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Let S be a commutative semigroup. A quasi-universal free semigroup of S is a
free commutative semigroup with identity F together with a homomorphism r¡ of
S into F such that any homomorphism of S into a free commutative semigroup with
identity factors through -n; if there is uniqueness in this factorization, we say that
(F, i?) is a universal free semigroup of S.

If S is finitely generated, there exists a "smallest" quasi-universal free semigroup
of S; we call it the free envelope of S. Its construction and study is the first object
of this paper, the second being the application of the free envelope to the study
of cancellative and power-cancellative commutative semigroups.

We construct the free envelope in the first section. Cancellative and power-
cancellative semigroups appear in §2 ; we prove that a finitely generated commutative
semigroup is embeddable into a free commutative semigroup with identity if and
only if it has these properties and has either no identity or a trivial group of units;
then it is embeddable into its free envelope. The study of this latter embedding
gives, conversely, a number of interesting properties of the free envelope in the
general situation.

The dual of a finitely generated commutative semigroup S may be defined as the
semigroup S* of all homomorphisms of S into the additive semigroup of all non-
negative integers, under pointwise addition. Using free envelopes, we prove in
§3 that S***^S* and investigate the relationship between S and S**. This yields
in turn a number of results concerning universal free semigroups when they exist.
A study of various dimensions completes the section. §4 deals with embeddings
Se F such that every relation which holds in S can be deduced from the presenta-
tion of S in F without using any relation which may hold in F (in which case we
say that F kills S). We show that, if S is finitely generated, the (inclusion) homo-
morphism of S into F can be extended to the free envelope of S; if furthermore F
is cancellative, power-cancellative and without identity element, then F contains
subsemigroups which kill S and are minimal with that property.

This paper has benefited from numerous suggestions, by the members of the
Tulane semigroup seminar, especially William R. Nico and A. H. Clifford, and by
our referee, which we acknowledge gladly.
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Throughout, "semigroup" will mean "commutative semigroup". All semi-
groups will be denoted additively; thus, what would be Sl is denoted by S°. The
set of all positive integers (all integers, all rational numbers, all real numbers) is
denoted N (Z, Q, R). The free (commutative) semigroup on a set X is denoted by
Nx, the free semigroup with identity on X by Nx, the free 7f-module on X by Kx.
For convenience, finitely generated is abbreviated as f.g. The reader is referred
to [1] for the background on semigroups.

1. Construction of the free envelope.
1. This construction depends on some immediate results on orthogonality in

free abelian groups, which we recall first. Let X be a nonempty set. We consider
that NxcZxc QxcRx. If F s Qx, B denotes the subspace of Qx generated by B.
The coordinates of a e Qx will be denoted by ax, so that a=~2.xeX axx.

In Rx we have the inner product ab = ^2.x^xaxbx. For any subset B of Qx,
B1 denotes the set of all elements of Zx which are orthogonal to all elements of
B (so that the orthogonal of B in Qx is B1). The following properties are immediate :

Proposition 1.1. For any subset B of Zx, F± = F1 n ZX = (B n ZX)L and B1L
= B n Zx is the pure subgroup of Zx generated by B, so that B111 = BL.

Say that ae Zx is positive in case a#0 and ax^Q for all xe X (i.e. aeNx),
and strictly positive in case ax > 0 for all x e X (which never happens when X is
infinite). The following lemma will be used later.

Lemma 1.2. Let X be finite and G be a subgroup of Zx such that G n Nx= 0.
Then GL is generated (as a subgroup) by its strictly positive elements.

Proof. Let P he the positive cone of Rx and S he the subspace of Rx generated
by G. Now G contains no positive element, since such element could be multiplied
by a positive integer to yield a positive element of G. It follows that S contains no
positive element either. The angles between vectors in S and vectors in P are then
bounded below by some positive number, which permits to find a convex open
subset U of Rx containing P and disjoint from 5 (e.g. all vectors making a small
enough angle with a vector in P). Then the Hahn-Banach Theorem yields a sub-
space 77 of Rx containing 5 and disjoint from U, hence containing no positive
element, and of codimension one.

Let a^Ohe orthogonal to 77 in Rx, so that « e 77 if and only if aw=0. Since
77 n P= 0, ax¥=0 for all x e X; furthermore all the numbers ax have same sign,
for ax > 0 and ay < 0 would imply axy — ayx e H r\P. Hence either a or — a is
strictly positive, and the orthogonal K of S in Rx contains a strictly positive
element. Now K is the solution space of a system of linear equations with rational
coefficients; hence Kn Qx is dense in K, so that K contains a strictly positive
element whose coordinates are rational. Multiplying this element by a suitable
integer yields a strictly positive element of G1.
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Finally, let k be a strictly positive element of G1. For any u e GL, set M=max |«^| ;
then (Af + \)k + u is strictly positive, so that u is the difference of two strictly positive
elements of G1. Therefore GL is generated, as a subgroup of Zx, by its strictly
positive elements.

2. Now let S be a f.g. (commutative) semigroup, and A" be a finite generating
subset of S. (If S has an identity, X need generate S as a semigroup with identity
only.)

For each relation r : 2Zxexr'xX=^.xeXrxx between elements of X, set r=
Ixex fti - rx)x e Zx. The Rédei group of S (relative to X) is the set R = {? ; r holds in
S} ; it is indeed a subgroup of Zx, for 0 can be obtained from the trivial relations,
— f by exchanging the sides of r and f+s by just adding r and s formally. We let
K=R\ C=KnNx and B be the set of all irreducible elements of C (i.e. b e B if
and only if beC, b^O, and b = c+d, c, de C implies c = 0 or d=0). Since X is
finite, Corollary 9.19 of [1] (a consequence of Wilson's Theorem) implies that B is
finite and generates C (as a semigroup with identity).

