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ABSTRACT 

The free vibration characteristics of a submarine hull have an important influence on 
the noise signature. A submarine hull, or portion of one, can frequently be idealised as 

a ring stiffened cylinder subjected to external loading from the surrounding water, for 

the purposes of vibration analysis. The modal behaviour of ring stiffened cylinders is 

reviewed, including the effect of external pressure loading and added mass effects 

from surrounding fluid. The existing unclassified literature is inadequate in its 

coverage of the problem and these shortcomings are discussed, in order to identify the 

requirements for futher work in order to be able to satisfactorily analyse a submarine 

hull structure. 

RELEASE LIMITATION 

Approved for public release 

DEPARTMENT   OF   DEFENCE 

 ♦  

DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION 



Published by 

DSTO Aeronautical and Maritime Research Laboratory 

PO Box 4331 

Melbourne Victoria 3001 

Telephone: (03)626 8111 

Fax: (03)626 8999 
© Commonwealth of Australia 1995 

AR No. 009-327 

October 1995 

APPROVED FOR PUBLIC RELEASE 



The Free Vibration Behaviour of Ring Stiffened 

Cylinders - A Critical Review of the Unclassified 

Literature 

Executive Summary 

The determination of the natural frequencies of vibration is of particular interest to the 

submarine community. The whole body vibrational modes provide the opportunity 

for detection and classification through techniques such as low frequency active sonar. 

There are a number of factors which influence these low frequency vibrational modes. 
The ring stiffeners, end conditions, deep frames and bulkheads, external hydrostatic 

pressure and the mass of the surrounding water will all have an effect on the 
vibrational behaviour. The existing literature contains numerous papers which 

consider the problem, and the influence of one or other of the factors listed above. 
However, none of the papers covers all the factors. This paper reviews the available 
unclassified literature and discusses the influence that each of the factors has on the 
vibrational modes. 

The ring stiffeners can be treated analytically by smearing their effect to produce an 

equivalent uniform shell. The treatment will provide accurate estimates of the whole 

body modes, but will not provide any insight on interstiffener behaviour. The 

boundary conditions assumed during the analysis have a large influence on the result. 
It is possible to analyse a long cylinder that is subdivided by bulkheads and deep 

frames in its individual sections. The bulkheads can be replaced by shear diaphragm 

boundary conditions and the deep frames by built in boundary conditions. The 

external hydrostatic pressure will place the shell in compression and hence reduce the 

modal frequencies. There is a correlation between the model frequency behaviour and 

the elastic instability (buckling) behaviour of the shell. A plot of frequency squared vs 

pressure produces a straight line, with the zero frequency point being the buckling 

pressure. The mass of the external water will also reduce the modal frequencies. 

Analytical formulae to estimate the reduction in modal frequency are available, as well 
as the use of numerical techniques such as finite elements. The combined effect of 

external pressure and water mass loading may be accounted for using superposition of 
the two different effects of the unpressurised, invacuo modal frequencies. 
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1. Introduction 

A problem of particular interest in submarine signature management is the 

determination of the natural frequencies and mode shapes of the submerged structure. 

The acoustic signature is strongly influenced by hull vibrations, particularly at low to 

medium frequencies, [1][2]. These lower frequencies are also the most sensitive to a 

variation in external environment. For instance an increase in external pressure, due to 

an increase in operating depth, will have the greatest affect on the lower frequencies of 

the submarine hull. The control of these low frequency modes is assuming greater 

significance in acoustic signature management as sonar systems are improved. 

The free vibration behaviour of ring stiffened cylinders has been studied since the mid- 

1950's, [3] [4] [5]. However, few papers specifically deal with the effects of boundary 

conditions, external hydrostatic pressure and mass loading due to water. These topics 

are of crucial importance to the modal behaviour of submarine hulls. 

In treating a portion of the hull as a ring stiffened cylinder it is necessary to have a 
knowledge of the appropriate boundary conditions that are required to be applied, and 

a knowledge of the effect of boundary conditions on the vibrational behaviour. These 

boundary conditions may be dictated by deep-ring stiffening frames, bulkheads or 

more complex structural components such as end caps. 

Through the 1970's a large amount of work on the effects of external loadings on the 
behaviour of stiffened cylinders was undertaken at the Israel Institute of Technology, 

[6]-[9]. This work showed the correlation between cylinder vibrational behaviour and 
buckling behaviour. In addition, the vibrational behaviour for various boundary 

conditions was investigated. The research led to methods of experimentally 
determining cylinder boundary conditions and a method of predicting buckling loads 

from a knowledge of the cylinder's natural frequencies. The work gives an insight into 
the effects of external loading and boundary conditions on the free vibration behaviour 

of cylinders. It, however, focuses on aeronautical structures, with most attention being 

given to axial stiffening, rather than ring stiffening. Additionally, the external loads 

considered were mostly axial rather than hydrostatic. So while this work is of general 

interest it does not provide much insight into submarine structures. 

