperfinite von
Neumann subalgebra of M, then

δ0(N) ≤ δ0(a1, . . . , an).

Hyperfinite monotonicity of δ0 paired with a result by Voiculescu ([10]) show that if
M has a regular, diffuse, hyperfinite von Neumann subalgebra, then δ0(a1, . . . , an) =
1 (see Remark 4.8).

The gist of the argument is simple: Essentially δ0(a1, . . . , an) is the normal-
ized metric entropy of the unitary orbit of a well-approximating microstate for
{a1, . . . , an}. Suppose M is hyperfinite with specified tracial state and selfadjoint
generators {a1, . . . , an}. χ(a1 + εs1, . . . , an + εsn : s1, . . . , sn) is more or less the
normalized logarithm of the volume of the ε-neighborhood around the microstates
of {a1, . . . , an}. M being hyperfinite any two such microstates are approximately
unitarily equivalent. So χ(a1 + εs1, . . . , an + εsn : s1, . . . , sn) is a limiting process
calculated from k−2 times the logarithm of the volume of the ε-neighborhood of
the unitary orbit of a single microstate for {a1, . . . , an}. Dividing this quantity by
| log ε| and adding n is close to k−2 multiplied by the Minkowski dimension of the
unitary orbit of the microstate or, equivalently, the metric entropy of the set. Very
roughly then, δ0(a1, . . . , an) is the normalized metric entropy of the unitary orbit
of a single well-approximating microstate for {a1, . . . , an}.

The calculations require more delicacy than we have let on, for we must first
fix an ε and find the volume bounds/packing number bounds with respect to ε
not merely over one microstate in one dimension but over one microstate for each
dimension (because the first process in free entropy takes a limit as the dimensions
go to infinity). Weak inequalities reduce this to either the investigation of uniform
bounds on the packing numbers of homogeneous spaces obtained from Uk, the k×k
unitaries, or to δ0(a) where a is a selfadjoint element. In the former case we make
crucial use of the results of Szarek ([7]) and Raymond ([5]). The latter situation
dealing with δ0(a) has already been discussed.

We break up the paper into calculating upper and lower bounds for δ0(a1, . . . , an)
where a1, . . . , an are arbitrary selfadjoint generators for hyperfinite M with spec-
ified tracial state. Section 2 is a short list of notation and assumptions we make
throughout the paper. Section 3 obtains the upper bound for general M . Section
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4 shows that if {a1, . . . , an} is a set of selfadjoint generators of a diffuse (arbi-
trary, i.e., not necessarily hyperfinite) von Neumann algebra with a tracial state
and {a1, . . . , an} has finite-dimensional approximants, then δ0(a1, . . . , an) ≥ 1. In
particular, this yields the desired lower bound for diffuse M . Section 5 obtains the
lower bound when M is finite dimensional and Section 6 combines the results of
Sections 4 and 5 to arrive at the general lower bound. Section 7 gleans immediate
corollaries (including hyperfinite monotonicity of δ0) and comments on the relation
of δ0(M) to Dykema’s free dimension [2]. Section 8 is an addendum where we prove
some consequences of Szarek’s metric entropy bounds of homogeneous spaces.

2. Definitions and Notation

Throughout this paper we maintain the notation in the introduction. Also, we
assume throughout that M is a von Neumann algebra (not necessarily hyperfinite)
with separable predual, a unit I, and a normal, tracial state ϕ. {si : i ∈ N} is always
a semicircular family free with respect to M . {a1, . . . , an} ⊂M is a set of selfadjoint
generators for M with finite-dimensional approximants. R = max{‖ai‖}1≤i≤n.
Lastly, |·|2 is the norm onMk(C) or the seminorm on M given by |x|2 = (trk(x∗x))

1
2

or |x|2 = (ϕ(x∗x))
1
2 , respectively.

3. Upper Bound

Throughout the section assume that M is hyperfinite and that N is a finite-
dimensional ∗-subalgebra of M containing I. Also assume that N has selfadjoint
generators {b1, . . . , bn} such that each bi has operator norm no larger than R. For
any k ∈ N and ε > 0, T (b1, . . . , bn; k, ε) denotes

{(x1, . . . , xn) ∈ (M sa
k (C))n : there exists a ∗-homomorphism σ : N →Mk(C)

such that for all 1 ≤ i ≤ n, |σ(bi)− xi|2 ≤ ε and ‖trk ◦ σ − ϕ|N‖ < ε2}.

We show that δ0(a1, . . . , an) ≤ 1 −
∑s

i=1
α2
i

k2
i

where the αi and ki are as in the
canonical decomposition of M discussed on page 3 of the introduction. The argu-
ment proceeds in several easy steps. First, χ(a1 + εs1, . . . , an + εsn : s1, . . . , sn) is
dominated by a number calculated more or less from vol(T (b1, . . . , bn; k, ε)). Sec-
ondly, T (b1, . . . , bn; k, ε) is contained in the neighborhood of a restricted unitary
orbit of any single element in T (b1, . . . , bn : k, ε). Szarek’s packing number es-
timates provide appropriate upper bounds for the volume of the neighborhoods
of such orbits. Finally, by approximating M by fine enough finite-dimensional ∗-
subalgebras N of M , standard approximation arguments yield the promised upper
bound.

The first lemma presented below is standard and we omit the proof. It amounts
to saying that matricial microstates for selfadjoint generators of a finite-dimensional
von Neumann algebra correspond to approximate representations.

Lemma 3.1. For each ε > 0 there exist an m ∈ N and γ > 0 such that for all
k ∈ N,

ΓR+1(b1, . . . , bn : m, k, γ) ⊂ T (b1, . . . , bn; k, ε).
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Lemma 3.1 has a trivial consequence:

Lemma 3.2. Suppose ε0 > 0 and max{|ai − bi|2 : 1 ≤ i ≤ n} < ε0. For any
1 > ε > 0, χ(a1 + εs1, . . . , an + εsn : s1, . . . , sn) is dominated by

lim sup
k→∞

[
k−2 · log(vol(T (b1, . . . , bn; k, 3ε+ ε0))) +

n

2
· log k

]
.

Proof. By Lemma 3.1 for a given ε ∈ (0, 1) there exist 2 ≤ m ∈ N and γ > 0 such
that for any k ∈ N, ΓR+1(b1, . . . , bn;m, k, γ) ⊂ T (b1, . . . , bn; k, ε). For γ′ > 0 if

(x1, . . . , xn) ∈ ΓR+1(a1 + εs1, . . . , an + εsn : b1, . . . , bn, s1, . . . , sn;m, k, γ′),

then by definition there exists (y1, . . . , yn, z1, . . . , zn) ∈ (M sa
k (C))2n satisfying

(x1, . . . , xn,y1, . . . , yn, z1, . . . , zn)

∈ ΓR+1(a1 + εs1, . . . , an + εsn, b1, . . . , bn, s1, . . . , sn;m, k, γ′).

By choosing γ′ < γ sufficiently small one can force |xi − yi|2 < 2ε + ε0 for 1 ≤
i ≤ n. Since γ′ < γ, (y1, . . . , yn) ∈ ΓR+1(b1, . . . , bn;m, k, γ) ⊂ T (b1, . . . , bn; k, ε).
Consequently, (x1, . . . , xn) ∈ T (b1, . . . , bn; k, 3ε+ ε0). We have just shown that

ΓR+1(a1+εs1, . . . , an+εsn : b1, . . . , bn, s1, . . . , sn;m, k, γ′) ⊂ T (b1, . . . , bn; k, 3ε+ε0).

Basic properties of free entropy imply that χ(a1 + εs1, . . . , an + εsn : s1, . . . , sn)
equals

χR+1(a1 + εs1, . . . , an + εsn : b1, . . . , bn, s1, . . . , sn)

≤ χR+1(a1 + εs1, . . . , an + εsn : b1, . . . , bn, s1, . . . , sn;m, γ′).

By the preceding inclusion the dominating term is less than or equal to

lim sup
k→∞

[
k−2 · log(vol(T (b1, . . . , bn; k, 3ε+ ε0))) +

n

2
· log k

]
.

�

Now for the claim which implies that T (b1, . . . , bn; k, ε) is contained in the
2ε(1 +

√
2R) - neighborhood of a restricted unitary orbit of any single element of

T (b1, . . . , bn; k, ε).
Because N is finite dimensional and ϕ is tracial, assume from now on that N '⊕p
j=1 Mnj(C) and ϕ|N '

⊕p
j=1 αjtrnj .

Lemma 3.3. For any k ∈ N and ε > 0, if σ1, σ2 : N → Mk(C) are ∗-homomor-
phisms such that ‖trk ◦ σ1 − trk ◦ σ2‖ ≤ ε2, then there exists a u ∈ Uk such that

|u(σ1(x))u∗ − σ2(x)|2 ≤ 2‖x‖ε.

Proof. Without loss of generality, assume that N = Mn1(C) ⊕ · · · ⊕Mnp(C). For
any l1, . . . , lp ∈ N ∪ {0} with

∑p
i=1 nili ≤ k denote by πl1,...,lp : N → Mk(C) the

∗-homomorphism

πl1,...,lp(x1, . . . , xp) =


x1

⊗
Il1 0 · · · 0

0
. . .

...
... xp

⊗
Ilp 0

0 · · · 0 0p+1


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where xi
⊗
Ili is the nili × nili matrix with xi repeated li times on the diag-

onal and 0p+1 is the (k −
∑p

i=1 nili) × (k −
∑p

i=1 nili) 0 matrix. There exist
m1, . . . ,mp, n1, . . . , np ∈ N ∪ {0} such that σ1 ∼ πm1,...,mp , σ2 ∼ πn1,...,np .

Set di = min{mi, ni} and observe that if π = πd1,...,dp , then ‖trk◦π−trk◦σj‖ ≤ ε2
for j = 1, 2. If we can show that for each j there exists a uj ∈ Uk satisfying
|uj(σj(x))u∗j − π(x)|2 ≤ ‖x‖ε, then we will be done. A moment’s thought shows
that for each j there exists a uj ∈ Uk such that Aduj ◦σj−π is a ∗-homomorphism
which we will denote by ρj . Obviously ‖trk ◦ ρj‖ ≤ ε2 so that for any x ∈ N ,

|uj(σj(x))u∗j − π(x)|2 = ((trk ◦ ρj)(x∗x))1/2 ≤ (ε2 · ‖x∗x‖)1/2 = ‖x‖ε.
�

Given (x1, . . . , xn), (y1, . . . , yn) ∈ T (b1, . . . , bn; k, ε) there are representations σ,
π : N → Mk(C) such that for 1 ≤ i ≤ n, |σ(bi) − xi|2, |π(bi) − yi|2 < ε and
‖trk ◦ σ − ϕ|N‖, ‖trk ◦ π − ϕ|N‖ < ε2. So ‖trk ◦ σ − trk ◦ π‖ < 2ε2. By Lemma 3.3
there exists a u ∈ Uk satisfying

|u(σ(bi))u∗ − π(bi)|2 ≤ 2‖bi‖(
√

2ε) ≤ 2
√

2Rε

for 1 ≤ i ≤ n. Thus |uxiu∗ − yi|2 ≤ 2ε+ 2
√

2Rε = 2ε(1 +
√

2R). From now on for
z ∈M sa

k (C) and γ > 0 define B(z, γ) = {x ∈M sa
k (C) : |x− z|2 < γ}. We have just

proved:

Corollary 3.4. If (x1, . . . , xn) ∈ T (b1, . . . , bn; k, ε), then T (b1, . . . , bn; k, ε) is con-
tained in ⋃

u∈Uk

[B(ux1u
∗, 2ε(1 +

√
2R))× · · · ×B(uxnu∗, 2ε(1 +

√
2R))].

We remark here that Lemma 3.1, Lemma 3.3, and Corollary 3.4 also hold in the
situation where N does not contain I.

We now draw out a trivial consequence of Szarek’s estimates for covering numbers
of homogeneous spaces. These results are the heart of the calculation of the upper
bound.

For k ∈ N suppose m, k1, . . . , km, l1, . . . , lm ∈ N,
∑m

i=1 kili = k, and H ⊂ Uk is a
proper Lie subgroup of Uk consisting of all matrices of the formu1

⊗
Ik1 · · · 0

...
. . .

...
0 · · · um

⊗
Ikm


where ui ∈ Uli and ui

⊗
Iki is the kili × kili matrix obtained by repeating ui ki

times along the diagonal. Such Lie subgroups H of Uk will be called tractable.
A simple application of Theorem 11 in [7] yields:

Lemma 3.5. There exist constants C, β > 0 such that for any k ∈ N, any tractable
Lie subgroup H of Uk and ε ∈ (0, β),

N(X, ε) ≤
(
C

ε

)d
where X is the manifold Uk/H endowed with the quotient metric induced by the
operator norm, d is the real dimension of X, and N(X, ε) is the minimum number
of balls of radius ε required to cover X.
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We sequester a rigorous demonstration to the Addendum.

Lemma 3.6. If 1 > r > 0, then there exists a k0 ∈ N such that for each k > k0

there is a corresponding ∗-homomorphism σk : N →Mk(C) satisfying:

• ‖trk ◦ σk − ϕ|N‖ < r2.
• The unitaries Hk of σk(N)′ form a tractable Lie subgroup of Uk satisfying

k2

(
1− r −

p∑
i=1

α2
i

n2
i

)
< dim(Uk/Hk) < k2

(
1 + r −

p∑
i=1

α2
i

n2
i

)
.

Proof. Suppose that 1 > ε > 0. Choose n0 ∈ N such that 1
n0

< ε
p+1 . Set k0 =

(n0 + 1)n1 · · ·np. Suppose k > k0. Find the unique n ∈ N (dependent on k)
satisfying

nn1 · · ·np ≤ k < (n+ 1)n1 · · ·np.
Set d = nn1 · · ·np (d dependent on k) and find m1, . . . ,mp ∈ N ∪ {0} satisfying
αi − ε < mi

n < αi + ε for each i and
∑p

i=1
mi
n = 1 (the mi depend on k). Set

li(k) = dmi
nni
∈ N ∪ {0} and lp+1(k) = k −

∑p
i=1 li(k)ni. Assume without loss of

generality that N = Mn1(C) ⊕ · · · ⊕ Mnp(C) and ϕ|N = α1trn1 ⊕ · · · ⊕ αptrnp .
Define σk : N →Mk(C) by

σk(x1, . . . , xn) =


Il1(k)

⊗
x1 0 · · · 0

0
. . .