Let F be the free semigroup with identity on the set B (if B= 0, i.e. C={0},
then F= {0} is trivial). We have a canonical homomorphism of S into F, defined
as follows. For each xe X, let a{x) = 2¡,eB bxb e N% = F. Whenever r : ^xeXr'xx
= Zxex fix holds in S, then 2*ex ^«¿* = 0 for each b e B, so that J,xeX r'xa{x)
— 2.xex rxa{x) holds in F. Therefore a can be extended to a homomorphism of S
into F, which will also be denoted by a, and is well defined by aÇ2xeX rxx)
= J.xex f^ft)- The pair (F, a) is the free envelope of S; if S or X are not kept
fixed, F will be denoted by Fx, F{S) or FX{S), and similarly for R, K, C, B.

Proposition 1.3. There is a canonical isomorphism <5X : CxsHom (S, A70).
Hence the following are equivalent: (i) FX{S) is not trivial; (ii) there exists a nonzero
homomorphism of S into N° ; (iii) there exists a nonzero homomorphism of S into
some free semigroup with identity.

Proof. If ceC, put <ï>{c){x) = cx e N°. Whenever r : J,xeX r'xx = J,xeX rxx holds
in S, 2*€.x r'xcx = JiXeX rxcx holds in N° since rc=0; therefore Oft) can be extended
to a homomorphism of S into N°, also denoted by <t>{c). If conversely <p is a homo-
morphism of S into N°, the same argument shows that Tft) = J_xeX <p{x)x e Zx
lies in C. It is immediate to show that T and 0 are inverse isomorphisms.

It follows that (i) and (ii) are equivalent. Clearly (ii) implies (iii) ; if conversely
there exists a nonzero homomorphism of S into a free semigroup N$ with identity,
then its composition with the yth projection is a nonzero homomorphism of S
into A™ for some y e Y.

Note that, if FX{S) is not trivial, then a is not zero.

Theorem 1.4. Up to isomorphism, the free envelope of S does not depend on the
choice of X.

Proof. If y is another finite generating subset of S, we have to find an isomorphism
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6 : Fx^Fy such that ax = 6oaY. By 1.3 we know that CX^CY, so that there is
a one-to-one mapping 6 of BX onto BY, which can be described explicitly as follows.
For each b e Bx, 6(b) = <Py 1(Q>x(b)) = ~ZyeY ^x(b)(y)y; since A'generates S, we may
write y=2*eX«"x for each jef, and then

w) = 22 ^(¿ooo«^ = 22 b**ye zy
yeY   XeX yeY   XeX

Let 6 also denote the induced isomorphism FX^FY. Then, for each yeY:

00**00) =22 w*^) = 2 w>»w) = ̂ oo-
beBx xeX fl(b)eBy

Since y generates 5, it follows that 6 o ax = ar.

3. Theorem 1.5. Fe/ S Ae a finitely generated (commutative) semigroup. The free
envelope of S is a quasi-universal free semigroup of S.

Proof. Let <p be a homomorphism of S into a free semigroup 7V° with identity
and X be a finite generating subset of S. For each xeA', set <p(x) = 2yey «*í y
(where my e N° and {y e Y; wrJ/0} is finite). If r : ~2.xeX r'xx=*2.xeX rxx holds in S,
then 2*6X ''Í9>W = 2xex ^C*) must hold in NY, i.e. f-~2.xeX myx=0 in Zx for all
yeY. Therefore 2*ex "ijfjc 6 C for each j and there exist integers ny 3:0 such that
2*ex m%x=2&eB «£A for each ye Y. If «ij=0 for all x, we must take « J=0 for all A,
so that, for each be B, {ye Y;n\^ 0} is finite. Therefore there exists a homo-
morphism i(> of F(S) into 7V° such that <l>(b) = 2¡,ey n%y f°r all A e B.

For each xeA", mJ = 2i,eB «JA *, whence

W«W) =22 "S^ = 2 "^ = i^x);
yeY   beB yeY

since A"generates S, it follows that </> ° a = <p. Therefore (F(S), a) is a quasi-universal
free semigroup of S.

Observe that we could not use McAlister's technique (cf. [5]) to construct a
quasi-universal free semigroup of S since the class of all free semigroups with
identity is not implicational.

2. Totally cancellative semigroups.
1. We call a (commutative) semigroup totally cancellative (abbreviated as t.c.)

if it is power-cancellative (i.e. na=nb implies a=b for all ne TV; cf., e.g., [4]) and
cancellative. A t.c. semigroup is reduced if either it has no identity element or its
group of units is trivial.

Lemma 2.1. Let S be a t.c. semigroup having a finite generating subset X. Then
RX(S) is a pure subgroup ofZx, and a relation r holds in S if and only if re RX(S).
If furthermore S is reduced, then RX(S) = BX(S)X (unless 0 6 A').
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Proof. First, let r : J,xeX r'xx='2xeX r"xx be such that f e R; so that f=s, where
í : 2*exSxX = J,xeXsxx holds in S. Since r'x — rx = s'x — sx for all xe X,

2 {r'x + sx)x =  2 (rx+s'x)x
xeX xeX

holds trivially in S, and r holds, by cancellation. On the other hand, if r holds in S,
then r e R trivially.

Assume now that nueR, where ueZx and n e N. Put r'x = ux, rx=0 when
ux^0, rx = 0, rx= —ux when ux^0. Then r = u and, by the first part of the proof,
"Œxex r'xX) = nÇZxeX rxx) holds in S. Since S is t.c, r holds in S and m e Z?, which
shows that F is a pure subgroup of Zx.

Finally, assume that ~2.xsX nxx e Rn Nx, so that nx ̂  0 for all x and ny > 0 for
some v e A". Then, by the first part of the proof, y = {ny 4-1)^ + ~£x*y nxx holds in S;
then S has an identity element, namely 0 = ~2xeXnxxe S, and either S has a non-
trivial unit or 0=y e X. Therefore, if S is reduced and 0 $ X, then Rn Nx= 0.
Then it follows from 1.2 that K is generated, as a subgroup, by its strictly positive
elements, and a fortiori by C; since K is always pure, K coincides with the pure
subgroup generated by C, and, since B generates C, with the pure subgroup
generated by B. So K=B1L. Since R is pure, R=R11 = K1 = B111 = B1.

Theorem 2.2. Let S be a finitely generated {commutative) semigroup. Then S is
embeddable into a free semigroup with identity if and only if S is totally cancellative
and reduced, and then a is one-to-one.