To the author's knowledge there are no reviews which deal comprehensively with the 

modal behaviour of ring stiffened cylinders. In 1992 Mukhopadhyay and Sinha, [10], 
found that there was no comprehensive review dealing with stiffened shells in general. 

Leissa's review of shell vibration only deals briefly with stiffened shells, [11]. This 

report is intended to provide a review of the vibrational behaviour of ring stiffened 

cylinders and to provide a background of knowledge in this topic. Of particular 

interest are those areas which are of importance to submarine type structures. It is 

intended to highlight those previously mentioned topics which have not been dealt 

with thoroughly, and thereby identify what further work is required in this area. In the 

report the finite element method is used extensively to calculate frequencies and mode 
shapes for comparison with other theoretical or empirical formulae, in order to assess 

the suitability of the method for further numerical studies. 
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2. Review of Modal Behaviour 

It is convenient to describe cylinders with the cylindrical coordinate system shown in 

Figure 1. The coordinate system has its origin at the mid-surface of the cylinder shell. 

Here, u, v, w describe the axial, circumferential and radial deformations respectively. 

Figure 1 Coordinate system for cylinders 

It is instructive to first consider the matter of boundary conditions. The term "simply 

supported" is often used to describe boundary conditions at the cylinder ends. It is 

generally taken to mean 

u*0 

v = w = 0 

w' = dw/dz * 0 

} x = 0,L (1) 

This terminology has been borrowed from beam and flat plate theory. It is however 

inadequate for fully describing the boundary conditions of a cylinder. While it 

indicates hinging around the circumference at the cylinder ends, the terminology does 

not impart any information about the behaviour of u, v or w. Another term frequently 

used to describe the above boundary conditions is "freely supported". 

Leissa [11] in his comprehensive coverage of shell vibrations preferred to adopt the 

term "shear diaphragm" boundary conditions. This is because a cylinder enclosed at its 

ends by thin, flat plates will exhibit behaviour very similar to one with the boundary 
conditions described in (1). The flat plate has substantial stiffness in its own plane, but 

has low resistance in the out of plane direction, due to comparatively low bending 

stiffness. As such, v and w will be restrained, while u and w' will be unrestrained. 

In characterising the various vibration modes of a cylinder it is useful to introduce n 

and m wave numbers. The n and m numbers give the number of circumferential waves 
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and the number of axial waves, respectively, for a particular mode of vibration, Figure 

2. The mode shapes were determined using finite element analysis, with shear 

diaphragm boundary conditions assumed. 

n=4, m=l n=2, m=l 

n=5, m=2 

Figure 2 Modal patterns for a freely vibrating cylinder 

The n = 0 modes correspond with breathing behaviour, where the cross-section at any 

axial location remains circular and there is no circumferential bending of the shell 

involved. An n number of 1 corresponds to beam-type bending vibrations (not 
illustrated here). In this type of mode the cross-section remains undeformed. These 

bending modes will be more significant for longer, more slender cylinders, which more 

closely approximate a beam or column. The fundamental bending mode is n = 1, m = 1. 

Unlike many other structures, such as flat plates, the simplest modes of vibration (ie 

lowest n and m numbers) do not have the lowest natural frequencies. The lowest 

natural frequency will generally occur for a mode with n greater than one. This is due 

to the sharing of the bending and stretching strain energies within the cylinder shell, 

[12]. The actual value of n for the lowest mode depends upon the geometry of the 

cylinder in question. A long slender cylinder may have a fundamental mode with n = 
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1, m = 1, as it largely behaves as a beam or column. More typical behaviour is shown in 

Figures 3 and 4, for two different cylinder geometries. In both cases the cylinders have 

a radius of 2 m and a shell thickness of 20 mm, (p = 7800 kg/m
3, E = 200 GPa and \i = 

0.3). The cylinder in Figure 3 is 6m long, while the cylinder in Figure 4 is 3m long and 

shear diaphragm boundary conditions have been assumed. 

500 
N 

O 
c 
3 
cr 

Circumferential waves, n 

Figure 3: Natural frequencies of an unstiffened cylindrical steel shell, shear 

diaphragm boundary conditions, geometry: R = 2m,L = 6m,h = .02m. 

4 8 12 

Circumferential waves, n 

Figure 4:   Natural frequencies of an unstiffened cylindrical steel shell, shear diaphragm 

boundary conditions, geometry: R = 2m,L = 3m,h = .02m. 