...
... Ilp(k)

⊗
xp 0

0 · · · 0 0lp+1(k)


where 0lp+1(k) is the lp+1(k)×lp+1(k) 0 matrix and Ili(k)

⊗
xi is the li(k)ni×li(k)ni

matrix obtained by taking each entry of xi, (xi)st, and stretching it out into (xi)st ·
Ili(k) where Ili(k) is the li(k)× li(k) identity matrix. Then

(trk ◦ σ)(x1, . . . , xp) =
1
k
·
p∑
i=1

li(k) · Tr(xi) =
p∑
i=1

dmi

kn
· trni(xi).

Since d
k > 1 − ε, we have αi + ε ≥ d

k ·
mi
n > (αi − ε)(1 − ε) > αi − 2ε. It follows

that ‖trk ◦ σk − ϕ|N‖ < 2pε.
Hk consists of all matrices of the form

u1

⊗
In1 0 · · · 0

0
. . .

...
... up

⊗
Inp 0

0 · · · 0 up+1


where ui ∈ Uli(k) for 1 ≤ i ≤ p + 1 and ui

⊗
Ini is the li(k)ni × li(k)ni matrix

obtained by repeating ui ni times along the diagonal. Hk is obviously tractable.
For a lower bound on dim(Uk/Hk) we have the estimate:

lp+1(k) = k −
p∑
i=1

dmi

n
= k − d < n1 · · ·np <

k0

n0
< k · ε
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so that

dimHk = lp+1(k)2 +
p∑
i=1

li(k)2 < k2

(
ε+

p∑
i=1

(αi + ε)2

n2
i

)
< k2

(
3pε+

p∑
i=1

α2
i

n2
i

)
.

Hence, dim(Uk/Hk) = k2−dimHk is bounded from below by k2(1−3pε−
∑p
i=1

α2
i

n2
i
).

For an upper bound on dim(Uk/Hk) observe that dimHk >
∑p

i=1 li(k)2 whence

dim(Uk/Hk) = k2 − dimHk < k2 −
p∑
i=1

li(k)2

< k2

(
1−

p∑
i=1

(αi − 2ε)2

n2
i

)

< k2

(
1 + 4ε−

p∑
i=1

α2
i

n2
i

)
.

Set ε = r2

4p . �

We now make the key calculation on the upper bound of Lemma 3.2.

Lemma 3.7. For min{β,C} > ε > 0,

lim sup
k→∞

[
k−2 · log(vol(T (b1, . . . , bn; k, ε))) +

n

2
· log k

]
≤ log(εn−4) + logD

where 4 = 1−
∑p
i=1

α2
i

n2
i

and D = π
n
2 (8(R+ 1))nC4[(2e)

n
2 ].

Proof. Suppose min{β,C} > ε > r > 0. By Lemma 3.6 there is a k0 ∈ N such
that for each k ≥ k0 there exists a ∗-homomorphism σk : N → Mk(C) satisfying
‖trk ◦ σk − ϕ|N‖ < r2 and the additional condition that if Hk is the unitary group
of σk(N)′, then Hk is tractable and

dim(Uk/Hk) < k2

(
1 + r −

p∑
i=1

α2
i

n2
i

)
.

Set

dk = dim(Uk/Hk) and mr = −r +
p∑
i=1

α2
i

n2
i

.

There exists a set 〈uk,s〉s∈Sk contained in Uk such that for each u ∈ Uk there exists
an s ∈ Sk and h ∈ Hk satisfying ‖u − uk,sh‖ < ε and Sk has cardinality not

exceeding
(
C
ε

)dk
<
(
C
ε

)k2(1−mr).
Set L = 8(R+ 1). I claim that

T (b1, . . . , bn; k, ε) ⊂
⋃
s∈Sk

[B(uk,sσk(b1)u∗k,s, Lε)× · · · ×B(uk,sσk(bn)u∗k,s, Lε)].

Suppose that (x1, . . . , xn) ∈ T (b1, . . . , bn; k, ε). Clearly (σk(b1), . . . , σk(bn)) ∈
T (b1, . . . , bn; k, ε). By Corollary 3.4 there exists a u ∈ Uk such that for all 1 ≤
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i ≤ n, |xi − uσk(bi)u∗|2 ≤ 2ε(1 +
√

2R). There exists an s ∈ Sk and h ∈ Hk such
that ‖u− uk,sh‖ < ε. Now

|uσk(bi)u∗ − uk,sσk(bi)u∗k,s|2 = |uσk(bi)u∗ − uk,shσk(bi)h∗u∗k,s|2
≤ ‖u− uk,sh‖ · |σk(bi)u∗|2

+|uk,shσk(bi)|2 · ‖u∗ − h∗u∗k,s‖
≤ 2εR.

Hence for all 1 ≤ i ≤ n, |xi − uk,sσk(bi)u∗k,s|2 ≤ 2ε(1 +
√

2R) + 2εR < Lε.
By the inclusion demonstrated in the preceding paragraph we have that

log(vol(T (b1, . . . , bn; k, ε))) is dominated by

log

(
|Sk| ·

π
nk2

2 (L
√
kε)nk

2

(Γ(k2

2 + 1))n

)
= log

(
|Sk| ·

(π
n
2 Lnk

n
2 εn)k

2

(Γ(k2

2 + 1))n

)

≤ k2 · log

[(
C

ε

)1−mr
(π

n
2 Lnk

n
2 εn)

]
− n · log Γ

(
k2

2
+ 1
)

≤ k2 · log(π
n
2 LnC1−mrk

n
2 εn−1+mr)− n · log

(k2

2e

) k2
2


= k2 · log(π

n
2 LnC1−mrεn−1+mr )− nk2

2
· log k + k2 log[(2e)

n
2 ]

provided k ≥ k0. lim supk→∞
[
k−2 log(vol(T (b1, . . . , bn; k, ε))) + n

2 · log k
]

is there-
fore dominated by

lim sup
k→∞

(log(π
n
2 LnC1−mr εn−1+mr) + log[(2e)

n
2 ]

= log(εn−1+mr) + log(π
n
2 LnC1−mr [(2e)

n
2 ]).

Hence

log(εn−4) + logD = log(εn−4) + log(π
n
2 LnC4[(2e)

n
2 ])

= lim
r→0

[(log(εn−1+mr) + log(π
n
2 LnC1−mr [(2e)

n
2 ])]

≥ lim sup
k→∞

[
k−2 · log(vol(T (b1, . . . , bn; k, ε))) +

n

2
· log k

]
.

�

If M is finite dimensional, then Lemma 3.7 yields the desired upper bound for
δ0(a1, . . . , an). With just a few more easy observations, Lemma 3.7 allows us to
bootstrap the upper bound for δ0(a1, . . . , am) in the general situation.

If B is a finite-dimensional von Neumann algebra with a positive trace ψ and
B '

⊕s
i=1Mqi(C), ψ '

⊕s
i=1 ritrqi , define 4ψ(B) = 1−

∑s
i=1

r2
i

q2
i
. Clearly 4ψ(B)

is well defined.

Lemma 3.8. If A ⊂ B is a unital inclusion of finite-dimensional von Neumann
algebras, and ψ is a positive trace on B, then 4ψ(A) ≤ 4ψ(B).

Proof. By assumption B '
⊕s

j=1 Mqj (C) and ψ '
⊕s

j=1 rjtrqj for some s, q1, . . . ,

qs, r1, . . . , rs ∈ N. A is ∗-isomorphic to
⊕d

i=1Mpi(C) for some d, p1, . . . , pd ∈ N.
Denote 〈Λij〉1≤i≤d,1≤j≤s to be the inclusion matrix of A into B with respect to the
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dimension vectors 〈pi〉di=1 and 〈qj〉sj=1 for A and B, respectively. Since A ⊂ B is a
unital inclusion,

d∑
i=1

s∑
j=1

(Λijpirj)2

q2
j

· 1
p2
i

=
s∑
j=1

d∑
i=1

Λ2
ijr

2
j

q2
j

≥
s∑
j=1

r2
j

q2
j

,

4ψ(A) = 1−
d∑
i=1


 s∑
j=1

Λijpirj
qj

2

· 1
p2
i

 ≤ 1−
s∑
j=1

r2
j

q2
j

= 4ψ(B). �

Lemma 3.9. δ0(a1, . . . , an) = δ0(a1, . . . , an, I).

Proof. By Propositions 6.4 and 6.6 of [10] and Proposition 6.3 of [9],

δ0(a1, . . . , an, I) ≤ δ0(a1, . . . , an) + δ0(I) = δ0(a1, . . . , an).

On the other hand, since the strongly closed ∗-algebra generated by {a1, . . . , an}
is M , by Theorem 4.3 of [10], δ0(a1, . . . , an) ≤ δ0(a1, . . . , an, I). �

We are now in a position to calculate the upper bound for δ0(a1, . . . , an). By
decomposing M over its center it follows that

M 'M0 ⊕ (
s⊕
i=1

Mki(C))⊕M∞, ϕ ' α0ϕ0 ⊕ (
s⊕
i=1

αitrki)⊕ 0

where all quantities above are as in the introduction. Write Ii for the identity of
Mki(C) for 1 ≤ i ≤ s and if M0 6= {0}, then write I0 for the identity of M0. A
moment’s thought shows that for the purposes of the theorem below we can neglect
the M∞ summand and assume

M = M0 ⊕ (
s⊕
i=1

Mki(C)), ϕ = α0ϕ0 ⊕ (
s⊕
i=1

αitrki).

Theorem 3.10. δ0(a1, . . . , an) ≤ 1−
∑s

i=1
α2
i

k2
i

.

Proof. Set α = 1 −
∑s

i=1
α2
i

k2
i

. There exists a nested sequence of finite-dimensional
∗-subalgebras of M , 〈Nm〉∞m=1, such that

⋃∞
m=1Nm is strongly dense in M , for each

m ∈ N, I ∈ Nm, and limm→∞4ϕ(Nm) ≤ α. This is clear for if M0 = {0}, then
for each m define

Nm = 0 ⊕ (
⊕

1≤j≤min{m,s}
Mkj (C)) ⊕ C · (

⊕
m<j≤s

Ij).

Observe that

4ϕ(Nm) = 1−
min{m,s}∑
j=1

α2
j

k2
j

− (
∑

m<j≤s
αj)2.

limm→∞4ϕ(Nm) = α and all the other properties required of the Nm are easily
checked. If M0 6= {0}, then there exists a nested sequence of finite-dimensional
∗-subalgebras of M0, 〈Am〉∞m=1 with I0 ∈ Am for each m and

⋃∞
m=1Am strongly

dense in M0. For each m define

Nm = Am ⊕ (
⊕

1≤j≤min{m,s}
Mkj (C))⊕ C · (

⊕
m<j≤s

Ij).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



5064 KENLEY JUNG

Observe that

4ϕ (Nm) = 1 + (4α0ϕ0(Am)− 1) −
min{m,s}∑
j=1

α2
j

k2
j

− (
∑

m<j≤s
αj)2

≤ 1−
min{m,s}∑
j=1

α2
j

k2
j

− (
∑

m<j≤s
αj)2.

As m → ∞ the dominating term above converges to α; so limm→∞4ϕ(Nm) ≤ α
(existence of the limit is guaranteed by Lemma 3.8 and the fact that Nm ⊂ Nm+1).
All the other properties of the Nm are easily checked. Notice that in either case,
limm→∞4ϕ(Nm) ≤ α and Lemma 3.8 imply 4ϕ(Nm) ≤ α for all m ∈ N.

Take a sequence 〈Nm〉∞m=1 as constructed above. Suppose min{1, β/4, C} >
ε > 0. By Kaplansky’s Density Theorem there exists an m0 ∈ N and selfadjoint
x1, . . . , xn ∈ Nm0 satisfying |xi − ai|2 < ε and ‖xi‖ ≤ R for 1 ≤ i ≤ n. Denote
by B the ∗-algebra generated by {x1, . . . , xn, I}. By Lemma 3.2 and Lemma 3.7,
χ(a1 + εs1, . . . , an + εsn, I + εsn+1 : s1, . . . , sn+1) is dominated by

lim sup
k→∞

[
k−2 · log(vol(T (x1, . . . , xn, I; k, 4ε))) +

n+ 1
2
· log k

]
≤ log((4ε)n+1−4ϕ(B)) + logD

≤ log(εn+1−4ϕ(B)) + log(4n+1D)

where

D = π
n+1

2 (8(R+ 1))n+1C4ϕ(B)[(2e)
n+1

2 ].

Set

D0 = πn+1(8(R+ 1))n+1(C + 1)6n+1.

Clearly D0 > D. B ⊂ Nm0 is a unital inclusion and so by Lemma 3.8, 4ϕ(B) ≤
4ϕ(Nm0) ≤ α. Hence, n+ 1−4ϕ(B) ≥ n+ 1− α. Since 0 < ε < 1,

log(εn+1−4ϕ(B)) + log(4n+1D) ≤ log(εn+1−α) + log(4n+1D0).

Thus,

χ(a1 + εs1, . . . , an + εsn, I + εsn+1 : s1, . . . , sn+1)
| log ε|

≤ −(n+ 1) + α+
log(4n+1D0)
| log ε| .

D0 is independent of ε and so by Lemma 3.9,

δ0(a1, . . . , an) = δ0(a1, . . . , an, I)

≤ (n+ 1) + lim sup
ε→0

(
−(n+ 1) + α+

log(4n+1D0)
| log ε|

)
= α

= 1−
s∑
i=1

α2
i

k2
i

. �
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4. Weak Hyperfinite Monotonicity

Throughout this section assume b1, . . . , bp are selfadjoint elements in M and the
strongly closed algebra B generated by the bj is hyperfinite. We will prove that if
{b1, . . . , bp} lies in the ∗-algebra generated by {a1, . . . , an}, then

δ0(b1, . . . , bp) ≤ δ0(a1, . . . , an).

This “weak hyperfinite monotonic” inequality has significant implications in finding
sharp lower bounds for δ0(a1, . . . , an) when M is diffuse.