Proof. These conditions are obviously necessary. Assume, conversely, that S is
f.g., t.c. and reduced, and let A" be a finite generating subset of S; if S has an
identity, we assume also that O^A'. With the usual notation, let s=^xsXmxx,
t = 2.xex nxx e S be such that <xft) = a(i). Then, for all be B, J.xeX mxbx = '^iXeX nxbx,
so that 1,xeX {mx-nx)x e B1. By 2.1 this implies that s=t holds in S; thus a is
one-to-one, and S is embeddable into its free envelope.

Note that the existence of an embedding of S into a free semigroup with identity
implies that a is one-to-one, by 1.5.

2. A first consequence of these results is a universal property for a{S) in the
general case.

Proposition 2.3. Every f.g. semigroup S has a greatest t.c. reduced homomorphic
image, namely a{S).

Proof. Clearly a{S) is t.c, reduced, and a homomorphic image of S. Let now F
be a t.c. reduced semigroup and <p be a homomorphism of S into F. Since S is f.g.,
there exists a f.g. subsemigroup U of T such that <p is a homomorphism of S into
U. Since U is also t.c. and reduced, it can be embedded into a free semigroup with
identity ; then there exists a homomorphism 41 of F{S) into this free semigroup such
that 41 ° « = <p- The restriction of >p to a{S) sends ce(S) into F, which shows that <p
factors through a. This factorization is unique since a is onto a(S).
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Observe that the existence of a greatest t.c. reduced homomorphic image of S
can be established directly. Indeed S has a smallest t.c. congruence cß; it can be
described by: of€b if and only if na+c=nb + c for some « e TV, c e S. If the greatest
t.c. homomorphic image T=S\(€ is not reduced, it has a nontrivial group of units
U, and the greatest t.c. reduced homomorphic image of S can be obtained by further
dividing 7 by the smallest t.c. congruence 3$, which makes U trivial; 31 can be de-
scribed by: a@tb if and only if na+u=nb for some ne N, ue U. Hence 2.3 may be»
interpreted as giving a description of the congruence induced by a.

Our next result is that the free envelope of 5 depends only on the greatest t.c.
reduced homomorphic image of S. This, along with an elementary characterization
of the free envelope, will result from certain properties of the embedding of a(S)
in F(S). For later convenience, we state these properties in terms of T^ N$ :

(i) if z e W is such that tz = J,weW nwtw for all teT, where nw e N°, then nz — 1
and «„ = 0 for all w^z;

(ii) if the integers nw are such that 2wew nwlw = 0 for all t G T, then there exist
integers mw^0 such that %weW nJw = J,wsW mjw for all / e 7;

(iii) if p e N divides 2wew nwtw for all / e 7, where nw e N°, then there exist
integers «îw = 0 such that 2wew nwtw = J,weW pmjw for all / e 7.

Note that, if Y generates 7, one obtains equivalent conditions by replacing
"for all t e 7" by "for all y e Y" in the above.

Lemma 2.4. If S is a f.g. semigroup, then conditions (i), (ii) and (iii) hold for
«(S)^F(S).

Proof. Let A" be a finite generating subset of S. If ce B is such that a(x)c =
IbeB nba(x)b for all xeA", then cx = 2&es nbbx for all xeA", whence c = "2beB nbb in
Zx and nc = 1, nb=0 if b^c, since c e B is an irreducible element of C. Therefore
(i) holds. If similarly "2beB nba(x\ ^ 0 for all xeA", where nb e Z, then 2&es «&A* è 0
for all xeA", so that "2„eB nbb e Nx n K= C and there exist mb e N° such that
2&es «&A = 2(,eB «îi,A in Zx. Then %beB nba(x)b = ZbeB nJ)x=2beB mbbx = ^bsB mba(x)b
for all x e X. Therefore (ii) holds. The verification of (iii) is similar, using the fact
that K is a pure subgroup of Zx.

Lemma 2.5. Let T be a f.g. subsemigroup of Ny, swcA that (i), (ii), (iii) hold. Then
Ny,, together with the inclusion, is (up to isomorphism) the free envelope ofT.

Proof. Let A" be a finite generating subset of 7. Observe that r : Y,x<¡x r'xx
= 2*ex rxX holds in 7 if and only if %XEX r'xxw — 2*sx rxxw for all w e W; if we set
w=1XexXwxe Zx, W={w; we W}, it follows from 2.1 that R=WL; therefore
K is the pure subgroup of Zx generated by W. Observe also that, if w, z e W,
w=z implies w = z by (i); similarly w=0 is impossible. We shall prove that W=B.

We already know that ÏPç C and that 0 $ W. Next, let ceC. Since K is the
pure subgroup generated by W, there exist nwe Z,p e N such that pc = ~2weW nww;
since 2u>ew nwxw=pcx^0 for all x e X, it follows from (ii) that there exist integers
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mw^0 such that pc = ~£weW mww; then p divides pcx = ^weW mwxw for all xe X,
and by (iii) there exist integers ¿„^0 such that pc='%v,eW mww='2,weWpkww;
finally c=~£weW kww. Therefore C is generated by W. In particular W must contain
all irreducible elements of C, i.e. BçW. Conversely, every zeW is irreducible:
for z = 2u>ew nww, where nw e N° and ~2.wew nw ̂  2, is impossible by (i). So W= B.

Consequently there exists an isomorphism 6 of N$ onto F{T) = N% such that
8{w) = w for all we W. If ß is the inclusion homomorphism of F into N$, then, for
all xeX: 9{x) = ~2weWxww = a{x). It follows that 6oß = a, which completes the
proof.

The following theorems are immediate consequences of these two lemmas.

Theorem 2.6. Let T be a finitely generated subsemigroup of a free {commutative)
semigroup with identity F. Then F is the free envelope of T if and only if{i), (ii), (iii)
hold.

Theorem 2.7. Let S be finitely generated. Up to isomorphism, S and a{S) have
same free envelope.

Theorem 2.8. Let S be finitely generated and <p be a homomorphism of S into a
free semigroup with identity F. Then (F, <p) is {up to isomorphism) the free envelope
of S if and only ifi{i), (ii), (iii) hold for <p{S)<^F and <p induces the same congruence
as a.