These results were derived analytically from the Donnell-Mushtari equations,[ll]. The 

Donnell-Mushtari equations are the simplest of a range of eighth order differential 
equations which have been used by different researchers to describe the dynamic 

behaviour of unstiffened cylindrical shells. The natural frequencies of the system are 

found by substituting appropriate boundary conditions and solving for the 

eigenvalues of the system of equations. For shear diaphragm boundary conditions the 

displacements are assumed to have the following form, which satisfy the boundary 

conditions, 
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.        mux A 
u = A cos cos nQ cos (öf 

L 

in. 

L 

<in 

L 

n  .    mux   .     A 
v = B sin sin nQ cos©* 

w = C sin cos nQ cosco* 

(2) 

where A, B and C are unknown constants and w is the frequency ( in radians per 
second) of the vibration. Substitution into the Donnell-Mushtari equations yields a 

sixth order polynomial (characteristic equation) of the form 

aß - aioo^ + <X2ü)2 - 0:3 =0 (3) 

where the coefficients a\, 0C2 and 0:3 are functions of m, n, the cylinder geometry and 

the material properties. Thus for a known cylinder and chosen values of m and n the 

equation can be solved, yielding three solutions for co. Thus for any m and n 

combination there are three natural frequencies, each of which corresponds to a 

distinct mode of vibration, despite all three having the same number of circumferential 

and longitudinal waves. Mathematically this means that these three modes will each be 

characterised by a unique set of values for A, B and C in equations (2). 

The lowest value of the three roots is generally much smaller than the other two. This 
lowest frequency mode is primarily radial. The two higher modes tend to be either 

primarily longitudinal or primarily circumferential. In Figure 5 all three frequencies 
have been plotted for m=l for the 6m long cylinder considered above. The roots have 

been derived from the Donnell-Mushtari equations, but this time all three roots have 
been obtained. 

10000 

N    1000 

o 
s 
<u 

4 6 8 

No. of circumferential waves 

10 12 

Figure 5: All three natural frequencies of a cylindrical shell, as given by solving equation (3). 
Results are for m = l only. Cylinder is that of Figure 3. 
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The higher modes, being primarily longitudinal and circumferential involve motion 

tangential to any surrounding fluid and will not be efficient sound radiators. The 
lowest mode, however, is primarily radial and will be the strongest sound radiator. It 

has also been found that the two higher modes are not significantly affected by 

external hydrostatic pressure. This is further discussed in section 6. In practice the two 

higher frequencies are usually neglected, and only the lowest frequency is generally 

reported in the literature, as it is in this report. 

3. Effect of Ring Stiffeners 

The free vibration modes of ring stiffened cylinders are often very similar in 

appearance to those of an unstiffened cylinder. When the rings are uniform and closely 

spaced, as is the case with a submarine hull, the behaviour can be identified with m 

and n numbers and the displacements can be described by equations (2). It should be 

noted here that if the rings are spaced unevenly, or if they have non-uniform properties 

or if they are heavy and sparse, the vibrational behaviour can be very complex and is 

beyond the scope of the present report. 

The full analytical treatment of the problem is much more complex. However, the 
problem can be significantly simplified by averaging the effect of the stiffeners over the 

skin of the cylinder. In this way the stiffened cylinder can be treated as an unstiffened 

cylinder with orthotropic shell properties. The circumferential shell properties will 

now be different from the longitudinal shell properties. This method of analysis is 

often referred to as "smeared stiffener theory", [3]. The method is of course limited to 

frequencies where the longitudinal wavelength is greater than the interstiffener 

spacing and it can not predict interstiffener motion, [10]. 

The frequencies for an unstiffened cylinder compared with those for a stiffened 

cylinder of the same radius, length and shell thickness, are shown in Figure 6. The 

stiffeners are rectangular cross section steel rings (depth = 100 mm, width = 40 mm, p 

= 7800, E = 200 GPa) on the inside of the shell spaced 250 mm apart, Figure 7. The 
results for the unstiffened cylinder were derived analytically using the Donnell- 

Mushtari equations while the stiffened cylinder results were calculated using finite 

element analysis. 

There is a noticeably sharper rise in the frequencies of the stiffened cylinder with 

increasing n number than for the unstiffened cylinder, Figure 6. This is to be expected 

because as the n number increases the rings will contribute proportionally more 

stiffness, thus increasing the frequency. Also apparent is a fall in frequency for the 

stiffened cylinder compared to the unstiffened cylinder for low n numbers. This is 

because there is little skin bending occurring in the circumferential direction at low n 

numbers, so the stiffeners are not contributing to the stiffness. They are however 

adding to the inertia of the cylinder thus causing the lower frequency, [11]. 
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unstiffened cylinder 
stiffened cylinder 

0 4 8 12 

Circumferential wave no., n 

Figure 6: Effect of ring stiffeners on the natural frequencies of cylinders. Plots are for m = l 

and m = 2. Both cylinders are steel with overall geometry: R = 2 m, L = 3m, h = .02m, and 

shear diaphragm boundary conditions. Extra details for the stiffened cylinder given in Figure 7. 

