
M o L E C U L A R P H Y S I C S , 1 9 8 5 , V O L . 5 5 , N o . 3 , 6 5 3 - 6 7 7 

The f reez ing of hard sphères 

The density funct iona l theory revisited 

by M . B A U S t and J. L . C O L O T 

Facul té des Sc iencesJ , C . P . 231 , U n i v e r s i t é Libre de Bruxel les , 
B  1 0 5 0 Brusse l s , B e l g i u m 

(Received 16 November 1984 ; accepted 4 March 1985) 

We have analysed the récent théories of freezing and found that ail results 
obtained hitherto are biased numerically by the early truncation of slowly 
converging séries. As a resuit the local density of the solid is shown to 
become very négative in the interstitial régions. Therefore we have recon
sidered the theory of freezing starting from formally exact équations, making 
three physical approximations and testing ail numerical methods for the case 
of the freezing of hard sphères. A fluidsolid transition is found which is in 
fair agreement with the known computer experiments. 

1 . I N T R O D U C T I O N 

T h e firstprinciples descr ipt ion of the f r e e z i n g  m e l t i n g transition is o n e of the 
m o s t d i f f icul t prob lems of statistical m e c h a n i c s . In theoretical s tud ies o n e can 
c o n v e n i e n t l y avoid the d i f f i cu l t ies related to the poss ible appearance of metas tab le 
g lass phases by neg lec t ing ail kinet ic (nonequ i l ibr ium) aspects of the phase tran
s i t ion. W i t h i n such an equ i l ibr ium c o n t e x t there still remains the p r o b l e m that, as 
in any firstorder phase transit ion, the t w o bulk phases are separated b y a th in but 
c o m p l i c a t e d interfacial région. H e r e w e wil l , as usual, s impl i fy the p r o b l e m of 
f reez ing further by cons ider ing on ly the transit ion be tween bulk phases , i .e. by 
e s tab l i sh ing the condi t ions u n d e r w h i c h a un i form bulk liquid can coex i s t in 
e q u i l i b r i u m with a periodic bulk so l id . E v e n so this problem of ' bulk phase 
trans i t ions ' has been cha l leng ing statistical m e c h a n i c s for several décades . 

K i r k w o o d and M o n r o e [ 1 ] were the first to think that phase trans i t ions c o u l d 
b e s t u d i e d from the B B G K Y hierarchy. S ince , m a n y similar ideas have b e e n tried 
o u t but , most ly , unsuccess fu l ly . R e c e n t l y , Ramakrishnan and Y u s s o u f f [ 2 ] and 
R y z h o v and Tareyeva [ 3 ] , have p r o p o s e d a n e w theory which is, essent ia l ly , a 
re formulat ion of the original theory of [ 1 ] in terms of the direct corrélat ion 
f o n c t i o n instead of the pair potent ia l and the pair corrélation funct ion . T h i s then 
a l lows o n e to take better advantage of the progress made by the theory of l iquids 
d u r i n g the last décades . T h i s m o d e m vers ion of the theory has b e e n appl ied by 
T o s i et al. [ 4 ] , H a y m e t et al. [ 5 ] and Rice et al. [ 6 ] to the freez ing of a large 
variety of S y s t e m s ranging f r o m the hard sphère fluid, the o n e c o m p o n e n t p lasma. 
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the L e n n a r d - J o n e s Hquid, m o l t e n s a l t s , superionic conductors to various t w o -

d i m e n s i o n a l S y s t e m s of charged and neutral particles. In each case good agree-

m e n t w i t h the available expér imenta l or s imulat ion data has been announced . 

R e c e n t l y , o n e of us started a séries of theoretical invest igat ions [ 7 ] directed 

t o w a r d s a better understanding of this impress ive séries of results. W e have n o w 

c o m p l e t e d this s tudy wi th a n u m b e r of numerica l invest igations. In § 2 we recon-

s ider the theoret ical background. U s i n g the dens i ty functional theory [ 8 ] and the 

resu l t s of S a a m and Ebner [ 9 ] w e présent a set of exact équat ions for the phase 

transi t ion problem. T h i s improves the earlier présentat ions [ 2 - 7 ] w h i c h intro-

d u c e approx imat ions at an early stage. In § 3 w e quest ion two of thèse approx-

imat ions . T h e expans ion of the sol id around the l iquid phase, wh ich was 

s u s p e c t e d in [7 (c) ] to be at the basis of the failure [ 1 0 ] of the K i r k w o o d - M o n r o e 

theory [ 1 ] , is s h o w n to remain a bad approx imat ion also within the présent 

theory . M o s t dramatic however , is the use of a truncated Fourier séries représent-

at ion of the crystal density . T h i s is s h o w n to lead to strongly négat ive densit ies . 