3. Here are some applications of these results.

Theorem 2.9. Let {F{S), a) be the free envelope of S. The only endomorphism
ofF{S) which leaves every element of a{S) fixed is the identity.

Proof. Let r¡ be an endomorphism of F; for each beB, set -q{b) = ^ceBnbc.
If r){u) = u for each uea{S), then 2t>es 2cgb a{x)bnbc=J,ceB a{x)cc for all xeX,
whence, for each ceB, xe X: a{x)c = ^¿beB nba{x)b. Then it follows from (i) that
«c = 1 and nb = 0 if b # c. Therefore -q is the identity.

Theorem 2.10. Let {F,ß) be a quasi-universal free semigroup of S, where S is
finitely generated. There exists a one-to-one homomorphism p. of F{S) into F such
that p. o a=ß.

Proof. By 1.5 there exists a homomorphism p. of F(S) into F such that p. o a=ß.
Also there exists a homomorphism <p of F into F{S) such that <poß=a. Then
<p o ¡x is an endomorphism of F{S) and leaves every element of a{S) fixed : it must
be the identity, so that p. is one-to-one.

Theorem 2.11. Let S be a finitely generated {commutative) semigroup and ß
be a homomorphism of S into a free semigroup F with identity. Then (F, ß) is {up to
isomorphism) the free envelope of S if and only if it is a quasi-universal free semigroup
of S and the only endomorphism of F which leaves every element of ß{S) fixed is the
identity.
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Proof. Continuing the proof of 2.10, p. ° <p is an endomorphism of F which leaves
every element of ß(S) fixed ; hence it is also the identity, so that p. is an isomorphism.
The converse is now trivial.

3. Duality and universal free semigroups: dimension.
1. The dual of a semigroup S is here the semigroup S* = Hom (S, N°) under

pointwise addition; it is a t.c. reduced semigroup with identity. In general we can
iterate the process and obtain the bidual S** of S; it comes with a canonical
evaluation homomorphism a of S into S**, defined by <r(s)(ç>) = <p(s) for all s g S,
cpeS*.

When S is f.g. we can describe all this in terms of free envelopes, relative to any
finite generating subset X. It has already been noted that S*^CX(S), where the
isomorphism is explicit. It follows that S* is finitely generated, by 0(5) (where
<&(b)(x)=bx for all xe A"). To simplify we shall identify A and 4>(A), when be B
and X is fixed.

Proposition 3.1. In ZB : RB(S*) = a(S)1; KB(S*) is the pure subgroup generated
by a(S); CB(S*)^S** is the intersection ofNB = F(S) and the pure subgroup of ZB
generated by a(S).

Proof, r : 2(,es rbb = 2,beB Kb holds in S * if and only if it holds in CX(S), if and
only if 2i,eB (r'b — rb)bx = 0 for all xeA", if and only if, in ZB, ra(x) = 0 for all
x 6 A', if and only if f is orthogonal to a(S). Therefore RB(S*) = a(S)L. The other
assertions follow.

Let <1>* be the canonical isomorphism CB(S*)^S**.

Proposition 3.2. <&*oa = o.

Proof. By definition, <&*(c)(b) = cb for all c e C^S*), beB^S*. Thus, for all
xe X,beB:

<P*(«(x))(A) = a(x)„ = bx = 1.(A)(x) = a(x)((P(A)) = a(x)(A).

Since B generates S*, 0*(a(x)) = o(x) for all x, whence <£* ° a = a.
2. Here are some consequences of these results.

Proposition 3.3. If S is fg., o(S) is the greatest t.c. reduced homomorphic image
ofS.

Proof. This follows from 3.2 and 2.3.

Proposition 3.4. If S is fg., then a is one-to-one if and only if S is t.c. and reduced.

Proof. This follows from 3.3 (or from 2.2).

Proposition 3.5. 7/5 is f.g., then o is an epimorphism relatively to t.c. semigroups.

Proof. This is to say that, if <p, </> are homomorphisms of S** into a t.c. semi-
group 7 and if y ° ct=«A ° a, then <p = </>. By 3.2, it is enough to prove the same prop-
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erty for the homomorphism a of S into CB{S*); hence let <p, </i be homomorphisms
of CB{S*) into a t.c. semigroup F, such that <po a=if> ° a. They induce homo-
morphisms <p, >¡i of the universal group ( = group of differences) G of CB{S*) into
the universal group G{T) of F. Since Fis t.c, C7(F) is a torsion free abelian group,
so that //=Ker ft-£) is a pure subgroup of G; also cc(S)s/7 since ¡po a = t/i ° a.
On the other hand, CB(S*)^ZS, so that we may take GçZB; since S* is t.c. and
reduced, KB{S*) is generated (as a subgroup) by CB{S*) (see proof of 2.1), so that
G=KB{S*) and, by 3.1, G is the pure subgroup of ZB generated by a(S). Now,
since H is pure in G, it is also pure in ZB; since a(S)sZ/, this implies that H=G.
Therefore <p — <£=0, and 93 = 1/1.

Proposition 3.6. //'S is fg., then a{S) is dense in S** relative to t.c. semigroups.

Proof. This is to say that, if a homomorphism <p of S** into a t.c. semigroup F
is one-to-one on c(S), then it must be one-to-one. We use the same method and
notation as in the previous proof. By 3.2 we may start from a homomorphism
<p of CB{S*) into a t.c. semigroup F; <p induces a homomorphism <p of G into G{T),
whose kernel H is a pure subgroup of G. Assume that 99 is one-to-one on a{S).
For any he H, there exist, since G is the pure subgroup of ZB generated by a{S),
an integer «>0 and u, vea{S) such that nh = u — v; since /i e Ker <p, <pft)=tpft)
and the assumption on 9 implies k=» and h = 0. This proves that H=0. Therefore
<P is one-to-one, and so is 93.

Proposition 3.7. Let S be f.g. Up to isomorphism, S and S** have same free
envelope.