250 4 

\ 

100 i—L 

-> 

J     i 
«— 40 

J    u t 

20 

Figure 7: Ring stiffener details for the stiffened cylinder of Figure 6. Dimensions are in 

millimetres. 

4. Boundary Conditions 

The shear diaphragm boundary conditions introduced in section 2 have special 

significance. It was shown by Leissa [11] that an infinitely long cylindrical shell 

oscillating with a finite axial wavelength, /, will behave identically to a finite cylinder 

of length 112, with shear boundary conditions and m = 1. This means that the modal 

behaviour of a cylindrical shell, of length L, with shear diaphragm boundary 

conditions, and m > 1, can be described by another cylinder of the same radius and 

wall thickness, but of length L/m and m = 1. This characteristic also applies to 

uniformly stiffened cylinders provided the behaviour is not affected by the 

discreteness of the stiffeners. This depends upon the ratio of stiffener spacing to axial 

wavelength. 
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This is illustrated in Figure 8. The axial mode shape of a 6m long ring stiffened 

cylinder, m = 2 and n = 4, is compared with that of a 3m long ring stiffened cylinder, m 

= 1 and n = 4. The two cylinders have the same radius, shell thickness and stiffener 

properties. The two cylinders were analysed using finite element methods. The 

frequencies for the two cylinders were the same, and it is apparent that the mode shape 

of the shorter cylinder is identical to the half mode shape for the longer cylinder. 

c 
a> 
E 
© 
o 
« 
Q. 
» 
Q 

c 
0) 

E 
© 

« 
a. 
(0 

m= 1 ,n=4 

x metre 

Figure 8: Comparison of mode shapes of two different ring stiffened cylinders. Both cylinders 

are identical in every respect except length. The top cylinder has L = 6m while the bottom 

cylinder hasL = 3m. The mode of the top cylinder is that described bym = 2,n = 4. The other 

cylinder has m = 1, n = 4. In each case the mode shape has been normalised against the largest 

value ofw. 

More generally the modal behaviour of a cylinder, length Li,with arbitrary boundary 

conditions and many axial waves (eg mj > 5) can be approximated by a shorter 

cylinder, length L2, with shear diaphragm boundary conditions and m2 axial waves, 

provided that LI/ml = L2/m2. As an example the mode shape for a 9m long ring 
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stiffened cylinder with totally constrained boundary conditions (u = v = w = w' = 0) 

and m=3, n=4 is shown in Figure 9. It is apparent that the deflected shape of the centre 

section is the same as the previously considered 3m long cylinder with shear 

diaphragm boundary conditions (Figure 8). It is apparent that the importance of the 

boundary conditions is significantly reduced at only half an axial wavelength from the 
constrained edge. 

x, metre 

Figure 9: Axial mode shape of a ring stiffened cylinder with totally constrained boundary 
conditions, u = v = w = w' = 0at both ends, oscillating with m = 3,n = 4. 

The influence of boundary conditions on the modal behaviour of unstiffened 

cylindrical shells has been studied comprehensively by Forsberg, [13], who analysed 
the effect of constraining different combinations of u, v, w and w' at the two ends of a 

cylinder with linear, isotropic material properties. Based on these findings the 

following two observations can be made. Boundary conditions have decreasing 

importance as the values of L/R and m increase. The effect of axial restraint (u = 0) at 

the cylinder ends is generally far more significant than the effect of restraining rotation 
(w' = 0) at the cylinder ends. 

For a cylinder with clamped ends ( u * 0, v = w = w' = 0), R/h = 20 and L/R = 1, the 

natural frequency will be up to seven percent higher than an identical cylinder with 

shear diaphragm boundary conditions. The difference is only three percent for L/R = 2, 
and continues to decrease as L/R increases. The effect of clamping also reduces as the 

shell becomes thinner. For R/h = 100 and L/R > 2 the effect of clamping is 
insignificant, while for R/h = 500 the effect of clamping becomes insignificent for 
values of L/R as low as 0.5. 