The argument is simple, despite the notation that shrouds it. Because B is
hyperfinite, matricial microstates of {b1, . . . , bp} are all approximately unitarily
equivalent; the proof is nothing more than a trivial generalization of Lemma 3.1. It
follows that δ0(b1, . . . , bp) reflects the metric entropy of the unitary orbit of a single
microstate for {b1, . . . , bp} (provided the microstate approximates well enough).
Since the bj are polynomials of the ai (and thus images of the ai under Lipschitz
maps), the metric entropy data carries over to the microstates of {a1, . . . , an} and
yields lower bounds for the metric entropy of the unitary orbit of a microstate for
{a1, . . . , an}. Stuffing this lower bound information into the modified free entropy
dimension machine we arrive at the above inequality.

In addition to maintaining the conventions set forth in Section 2, we adopt the
following notation in this section:

• For r > 0, (M sa
k (C))r denotes the operator norm ball of M sa

k (C) of radius
r centered at the origin. For any d ∈ N, ((M sa

k (C))r)d is the Cartesian
product of d copies of (M sa

k (C))r .
• For d ∈ N,K ⊂ (M sa

k (C))d, and u ∈ Uk define uKu∗ to be the set

{(ux1u
∗, . . . , uxdu

∗) : (x1, . . . , xd) ∈ K}.
• For d ∈ N and (x1, . . . , xd) ∈ (M sa

k (C))d define U(x1, . . . , xd) = {(ux1u
∗,

. . . , uxnu
∗) : u ∈ Uk}.

• For ε > 0, d ∈ N, and S ⊂ (M sa
k (C))d write Pε(S) for the maximum number

of points in an ε-separated subset of S and Nε(S) for the ε-neighborhood
of S, both taken with respect to the metric ρ((x1, . . . , xd), (y1, . . . , yd)) =
max{|xi − yi|2 : 1 ≤ i ≤ d}.

First we show that matricial microstates of {b1, . . . , bp} are approximately uni-
tarily equivalent. We do this with the following two lemmas, the first of which
makes no use of hyperfiniteness.

Lemma 4.1. If z1, . . . , zp ∈ B are selfadjoint, ‖zj‖ ≤ r for 1 ≤ j ≤ p, and
L, γ0 > 0, then there exist polynomials f1, . . . , fp in p noncommuting variables such
that for 1 ≤ j ≤ p:

• |fj(b1, . . . , bp)− zj |2 < 2γ0;
• ‖fj(b1, . . . , bp)‖ ≤ r + 1;
• for any k ∈ N and (x1, . . . , xp) ∈ ((M sa

k (C))L)p, fj(x1, ..., xp) ∈
(M sa

k (C))r+1.

Proof. By Kaplansky’s Density Theorem there exist polynomials g1, . . . , gp in p
noncommuting variables such that for 1 ≤ j ≤ p:

• |gj(b1, . . . , bp)− zj |2 < γ0;
• ‖gj(b1, . . . , bp)‖ ≤ r;
• gj(y1, . . . , yp) is selfadjoint for any selfadjoint operators y1, . . . , yp.
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There exists an L1 > L+ r such that for any 1 ≤ j ≤ p and k ∈ N, if (x1, . . . , xp) ∈
((M sa

k (C))L)p, then ‖gj(x1, . . . , xp)‖ ≤ L1. Define f : [−L1, L1]→ R by

f(t) =

 t if |t| ≤ r,
r if r < t ≤ L1,
−r if −L1 ≤ t < −r.

For any 1 ≤ j ≤ p, f(gj(b1, . . . , bp)) = gj(b1, . . . , bp) and
• |f(gj(b1, . . . , bp))− zj|2 < γ0;
• ‖f(gj(b1, . . . , bp))‖ ≤ r;
• for any k ∈ N if (x1, . . . , xp) ∈ ((M sa

k (C))L)p, then f(gj(x1, . . . , xp)) ∈
(M sa

k (C))r.
Approximating f uniformly on [−L1, L1] by a polynomial h (to within sufficiently
small ε > 0) and setting fj = h ◦ gj yields the desired result. �

Lemma 4.2. If ε > 0 and r ≥ max{‖bj‖}1≤j≤p, then there exist m ∈ N and γ > 0
such that for each k ∈ N and (x1, . . . , xp), (y1, . . . , yp) ∈ Γr(b1, . . . , bp;m, k, γ) there
exists a u ∈ Uk satisfying |uxju∗ − yj|2 < ε for 1 ≤ j ≤ p.

Proof. By Kaplansky’s Density Theorem and the hyperfiniteness of B there exist
selfadjoint elements z1, . . . , zp ∈ B that generate a finite-dimensional algebra and
such that ‖zj‖ ≤ r and |zj − bj |2 < ε for all 1 ≤ j ≤ p. By the remark following
Corollary 3.4 there exist m1 ∈ N and γ1 > 0 such that if r0 = max{‖zj‖}1≤j≤p,
k ∈ N, and (x1, . . . , xp), (y1, . . . , yp) ∈ Γr0+1(z1, . . . , zp;m1, k, γ1), then there exists
a u ∈ Uk satisfying |uxju∗ − yj |2 < ε for 1 ≤ j ≤ p.

By Lemma 4.1 for ε
2 > γ0 > 0 there exist polynomials f1, . . . , fp in p noncom-

muting variables such that for 1 ≤ j ≤ p:
• |fj(b1, . . . , bp)− zj |2 < 2γ0 < ε;
• ‖fj(b1, . . . , bp)‖ ≤ r0 + 1;
• for any k ∈ N, if (x1, . . . , xp) ∈ ((M sa

k (C))r)p, then fj(x1, . . . , xp) ∈
(M sa

k (C))r0+1.

By making γ0 sufficiently small it follows that for any 1 ≤ j ≤ m1 and 1 ≤
i1, . . . , ij ≤ p,

|fi1(b1, . . . , bp) · · · fij (b1, . . . , bp)− zi1 · · · zij |2 < γ1.

Hence by choosing m ∈ N large enough, and γ > 0 small enough, if k ∈ N and
(x1, . . . , xp) ∈ Γr(b1, . . . , bp;m, k, γ), then

|fj(x1, . . . , xp)− xj |2 ≤ |fj(b1, . . . , bp)− bj|2 + ε

for 1 ≤ j ≤ p and

(f1(x1, . . . , xp), . . . , fp(x1, . . . , xp)) ∈ Γr0+1(z1, . . . , zp;m1, k, γ1).

Finally, suppose k ∈ N and (x1, . . . , xp), (y1, . . . , yp) ∈ Γr(b1, . . . , bp;m, k, γ). For
any 1 ≤ j ≤ p,
|fj(x1, . . . , xp)− xj |2 ≤ |fj(b1, . . . , bp)− bj |2 + ε ≤ |zj − bj|2 + 2ε < 3ε.

Similarly for 1 ≤ j ≤ p, |fj(y1, . . . , yp) − yj |2 < 3ε. By the preceding two para-
graphs there exists a u ∈ Uk such that for 1 ≤ j ≤ p,

|ufj(x1, . . . , xp)u∗ − fj(y1, . . . , yp)|2 < ε.

So for 1 ≤ j ≤ p, |uxju∗ − yj|2 < 7ε. �
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In the next lemma suppose r > max{‖bj‖}1≤j≤p.
Lemma 4.3. For each 0 < ε < 1 there exist corresponding mε ∈ N and γε > 0 such
that if L > 0 and 〈(x(k)

1 , . . . , x
(k)
p )〉∞k=1 is a sequence satisfying (x(k)

1 , . . . , x
(k)
p ) ∈

(M sa
k (C))p for all k and (x(k)

1 , . . . , x
(k)
p ) ∈ Γr(b1, . . . , bp;mε, k, γε) for sufficiently

large k, then

lim sup
k→∞

[k−2 · log(PεL(U(x(k)
1 , . . . , x(k)

p )))]

≥ χr(b1 + εs1, . . . , bp + εsp : s1, . . . , sp) + p| log ε| −K0

where K0 = p · log((2 + L)
√

2πe).

Proof. Suppose 0 < ε < 1. By Lemma 4.2 there exist mε ∈ N and γε > 0 such that
if k ∈ N,

(z1, . . . , zp) ∈ Γr(b1 + εs1, . . . , bp + εsp : s1, . . . , sp;mε, k, γε),

and (x1, . . . , xp) ∈ Γr(b1, . . . , bp;mε, k, γε), then there exists a u ∈ Uk satisfying
|uxju∗ − zj|2 < 2ε for 1 ≤ j ≤ p.

Assume that 〈(x(k)
1 , . . . , x

(k)
p )〉∞k=1 satisfies the hypothesis of the lemma with mε

and γε chosen according to the preceding paragraph. For sufficiently large k,

Γr(b1 + εs1, . . . , bp + εsp : s1, . . . , sp;mε, k, γε) ⊂ N2ε(U(x(k)
1 , . . . , x(k)

p )).

Find an εL-separated set Wk of U(x(k)
1 , . . . , x

(k)
p ) (with respect to the ρ metric) of

maximum cardinality N2ε(U(x(k)
1 , . . . , x

(k)
p )) ⊂ N(2+L)ε(Wk). For large enough k,

vol(Γr(b1 + εs1, . . . , bp + εsp : s1, . . . , sp;mε, k, γε)) ≤ vol(N(2+L)ε(Wk))

≤ |Wk| ·
π
pk2

2 ((2 + L)ε
√
k)pk

2

Γ
(
k2

2 + 1
)p .

By the preceding inequality, χr(b1 + εs1, . . . , bp + εsp : s1, . . . , sp;mε, γε) is dom-
inated by

lim sup
k→∞

[
k−2 · log |Wk|+ p log((2 + L)ε

√
πk)− pk−2 · log

(
Γ
(
k2

2
+ 1
))

+
p

2
log k

]

≤ lim sup
k→∞

k−2 · log |Wk|+ p log((2 + L)ε
√
π)− pk−2 log

(k2

2e

) k2
2

+ p log k


= lim sup

k→∞

[
k−2 · log |Wk|+ p log((2 + L)ε

√
π)− p

2
· log

(
k2

2e

)
+ p log k

]
= lim sup

k→∞
[k−2 · log |Wk|+ p log((2 + L)ε

√
π) +

p

2
log(2e)]

= p log((2 + L)
√

2πe) + log ε+ lim sup
k→∞

(k−2 · log |Wk|)

= K0 + p log ε+ lim sup
k→∞

[k−2 · log(PεL(U(x(k)
1 , . . . , x(k)

p )))].

By the above calculation, χr(b1 + εs1, . . . , bp + εsp : s1, . . . , sp) + p| log ε| −K0 is
dominated by

lim sup
k→∞

[k−2 · log(PεL(U(x(k)
1 , . . . , x(k)

p )))].

�
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Write A for the ∗-algebra generated by {a1, . . . , an}.

Lemma 4.4. If {b1, . . . , bp} ⊂ A, then there exists an L > 0 such that for any
0 < ε < 1,m ∈ N, and γ > 0 there is a sequence 〈(x(k)

1 , . . . , x
(k)
n )〉∞k=1 satisfying

(x(k)
1 , . . . , x

(k)
n ) ∈ (M sa

k (C))n for all k, (x(k)
1 , . . . , x

(k)
n ) ∈ ΓR+1(a1, . . . , an;m, k, γ)

for sufficiently large k, and

lim sup
k→∞

[k−2 · log(P4ε
√
n(U(x(k)

1 , . . . , x(k)
n )))]

≥ χλ(b1 + εs1, . . . , bp + εsp : s1, . . . , sp) + p| log ε| −K1

where K1 = p · log((2 + 4
√
nL)
√

2πe) and λ = L(R+ 1) + max{‖bj‖}1≤j≤p.

Proof. There exist polynomials f1, . . . , fp in n noncommuting variables and with
no constant terms such that for 1 ≤ j ≤ p, fj(a1, . . . , an) = bj and such that fj of
an n-tuple of selfadjoint operators is a selfadjoint element. There exists a constant
L > 0 such that if k ∈ N and ξ1, . . . , ξn, η1, . . . , ηn ∈ (M sa

k (C))R+1, then for all
1 ≤ j ≤ p,

|fj(ξ1, . . . , ξn)− fj(η1, . . . , ηn)|2 ≤ L ·max{|ξi − ηi|2 : 1 ≤ i ≤ n}
and ‖fj(ξ1, . . . , ξn)‖ ≤ L(R+ 1).

Suppose 0 < ε < 1,m ∈ N, and γ > 0. By Lemma 4.3 there exist an mε ∈ N and
γε > 0 such that if 〈(x(k)

1 , . . . , x
(k)
p )〉∞k=1 is a sequence satisfying (x(k)

1 , . . . , x
(k)
p ) ∈

(M sa
k (C))p for all k and (x(k)

1 , . . . , x
(k)
p ) ∈ Γλ(b1, . . . , bp;mε, k, γε) for sufficiently

large k, then

lim sup
k→∞

[k−2 · log(P4ε
√
nL(U(x(k)

1 , . . . , x(k)
p )))]

≥ χλ(b1 + εs1, . . . , bp + εsp : s1, . . . , sp) + p| log ε| −K1,

whereK1 = p·log((2+4
√
nL)
√

2πe). By the assumed existence of finite-dimensional
approximants for {a1, . . . , an} there exists a k0 ∈ N such that for each k ≥ k0 there
is an (x(k)

1 , . . . , x
(k)
n ) ∈ ΓR+1(a1, . . . , an;m, k, γ) satisfying

(f1(x(k)
1 , . . . , x(k)

n ), . . . , fp(x
(k)
1 , . . . , x(k)

n )) ∈ Γλ(b1, . . . , bp;mε, k, γε).

For each k ≥ k0 and 1 ≤ j ≤ p, set y(k)
j = fj(x

(k)
1 , . . . , x

(k)
n ). It follows that

lim sup
k→∞

[k−2 · log(P4ε
√
nL(U(y(k)

1 , . . . , y(k)
p )))]

≥ χλ(b1 + εs1, . . . , bp + εsp : s1, . . . , sp) + p| log ε| −K1.

For k ≥ k0 and any u, v ∈ Uk, 1 ≤ j ≤ p, observe that

L ·max{|ux(k)
i u∗ − vx(k)

i v∗|2 : 1 ≤ i ≤ n}
dominates

|qj(ux(k)
1 u∗, . . . , ux(k)

n u∗)− qj(vx(k)
1 v∗, . . . , vx(k)

n v∗)|2|uy(k)
j u∗ − vy(k)

j v∗|2.