Proof. It is enough to verify that the conditions (i), (ii), (iii) of §2 hold for
C=CB{S*)^F{S); and we already know that these conditions are satisfied by
a{S). Hence, if c e B is such that uc = JibeB nbub for all ue C, where nb e N°, then
this holds for all u e a{S), whence nc = 1 and nb=0 if b^c; therefore (i) holds. If
similarly the integers nb are such that 26eBnbub3:0 for all ue C, then this holds
for all u e a{S), so that there exist integers mb ̂  0 such that J,beB nbub = JibeB mbub
for all u e a{S); by 3.1 every element of C is a linear combination of elements of
a{S), with coefficients in Q, and therefore the latter equality also holds for all
ue C. This proves (ii). The verification of (iii) is similar.

Proposition 3.8. If S is fg., then S*^S***.

Proof. The evaluation homomorphism t of S* into S*** (which is natural in S)
will serve. First, if 93 is a homomorphism of S into A'0, then rft)ftft)) = oft)ft>) = <p{s)
for all ie S, so that 9J = rft) o a. Hence, for any homomorphism >(i of S** into
N°, i/j o 0= rft o a) o a; by 3.5, this implies ip = rft o o), which shows that t is onto.
On the other hand, t is one-to-one by 3.4.

Incidentally, we have shown that the inverse isomorphism is the map a* induced
by a (defined by <7*(</r) = i/r o CT).
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3. Our duality can in turn be applied to the study of universal free semigroups.

Theorem 3.9. Let S be a finitely generated (commutative) semigroup. The following
conditions are equivalent :

(a) F(S) is a universal free semigroup of S;
(b) there exists a universal free semigroup of S;
(c) S* is free;
(d) the pure subgroup of ZB generated by a(S) is ZB itself.
Under these conditions, (S**, o) is a universal free semigroup of S.

Proof. Trivially, (a) implies (b). If (b) holds, and if Fis a universal free semigroup
of S, then the universal property yields an isomorphism Horn (S, N°) s Horn (F, TV0),
so that S* = F*. This implies first that F* is finitely generated; since F* is a direct
product of copies of N°, one for each generator of F, this makes Ffinitely generated.
Therefore F* is free and so is S*. Next, if (c) holds, then by 3.1 a(S)L = 0, so that
a(5)il = ZB and (d) holds. Finally, if (d) holds, then CB(S*) = F(S), and in 1.5
the factorizations through a are unique, by 3.2 and 3.5, so that (F(S), a) is a
universal free semigroup of S. It follows also from 3.2 that (S**, a) is then a
universal free semigroup of S, too.

Corollary 3.10. If S is finitely generated and (F, ß) is a universal free semigroup
of S, then ß is an epimorphism relative to t.c. semigroups and ß(S) is dense in F
relative to t.c. semigroups.

Proof. This follows from 3.9 and 3.5, 3.6.
In general, a is not an epimorphism relative to t.c. semigroups, but it is easy to

show, by the same techniques as for 3.5, that in the category of t.c. semigroups the
dominion [3] of a(S) in F(S) is precisely CB(S*).

Finally, there is a characterization of universal free semigroups similar to 2.6.
This involves the following condition, where 7 is a subsemigroup of N£ :

0') if 1,wew nwtw = 0 for all teT, where nw e Z, then «„ = 0 for all w.
This says that the functions / h> tw (w e W) are linearly independent over Z

and implies condition (i) of §2.

Theorem 3.11. Let 7 be a finitely generated subsemigroup of a free (commutative)
semigroup F= N$ with identity. Then F, together with the inclusion, is a universal
free semigroup ofT if and only if(ï), (ii), (iii) hold.

Proof. If F is a universal free semigroup of 7, then it is also, up to isomorphism,
the free envelope of 7, so that conditions (i), (ii), (iii) of §2 hold. It remains to prove
(i'). Relative to a finite generating subset X of T, the proof of 2.5 shows that
BX(T) is the set of all vv = 2*ex xwx e Zx. Since 7 has a universal free semigroup,
Cx(7)s7* is free, hence free on BX(T), so that there can be no nontrivial relation
between the vv's in Zx. Therefore, if the integers nw are such that 2u>ew nwtw=0 for
all teT, then J,W£W nww = Q in Zx, which implies «„ = 0 for all w. This proves (i').
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Conversely, assume that (i'), (ii), (iii) hold. Since (i') implies (i), F "is" again
the free envelope of 7 and we may use the same material from the proof of 2.5.
With the same notation, if the integers nw are such that 2Zwewnww = 0, then
Iwew "wtw = 0 for all / g X, hence also for all teT, so that nw = 0 for all w. It follows
that no nontrivial relation holds in Zx between the vv's, so that CX(T) is free on
BX(T). Since 7* is free, the free envelope of 7 is a universal free semigroup of 7,
and so is F. This completes the proof.

4. Let 5 be t.c. Call a subset Y of S free if the subsemigroup of S generated by
Y is free (commutative) over Y. The free dimension free dim 5 of S is either the
largest integer of the form Card Y, where Y is a free subset of S, or infinite. If
furthermore S is f.g., we shall show that free dim S is finite and does not exceed
the number of elements of any generating subset of S.

More precisely, let X he a finite generating subset of S. The relational dimension
of S over X is the rank rel dimx S of RX(S), or, equivalently, the dimension of
RX(S) over Q. It can be interpreted as the largest number of independent defining
relations, where independent means that no trivial relation can be obtained by
finitely many formal additions or exchange of sides.

Theorem 3.12. Let S be a finitely generated cancellative (commutative) semigroup.
For any finite generating subset X of S, Card Z=free dim S+rel dimx S.

Proof. Let y be a free subset of S; for each yeY, write j> = 2*ex n%x. If the
integers py are such that 2*sx lyeYPvnyxx e R = RX(S), then, writing py=p'y-p'y,
with p'y, p"yeN°, the relation r : ZxeX (2VeY pynx)x=IXex (ILyeY p'ynx)x is such
that f e R; by 2.1, r holds in 5 (this part of 2.1 does not use power-cancellativity).
Hence ^yeY p'yy=^yeY p"yy, which implies py = 0 for all y since y is free.