The case where the cylinder is simply supported with axial restraint, ( u = v = w = 0 

and w' * 0) is very different. A cylinder with these boundary conditions and R/h = 20 
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will have natural frequencies up to 50 percent higher than the shear diaphragm case for 

values of L/R as high as 10. Additionally a thinner shell will not necessarily be less 

sensitive to the boundary conditions. For a cylinder with R/h = 500 the frequency can 

be nearly 100 percent higher than the shear diaphragm case, and it is not until L/R 

approaches 100 that the difference becomes negligible. 

The above clearly indicates that the out of plane stiffness of end plates or closures will 

generally be far more important than the degree of rotational restraint that is applied to 

the cylinder, [13]. 

5. End Closures 

A recent analysis of the behaviour of an unstiffened cylinder closed at one end by a 

plate and subjected to shear diaphragm boundary conditions at the other has been 

made by Cheng and Nicolas [14]. Both the cylinder and the plate had R/h = 30 and the 

same material properties. The study concluded that analysing an open cylinder with 

enforced boundary conditions generally gave results comparable with the behaviour of 

the cylinder plate structure. Replacing the plate with clamped boundary conditions (u 

* 0, v = w = w' = 0) gave better results than assuming shear diaphragm conditions at 

both ends, because of the relatively thick end plate. Nevertheless, the differences 

between the clamped case and the shear diaphragm case were small for L/R greater 

than two, especially for higher axial wave numbers (m > 1). 

A cylinder-plate structure will have modes where the plate vibrations predominate, 

and others where the cylinder modes are secondary. However, it is usually the case 

that these modes are quite uncoupled from the cylinder. Conversely the cylinder 

modes are often uncoupled from the plate. It is for this reason that the cylinder 

behaviour for the cylinder-plate structure can frequently be modelled by a cylinder in 

isolation with appropriate boundary conditions, when these conditions occur. The 

study by Cheng and Nicolas [14], however, does show that there are instances where 

strong coupling between the plate and cylinder occur. This happens when the 

frequency of the plate in isolation, for a particular value of n, is the same as the 

frequency of the cylinder in isolation, for the same value of n. In such instances the 

modal characteristics of the cylinder in isolation will be less accurate. The study 

suggested, however, that the frequency of the structure will still be close to that 

predicted by the cylinder in isolation. 

For longer cylinders where the cylinder frequencies tend to be lower than most of the 

plate frequencies the significance of plate/cylinder coupling is less. Also, for longer 

cylinders the interaction occurs over a much narrower range of L/R. 

In the case of submarines and aircraft, end closures are usually stiffened and may be 

hemispherical, significantly raising their frequencies. Galletly and Mistry, [15], used a 

variational finite difference method to study the modal behaviour of cylinders closed 

at one end by various shells of revolution (cones, hemispheres, ellipsoids, etc.) and 

10 
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totally fixed at the other. The cylindrical section had an L/R of 1 and R/h = 50. The 

boundary conditions at the fixed end were u = v = w = w' = 0. 

They found that for n > 3 and m = 1 most of the modal displacement occurred in the 

cylinder. This suggests an ability to study these structures, for m = 1, as isolated 
cylinders with specified boundary conditions. Correspondingly it was found that the 

lower n modes were most affected by the change in geometry of the shells of 

revolution. However, the frequencies of the combined shell-cylinder structure did not 

vary greatly for the different end closures. For the lowest four natural frequencies of 

the combined structure, over the entire range of end closures studied, the maximum 
difference in frequency prediction was 70 percent. For longer cylinders the effect of end 

shape would be further reduced. 

The effect of not constraining v was also investigated. This was found to cause 

substantial reductions in the frequencies of the n = 1 modes for all the structures 

studied. In many cases it resulted in the n = 1 mode becoming the fundamental 

frequency for the structure. It was also found that as the value of R/h was increased, 

while holding L/R constant, this effect was reduced. For R/h = 500 and L/R = 1 the 

effect of freeing v was very small. The importance of constraining v on the n = 1 modes 

was also observed by Forsberg, [13], for isolated cylindrical shells. 

The discussions above concerning the effect of end closures have referred to 

unstiffened cylindrical shells. There is little literature available specifically dealing with 

the influence of boundary conditions and end closures on the modal behaviour of ring 
stiffened shells. Rosen and Singer, [6] [16], discuss the behaviour of stiffened cylinders 

under axial loading, but concentrate on axially stiffened cylinders rather than ring 

stiffened ones. Additionally, the behaviour of axially loaded cylinders is generally 

quite different from that of unloaded or hydrostatically loaded cylinders. 

There is a strong correlation between the vibrational behaviour and the linear buckling 
of cylindrical shells, with the correlation between the two types of behaviour strongest 

at lower frequencies, where the vibration modes closely resemble the cylinder 

instability modes. The influence of boundary conditions on the natural frequencies of 

stiffened cylinders is very similar to the influence on the buckling behaviour of these 

cylinders, [8]. 