It follows that for any k ≥ k0,

k−2 · log(P4ε
√
n(U(x(k)

1 , . . . , x(k)
n ))) ≥ k−2 · log(P4ε

√
nL(U(y(k)

1 , . . . , y(k)
p ))).

By the last sentence of the preceding paragraph we are done. �
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Theorem 4.5. (Weak Hyperfinite Monotonicity) If {b1, . . . , bp} ⊂ A, then

δ0(b1, . . . , bp) ≤ δ0(a1, . . . , an).

Proof. Consider the constants L and λ corresponding to b1, . . . , bp in Lemma 4.4.
Suppose 0 < γ, ε < 1

2 and m ∈ N. By Lemma 4.4 there exists a sequence
〈(x(k)

1 , . . . , x
(k)
n )〉∞k=1 satisfying (x(k)

1 , . . . , x
(k)
n ) ∈ (M sa

k (C))n for all k ∈ N, (x(k)
1 , . . . ,

x
(k)
n ) ∈ ΓR+1

(
a1, . . . , an;m, k, γ

(8(R+2))m

)
for sufficiently large k, and

lim sup
k→∞

[k−2 · log(P4ε
√
n(U(x(k)

1 , . . . , x(k)
n )))]

≥ χλ(b1 + εs1, . . . , bp + εsp : s1, . . . , sp) + p| log ε| −K1

where K1 = p · log((2 + 4
√
nL)
√

2πe).
By Corollary 2.14 of [11] there is an N ∈ N such that if k ≥ N and σ is a Radon

probability measure on ((M sa
k (C))R+1)2n invariant under the action

(ξ1, . . . , ξn, η1, . . . , ηn) 7→ (ξ1, . . . , ξn, uη1u
∗, . . . , uηnu

∗)

for u ∈ Uk, then σ(ωk) > 1
2 where

ωk = {(ξ1, . . . , ξn, η1, . . . , ηn) ∈ ((M sa
k (C))R+1)2n :

{ξ1, . . . , ξn} and {η1, . . . , ηn} are
(
m,

γ

4m
)

-free}.

For k ∈ N write νk for the atomic probability measure concentrated at (x(k)
1 , . . . ,

x
(k)
n ) and write mk for the probability measure obtained by restricting vol to

Γ2ε (εs1, . . . , εsn;m, k, γ
8m

)
and normalizing appropriately. νk × mk is a Radon

probability measure on ((M sa
k (C))R+1)2n invariant under the Uk-action described

above. Write Fk for the set of all (z1, . . . , zn) ∈ Γ2ε

(
εs1, . . . , εsn;m, k, γ

8m

)
such

that {z1, . . . , zn} and {x(k)
1 , . . . , x

(k)
n } are

(
m, γ

4m

)
-free.

For k ≥ N , 1
2 < (νk ×mk)(ωk) = mk(Fk). Set Ek = (x(k)

1 , . . . , x
(k)
n ) + Fk. For

u ∈ Uk, vol(uEku∗) = vol(Ek) and uEku∗ is contained in

ΓR+1+2ε(a1 + εs1, ..., an + εsn : εs1, . . . , εsn;m, k, γ).

For each k ∈ N there exists a subset 〈uk,s〉s∈Sk of Uk such that

|Sk| = P4ε
√
n(U(x(k)

1 , . . . , x(k)
n ))

and for s, s′ ∈ Sk with s 6= s′,

max{|uk,sx(k)
i u∗k,s − uk,s′x

(k)
i u∗k,s′ |2 : 1 ≤ i ≤ n} > 4ε

√
n.

Since Fk is ‖ · ‖2-bounded by 2ε
√
nk, (uk,sEku∗k,s) ∩ (uk,s′Eku∗k,s′) = ∅ for s, s′ ∈

Sk, s 6= s′. Hence for k ≥ N, vol(ΓR+1+2ε(a1 + εs1, ..., an + εsn : εs1, . . . , εsn;
m, k, γ)) dominates

vol(
⊔
s∈Sk

uk,sEku
∗
k,s) = |Sk| · vol(Fk)

= |Sk| ·mk(Fk) · vol(Γ2ε(εs1, . . . , εsn;m, k, γ/8m))

> 1/2 · |Sk| · vol(Γ2ε(εs1, . . . , εsn;m, k, γ/8m)).
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By the last sentence of the preceding paragraph,

χR+1+2ε(a1 + εs1, ..., an + εsn : εs1, . . . , εsn;m, γ)
≥ lim sup

k→∞
(k−2 · [log(1/2 · |Sk| · vol(Γ2ε(εs1, . . . , εsn;m, k, γ/8m)))] + n/2 · log k)

≥ lim sup
k→∞

(k−2 · log(|Sk|))

+ lim inf
k→∞

(k−2 · [log(vol(Γ2ε(εs1, ..., εsn;m, k, γ/8m)))] + n/2 · log k)

≥ lim sup
k→∞

(k−2 · log(|Sk|)) + χ2ε(εs1, . . . , εsn)

= lim sup
k→∞

[k−2 · log(P4ε
√
n(U(x(k)

1 , . . . , x(k)
n )))] + n log(ε

√
2πe)

≥ χ(b1 + εs1, . . . , bp + εsp : s1, . . . , sp) + p| log ε|+ n log(ε
√

2πe)−K1,

where we used regularity of {εs1, . . . , εsn} going from the third to the fourth lines
above. m and γ being arbitrary it follows that

χ(a1 + εs1, . . . , an + εsn : s1, . . . , sn) ≥ χ(b1 + εs1, ..., bp + εsp : s1, . . . , sp)

+ (p− n) · | log ε|+ n · log(
√

2πe)−K1.

Dividing by | log ε|, taking lim sup’s as ε→ 0, and adding n to both sides yields

δ0(a1, . . . , an) ≥ δ0(b1, . . . , bp).

�

Corollary 4.6. If a ∈M , then δ0(a1, . . . , an) ≥ δ0(a).

Proof. Find a sequence 〈zk〉∞k=1 in A such that zk → a strongly. By Proposition
6.14 of [9] and Corollary 6.7 of [10], lim infk→∞ δ0(zk) = lim infk→∞ δ(zk) ≥ δ(a) =
δ0(a). For each k, zk generates a hyperfinite von Neumann algebra; by Lemma 4.2,
for each k, δ0(a1, . . . , an) ≥ δ0(zk). So the preceding sentence yields the desired
result. �

Corollary 4.7. If M has a diffuse von Neumann subalgebra, then δ0(a1, . . . , an)
≥ 1.

Proof. Find a maximal abelian subalgebra N of the diffuse von Neumann subalge-
bra. N has a selfadjoint generator a. N must be diffuse since it is a maximal abelian
subalgebra of a diffuse von Neumann algebra. Consequently, a has no eigenvalues.
Apply Corollary 4.6. �

Remark 4.8. By [10] if M has a regular diffuse von Neumann subalgebra, then
δ0(a1, . . . , an) ≤ 1. By [4] if there exists a sequence of Haar unitaries 〈uj〉sj=1 such
that the sequence generates M as a von Neumann algebra and for each j ∈ N,
uj+1uju

∗
j+1 ∈ {u1, . . . , uj}′′, then δ0(a1, . . . , an) ≤ 1. Combining these results with

Corollary 4.7, it follows that for any selfadjoint generators a1, . . . , an for an M
that satisfies either of the two conditions and that is also embeddable into the
ultraproduct of the hyperfinite II1-factor, δ0(a1, . . . , an) = 1. In other words, δ0 is
a von Neumann algebra invariant for such algebras. In particular, δ0(M) = 1 when
M can be embedded into the ultraproduct of the hyperfinite II1-factor and M has
a Cartan subalgebra, M = N1 ⊗ N2 for II1-factors N1 and N2, or when M is a
group von Neumann algebra associated to the groups SLn(Z), n ≥ 3.
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5. Lower Bound for Finite-Dimensional Algebras

In this section we calculate the lower bound for δ0(a1, . . . , an) when M is finite
dimensional. Without loss of generality, assume throughout this section that M =⊕p

i=1Mki(C) and ϕ =
⊕p

i=1 αitrki where p ∈ N and αi > 0 for each i. The first
lemma we present is not necessary but it is convenient.

Lemma 5.1. There exists an x ∈M such that the ∗-algebra generated by x is M .

The proof is not hard and we omit it.
As in the preceding section, the calculation of the lower bound amounts to look-

ing at the packing number of unitary orbits of microstates. We use two ingredients.
For a representation π : M → Mk(C) define Hπ to be the unitary group of

(π(M))′ and Xπ = Uk/Hπ. Endow Xπ with the quotient metric from the | · |2-
metric on Uk. Denote this metric on Xπ by dπ. The first ingredient is a packing
number estimate for certain homogeneous spaces Xπ.

Lemma 5.2. There exists a κ > 0 with the property that for every ε > 0 there
is a corresponding sequence 〈σk〉∞k=1 such that for each k, σk : M → Mk(C) is a
∗-homomorphism and for k sufficiently large:

• ‖trk ◦ σk − ϕ‖ < ε.
• For each k, setting Hk = Hσk and Xk = Xσk we have that Hk is a tractable

Lie subgroup of Uk satisfying k2(4ϕ(M)− ε) ≤ dim(Xk).
• For any ε > 0, (κ

ε

)dimXk
≤ P (Xk, ε)

where P (Xk, ε) is the maximum number of points in an ε-separated subset
of Xk.

We quarantine the proof of Lemma 5.2 to the Addendum, merely noting for now
that the argument will require some technical modifications to the proofs in [7].

From now on fix x as in Lemma 5.1. Given a representation π : M → Mk(C),
define Uπ(x) = {uπ(x)u∗ : u ∈ Uk} and endow Uπ(x) with the inherited | · |2-metric.
For u ∈ Uk denote u̇ to be the image of u in Xπ and define fπ : Uπ(x) → Xπ by
fπ(uπ(x)u∗) = u̇. fπ is well defined for if u, v ∈ Uk, u̇ = v̇ ⇐⇒ v∗u ∈ Hπ ⇐⇒
uπ(x)u∗ = vπ(x)v∗.

For the second ingredient recall that in Section 3 covering number estimates with
respect to the induced operator norm metrics yield the desired upper bounds for
δ0(a1, . . . , an). Part of the explanation for this lies in the trivial observation that
if u, v ∈ Uk and z ∈ Mk(C), then |uzu∗ − vzv∗|2 ≤ 2‖u − v‖ · |z|2. The second
ingredient more or less says the reverse: there exists a constant L > 0 such that
dπ(u̇, v̇) ≤ L · |uπ(x)u∗ − vπ(x)v∗|2.

Lemma 5.3. If z, p ∈Mk(C) with p a projection and zz∗, z∗z ≤ ‖z∗z‖p, then there
exists a y ∈Mk(C) satisfying yy∗ = y∗y = p and

|y − z|2 ≤ |p− z∗z|2 + |p− e|2 ≤ 2|p− z∗z|2
where e is the projection onto the range of z∗z.

Proof. Denote the polar decomposition of z by z = u|z| and use the spectral the-
orem to write |z| =

∑m
j=1 βjej where the ej are mutually orthogonal rank one
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projections satisfying e1 + · · ·+ em = p and βj ≥ 0. Now estimate:

|z − u|22 = |u|z| − up|22 ≤ ||z| − p|22 =
1
k
·
m∑
j=1

(1 − βj)2 ≤ 1
k
·
m∑
j=1

(1 − βj)2(1 + βj)2

= |p− z∗z|22.

|z− u|2 ≤ |p− z∗z|2. Since uu∗, u∗u ≤ p there exists a partial isometry v such that
vv∗ = p − uu∗ and v∗v = p − u∗u. So if y = u + v, then yy∗ = y∗y = p. u∗u = e
whence

|z − y|2 ≤ |z − u|2 + |v|2 ≤ |p− z∗z|2 + (trk(v∗v))
1
2

= |p− z∗z|2 + (trk(p− u∗u))
1
2

= |p− z∗z|2 + |p− e|2
≤ 2|p− z∗z|2.

�

Using Lemma 5.3 we obtain the second ingredient:

Lemma 5.4. {fπ : for some k ∈ N, π : M → Mk(C) is a representation} is
uniformly Lipschitz.

Proof. Suppose π : M → Mk(C) is a representation. Because | · |2 is unitarily
invariant it suffices to show that for any u ∈ Uk,

inf
h∈Hπ

|u− h|2 = dπ(fπ(uπ(x)u∗), fπ(π(x))) ≤ L · |uπ(x)u∗ − π(x)|2

where L > 0 is a constant dependent only on x.
If u ∈ Uk, then set ε = |uπ(x)u∗ − π(x)|2. Denote 〈e(i)

jl 〉1≤i≤p,1≤j,l≤ki to be the
canonical system of matrix units for M . There exist polynomials in two noncom-
muting variables 〈q(i)

jl 〉1≤i≤p,1≤j,l≤ki such that for any i, j, and l, q(i)
jl (x, x∗) = e

(i)
jl .

Set y(i)
jl = π(e(i)

jl ). There exists a constant C > 0 dependent only on x such that
for any i, j, and l,

|uy(i)
jl − y

(i)
jl u|2 = |uy(i)

jl u
∗ − y(i)

jl |2 ≤ Cε.

Set K =
∑p
i=1 ki. By the above inequality, |uπ(I)u∗ − π(I)|2 < CKε. Setting f to

be the projection onto the orthogonal complement of the range of π(I), |ufu∗−f |2 <
CKε. Now

|u− [(
∑

1≤i≤p,1≤j≤ki

y
(i)
jj uy

(i)
jj ) + fuf ]|2

≤ (
∑

1≤i≤p,1≤j≤ki

|uy(i)
jj − y

(i)
jj u|2 · ‖y

(i)
jj ‖) + |uf − fu|2 · ‖f‖

≤ 2CKε.

For any 1 ≤ i ≤ p, 1 ≤ j, l ≤ ki,

|y(i)
jj uy

(i)
jj − y

(i)
jl uy

(i)
lj |2 ≤ |y(i)

jj uy
(i)
jj − y

(i)
jj u|2 + |y(i)

jl y
(i)
lj u− y

(i)
jl uy

(i)
lj |2

≤ |uy(i)
jj − y

(i)
jj u|2 + |y(i)

lj u− uy
(i)
lj |2

≤ 2Cε.
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By Lemma 5.3 there exists for each 1 ≤ i ≤ p a vi ∈Mk(C) such that viv∗i = v∗i vi =
y

(i)
11 and |vi − y(i)

11 uy
(i)
11 |2 ≤ 2|y(i)

11 uy
(i)
11 u
∗y

(i)
11 − y

(i)
11 |2. So

|vi − y(i)
11 uy

(i)
11 |2 ≤ 2‖y(i)

11 ‖2 · |uy
(i)
11 u
∗ − y(i)

11 |2 ≤ 2Cε.