Let L be the linear mapping of QY into Qx such that L(y) = ~£xeX nyxx; it follows
from the above that L_1(F) = 0. This shows, first, that F is one-to-one (so that Y
is finite). Next QY = L(QY) and L(QY) n«=0. Taking dimensions over Q, this
yields

Card y = dim L(QY) á dim Qx-dim R = Card A"-rel dimx S.
Thus free dim S^Card A"—rel dimx S.

To prove the converse inequality, let y be a maximal free subset of X. For each
x e X— y, y u {x} is not free, so that we can select a nontrivial relation sx between
the elements of Y u {x} which holds in S; note that the coefficient of x in sx is
not zero, since Y is free and S is cancellative. It is then clear that {sx; xe X— Y}
is a linearly independent subset of R, so that rel dimx 5^ Card A"—Card Y. It
follows that

free dim S ä Card Y ^ Card Z-rel dimx S,
which completes the proof.

Incidentally we proved that a free subset with maximal cardinality can be found
among the subsets of X.
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Now define the generating dimension gen dim S of S as the smallest number of the
form Card X, where A' is a finite generating subset of S, and the relational dimension
rel dim S as the smallest number of the form rel dimx S. From 3.12 follows that
gen dim S=free dim S+rel dim S. If S is t.c. and reduced, the following result
shows that gen dim S is just the number of irreducible elements of S.

Proposition 3.13. Let S be a fg., t.c. reduced semigroup. Then S is generated by
its irreducible elements.

Proof. Since S is embeddable into a free semigroup with identity by 2.2, any
element of S has only finitely many divisors, and s+t=s implies t = 0 (and is
impossible if S has no identity element). Assume that a e S is not a sum of irre-
ducible elements. Then a is not irreducible, so that it can be written under the form
b+c (with b, c / 0 if S has an identity element) ; then one of b, c is not irreducible,
so that a can be written as a sum of three (nonzero) elements. Continuing thus,
we see that for all n e N we can write a as a sum a = ax+a2 + ■ ■ ■ + an of n (nonzero)
elements. Taking n larger than the number of divisors of a, we obtain n distinct
divisors of a, namely au ax+a2,..., ax + a2+ ■ ■ ■ +an, a contradiction. Therefore
S is generated by its irreducible elements.

Our last result concerns duality.

Proposition 3.14. If S is fg., t.c. and reduced, then free dim S* = free dim S
and gen dim F(S) = free dim S+rel dim S*.

Proof. Relative to any finite generating subset X of S, K is the subgroup of
Zx generated by C and therefore

free dim S* = free dim C = dim K = Card X-dim R = free dim S.

The second formula follows since gen dim F(S) = gen dim S*.

4. Killing.
1. Let F be a (commutative) semigroup, S be a subsemigroup of F and X, Y be

generating subsets of S, F. Since Y generates F, we can choose for each x e X a
relation/>* : x = ~2yeYpyy which holds in F. The family p = {px)x£X is a presentation
of SsF relative to X and Y. If F is itself a subsemigroup of some semigroup U
generated by Z, and if 67 is a presentation of Fs U relative to Y and Z, so that
y=2zez a\z holds in U for all y, then x=226Z Œyey P*qí)z holds in U for all x e X,
which yields a presentationp °q of S£ Urelative to Xand Z.

If p is a presentation of SsF relative to X and Y, then the relations of S are
consequences of the presentation and the relations of F. More precisely, each
relation r : J,xeX rxx=JiXeX rxx between elements of X induces a relation
r*p: 1ySy{LxSxr'xp%)y = J.y=Yrlxexr"xp%)y between elements of Y; clearly r
holds in S if and only if r * p holds in F. One sees that, if r is trivial, then so is
r * p ; and that r * {p °q) = {r * p)*q.
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We say that p is a killing presentation in case r * pis trivial whenever r holds in
S; in other words, if the relations of S are consequences of p alone, and not of the
relations of F. We say that F kills the relations of S or, shortly, that F kills S,
if there exists a killing presentation of S£ F relative to some X, Y. (For instance, a
free semigroup kills all its subsemigroups.)

Proposition 4.1. Let S be a subsemigroup of T and X, X' { Y, Y') be generating
subsets of S (F). If there exists a killing presentation of Se F relative to X and Y,
then there exists a killing presentation of S£Frelative to A" and Y'.

Proof. Let;? be a killing presentation of S£ F relative to A'and Y; take presen-
tations s of Sç S relative to A" and X and t of Fs F relative to Y and Y' ; then
s o p o t is a presentation of Ss F relative to A" and 7'. If furthermore a relation r
between elements of X' holds in S, then r * s holds in S, so that ft * s) * p is trivial ;
hence r * ft °/> ° t) = {{r * j) */>) * t is trivial. Therefore s°p°t is a killing
presentation.

Although 4.1 does not mean that, if F kills S, then every presentation of S^T
is killing, it does say that killing is an intrinsic property of S^F, independent on
the generating subsets chosen to express it. We shall in fact obtain an intrinsic
characterization of killing (see 4.5 below), in the finitely generated case. In general,
we have the following results.

Proposition 4.2. If Se Fs U and T kills S, then U kills S.

Proof. Relative to suitable generating subsets, let p be a killing presentation of
S^T and 67 be a presentation of Fç U, such that p ° q is defined. Then p ° q is a
killing presentation of Sç U: indeed, whenever r holds in S, r * p is trivial and so is
r * {p ° q) = ft * p) * q.

Proposition 4.3. //Sç F, then T kills S if and only ifT° kills S.
Proof. If F kills S, then F° kills S by 4.2. If conversely there exists a killing

presentation of Sç F° relative to X and Y, say p, and if F= F°, or 0 ^ y, then p is a
killing presentation of S^T. If F/F° and Oe Y, then Z= F-{0} generates F°
(as a semigroup with identity) and q = {qx)xeX, qx : x = 22eZ />£z, is a presentation
of Sç T. It is immediate that q is a killing presentation.

Proposition 4.4. If T kills S and <p is a homomorphism of T onto U which is
one-to-one on S, then U kills 9>(S).