N o t w i t h s t a n d i n g the announced expér imenta l agreement , ail prev ious results 

[ 1 - 7 ] appear to be biased by severe c o n v e r g e n c e problems . In order to résolve 

thèse d i f f i cu l t i e s a n e w proposai is f o r m u l a t e d and worked out in § 4 for the case 

of the f reez ing of hard sphères. Our c o n c l u s i o n s are contained in the final § 5. 

T h e theory of n o n - u n i f o r m Systems can b e m o s t -easily formulated in terms of 

the d e n s i t y funct ional language [ 8 ] . T h r o u g h o u t w e consider a System of particles 

of cons tant v o l u m e V and constant température T. T h e System is put into an 

external f ield, </>ext('')> w h i c h couples to the local n u m b e r density . A c c o r d i n g to the 

p r o b l e m at hand this external f îeld m a y play several rôles. It may s imulate the 

wal ls o f the container or any substrates présent a l lowing hereby a proper conf ine-

m e n t o f the System in the g iven v o l u m e . It m a y also segregate the di f férent phases 

l ead ing to the appearance of a well local ized interfacial région. In the fo l l owing we 

will b e interested in the phase transit ion b e t w e e n two bulk phases , neg lec t ing 

h e r e b y the in f luence of the phase b o u n d a r i e s and of the container boundaries . In 

this case the external field plays the rôle of a s y m m e t r y breaking f îeld, i.e. a tool 

to Select the proper so lut ion of the nonl inear équat ions . It wil l be unders tood 

m o r e o v e r that, at least in the t h e r m o d y n a m i c l imit of a large System, the contri-

b u t i o n of this external fîeld to the t h e r m o d y n a m i c s may be al lowed to vanish at 

the e n d of the calculat ions. 

T h e total H e l m h o l t z free energy, A = F + F^^t > the s u m of the intrinsic free 

energy F and a contr ibut ion due to the external field, F^^^ = j drp{r)<})^^f(r), b o t h 

of w h i c h are funct iona l s of the average local n u m b e r densi ty , p(r), a fact w h i c h w e 

d é n o t e b y a square bracket, e .g . A = A[^p]. F o r g iven V, T and (p^xM the equi -

l ibr ium dens i ty p ( r ) can then be f o u n d b y e x t r e m i z i n g A 

2. E X A C T D E N S I T Y F U N C T I O N A L T H E O R Y OF FREEZING 

2.1. Thermodynamics 

ÔA = dr 

y ôpir) 
ôpir) = 0 . ( 2 . 1 ) 
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T h e solution of (2.1) requires 

ôp{r) ôp(r) 
+ (pcxM = fi ( 2 . 2 ) 

to be a constant ij. which, as will soon become clear, can be identified with the 

chemical potential. Equation (2.2) will provide a solution of (2.1) whenever 

dr ôpir) = 0, 

i.e. at constant average density p 

P = 
V 

dt p(t). 

( 2 . 3 ) 

( 2 . 4 ) 

Spl i t t ing the free energy, F = F,^ + F^^, into an idéal and an excess contr ibut ion 

àp(r) 

drp{t){\n ( A V ( r ) ) - l } , 

= - f i ( r ; M ) , 

( 2 . 5 ) 

( 2 . 6 ) 

where P = \/k^T, A = hl{2nmk^T)^^^, for particles of mass m, équation (2.2) can 

be integrated as 

P(r) = 
exp [ A / ' - 0ex.(O) + c i ( r ; [ p ] ) ] 

( 2 . 7 ) 

in terms of the one-particle direct corrélation funct ion, Ci(r; [p ] ) , def ined by 

( 2 . 6 ) . Equat ion ( 2 . 7 ) clearly identif ies fx wi th the chemical potential whi le any 

arbitrariness in (pexti^) can be l ifted through the normalization condit ion (2.4) 

exp (Pfi) dr 
exp [c i ( r ) - i?</)ex,(r)]. ( 2 . 8 ) 

T h e restriction (2.3) can also be l i fted w h e n us ing // as a Lagrange mult ipl ier and 

swi tch ing from the Helmhol tz free energy A to the grand potential Q 

Q = A dr p{r). ( 2 . 9 ) 

W h e n équat ion (2.2) is used to e l iminate (ji^Jj) in favour of p{r), Çl b e c o m e s a 

funct ional of the local density alone which is usually designed then as the ' dens i ty 

funct iona l ' , Çi = ^ [ p ] . At fixed T, V, and </>ext('') has a local e x t r e m u m at the 

local equi l ibr ium density 

(5n[p] 