Similarly there exists a v ∈ Mk(C) such that v∗v = vv∗ = f and |v − fuf |2 ≤
2|fufu∗f − f |2 ≤ 2CKε.

Consider z = (
∑

1≤i≤p,1≤j≤ki y
(i)
j1 viy

(i)
1j ) + v. It is easy to check that z is a

unitary and, because z commutes with all the y
(i)
jl , z ∈ Hπ. Finally by the last

three inequalities of the preceding paragraph,

|u− z|2 ≤ |u− [(
∑

1≤i≤p,1≤j≤ki

y
(i)
jj uy

(i)
jj ) + fuf ]|2

+

 ∑
1≤i≤p,1≤j≤ki

|y(i)
jj uy

(i)
jj − y

(i)
j1 viy

(i)
1j |2

 + |fuf − v|2

≤ 4CKε+
∑

1≤i≤p,1≤j≤ki

(|y(i)
jj uy

(i)
jj − y

(i)
j1 uy

(i)
1j |2 + |y(i)

j1 uy
(i)
1j − y

(i)
j1 viy

(i)
1j |2)

≤ 4CKε+
∑

1≤i≤p,1≤j≤ki

(2Cε+ |y(i)
11 uy

(i)
11 − vi|2)

≤ 8CKε.

Set L = 8CK, observe that L is dependent only on x, and that infh∈Hπ |u− h|2 ≤
|u− z|2 ≤ Lε. �

Denote L > 0 to be the uniform Lipschitz constant of Lemma 5.4. There exists
a polynomial f in n noncommuting variables satisfying f(a1, . . . , an) = x. There
exists an L1 > 0 such that for any k ∈ N and ξ1, . . . , ξn, η1, . . . , ηn ∈ (M sa

k (C))R,

|f(ξ1, . . . , ξn)− f(η1, . . . , ηn)|2 ≤ L1 ·max{|ξi − ηi|2 : 1 ≤ i ≤ n}.
Denote Pε(S) and U(x1, . . . , xd) to have the same meaning as in Section 4.

Lemma 5.5. If ρ1, ρ2 > 0,m ∈ N, and γ > 0, then there is an N ∈ N such that
for each k ≥ N there exists an (x(k)

1 , . . . , x
(k)
n ) ∈ ΓR(a1, . . . , an;m, k, γ) satisfying

for any κ
ρ1LL1

> ε > 0,

k−2 · log(Pερ1 (U(x(k)
1 , . . . , x(k)

n ))) ≥ (4ϕ(M)− ρ2) · log
(

κ

ρ1LL1ε

)
.

Proof. By Lemma 5.2 there is an N ∈ N such that for each k ≥ N there exists a
∗-homomorphism σk : M →Mk(C) satisfying:

• ‖trk ◦ σk − ϕ‖ ≤ γ
(R+1)m .

• For each k, setting Hk = Hσk and Xk = Xσk we have that Hk is a tractable
Lie subgroup of Uk and k2(4ϕ(M)− ρ2) ≤ dim(Xk).
• For ε > 0, (κ

ε

)dimXk
≤ P (Xk, ε)

where P (Xk, ε) is the maximum number of points in an ε-separated subset
of Xk.
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For each 1 ≤ i ≤ n and k ≥ N , define x
(k)
i = σk(ai) ∈ M sa

k (C). By the first
condition above, (x(k)

1 , . . . , x
(k)
n ) ∈ ΓR(a1, . . . , an;m, k, γ). To see that the second

condition is fulfilled suppose ε satisfies the hypothesis of the lemma and k ≥ N .
κ ≥ ρ1LL1ε and so

P (Xk, ρ1LL1ε) ≥
(

κ

ρ1LL1ε

)dimXk

≥
(

κ

ρ1LL1ε

)k2(4ρ(M)−ρ2)

.

For any u, v ∈ Uk,

dσk (u̇, v̇) ≤ L · |uσk(x)u∗ − vσk(x)v∗|2
= L · |f(uσk(a1)u∗, . . . , uσk(an)u∗)− f(vσk(a1)v∗, . . . , vσk(an)v∗)|2
≤ LL1 ·max{|ux(k)

i u∗ − vx(k)
i v∗|2 : 1 ≤ i ≤ n}.

It follows that Pερ1(U(x(k)
1 , . . . , x

(k)
n )) ≥ P (Xk, ρ1LL1ε). Hence for k ≥ N ,

k−2 · log(Pερ1 (U(x(k)
1 , . . . , x(k)

n ))) ≥ (4ϕ(M)− ρ2) · log
(

κ

ρ1LL1ε

)
.

�
The following corollary will not be used until the next section. Suppose r > R.

Corollary 5.6. If Ω > 0 and κ
3ΩLL1

> ε > 0, then there exist m ∈ N and γ > 0 such

that if 〈(x(k)
1 , . . . , x

(k)
n )〉∞k=1 is a sequence satisfying (x(k)

1 , . . . , x
(k)
n ) ∈ (M sa

k (C))n for
all k, and (x(k)

1 , . . . , x
(k)
n ) ∈ Γr(a1, . . . , an;m, k, γ) for sufficiently large k, then

k−2 · log(PΩε(U(x(k)
1 , . . . , x(k)

n ))) ≥ (4ϕ(M)− ε) · log
(

κ

3LL1Ωε

)
for sufficiently large k.

Proof. By Corollary 3.4 there exist m ∈ N and γ > 0 such that for any k ∈ N and
(y1, . . . , yn), (z1, . . . , zn) ∈ Γr(a1, . . . , an;m, k, γ) there exists a u ∈ Uk such that
for 1 ≤ j ≤ n, |uyju∗ − zj)|2 < ε

2 . By Lemma 5.5 there exists an N ∈ N such that
for each k ≥ N there exists an (z(k)

1 , . . . , z
(k)
n ) ∈ Γr(a1, . . . , an;m, k, γ) satisfying

k−2 · log(P3Ωε(U(z(k)
1 , . . . , z(k)

n ))) ≥ (4ϕ(M) − ε) ·
(

κ

3LL1Ωε

)
.

Now merely observe that for any such sequence 〈(x(k)
1 , . . . , x

(k)
n )〉∞k=1 satisfying the

hypothesis of the corollary with m and γ chosen above, PΩε(U(x(k)
1 , . . . , x

(k)
n )) ≥

P3Ωε(U(z(k)
1 , . . . , z

(k)
n )) for k ≥ N. �

Theorem 5.7. δ0(a1, . . . , an) ≥ 1−
∑p

i=1
α2
i

k2
i

.

Proof. Suppose min
{

1
2 ,

κ
4
√
nLL1

}
> ε > 0,m ∈ N, and γ, r > 0. Corollary 2.14

of [11] provides an N ∈ N such that if k ≥ N and σ is a Radon probability mea-
sure on ((M sa

k (C))R+1)2n invariant under the Uk-action (ξ1, . . . , ξn, η1, . . . , ηn) 7→
(ξ1, . . . , ξn, uη1u

∗, . . . , uηnu
∗) where u ∈ Uk, then σ(ωk) > 1

2 where

ωk = {(ξ1, . . . , ξn, η1, . . . , ηn) ∈ ((M sa
k (C))R+1)2n:

{ξ1, . . . , ξn} and {η1, . . . , ηn} are
(
m,

γ

4m
)

-free}.
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Lemma 5.5 provides an N1 ∈ N such that for each k ≥ N1 there exists an
(x(k)

1 , . . . , x
(k)
n ) ∈ ΓR(a1, . . . , an;m, k, γ/(8(R+ 2))m) satisfying

k−2 · log(P4ε
√
n(U(x(k)

1 , . . . , x(k)
n ))) ≥ (4ϕ(M)− r) · log

(
κ

4
√
nLL1ε

)
.

For k ≥ N +N1 denote by νk the atomic probability measure on ((M sa
k (C))R+1)n

concentrated at (x(k)
1 , . . . , x

(k)
n ) and denote by mk the Radon probability measure

obtained by restricting vol to Γ2ε(εs1, . . . , εsn;m, k, γ/8m) and normalizing appro-
priately. νk × mk is a Radon probability measure on ((M sa

k (C))R+1)2n invariant
under the Uk-action described above. Write Fk for the set of all (y1, . . . , yn) ∈
Γ2ε(εs1, . . . , εsn;m, k, γ/8m) such that {y1, . . . , yn} and {x(k)

1 , . . . , x
(k)
n } are

(
m, γ

4m

)
-

free.
For k ≥ N + N1,

1
2 < (νk ×mk)(ωk) = mk(Fk). Set Ek = (x(k)

1 , . . . , x
(k)
n ) +

Fk. For k ≥ N + N1 and u ∈ Uk, vol(uEku∗) = vol(Fk) (where uEku
∗ is de-

fined as in Section 4) and uEku
∗ is contained in ΓR+1(a1 + εs1, . . . , an + εsn :

εs1, . . . , εsn;m, k, γ).
For each k ≥ N +N1 find a subset 〈uk,s〉s∈Sk of Uk such that

|Sk| = P4ε
√
n(U(x(k)

1 , . . . , x(k)
n ))

and for any s, s′ ∈ Sk, s 6= s′,

max{|uk,sx(k)
i u∗k,s − uk,s′x

(k)
i u∗k,s′ |2 : 1 ≤ i ≤ n} > 4ε

√
n.

Fk ⊂ (M sa
k (C))n is a 2ε

√
nk bounded subset with respect to the ‖ · ‖2-norm. Hence

for any s, s′ ∈ Sk, s 6= s′(uk,sEku∗k,s) ∩ (uk,s′Eku∗k,s′) = ∅. Consequently for k ≥
N +N1, vol(ΓR+1(a1 + εs1, . . . , an + εsn : εs1, . . . , εsn;m, k, γ)) dominates

vol(
⊔
s∈Sk

uk,sEku
∗
k,s) = |Sk| · vol(Fk)

= |Sk| ·mk(Fk) · vol(Γ2ε(εs1, . . . , εsn;m, k, γ/8m))

>
1
2
· |Sk| · vol(Γ2ε(εs1, . . . , εsn;m, k, γ/8m)).

By what preceded for min
{

1
2 ,

κ
4
√
nLL1

}
> ε > 0,m ∈ N, and γ, r > 0, we have

that χR+1(a1 + εs1, . . . , an + εsn : εs1, . . . , εsn;m, γ) dominates

lim sup
k→∞

k−2 · log
(

1
2
· |Sk| · vol(Γ2ε(εs1, . . . , εsn;m, k, γ/8m)) +

n

2
· log k

)
= lim sup

k→∞

[
k−2 · log

(
vol(Γ2ε(εs1, . . . , εsn;m, k, γ/8m)) +

n

2
· log k

)
+ k−2 · log(|Sk|)

]
≥ χ(εs1, . . . , εsn) + log

((
κ

4
√
nLL1ε

)4ϕ(M)−r
)

= log(εn+r−4ϕ(M)) + log

(
(2πe)

n
2

(
κ

4
√
nLL1

)4ϕ(M)−r
)
.
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Letting r → 0 it follows that

χR+1(a1 + εs1, . . . , an + εsn;m, γ)

≥ log(εn−4ϕ(M)) + log

(
(2πe)

n
2

(
κ

4
√
nLL1

)4ϕ(M)
)
.

This inequality holding for all ε > 0 sufficiently small, m ∈ N, and γ > 0,

χ(a1 + εs1, . . . , an + εsn : s1, . . . , sn)

≥ log(εn−4ϕ(M)) + log

(
(2πe)

n
2

(
κ

4
√
nLL1

)4ϕ(M)
)
.

Dividing by | log ε|, taking lim sup’s as ε goes to 0, and adding n to both sides above
yields

δ0(a1, . . . , an) ≥ 1−
p∑
i=1

α2
i

k2
i

.

�

By Theorem 3.10 and Theorem 5.7 we have:

Corollary 5.8. δ0(a1, . . . , an) = 1−
∑p
i=1

α2
i

k2
i

.

6. The General Lower Bound

In this section we find a lower bound for δ0(a1, . . . , an). When M is hyperfinite
the lower bound will be sharp. By decomposing M over its center it follows that

M 'M0 ⊕ (
s⊕
i=1

Mki(C))⊕M∞, ϕ ' α0ϕ0 ⊕ (
s⊕
i=1

αitrki)⊕ 0

where as in the introduction s ∈ N ∪ {0} ∪ {∞}, αi > 0 for 1 ≤ i ≤ s (i ∈ N), M0

is a diffuse von Neumann algebra or {0}, ϕ0 is a faithful, tracial state on M0 and
α0 > 0 if M0 6= {0}, ϕ0 = 0 and α0 = 0 if M0 = {0}, and M∞ is a von Neumann
algebra or {0}. We remark that M, hyperfinite or otherwise, always admits such a
decomposition. We will show that δ0(a1, . . . , an) ≥ 1−

∑s
i=1

α2
i

k2
i
. Again, because ϕ

vanishes on M∞ and our main claim concerns the calculation of a lower bound for
δ0(a1, . . . , an) assume, without loss of generality, that

M = M0 ⊕ (
s⊕
i=1

Mki(C)), ϕ = α0ϕ0 ⊕ (
s⊕
i=1

αitrki).

We proceed first by finding a suitable set of elements {a′1, a′2, a′3} in the ∗-algebra
generated by the ai such that the packing number of unitary orbits of certain mi-
crostates of ΓC(a′1, a′2, a′3;m, k, γ) approximate (from below and in a normalized
sense) 1 −

∑s
i=1

α2
i

k2
i

. These microstates can be obtained as noncommuting poly-
nomials of well-approximating microstates for {a1, . . . , an} and hence the packing
number of unitary orbits of such microstates of ΓC(a′1, a

′
2, a
′
3;m, k, γ) will provide

a lower bound for the packing number of unitary orbits of the microstates for
{a1, . . . , an}. One can then use asymptotic freeness results to transform these met-
ric entropy quantities into free entropy dimension quantities as in Theorem 4.5 and
Theorem 5.7.
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Throughout this section write A for the ∗-algebra generated by {a1, . . . , an}. We
also maintain the notation introduced at the beginning of Section 4. In subsections
6.1 and 6.2 we assume that M0 6= {0} (which implies 0 < α0) and α0 < 1.