Proof. Let p be a killing presentation of Ss F relative to X and Y. Since 95 is
onto, <p{Y) generates U; we have a presentation 99ft) of 99ft) ̂  £/ relative to ç^A")
and 9?(y), defined by <p{p)"{x) : 99ft) = 2vey Pvfiy)- Relations can similarly be
carried along 99. Now let i be a relation between elements of <p{X), which holds
in ç>(S). Since S^<p{S), we have s = <p{r), where r holds in S. Therefore r*/> is
trivial, and so is s * 99ft) = 99ft * p). This proves that 99ft) is a killing presentation.
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Since any semigroup is a homomorphic image of a free semigroup, it will follow
from 4.6 that the assumption that <p is one-to-one on S cannot be removed in 4.4.

2. The following result is fundamental.

Theorem 4.5. Let S be a finitely generated subsemigroup of a (commutative)
semigroup T. Then T kills S if and only if there exists a homomorphism <p of F(S)
into T° such that <p ° a is the identity on S.

Proof. If such homomorphism <p exists, then it is one-to-one on a(S) ; therefore
<p(F(S)) kills 5 by 4.4, 7° kills S by 4.2 and F kills S by 4.3.

Conversely, letp be a killing presentation of Ss 7 relative to Xand Y, where X
is a finite generating subset of S. For each yeY, set y = *2,XexPyX e Zx. Whenever
r : ZXexr'xx = ZxeXrxx holds in S, r*p : 2¡,ey (2*eX r'xpx)y = 2yeY C2.XexrxPy)y
is trivial, which means that r-y — 0 in Zx for all yeY. Hence each y is in C and
there exist integers m%^ 0 such that y = 2&6b tnybb. Then also py = ^beB m%bx.

For each xe X, {y e Y; p^O} is finite; it follows that {ye Y; y^O} is finite,
so that {y e Y;ml + 0} is finite for each be B. Therefore there exists a homomor-
phism <p of F(S) into 7° such that 93(A) = 2yey rnly for all be B. If xe X, <p(a(x))
— 2v«r 2beB b xm\b = 2vey Pyy = x; since X generates 5, <p ° a is the identity on S,
which completes the proof.

Corollary 4.6. If S is fg., then S is killed by some semigroup if and only if it is
t.c. and reduced.

Proof. This follows from 2.2 and the theorem. (The only if part can be proved
even when S is not f.g., by noting that a killing presentation p of Se 7 relative to
X and y induces an embedding p. of S into N° ; p is defined by p.(x) = ~£yeY pyyeN§.)

Corollary 4.7. A f.g. semigroup S kills itself if and only if it is free.

Proof. If S kills itself, then there exists a homomorphism <p of F(S) into S°
such that <p o a is the identity on S. Then a o ̂  is an idempotent endomorphism of
F(S) and (a ° y)(F(S))^S0. Therefore S° is a projective (commutative) semigroup
with identity, and all such semigroups are free (cf., for instance, [2]). The converse
is trivial.

Corollary 4.8. If S is f.g., then no proper subsemigroup of F(S) kills a(S),
except perhaps F(S)—{0}.

Proof. Let 7 be â subsemigroup of F(S) which kills a(S). Since F(S) is also the
free envelope of a(S) there exists a homomorphism 93 of F(S) into 7° which leaves
every element of a(S) fixed. By 2.9, 93 must be the identity so that T° = F(S).

It is clear that F(S) - {0} kills a(S) if and only if 0 £ a(S).
Finally, observe that 1.5 also follows from 4.5.
3. The most important consequence of 4.5 is that any semigroup which kills S

must contain a subsemigroup which kills S and can be completely described in
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terms of F(S). More precisely, call canonical killer of S any semigroup F such that:
(a) S is a subsemigroup of F; (b) there exists a homomorphism 99 of F{S) onto F°
such that 99 o « is the identity on S. Then 4.5 may be rephrased thus: F kills S if
and only if F° contains a canonical killer of S.

The next question is, of course : does there exist minimal killers of S ( = such that
no proper subsemigroup kills S) and does F kill S if and only if it contains a minimal
killer of S ?

We know by 4.8 that there exist minimal killers and by 4.5 that they must be
canonical. There is also one case when our question has a very satisfactory answer,
as far as only t.c. killers are concerned.

Proposition 4.9. If S is f.g. and has a universal free semigroup F, then, up to
isomorphism, there is only one t.c. minimal killer {namely, either F or F— {0}) and
a t.c. semigroup T kills S if and only if it contains it.

Proof. Up to isomorphism, F— F{S), so that either F or F— {0} is a minimal
killer of S. It follows from 3.10 that there is no other t.c. canonical killer, so that
one has only one t.c. minimal killer (up to isomorphism). The result follows.

We are now going to show that 4.9 holds whenever S is f.g., except for the
uniqueness.

Lemma 4.10. Let S be f.g. and T be t.c. reduced and a canonical killer ofS. Then
there are only finitely many canonical killers of S in T.

Proof. Since F is a canonical killer of S there exists a homomorphism <p of
F{S) onto F° such that <p ° a is the identity on S. If a subsemigroup U of F is a
canonical killer of S, there exists a homomorphism <ji of F{S) into F° such that
>fi o a is the identity on S (then U°=if>{F{S))). Therefore it is enough to prove that
there are only finitely many such homomorphisms of F{S) into F°.

Now the congruence <€ induced by 99 is a cancellative congruence on F{S);
hence it follows from Redei's results (cf. [1], [6]) that <€ is determined by a sub-
group H of ZB by: u^v if and only ifu—veH. Since & is also power-cancellative,
H is pure. Finally we claim that G=H n NB is the (free) subsemigroup of NB
= F{S) generated by B' = G n B (if B' = 0, then G={0}). Indeed u, veN°B and
u+veG implies 99ft) + 99ft)=0 in F°, 99ft) = 99ft)=0 since F° is reduced and u,veG;
if therefore u="2„£BubbeG, then beG whenever ub>0, so that a is a sum of
elements of B'.