It is therefore useful to consider the effect of boundary conditions on the buckling 

behaviour. For axially loaded cylindrical shells, the influence of boundary conditions is 

very similar for both ring stiffened and unstiffened shells, [17][18]. This can be 

contrasted with the situation for axially stiffened shells, where the behaviour differs 
quite markedly from that of unstiffened shells, [17]. In the case of hydrostatic pressure 

the degree of similarity between ring stiffened and unstiffened shells depends on the 

relative bending stiffness of the rings. Cylindrical shells with relatively light rings will 

behave similarly to unstiffened shells, but as the ring stiffener becomes heavier their 

behaviour will diverge. 

In a submarine hull the ring stiffened cylindrical shell is separated into compartments 

by bulkheads or deep frames. The modes of a long segment of ring stiffened shell with 

a double bulkhead at each end and a deep frame stiffener were calculated using finite 

11 



DSTO-TR-0200 

element methods. The bulkheads and deep frame were then replaced by differing 

boundary conditions and the modes recalculated for comparison. Boundary conditions 

considered were shear diaphragm and built-in, but with v * 0. 

For all modes considered , except n = 2 m = 1, the two shell sections (divided by the 

deep frame) act independently, and can be analysed separately. Replacing the double 
bulkhead with a pair of shear diaphragm constraints gave modal frequencies less than 

1% different from those originally calculated. It was found that the built-in boundary 

conditions more accurately replicated the deep frame, rather than shear diaphragm 

constraint. This is because the heavy frame has a large rotational inertia and therefore 

offers considerable bending reinforcement to the shell. From the modelling it was 

concluded that the separate sections of the hull could satisfactorily be analysed 

independently, with the double bulkhead and deep frame being replaced by suitable 

boundary conditions. Only calculation of the n = 2 m = 1 mode required the entire shell 

to be analysed. 

The above suggests that the boundary effects on the modal behaviour of ring stiffened 

shells will often be similar to that for unstiffened shells, particularly for relatively light 

stiffening ribs. However, care should be taken when extending the results of 

unstiffened shells to stiffened shells with heavy ribs and more work in this area would 

be useful. 

6. External Hydrostatic Pressure 

An increase in external hydrostatic pressure acting on a cylindrical shell will decrease 

the values of the resonant frequencies. As the cylinder buckling pressure is 

approached, the resonant frequency approaches zero, [19]. An alternate statement of 

this, is that as the instability pressure corresponding to a particular combination of m 

and n is approached, the frequency of that m-n mode will approach zero. This 

similarity between the vibration modes and the instability modes, particularly for the 

lower frequencies, was noted by Singer, [7]. 

A ring stiffened cylinder under hydrostatic pressure can fail in a number of different 

ways. These include local modes, such as inter-stiffener buckling where lobes develop 
between the rings, yielding of the shell between the rings and stiffener tripping where 

the rings buckle first,[20], as well as general instability mode of the shell. It is usually 
the general instability mode that is of most interest when considering cylinder 

vibrations. This mode of failure can occur between bulkheads or deep frames, [21], and 
is caused by elastic buckling of the frame and shell in unison. These general instability 

modes occur at low m numbers and have the an appearance similar to the vibration 

modes in Figure 2. However, sometimes large m number modes can also be of interest 

when considering hydrostatic pressure. The elastic instability of these high m number 

modes can correspond to relatively low pressures. These modes will tend to 

correspond with the inter-stiffener buckling mode. As such, they can be sensitive to 

hydrostatic pressure 

12 
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A plot of frequency squared versus external pressure for three different modes is 

shown in Figure 10. This is for the 6m long ring stiffened cylinder previously 

considered, with shear diaphragm boundary conditions and shows a linear 

relationship between the square of the frequency and the external pressure. The 

frequencies were determined using finite element analysis. The instability pressure for 

each of the modes under investigation is also shown in Figure 10. These were 
determined using a method developed by Kendrick, [22], for the prediction of 

buckling. The equations were originally developed to determine instability pressures 
in two axial modes, either m=l, or an m number corresponding to inter-stiffener 

buckling, for an arbitrary n number. One of these two modes will provide the 

minimum instability pressure. The equations may be extended to the case of arbitrary 

m number with relative ease. 
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Figure 10: The effect of external hydrostatic pressure on the square of the frequency for three 

particular modes of vibration of a ring stiffened cylinder with shear diaphragm supports. Also, 

plotted along the horizontal axis are the three corresponding Kendrick (1953) instability 

pressures. 