^p(r) 
= 0 ( 2 . 1 0 ) 

as fo l lows from ( 2 . 2 ) and ( 2 . 9 ) . T h e Gibbs—Duhem relation, f î = —pV, relating Q 

to the pressure p, allows then easy access to the thermodynamics . T o this end w e 

introduce the densities / = F/V, /j.^, = F^^JV, œ = Q./V etc. , and rewrite p = —co 

using (2.4) and (2.9) as 

P = f^P - / i d - / e x - f c : ( 2 . 1 1 ) 
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e l iminat ing p.p — /ex, with the aid of (2.7) and using (2.5) we obtain the final 

relations 

\}^^dt p ( r ) { r , ( r ; [ p ] ) - 1} -

dx p(r){ln ( A V ( r ) ) - c,(r; [p ] ) } + 

(2.12) 

(2 .13) 

which express the pressure p and the chemical potential /i as functionals of the 

local densi ty p{t). It will be assumed that the right-hand sides of (2.12) and (2.13) 

are well behaved in the thermodynamic l imit and that at the end of the calcu-

lations w e can drop /^j , from (2.13). T h i s is a m u c h more realistic assumption 

than s imply dropping <^ex,(r) in, say équation (2.2), since it allows (/>ext('") to remain 

présent as a trace which can germinate the proper (say crystal) phase while its 

contribution to the thermodynamics (2.13) b e c o m e s negligible provided 

/ = 1 dt p{r)<t>,Jt) (2 .14) 

vanishes w h e n V becomes large. 

2.2. Functional intégration 

W e n o w re-express the r ight-hand side of équat ions (2.12) and (2.13) in terms 

of p{t) and the ( two-body) direct corrélation funct ion : 

^<:i(r; [p ] ) 

ôp{t') 
(2.15) 

which, because of its weak sensit ivity to the interaction potential, is known to 

yield a conven ient starting point for approximat ion schemes. T o this end we will 

funct ional ly integrate équation (2.6) and (2 .15) . As first observed by Saam and 

Ebner [9 ] , the uniqueness of F^xCp] guarantees that the resuit of this intégration 

will dépend on ly on the end-point phases and not on the path go ing from the 

initial to the final phase. W e label the path in density funct ion space by the 

parameter 2, p = p{t; X), and for s impl ic i ty dénote the value of say i^[p] at 

p = p{r; A) s imply as F [ / ] . Funct ional ly integrating équations (2.6) and (2.15) 

between an initial phase Po{r) = p{r; X = 0) and a final phase p(r) s p ( r ; / = 1) w e 

obtain 

Ciir; [p] ) - c i ( r ; [po]) = 

dt dl c , ( r ; ra)p'(r; X), (2.16) 

dr' ^fÀC2(r, r ' ; [ / ] ) p ' ( r ' ; ; 0 , (2 .17) 

where p ' ( r ; / ) = \_dp{t; A)ldX']. T h e basic équat ions can now be re-expressed 

entirely in terms of CjiT, r ' ; [A]) and p(r) . T a k i n g Po(r) = 0, in which case the 

excess properties F^^\_PQ\ and Ci(r; [po]) vanish, w e obtain, using (2.16) and (2.17) 

i 9 / [ p ] = - ^ dt p(r){ ln ( A V ( r ) ) - 1) 
V 

dt 
\v Jo 

dX dX' 

X c^it, r ' ; [ / ' ] )p ' ( r ' ; X')p'{t; X), (2.18) 
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dx p(r) - - I dx \ dt' dk 

X cj{.r, r'; [A])p'(r'; X)p(r; A), (2 .19) 

dt p(r) In (AV(r)) - ^ dt dt' czir, r ' ; M ) 

X p ' ( r ' ; k)p{t) + 
F 

rfr p(r)(/.„,(r) (2 .20) 

for the thermodynamics (free energy density / , pressure p and chemical potent ial 

/i) and 

p(r) = ^ exp {i3(/i - (/),„(r)) + rfÂf2(r, r ' ; [ / ] ) /7 ' ( r ' ; i ) } (2 .21) 

for the structure. Equations (2 .18 ) - (2 .20 ) generalize some wel lknown relations to 

n o n - u n i f o r m Systems. Indeed for a un i form System, p{t) = p, C2{t, t' ; [ p ] ) = 

C2{\t — t'\ ; p), </>ex,(r) = 0, and taking a linear path, p(t;k) = Âp, équat ions 

(2 .18)^(2.20) b e c o m e 

Pf=p{\rx ( A V ) - D - dt dp' dp" C2{\t\; p"), 

pp = p dt dp' p' C2i\t\; p'), 

PP = In (AV) - dt dp' C2{]t\; p'), 

(2.18') 

(2.19') 

(2.20') 

w h i c h fo l low from the we l l -known relations 

Pp — = P — = \ - p 
dp dp 

dt . C2i\t\; p) 

and f = —p + pp. 