6.1. Construction of {a′1, a′2, a′3} when M0 6= {0} and α0 < 1. Fix l ∈ N with
l ≤ s and ε > 0. Define M1 =

⊕l
j=1Mkj (C) and M2 =

⊕
l<j≤sMkj (C). M1 is

a finite-dimensional C*-algebra and by Lemma 5.1 has two selfadjoint generators
b1 and b2. A is strongly dense in M ; so Ae is strongly dense in Me where e =
0 ⊕ (

⊕l
j=1 Ij) ⊕ 0 ∈ Z(M) and the Ij are as in Section 3. Thus Ae = Me.

Consequently there exist a′1, a′2 ∈ A such that

a′i = fi ⊕ bi ⊕ ξi ∈M0 ⊕M1 ⊕M2 = M.

M0 being diffuse, there exists an f ∈ M0 such that δ0(f) = 1 and sp(f) = [1, 2]
(here δ0(f) is calculated with respect to ϕ0). Ae0 is strongly dense in Me0 where
e0 = I0⊕0 ∈M0⊕(

⊕
1≤j≤sMkj (C). By Kaplansky’s Density Theorem, Proposition

6.14 of [8], and Corollary 6.7 of [9] there exists an 0 ≤ a ∈ A satisfying:

• a = g ⊕ b⊕ ξ ∈M0 ⊕M1 ⊕M2 = M .
• sp(g) ⊂ [0, 2], δ0(g) > 1 − ε, and ϕ0(χ[0,1/2]) < ε where for any Borel

subset S ⊂ R, χS denotes the spectral projection of g associated to the
set S.
• ‖b‖ < 1

6 .

Since b ≥ 0 and M1 is finite dimensional, sp(b) = {β1, . . . , βd} ⊂ R where
0 ≤ β1 < . . . < βd ≤ 1

6 . Define h : [0, 2]→ R by h(t) = (t− β1) · · · (t− βd). Observe
that:

• h(b) = 0;
• h−1(h([0, 2βd])) ⊂ [0, 3βd] ⊂ [0, 1/2];
• h−1(h((2βd, 2])) ⊂ (βd, 2].

The third observation implies that if β ∈ h(2βd, 2], then h−1(β) consists of exactly
one point in (βd, 2] since h is strictly increasing on (βd, 2]. Noting that for all but
countably many β, χh−1{β} = 0,∑
β∈sp(h(b))

ϕ0(χh−1{β})2 =
∑

β∈h(sp(b))

ϕ0(χh−1{β})2

≤
∑

β∈h([0,2βd])

ϕ0(χh−1{β})2 +
∑

β∈h((2βd,2])

ϕ0(χh−1{β})2

≤ ϕ0(
∑

β∈h([0,2βd])

χh−1{β}) +
∑

β∈[0,2]

ϕ0(χ{β})2

≤ ϕ0(χ[0,3βd]) + ε

< 2ε.

Define a′3 = h(a) = h(g)⊕ 0⊕ h(ξ). We have just proven:

Lemma 6.1. If l ∈ N, 1 ≤ l ≤ s, and ε > 0, then there exist a′1, a
′
2, a
′
3 ∈ A of the

form a′i = fi ⊕ bi ⊕ ξi ∈M0 ⊕M1 ⊕M2 = M satisfying:

• {b1, b2} generates M1 and b3 = 0;
• δ0(f3) > 1− ε.
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6.2. Lower Bounds Estimates for δ0(a1, . . . , an) when M0 6= {0} and α0 < 1.
Fix l ∈ N, l ≤ s, and ε > 0. Find elements a′1, a′2, a′3 ∈ A with the properties listed
in Lemma 6.1 and denote M1,M2 to have the same meaning as in the preceding
subsection. Suppose C ≥ max{‖a′i‖}i=1,2,3 + 1. Denote by ϕ1 the tracial state
on M1 obtained by restricting ϕ to 0 ⊕ M1 ⊕ 0 and normalizing appropriately.
Similarly denote by ϕ2 the positive trace (possibly 0) on M2 obtained by restricting
ϕ to 0 ⊕ 0 ⊕M2 and normalizing appropriately. Define β0 = α0, β1 =

∑l
i=1 αi,

β = min{β0, β1}, and β2 = 1 − β0 − β1. Recall the constant κ, L, and L1 of the
previous section with respect to M1, ϕ1, and x = b1 + ib2. Finally define e0 and
e1 to be the projections I0 ⊕ 0 ⊕ 0, 0 ⊕ (

⊕l
j=1 Ij) ⊕ 0 ∈ M , respectively, and

e2 = I − e0 − e1.

Lemma 6.2. If D > 0 and min
{

βκ
27DLL1

, 1
}
> ε > 0, then there exist mε ∈ N

and γε > 0 (dependent on ε) such if 〈(z(k)
1 , z

(k)
2 , z

(k)
3 )〉∞k=1 is a sequence satisfy-

ing (z(k)
1 , z

(k)
2 , z

(k)
3 ) ∈ (M sa

k (C))3 for all k and (z(k)
1 , z

(k)
2 , z

(k)
3 ) ∈ ΓC(a′1, a

′
2, a
′
3 :

e0, e1, e2;mε, k, γε) for sufficiently large k, then

lim sup
k→∞

k−2 · log(PDε(U(z(k)
1 , z

(k)
2 , z

(k)
3 )))

dominates

(β0 + β1 − ε)2 · (χ((f3 ⊕ 0) + εs : s) + | log ε| −K)

+ (β1 − ε)2(4ϕ1(M1)− ε) · log
(

βκ

27εDLL1

)
where K = log((2 + 9β−1D)

√
2πe) and s is a semicircular element free with respect

to M0 ⊕M1.

Proof. Suppose min
{

βκ
27DLL1

, 1
}
> ε > 0. By Lemma 4.3 there exist an m1 ∈ N and

γ1 (dependent on ε) such that if 〈x(k)〉∞k=1 is a sequence satisfying x(k) ∈ M sa
k (C)

for all k ∈ N and x(k) ∈ ΓC(f3 ⊕ 0;m1, k, γ1) for sufficiently large k, then

lim sup
k→∞

[k−2 · logP9β−1Dε(U(x(k)))] ≥ χC((f3 ⊕ 0) + εs : s) + | log ε| −K

where K = log((2 + 9β−1D)
√

2πe), f3 ⊕ 0 ∈ M0 ⊕M1, M0 ⊕M1 is endowed with
the tracial state (β0 +β1)−1(β0ϕ0⊕β1ϕ1), and s is a semicircular element free with
respect to M0 ⊕M1.

By Corollary 5.6 there exist an m2 ∈ N and γ2 > 0 such that if 〈(y(k)
1 , y

(k)
2 )〉∞k=1 is

a sequence satisfying (y(k)
1 , y

(k)
2 ) ∈ (M sa

k (C))2 for all k and (y(k)
1 , y

(k)
2 ) ∈ ΓC(b1, b2;

m2, k, γ2) for sufficiently large k, then

k−2 · logP9β−1Dε(U(y(k)
1 , y

(k)
2 )) ≥ log

((
βκ

27εDLL1

)4ϕ1 (M1)−ε
)

for sufficiently large k.
By standard approximations for any ε > 0 there exist m ∈ N and γ > 0 such that

for any k ∈ N if (z1, z2, z3) ∈ ΓC(a′1, a
′
2, a
′
3 : e0, e1, e2;m, k, γ), then the following

conditions are satisfied:
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• There exist mutually orthogonal projections q0, q1, q2 ∈ Mk(C) with n0 +
n1 +n2 = k where ni denotes the dimension of the range of qi and for each
i, |trk(qi)− βi| < ε.
• Canonically identifying q0Mk(C)q0 + q1Mk(C)q1 + q2Mk(C)q2 with⊕2

i=0Mni(C) |zi−hi|2 < ε where hi = xi⊕yi⊕ηi ∈
⊕2

i=0Mni(C) ⊂Mk(C)
and y3 = 0.
• x3 ⊕ 0 ∈ ΓC(f3 ⊕ 0;m1, n0 + n1, γ1).
• (y1, y2) ∈ ΓC(b1, b2;m2, n1, γ2) where b1, b2 ∈ (M,ϕ1).

Secondly, given ε > 0 there exists an N ∈ N such that for each k > N there
exists a corresponding k < τ(k) ∈ N satisfying | k

τ(k) − (β0 + β1)| < ε. Combining
these two remarks, there exist mε ∈ N and γε > 0 such that for any k ∈ N
sufficiently large there exists a k < τ(k) ∈ N such that if (z1, z2, z3) ∈ ΓC(a′1, a

′
2, a
′
3 :

e0, e1, e2;mε, τ(k), γε), then the following conditions are satisfied:

• There exist mutually orthogonal projections q0, q1, q2 ∈Mτ(k)(C) with n0 +
n1 + n2 = τ(k) where ni denotes the dimension of the range of qi and for
each i, |trτ(k)(qi)− βi| < 1

2 ·min{ε, β}.
• n0 + n1 = k.
• Canonically identifying q0Mτ(k)(C)q0 + q1Mτ(k)(C)q1 + q2Mτ(k)(C)q2 with⊕2

i=0Mni(C), |zi − hi|2 < ε
2 where hi = xi ⊕ yi ⊕ ηi ∈

⊕2
i=0Mni(C) ⊂

Mτ(k)(C) and y3 = 0.
• x3 ⊕ 0 ∈ ΓC(f3 ⊕ 0;m1, k, γ1).
• (y1, y2) ∈ ΓC(b1, b2;m2, n1, γ2) where b1, b2 ∈ (M,ϕ1).

Now fix k and (z1, z2, z3) satisfying the aforementioned conditions so that the
five properties listed just above hold. Let ni, hi, xi, yi, and ηi correspond to the
fixed k and (z1, z2, z3). Find a set of unitaries 〈us〉s∈Sk of Uk such that |S| =
P9β−1Dε(U(x3 ⊕ 0)) and for any s, s′ ∈ S and s 6= s′,

|us(x3 ⊕ 0)u∗s − us′(x3 ⊕ 0)u∗s′ |2 > 9β−1Dε.

Find a set of unitaries 〈vg〉g∈G of Un1 such that |G| = P9β−1Dε(U(y1, y2)) and for
any g, g′ ∈ G and g 6= g′,

max{|vgyiv∗g − vg′yiv∗g′ |2 : i = 1, 2} > 9β−1Dε.

For (s, g) ∈ Sk ×Gk define ws,g ∈ Uτ(k) by ws,g = (us(In0 ⊕ vg))⊕ In2 ∈ Uτ(k).
I claim that the family 〈(ws,gh1w

∗
s,g, ws,gh2w

∗
s,g, ws,gh3w

∗
s,g)〉s,g ∈ S × G is a

3Dε-separated set (with respect to the ρ metric defined in section 4). Suppose
(s, g), (s′, g′) ∈ S × G and (s, g) 6= (s′, g′). Then either s 6= s′ or g 6= g′. In the
former case,

|ws,gh3w
∗
s,g − ws′,g′h3w

∗
s′,g′ |2

= |ws,g(x3 ⊕ 0⊕ η3)w∗s,g − ws′,g′(x3 ⊕ 0⊕ η3)w∗s′,g′ |2
= |us(x3 ⊕ 0)u∗s ⊕ 0− us′(x3 ⊕ 0)u∗s′ ⊕ 0|2

>

√
β1 + β2

2
· 9β−1Dε

> 3Dε.
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Suppose g 6= g′. We can assume s = s′. For i = 1, 2,

|ws,ghiw∗s,g − ws,g′hiw∗s,g′ |2
= |ws,g(xi ⊕ yi ⊕ ηi)w∗s,g − ws,g′ (xi ⊕ yi ⊕ ηi)w∗s,g′ |2
= |us(xi ⊕ vgyiv∗g)u∗s ⊕ η3 − us(xi ⊕ vg′yiv∗g′)u∗s ⊕ η3|2

≥
√
β1

2
· |vgyiv∗g − vg′yiv∗g′ |2

so that

max{|ws,ghiw∗s,g − ws,g′hiw∗s,g′ |2 : i = 1, 2}

≥
√
β1

2
·max{|vgyiv∗g − vg′yiv∗g′ |2 : i = 1, 2}

>

√
β1

2
· 9β−1Dε

> 3Dε.

By the inequalities above, PDε(U(z1, z2, z3)) ≥ P3Dε(U(h1, h2, h3)) ≥ |S ×G|.
Now suppose 〈(z(k)

1 , z
(k)
2 , z

(k)
3 )〉∞k=1 is a sequence satisfying the hypothesis of the

lemma with mε and γε as chosen on the previous page. For k sufficiently large,

(z(τ(k))
1 , z

(τ(k))
2 , z

(τ(k))
3 ) ∈ ΓC(a′1, a

′
2, a
′
3 : e0, e1, e2;mε, τ(k), γε).

Thus (z(τ(k))
1 , z

(τ(k))
2 , z

(τ(k))
3 ) satisfies the five conditions previously stated. For each

k sufficiently large consider the corresponding τ(k) ∈ N and denote ni(k), x(ni(k)),
y

(ni(k))
i , Sk, and Gk to be the ni, xi, yi, S, and G, respectively, associated to

(z(τ(k))
1 , z

(τ(k))
2 , z

(τ(k))
3 ). Then

lim sup
k→∞

τ(k)−2 · log(PDε(U(z(τ(k))
1 , z

(τ(k))
2 , z

(τ(k))
3 )))

≥ lim sup
k→∞

τ(k)−2 · (log |Sk|+ log |Gk|)

≥ lim sup
k→∞

(τ(k)−2 · log |Sk|) + lim inf
k→∞

(τ(k)−2 · log |Gk|).