Let H' = HnZB., H" = HnZB., where B"=B-B' and we consider that
ZB.^ZB, ZB-^ZB. By the above, H'=ZB. and H" n NB.= 0 since Hn NB=NB..
Furthermore H=H' @ H": for if u=J,beB u„b e H, then 2„eB. ubb e H' and there-
fore 2i>es" ubb e H". Since H is pure, so is H". We shall now complete the descrip-
tion of Z/by giving its equations in ZB. Since H" is pure in ZB», we have H" = Hn±1.
Since H" n NB. = 0, it follows from 1.2 that H"1 is generated by its strictly positive
elements; thus we can find a finite subset {qi = 2~,beB"q\>b; lúiúk) which generates

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



680 P. A. GRILLET [June

H"L and satisfies q[ >0 for all /' and all A 6 B"; then 77" is the orthogonal of that
subset, so that u = ^beB~ubbe H" if and only if J,beB~ q[ub = 0 for l^i^k. It is
now clear that u=JibeB ubb e 77 if and only if 2t>eB- ql"b = 0 for 1 úi^k.

We are now equipped to find all homomorphisms <¡> of F(S) into 7° such that
<ji o a is the identity on 5. Since 93(A) = 0 whenever A e B', 7° is generated by q>(B")
and a homomorphism $ of F(S) into 7° is completely determined by any family
(«tOces.öeB- of nonnegative integers such that >l>(c) = 2,beB~ nb<p(b) for all ceB.
Furthermore, since 93 ° a is the identity on S, we have, relative to any finite generating
subset X of S, a presentation x=2i>es" bx<p(b) of 5 £ 7° ; whence </r ° ce is the identity
on S if and only if J,bEB~ bx<p(b) = ¿[bEB» J,ceB cxnb(p(b) holds in 7° for all xe X,
which means that 2&eB" (A* — IceB cxnb)b e 77 for all x e A". This is in turn equivalent
to the system of equations:

(1) 2   2 ifo^S =  2 Ûb*       (xeX,lúiú k).
beB"   ceB beB"

It now suffices to show that (1) has only finitely many solutions in nonnegative
integers. Pick A e B", ce B. Since c/0, then cy>0 for some y e X. Then q\cy>0,
so that ncb may take only finitely many values in the solutions of the system. Since
B is finite, this completes the proof.

Note that any system of equations of 77 leads to a system similar to (1) which
may be used to find all the canonical killers of S in 7. In particular, one has a
criterion for recognizing the minimal killers of 5 that are t.c. and reduced.

Theorem 4.11. Let S be a finitely generated subsemigroup of a totally cancellative
and reduced (commutative) semigroup 7. 7Ae« 7 kills S if and only if it contains a
minimal killer of S.

Proof. If 7 kills S, then 7 contains a canonical killer U of S. Since 7 is t.c. and
reduced, so is U, and it follows from the lemma that U contains a subsemigroup
which is a canonical killer of S and is minimal with this property. This subsemigroup
is then a minimal killer of S. Thus 7 contains a minimal killer of 5. The converse
is trivial.

5. Counterexamples and open questions.
1. The counterexamples give negative answers to the following questions con-

cerning f.g., t.c. reduced semigroups:
5.1. If S* is free, need S be free?
5.2. Is S* always free?
5.3. Is a(S) always dense in F(S) relative to t.c. semigroups?
5.4. Are the minimal killers of 5 always free ? More precisely, does every minimal

killer 7 of S satisfy
5.5. rel dim 7< rel dimS?
5.6. free dim 7= free dim 5? (Note: it is clear that free dim S^free dim T for

any killer.)
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Expectably, 5.1 and 5.2 are the easiest to settle. The counterexamples are given
by t.c. presentations.

5.1. Let S be generated by x, y subject to 3x=2y. Relative to X={x, y) one finds
that K={2kx+3ky e Zx; k e Z}; hence S*^C^N° is free; but S is not. Up to
isomorphism, F{S)=N°, S={2, 3, 4,...}.

5.2. Let S be generated by x, y, z subject to 5x+2y=3z (there are simpler
examples, but this semigroup will be used again). Then ue C if and only if ux^0
etc. and 5ux + 2uy = 3uz. One finds that B consists of a=3y+2z, b=x+2y+3z,
c=2x+y+4z, d=3x+5z. Then S*sC is not free, since a+d=b + c.

5.3. Let S be as above, and H be the pure subgroup of ZB generated by a+Ab
-2c-3d; H determines a t.c. congruence %> on F{S). On the other hand, a{S) is
generated by a{x)=b + 2c+3d, a{y) = 3a+2b + c, a{z)=2a+3b+4c+5d, so that
the subgroup G of ZB generated by <x(S) consists of all (3t>+2w)a+(«+2i; + 3w)6
+ {2u+v+3w)c+{3u+5w)d, where u,v,weZ. It is immediate to verify that
HnG={0}. Therefore <p: F{S) -> F{S)¡<€= U is one-to-one on a(S) but not
one-to-one, even though U is t.c. and in fact reduced.

5.4. Let S and U be as before ; we may identify S and <p{a{S)), and then U becomes
a canonical killer of S. We take S without identity element, so that {/—{0} is also
a canonical killer of S. We use the technique described in the proof of 4.10 to
show that F= U-{0} is in fact a minimal killer of S. First one sees that u e ZB is in
H if and only if ub+2uc = 2ua + ub + 2ud = 2ua+uc=0 (we can obtain equations
with all coefficients positive, but they would be more complicated). One can then
write the system (1) and solve it. One finds that it has only one solution in non-
negative integers, namely the obvious solution n%=nhb=nl=n¿=\ and all other
unknowns equal to zero. It follows that F is a minimal killer.

From the presentation of S it follows that rel dim S= 1 and free dim S=2. Simi-
larly, F has a t.c. presentation in terms of a, b, c, d subject to a+4b = 2c+3d.
Hence F is not free, which disposes of 5.4. In fact rel dim F= 1 and free dim F= 3,
which answers the last two questions.

2. The following problems are unsolved as yet.
5.7. Is the subgroup of ZB generated by a{S) always pure?
5.8. When is S^T* for some F? When is a an isomorphism? (Note: these two

problems are equivalent by 3.8).
5.9. Is a{S) always dense in S** relative to all semigroups?
Added in Proof.   5.8 is not unsolved anymore.
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