To determine which modes will be most sensitive to hydrostatic pressure it is 
instructive to review the instability analysis of cylinders more closely. In doing so it 

must be remembered that we are not interested in buckling as such, since buckling 

analysis is concerned with the first failure mode, and this often occurs at a lower 

pressure than that given by the elastic stability analysis. This is due to a degree of 

nonlinear behaviour occurring prior to buckling. However, as the buckling pressure is 

higher than the working pressure this nonlinearity can be ignored over the range of 

practical working pressures, [23]. Since the modal vibrations are small in magnitude 

and linear it is valid to consider the linear-elastic instability analysis for comparison. 

The instability pressure as a function of circumferential wave number, n, is plotted for 

a range of m numbers in Figure 11. The curves show that the modes which are most 

sensitive to external pressure occur for m=l and n in the range of 2 to 4. These are the 

general instability modes and correspond to the lowest frequencies of vibration. If an 

instability mode were possible for m=2 it would occur at a much higher pressure. 

13 
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As the m number increases to 4 the modes become less sensitive to hydrostatic 

pressures. A further increase in m number to 6 reveals another dip in the instability 

pressures, implying greater sensitivity to hydrostatic pressure. This dip reaches a 

minimum for m « 12, and values of n between 5 and 6. There is not a significant 

increase in pressure in this region until m is greater than 20. 

2 4 6 8 

Circumferential wave no.,n 

Figure 11: Instability pressures for a ring stiffened cylinder under hydrostatic load according to 

Kendrick's (1953) smeared stiffener equations. 

The important observation here is that for ring stiffened cylinders at large m numbers 

there is a second region which is relatively sensitive to external hydrostatic pressure. 

This region is caused by the axial component of the pressure loading. Ignoring this 

axial component in the cylinder loading eliminates the second dip and results in an 

increase in instability pressure with increasing m number. 

The appearance of the second dip is not due to an inter-stiffener effect, as similar 
results are obtained using smeared stiffener theory. For modes with axial wavelengths 

equal to or smaller than the stiffener spacing the instability pressures can be 

approximated by analysing the cylinder without stiffeners, and sufficiently high m 

number. The instability pressures for an unstiffened cylinder, but with the same overall 

geometric and material properties, are plotted in Figure 12. The first inter-stiffener 

instability mode, m=24, occurs at a pressure of approximately 30 Mpa, which is close to 

the values at the second dip predicted by smeared stiffener theory, Figure 11. 
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Fzgwre 22:   Instability pressures for an unstiffened cylinder under hydrostatic load. Cylinder 

has same overall geometry and material properties as the ring stiffened cylinder of Figure 11. 

7. Added Mass of Water Effect 

The analysis considered so far has assumed that there is negligible effect on the 

vibrations of the structure from the surrounding fluid. This assumption is acceptable 

when the density of the fluid is much less that that of the structure, for instance 

metallic structures in air. However when the density of the fluid is approaches that of 

the structure, as occurs with submarines etc, then the added mass effect from the 
surrounding fluid must be considered. 

The surrounding body of fluid will reduce the modal frequencies, compared with 
those in a vacuum, while the mode shapes remain similar to those in a vacuum. The 

extra damping due to the water will have a negligible effect on the modal frequencies, 
[19]. 

When a structure is oscillating in a fluid its motion is not only resisted by its own 

inertia but also by the inertia of fluid that is entrapped by the structural motion and 

moves with the structure. This results in an apparent increase in the magnitude of the 

mass of the structure, which is commonly referred to as the added mass. The added 
mass depends upon the direction of motion of the structure and the frequency. As the 

frequency increases the added mass effect diminishes, [24]. The effect of the added 
mass on the modal frequencies is given by the expression 

15 
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L _ 1 
/      (1+Ma/M)1/2 (4) 

where fw is the submerged frequency, f is the in vacuo frequency, Ma is the added mass 

of fluid and M is the structural mass. 

The added mass depends upon the geometry of the structure, the nature of the motion 

and the frequency. For the simple case of rigid body motion the added mass may be 
determined from experiment or by the application of potential flow theory, [25]. For 

nonrigid oscillations however the determination of the added mass is far more 
complex. There is no closed form solution for the calculation of the added mass acting 

on a finite cylinder, [24] [25]. For a cylinder oscillating as a flexible body, the 

determination of added mass must rely on approximate methods. For a plate or 

cylindrical shell the ratio of added mass of water to structural mass is given by, [24] 

[25], [26]. 

M ph (5) 

where a is a non-dimensional constant which is a function of the mode shape, pw is the 

density of the fluid and p is the mean structural density. The structural mass per unit 

area of a plate or shell is given by ph. For a ribbed stiffened shell the mass per unit 

surface area must include the mass of the stiffeners. 