Set L = 9β−1Dε. Then lim supk→∞(τ(k)−2 · log |Sk|) dominates

(β0 + β1 − ε)2 · lim sup
k→∞

1
(n0(k) + n1(k))2

· log(PL(U(x(n0(k))
3 ⊕ 0)))

= (β0 + β1 − ε)2 · lim sup
k→∞

1
k2
· log(PL(U(x(n0(k))

3 ⊕ 0)))

≥ (β0 + β1 − ε)2 · χC((f3 ⊕ 0) + εs : s) + | log ε| −K
and since n1(k)→∞ as k →∞,

lim inf
k→∞

(τ(k)−2 · log |Gk|)

≥ (β1 − ε)2 · lim inf
k→∞

[n1(k)−2 · log(PL(U(y(n1(k))
1 , y

(n1(k))
2 )))]

≥ (β1 − ε)2 · log

((
βκ

27εDLL1

)4ϕ1 (M1)−ε
)
.

The desired result follows. �
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We now recycle a familiar argument. There exist polynomials p1, p2, p3 in n
noncommuting variables such that for 1 ≤ j ≤ 3, pj(a1, . . . , an) = a′j . Without
loss of generality, we can assume the pj take n-tuples of selfadjoint elements to
selfadjoint elements. Find a constant 1 < C such that for any (x1, . . . , xn) ∈
((M sa

k (C))R+1)n, ‖pj(x1, . . . , xn)‖ < C. Also, there exists a D0 > 0 such that if
k ∈ N and x1, . . . , xn, y1, . . . , yn ∈ (M sa

k (C))R+1, then for all j,

|pj(x1, . . . , xn)− pj(y1, . . . , yn)|2 ≤ D0 ·max{|xi − yi|2 : 1 ≤ i ≤ n}.
Lemma 6.3. For m ∈ N, γ > 0, and small enough ε > 0 there is a sequence
〈(x(k)

1 , . . . , x
(k)
n )〉∞k=1 such that (x(k)

1 , . . . , x
(k)
n ) ∈ (M sa

k (C))n for all k, (x(k)
1 , . . . , x

(k)
n )

∈ ΓR+1(a1, . . . , an;m, k, γ) for sufficiently large k, and

lim sup
k→∞

k−2 · log(P4ε
√
n(U(x(k)

1 , . . . , x(k)
n )))

dominates

(β0+β1 − ε)2 · (χ((f3 ⊕ 0) + εs : s) + | log ε| −K)

+ (β1 − ε)2(4ϕ1(M1)− ε) · log
(

βκ

108
√
nεD0LL1

)
where K = log((2 + 36β−1

√
nD0)

√
2πe).

Proof. Suppose min
{

βκ
32D0

√
nLL1

, 1
}
> ε > 1. By Lemma 6.2 there exist mε ∈ N

and γε > 0 such that if 〈(z(k)
1 , z

(k)
2 , z

(k)
3 )〉∞k=1 is a sequence satisfying (z(k)

1 , z
(k)
2 , z

(k)
3 )

∈ (M sa
k (C))3 for all k and (z(k)

1 , z
(k)
2 , z

(k)
3 ) ∈ ΓC(a′1, a′2, a′3 : e1, e2, e3;mε, k, γε) for

sufficiently large k, then

lim sup
k→∞

k−2 · log(P4ε
√
nD0

(U(z(k)
1 , z

(k)
2 , z

(k)
3 )))

dominates

(β0+β1 − ε)2 · (χ((f3 ⊕ 0) + εs : s) + | log ε| −K)

+ (β1 − ε)2(4ϕ1(M1)− ε) · log
(

βκ

108
√
nεD0LL1

)
.

Because {a1, . . . , an} has finite-dimensional approximants, there exists an N ∈ N
such that for each k ≥ N there is an (x(k)

1 , . . . , x
(k)
n ) ∈ ((M sa

k (C))R+1)n satisfying

(x(k)
1 , . . . , x(k)

n ) ∈ ΓR+1(a1, . . . , an;m, k, γ)

and
(y(k)

1 , y
(k)
2 , y

(k)
3 ) ∈ ΓC(a′1, a

′
2, a
′
3 : e1, e2, e3;mε, k, γε)

where for any 1 ≤ j ≤ 3, pj(x
(k)
1 , . . . , x

(k)
n ) = y

(k)
j . Note that we can use the cutoff

constant C by the argument of Lemma 4.1.
If u, v ∈ Uk, then D0 ·max{|ux(k)

i u∗ − vx(k)
i v∗|2 : 1 ≤ i ≤ n} is greater than

|pj(ux(k)
1 , . . . , ux(k)

n u∗)− pj(vx(k)
1 v∗, . . . , vx(k)

n v∗)|2 = |uy(k)
j u∗ − vy(k)

j v∗|2.
Hence,

lim sup
k→∞

k−2 · log(P4ε
√
n(U(x(k)

1 , . . . , x(k)
n )))

≥ lim sup
k→∞

k−2 · log(P4ε
√
nD0

(U(y(k)
1 , y

(k)
2 , y

(k)
3 ))).
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In turn the dominated term is greater than or equal to

(β0 + β1−ε)2 · (χ((f3 ⊕ 0) + εs : s) + | log ε| −K)

+ (β1 − ε)2(4ϕ1(M1)− ε) · log
(

βκ

108
√
nεD0LL1

)
.

�
Lemma 6.3 more or less gives the lower bound. We simply use the same sort

of arguments which allowed us passage from Lemma 4.4 to Theorem 4.5 and from
Lemma 5.5 to Theorem 5.7. Namely Voiculescu’s approximate freeness results
produce an ε-ball, most of whose elements are semicircular microstates trying very
hard to be free with respect to a matricial microstate for {a1, . . . , an}. Adding the
ε-ball to the single microstate creates microstates for {a1 + εs1, . . . , an + εsn}. The
ε packing number of the unitary orbit of the microstate yields the same number of
disjoint, conjugate balls which are microstates of {a1 +εs1, . . . , an+εsn}. Applying
log to this packing number, multiplying by k−2 and taking a lim sup as k → ∞,
dividing by | log ε| and taking a lim sup as ε → 0 yields a lower bound for the
modified free entropy dimension of the n-tuple {a1, . . . , an}.

By the discussion above δ0(a1, . . . , an) should dominate the number obtained
by taking the majorized quantity of Lemma 6.3, dividing by | log ε|, and taking a
lim sup as ε→ 0. The resultant quantity of these successive operations is:

(β0+β1)2(δ0(f3 ⊕ 0)) + β2
1 · 4ϕ1(M1)

> (β0 + β1)2 · [1− (β0 + β1)−2(εβ2
0 + β2

1)] + β2
1 · 4ϕ1(M1)

> (β0 + β1)2 − (ε+ β2
1) + β2

1 ·
(

1−
l∑
i=1

β−2
1 α2

i

k2
i

)

= (β0 + β1)2 − ε−
l∑
i=1

α2
i

k2
i

.

Omitting the details of a familiar analysis we conclude:

Theorem 6.4. If M0 6= {0} and α0 < 1, then δ0(a1, . . . , an) ≥ (β0 + β1)2 − ε −∑l
i=1

α2
i

k2
i
.

Letting l→ s and ε→ 0 we arrive at:

Corollary 6.5. If M0 6= {0} and α0 < 1, then δ0(a1, . . . , an) ≥ 1−
∑s
i=1

α2
i

k2
i

.

6.3. General Lower Bound Estimates for δ0(a1, . . . , an). Now we deal with
the situation where M0 = {0} or α0 = 1. Suppose first that M0 = {0}. The lower
estimates come even easier for, in this case, M is merely a direct sum of matrix
algebras. As in section 6.1 given l ∈ N with l ≤ s and using the same notation,
we can construct two selfadjoint elements a′i = bi ⊕ ξi ∈M1 ⊕M2 for i = 1, 2 such
that they lie in the ∗-algebra generated by {a1, . . . , an} and b1, b2 generate M1. We
have a similar packing number estimate in this case:

Lemma 6.6. For small enough ε, γ > 0 and any m ∈ N there is a sequence
〈(z(4k)

1 , z
(4k)
2 )〉∞k=1 such that k < 4k ∈ N for all k, (z(4k)

1 , z
(4k)
2 ) ∈ M sa

4k(C) for
all k,

(z(4k)
1 , z

(4k)
2 ) ∈ ΓC(a′1, a

′
2;m,4k, γ)
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for sufficiently large k, and

4−2
k · log(P16ε(U(z(4k)

1 , z
(4k)
2 ))) ≥ (β1 − ε)2(4ϕ1(M1)− ε) · log

(
κ

16β−1εLL1

)
for sufficiently large k.

The proof mimics that of Lemma 6.2 but it is even easier. Lemma 6.6 requires
that we find good enough microstates for a′1, a

′
2 and this is easy to do (in light of

Lemma 3.6). One does not need to deal with the set-up concerning the fi (they
are all 0) and the estimates are similar to those of Lemma 6.2. We omit a rigorous
proof of Lemma 6.6 here and leave it to the reader. We now run an argument
similar to that which followed Lemma 6.2. Dividing the dominated term above
by | log ε| in the conclusion of the statement of Lemma 6.4 and taking a lim sup
as ε goes to 0 yields β2

1 · 4ϕ1(M1). Using the same asymptotic freeness results in
the paragraphs preceding Theorem 6.4, it follows that δ0(a′1, a

′
2) is greater than or

equal to this limiting process, i.e., greater than or equal to β2
1 · 4ϕ1(M1). Since

M is hyperfinite (M is a direct summand of matrix algebras), by Theorem 4.5,
δ0(a1, . . . , an) ≥ δ0(a′1, a

′
2) ≥ b21 − ε −

∑l
i=1

α2
i

k2
i

. Then l and ε being arbitrary,

δ0(a1, . . . , an) ≥ 1−
∑s
i=1

α2
i

k2
i
.

Secondly, suppose α0 = 1. By Section 4, δ0(a1, . . . , an) = 1, which yields the
desired lower bound.

Having considered all the cases above we have for any M and a1, . . . , an as in
Section 2:

Theorem 6.7. δ0(a1, . . . , an) ≥ 1−
∑s

i=1
α2
i

k2
i
.

By Theorem 3.9 we also have:

Corollary 6.8. If M is hyperfinite, then δ0(a1, . . . , an) = 1−
∑s
i=1

α2
i

k2
i

.

In light of Corollary 6.5, if M is hyperfinite, then we define δ0(M) =
δ0(a1, . . . , an). As in the introduction we remark that every such hyperfinite M
has a finite set of selfadjoint generators.

7. Trivialities and a Final Remark

In concluding the discussion we make a few simple observations about the pre-
ceding results. The first is a strengthening of Theorem 4.5. We start with a
generalization of Lemma 3.8.

Corollary 7.1. If N ⊂ M is a unital inclusion of hyperfinite von Neumann alge-
bras, then δ0(N) ≤ δ0(M).

Proof. Find selfadjoint generators a1, . . . , an for M and b1, . . . , bp for N . By The-
orem 4.5 and Corollary 6.8,

δ0(N) = δ0(b1, . . . , bp) ≤ δ0(a1, . . . , an, b1, . . . , bp) = δ0(M).

�
We now have:

Corollary 7.2. (Hyperfinite Monotonicity). If N ⊂M is a unital inclusion of von
Neumann algebras and N is hyperfinite, then δ0(N) ≤ δ0(a1, . . . , an).
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Proof. We may assume M = M0 ⊕ (
⊕s

i=1 Mki(C)) and ϕ = α0ϕ0 ⊕ (
⊕s

i=1 αitrki)
where all quantities are as in Section 6. Define A = CI0⊕(

⊕s
i=1 Mki(C)) ⊂M. It is

easy to see that the von Neumann algebra R generated by A∪N is hyperfinite. By
decomposing R over its center and observing that the atomic projections of Z(R)
contain those of Z(M), it follows from Theorem 6.7 and Corollary 6.8 that δ0(R) ≤
δ0(a1, . . . , an). Hence by Corollary 7.1, δ0(N) ≤ δ0(R) ≤ δ0(a1, . . . , an). �

Our second observation is a weak lower semicontinuity property for δ0.

Lemma 7.3. If 〈(b(k)
1 , . . . , b

(k)
n )〉∞k=1 is a sequence of n-tuples of selfadjoint elements

in M such that for each 1 ≤ i ≤ n, b(k)
i → bi strongly and {b1, . . . , bn} generates a

diffuse von Neumann algebra, then

lim inf
k→∞

δ0(b(k)
1 , . . . , b(k)

n ) ≥ 1.

In particular, if 1 = δ0(b1, . . . , bn), then

lim inf
k→∞

δ0(b(k)
1 , . . . , b(k)

n ) ≥ δ0(b1, . . . , bn).

Proof. Suppose ε > 0. By the proof of Corollary 4.7, it follows that there ex-
ists a b = b∗ ∈ W ∗(b1, . . . , bn) such that δ0(b) = 1. There exists a sequence of
noncommuting polynomials in n variables 〈qm〉∞m=1 such that qm(b1, . . . , bn)∗ =
qm(b1, . . . , bn) → b strongly. It follows from Proposition 6.14 of [9] and Corollary
6.7 of [10] that for m sufficiently large, δ0(qm(b1, . . . , bn)) > 1 − ε

2 . Pick one such
m and call it m0. The same proposition of [9] and corollary of [10] provide a corre-
sponding N such that for all k > N , δ0(qm0(b(k)

1 , . . . , b
(k)
n )) > 1 − ε. By Corollary

4.6 for all k > N , δ0(b(k)
1 , . . . , b

(k)
n ) ≥ δ0(qm0(b(k)

1 , . . . , b
(k)
n )) > 1− ε. �

Finally, we comment on the work carried out by Ken Dykema concerning free
products of hyperfinite von Neumann algebras with tracial, faithful states. In [2]
Dykema investigated the free product of two such algebras A and B. There it was
shown that A ∗ B was isomorphic to L(Fs) ⊕ C where L(Fs) is an interpolated
free group factor and C is a finite-dimensional von Neumann algebra. Moreover,
Dykema provided formulas for determining C in terms of the matricial parts of A
and B and calculating s in terms of the “free dimensions” of A, B, and C. Given a
hyperfinite M as above, Dykema defined the free dimension of M , fdim(M) to be

α2
0 +

s∑
i=1

α2
i (1− k−2

i ) + 2α0(1− α0) +
∑

1≤i,j≤s,i6=j
αiαj .

Using the identity 1 = (
∑s

i=0 αi)
2 one finds that the number above equals δ0(M).

In other words, for a hyperfinite von Neumann algebra M with a tracial, faithful
state, the quantity δ0(M) equals the quantity fdim(M).

8. Addendum

In this final section we prove the metric entropy estimates of Lemmas 3.5 and
5.2. The proofs are essentially those of Szarek ([7]) with the addition of the explicit
computations of Raymond ([5]).