For a cylinder with shear diaphragm boundary conditions a first order estimate of a is 

given by a < 1/n, [25], where n is the circumferential mode number. This will give a 

lower bound for the submerged frequency. A more accurate expression, including the 

effect of the longitudinal wave number, m, is given by, [26] 

a = n2
/((n

2
 +1) (n2

    + (mnR/L)
2
 )1/2) (6) 

This expression was derived using theory related to an infinite cylindrical shell for n>0. 
As discussed above in section 4, the mode shapes of a finite cylinder with shear 

diaphragm boundary conditions are identical to those of an infinite cylinder over a 

finite axial length. Using this reasoning equation (6) may be used to calculated the 
approximate added mass on a finite cylinder. There will however be other effects 

associated with the finite shell, such as boundary effects, not accounted for in the 

infinite cylinder formulation, [26]. The mode shapes of finite shells with boundary 

conditions other than shear diaphragm are frequently similar to shells with shear 

diaphragm boundary conditions, especially for long slender cylinders and at points 

away from the ends, (section 4). It is therefore reasonable to extend the application of 

equation (6) to determine the approximate added mass for finite cylinders with other 

boundary conditions. 

For more accurate determination of submerged frequencies and the effect of the fluid 

added mass it is necessary to use numerical methods such as finite element and 

boundary element techniques. Everstine [24] used finite element and boundary 

element techniques to determine the frequencies of a submerged cylindrical shell with 
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flat end closures. To determine the effect of the surrounding water, the frequencies for 

the cylinder were determined both in vacuo and in water. The cylinder studied had a 

radius of 5 m, length of 60 m and shell thickness of 0.05 m. The ratio of submerged 
frequencies to in vacuo frequencies is shown in Figure 13. These show excellent 

agreement with the theoretical ratios predicted by equations (4) to (6). 

Gilroy, [29], modelled the Everstine cylinder using the COUPLE/VAST,[30], suite of 

computer programs. The in vacuo modal frequencies were within a few percent of the 

results obtained by Everstine, however the results for the submerged cylinder differed 

significantly. Gilroy concluded that without experimental validation it was not 
possible to determine the cause of the differences. This does however highlight the 

problems of trying to calculate the submerged modes using finite element analysis, and 

the care that is required to obtain meaningful results. 

0.70- 

0.65H 

0.60 

0.55- 

5- 0.50- 

^ 0.45- 

0.40- 

0.35- 

0.30- 

approx. theory 

m= 1   FEM 

m = 3 FEM 

m = 5 FEM 

m = 7 FEM 

Circumferential waves, n 

Figure 13: Ratio of submerged frequencies to in vacuo frequencies for a cylindrical shell. Finite 

element results from Everstine (1991). 

Ross and Johns [27] and Ross and Richards [28] compared experimentally measured 

frequencies to FEA predictions for the modal frequencies of both circular cylinders and 

ring stiffened cones under external water pressure. His results show excellent 

agreement between the two. However, the tests and analysis were performed for the 

specimens submerged in a small pressurised tank and therefore cannot be compared to 
ratios predicted by the equations of Junger and Feit since there was not sufficient 

water loading. 
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8. Conclusions 

The free vibrational characteristics of cylindrical shells used for underwater 
applications are affected by ring stiffeners, external pressure loadings and the added 
mass of the surrounding water. The external pressure and surrounding mass of water 
both act to reduce the modal frequencies, while ring stiffeners will increase the modal 
frequencies when compared to unstiffened shells. 

When analysing shells that are divided by deep ring stiffeners or bulkheads it is 
possible to treat the subsections individually, provided appropriate boundary 
conditions are applied, thus reducing the size of the problem that must be modelled. 
Numerical analysis, such as the finite element technique can be used to calculate the 
expected vibrational behaviour of shells with good accuracy. The effects of external 
pressure may be included with FE analysis, and the water mass loading may be 
included using either specially formulated fluid elements or by the using boundary 
elements to model the external water continuum. 

Additional work is required in several areas. The first is to investigate the behaviour of 
cylinders with internal bulkheads and deep frame stiffeners, as occur in submarines. In 
particular the way in which the modal behaviour of the individual sections can be 
treated seperately, without reference to the other sections. The second, concerns the 
effect of the external water loading. The accuracy of commercial FEA and boundary 
element packages in predicting the effects of water loading on the modes of submerged 
cylinders should be considered. Many of these packages contain fluid elements, which 
have the ability to interact with structures, and the accuracy of these elements in 
modelling the modal behaviour of submerged cylinders compared to results obtained 
with special element formulations, such as those used by Everstine (26), should be 
examined. 
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