Throughout H will denote a closed Lie subgroup of Uk. Define X = Uk/H , | · |∞
to be the operator norm,H to be the Lie subalgebra of H identified in iMsa

k (C) = G,
and X to be the orthogonal complement of H with respect to the real inner product
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on G generated by Re Tr. Denote d∞ and d2 to be the metrics on X induced by
| · |∞ and | · |2, respectively. Lastly, for a metric d on a space Ω and ε > 0 define
N(Ω, d, ε) to be the minimum number of open ε-balls required to cover Ω with
respect to d and P (Ω, d, ε) to be the maximum number of points in an ε-separated
subset of Ω with respect to d.

Szarek uses two essential quantities to obtain the metric entropy estimates in [7].
The first is κ(M), the operator norm of the orthogonal projection onto X where
the domain and range of the projection are equipped with the operator norm. The
second quantity that Szarek employs are the weaving numbers of X . We will use
a slightly modified version of this. The change is based on Szarek’s preference to
use the geodesic metric on X and my inclination to use the extrinsic norm metric.
They are the same for our purposes. Given θ > 0, H is (θ, | · |∞) -woven if for
u ∈ H, |u− I|∞ < θ ⇒ ∃h ∈ H such that |h|∞ < π

16 and eh = u. We define θ(X)
to be the supremum over all θ satisfying the preceding condition.

We now state the main result of Szarek’s ([7]), slightly altered in our new nota-
tion.

Theorem 8.1. Suppose β ∈ (0, 1/2] and min{θ(X), κ(X)−1} ≥ β. Assume that
one of the following conditions holds:

• dimH ≤ (1− β)k2.
• There exists a subspace E ⊂ Ck invariant under H with dimE > βk satis-

fying βk ≤ dimE ≤ (1− β)k.
• There exists a subspace E ⊂ Ck invariant under H with p = dimE > βk

such that the decomposition Ck = E ⊕ E⊥ induces an isomorphism H →
U(p)×Ho for some subgroup Ho of Uk−p.

Then for any ε ∈ (0, β/4),(c
ε

)dimX

≤ N(X, d∞, ε) ≤
(
C

ε

)dimX

where c, C > 0 are constants depending only on β.

The utility of Szarek’s result lies in the fact that the quantities c and C depend
only on β. We now provide the proof of Lemma 3.5.

Proof of Lemma 3.5. Suppose H is tractable. Consider the conditional expectation
e : Mk(C) → H ′′. I − e restricted to G is the orthogonal projection onto X and
since ‖e‖ ≤ 1, it follows that κ(X)−1 ≥ 1

2 . The spectral theorem shows that
θ(X) > |ei π16 − 1|. Hence, min{θ(X), κ(X)−1} > 1

20 . I claim that H satisfies one of
the three conditions as stated in the theorem for β = 1

20 . Without loss of generality,
assume H takes the form appearing in the definition of a tractable Lie subgroup of
Uk. Suppose there exist some 1 ≤ j1, . . . , jq ≤ m such that k

20 ≤
∑q
i=1 kji lji ≤ 19k

20 .
Then H satisfies the second condition of Theorem 8.1. Otherwise there must exist
some 1 ≤ i ≤ m for which kili > 19k

20 . If ki = 1, then H satisfies the third condition
of the theorem. Otherwise ki > 1 and this forces there to be a reducing subspace E
for H with 19k

60 ≤ dimE ≤ k
2 whence H fulfills the second condition of the theorem.

Theorem 8.1 now yields the desired result. �

Having dealt with Lemma 3.5, let us turn to the finite-dimensional situation
in Lemma 5.2. More generally first consider the viability of the lower bounds of
Theorem 8.1 when X is obtained from tractableH and where instead of using d∞ we
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use d2. Some results of [7] work for unitarily invariant norms and metrics but with
the |·|2-norm problems arise. The quantity θ(X), properly interpreted, does not stay
uniformly away from 0 even when we consider the homogeneous spaces in Section 5
associated to a finite-dimensional M . Presumably X would be (θ, | · |2)-woven if for
u ∈ H, |u− I|2 < θ ⇒ ∃h ∈ H such that |h|∞ < π

16 and eh = u. Unfortunately, the
homogeneous spaces to which we will restrict our attention (which class is much
smaller than the class of homogeneous spaces obtained from tractable H) will fail
to have θ values uniformly bounded away from 0. Nevertheless, we still have the
key result [7], Lemma 10, where the use of θ(X) was crucial:

Lemma 8.2. There exist λ, r > 0 such that for any k ∈ N and tractable H of Uk,
if x, y ∈ X , and |x|∞, |y|∞ < r, then

d2(q(ex), q(ey)) ≥ λ|x − y|2
where q : Uk → X is the quotient map.

Proof. For r (as yet to be specified) and any such x and y as above, there exists by
definition an h ∈ H with |h|∞ ≤ π satisfying

d2(q(ex), q(ey)) = inf
v∈H
|e−yex − v|2 = |e−yex − eh|2.

Set u = e−yex. By the spectral theorem write h = i
∑d
j=1 βjfj where the fj are

mutually orthogonal projections and the βj are real numbers. We can arrange it
so that for each j, ifj ∈ H, i.e., h takes the block form of H. Define γj to be 4r if
βj > 4r, −4r if βj < −4r, and βj if |βj | ≤ 4r. Set z = i

∑d
j=1 γjfj ∈ H. |z|∞ ≤ 4r.

Define Λ1 = {j ∈ N : 1 ≤ j ≤ d, |βj | ≤ 4r} and Λ2 = {1, . . . , d} − Λ1. Observe that
|x|∞, |y|∞ < r ⇒ |u− I|∞ < 2r. Then

|u− ez|22 ≤
d∑
j=1

|ufj − eiγjfj |22 =
∑
j∈Λ1

|ufj − eiβjfj|22 +
∑
j∈Λ2

|ufj − eiγjfj |22

≤ |u− eh|22 +
∑
j∈Λ2

(6r)2|fj |22.

Now for r sufficiently small, 3r ≤ |1− ei4r| (r dependent only upon the exponential
map), ∑

j∈Λ2

(6r)2|fj |22 ≤
∑
j∈Λ2

36(|1− ei4r| − 2r)2|fj |22

≤
∑
j∈Λ2

36(|1− eiβj | − 2r)2|fj |22

≤
∑
j∈Λ2

36(|fj − eiβjfj|2 − |fj − ufj|2)2

≤
∑
j∈Λ2

36|ufj − eiβjfj |22

≤ 36|u− eh|22.

It follows that |u− ez|2 ≤ 7|u− eh|2.
A repetition of the proof of Lemma 10 in [7] minus the parts referring to θ(X)

shows that there exist λ, r > 0 (which we can make as small as we want and in
particular have r satisfy 3r ≤ |1− ei4r|) independent of the tractable H such that
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for any x, y ∈ X with |x|∞, |y|∞ < r, |e−yex − ez|2 ≥ λ|x − y|2. By what preceded
for any x, y ∈ X with |x|∞, |y|∞ < r,

d2(q(ex), q(ey)) = |e−yex − eh|2 ≥
|e−yex − ez|2

7
≥ λ|x − y|2

7
.

�
The result above does not quite provide the desired lower bounds for the homo-

geneous space associated to H. Observe that if all the normalized Hilbert-Schmidt
quantities are replaced with operator norm quantities, then P (X, d∞, ε) is bounded
below by the ε

λ packing number of the r-ball of the space X (endowed with | · |∞).
The appropriate lower bounds for packing numbers of balls in finite-dimensional
spaces can be obtained through a standard volume comparison argument (see [1]
for an example of how this technique yields the packing number bounds). Indeed,
this is how the lower bound is achieved in Theorem 8.1. The result above is not
quite the same. It shows that P (X, d2, ε) dominates the ε

λ packing number with
respect to the | · |2-metric of the ball of | · |∞-radius r in X . The issue is that we have
a lower bound involving two different metrics. We want to obtain the appropriate
lower bounds by using the volume comparison argument, but our task is slightly
complicated by this. We must now examine the ratio of the volumes of balls of
radius 1 with respect to | · |∞ and | · |2 in the space X associated to H.

Despite the difficulties mentioned, Lemma 5.2 demands lower bounds on the
packing numbers of a specific class of homogeneous spaces, in fact, much smaller
than the class of all homogeneous spaces obtained from tractable subgroups. Hence,
the task at hand is not so daunting. With Lemma 8.2 in hand we now begin the
main part of the proof of Lemma 5.2. As discussed at the end of the preceding
paragraph, our main objective is to examine the ratio of the volumes of balls in the
orthogonal complements of certain Lie subalgebras.

Proof of Lemma 5.2. Maintain all the assumptions made on M and ϕ in Section
5. We assume that M 6= CI since Lemma 8.2 clearly holds in this situation. There
exist constants 1 > δ, c1, c2 > 0 such that if δ > ε > 0 and r1, . . . , rp ∈ R satisfy

|rj − αj
nj
| < ε for all j, then c1 <

∑p
j=1 r

2
j < c2 (M 6= CI ⇒

∑p
j=1

(
αj
nj

)2

< 1). Now

suppose 1
2 ·min{δ, 1− c1, α1, . . . , αp} > ε > 0. It is a trivial consequence of Lemma

3.6 that there exists a sequence 〈σk〉∞k=1 such that for each k, σk : M → Mk(C) is
a ∗-homomorphism and for k sufficiently large:

• ‖trk ◦ σk − ϕ‖ < ε.
• The set of unitaries Hk of σk(M)′ is a tractable Lie subgroup of Uk and

setting Xk = Uk/Hk we have that k2(4ϕ(M)− ε) ≤ dim(Xk).
We must demonstrate the third item in Lemma 5.2 (the lower bound packing esti-
mate) and make sure that the constant κ obtained is independent of ε and ε. It can
be arranged so that there exists a k0 ∈ N such that for all k ≥ k0 the representa-
tion σk takes the simple form described in the proof of Lemma 3.6. Recall from the
proof of Lemma 3.6 that for each k ≥ k0 we have the l1(k), . . . , lp+1(k), associated
to σk. Moreover, for such k, the construction of the σk in Lemma 3.6 and the bound
placed on ε shows that 3

2αj >
lj(k)nj

k >
αj
2 for each j, c1k

2 <
∑p+1

j=1 lj(k)2 < c2k
2,

and lp+1(k) < n1 · · ·np for k > k0.
For each k denote Hk and Xk to be the spaces H and X associated to H = Hk.

Again, we have translated the packing number problem (the third condition of
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Lemma 5.2) into the problem of comparing the volumes of the balls of Xk with
respect to the norms | · |∞ and | · |2 and finding an appropriate relationship between
the two values for sufficiently large k.

For any r > 0 denote by Grk,Hrk, and X rk the balls centered at the origin of
operator norm less than or equal to r in iM sa

k (C),Hk, and Xk, respectively. Con-
sider the conditional expectation e for H ′′k . Define Φ : iM sa

k (C) → Hk
⊕
Xk by

Φ(x) = (e(x), (I − e)x). Since e is a contraction when its domain and range are
endowed with the operator norm, it follows that Φ(G1

k) ⊂ H1
k×X 2

k . Φ is an isometry
when its domain and range are endowed with the Hilbert-Schmidt norm (normal-
ized or not). Thus, vol(G1

k) = vol(Φ(G1
k)) ≤ vol(H1

k) · vol(X 2
k ). Notice that here

we calculate the volumes of H1
k and X 2

k in their ambient Hilbert spaces Hk and Xk
endowed with the real inner product Re Tr.

We claim that if for each d, Λd = vol(G1
d) and Θd denotes the volume of the

ball of radius
√
d in Rd2

, then there exists some constant 1 > ζ1 > 0 such that
(ζ1)d

2 ≤ Λd
Θd

for all d. By [5] there exists a constant c > 0 such that ad
bd
∼ (c)2d2

as
d→∞ where ad is the volume (with respect to the real inner product Re Tr) of the
operator norm unit ball of Mk(C) and bd is the volume of the ball of radius

√
2d in

2d2-dimensional real Euclidean space. We now use the same trick in the preceding
paragraph. Decompose Mk(C) as the orthogonal direct sum M sa

k (C) ⊕ iM sa
k (C).

It follows that the operator norm unit ball of Mk(C) is contained in the direct sum
of the operator norm unit ball of M sa

k (C) and the operator norm unit ball of G1
d .

The volume of this latter set is (Λd)2. So ad
bd

< (Λd)2

bd
∼ (Λd)2

(Θd)2 and this yields the
desired result.

Now vol(H1
k) < Θl1(k) · · ·Θlp+1(k) ·

√
n1 · · ·np and because dimXk > (1− c2) · k2

for sufficiently large k, it follows that there exists a ζ2 > 0 (dependent only on
n1, . . . , np, ζ1 and c1) such that for sufficiently large k,

vol(X 2
k ) ≥ vol(G1

k)
vol(H1

k)
≥ Θk

Θl1(k) · · ·Θlp+1(k)
· ζdimXk

2 ,

lj(k)
k >

αj
2nj

, lp+1(k) < n1 · · ·np for k > k0, and (1− c2) · k2 < dimXk < (1− c1) · k2

for k > k0. These three facts and Stirling’s formula show that there exists a constant
ζ3 > 0 (dependent only on the αi, ni, c1, and c2) such that for sufficiently large k
the dominated term above is greater than or equal to (ζ3)dimXk · CdimXk where
CdimXk is the volume of the ball of radius

√
k in RdimXk . Notice that this quantity

is the volume of the ball of Xk of | · |2 radius 1. In other words there exists a ζ > 0
(again dependent only on the αi, ni, c1, and c2) such that for sufficiently large k,

vol(X 1
k )

CdimXk
> (ζ)dimXk .

The standard volume comparison method (for an example of how this method

is used see [1]) shows that for such k and any ε > 0, P (X rk , | · |2, ε) >
(
rζ
ε

)dimXk
.

Using Lemma 8.2 it follows that for k sufficently large, if ε > 0, then

P (Xk, d2, ε) >
(
λrζ

ε

)dimXk

.
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Set κ = λrζ. Then κ depends only on αi, ni, c1, c2, and the upper bound placed on
ε. The upper bound can be relaxed for the purposes of Lemma 5.2. We have the
third and final condition of Lemma 5.2. �
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