2.3. Two-phase coexistence 

T h e équat ions governing the bulk phase transition problem can n o w be easily 

formulated. Consider the condi t ions under which a bulk solid of dens i ty 

p(r) s p{t\ À = 1) can coexist in equi l ibr ium with a uniform bulk l iquid of dens i ty 

PQ = p{t ; À = 0) 0. In order to s impl i fy the équations we take <i)(,(t) = 0 and use 

a linear path 

p{t-k) = Po +Â{p{t) - pç,); 0 ^ / i ^ l , (2 .22) 

p ' ( r ; / ) = p ( r ) - p o = Ap(r) , (2 .23) 

go ing from the initial l iquid (A = 0) to the final solid ( / = 1) phase. T h e first 

coexis tence condit ion requires the two phases to be in thermal equi l ibr ium, i.e. 

AT = T — TQ = 0. T h i s condit ion is automatically satisfied since in the above the 

température T has been kept constant . Nex t , the two phases have to be in mecha-

nical equi l ibrium, i.e. Ap = — ^[Po] = 0- From (2.19), we have, us ing (2 .22) 
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and (2 .23 ) 

- M 
1 - Po dr' c(r', r) Ap(r) 

2V 
dr dr'{2c(r, r') - c(r, r')} Ap(r) Ap(r'), (2 .24) 

w h e r e w e have introduced the shorthand notat ions 

-c(t, r ' ) = I dXc^ir, r ' ; M ) , (2 .25) 

ë(r, r') = 2 

= 2 

ri çx 

dX dX 

0 Jo 
C2(r, r'; [ ! ' ] ) 

rf/(l - i ) c 2 ( r , r'; M ) , - (2 .26) 

w h i c h can b e interpreted as ' averages ' of the direct corrélation fonc t ion over 

the path (2 .22) . Finally, the two phases have to be in compositional equi l ibr ium, 

i.e. A/v = — \i\_P(ï\ = 0. F r o m ( 2 . 2 0 ) - ( 2 . 2 3 ) w e have 

dx p ( r ) In {P{X)IPQ) - \ - dr dr' p{r) i(r, r') Ap(r') 

+ i f 
VJv 

dr p(r)^(/)e,,(r). (2 .27) 

At phase -coex i s t ence , AT = Ap = An = 0, w e have e l iminat ing for s impl ic i ty 

c(r, r') f r o m (2 .24) wi th the aid of (2 .27) 

0 = p A p - p p A p = ^ i dr Ap(r) - ^ | ̂ r̂ p(r) In (p(r)/po) 
V L V 

+ 

0 = PP An 

2 F 

]_ 

V 

dr dr' c(r, r') Ap(r) Ap(r') - - \ dr />(r)iS//)„,(r), (2 .28) 
V Jv 

dr p(r) In (p(r)/po) - - 1 dr \ dr' c{r, r') p(r) Ap(r') 

V 
dr p(r))?(/.„,(r), (2 .29) 

w h i c h are our t w o basic équat ions g o v e r n i n g the bulk phase coex i s tence p r o b l e m 

(A^ = 0 = Afi). For later référence w e also q u o t e the structural équat ion 

p(r) = Po exp {piAp - </)„,(r)) + dr' ?(r, r') Ap{r')}, (2 .30) 

w h i c h results f r o m e l iminat ing A b e t w e e n the équat ion (2 .21) for the l iquid and 

the sol id. F inal ly we have to stress that ail the a b o v e équat ions , e .g . ( 2 . 1 8 ) - ( 2 . 2 1 ) 

and ( 2 . 2 8 ) - ( 2 . 3 0 ) , are formal ly exact but invo lve the general ly u n k n o w n quanti t ies 

c(r, r') and ?(r, r'). 
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3 . C R I T I Q U E OF PREVIOUS THéORIES 

W e have invest igated the relation b e t w e e n the exist ing approx imate théor ies o f 

freez ing and the exact results p r e s e n t e d above. W e have f o u n d m a n y d i f f icu l t ies , 

main ly with respect to the numer ica l accuracy of the approx imat ions used . S o m e 

of thèse are suf f ic ient ly severe as to bias complete ly the a n n o u n c e d results . B e l o w 

w e sketch those po ints w h i c h are of gênerai value and hence are not addressed to 

any author in particular. 

F r o m now on w e wil l drop the contr ibut ion of the external field, <j>cxM-

stated already above , it appears to us m u c h more realistic to d o this at the level of 

the thermodynamics by d r o p p i n g f^^^ (2 .14) in (2.27) than by put t ing abrupt ly 

(/>£,,(r) equal to zéro in the structural équation (2.30) as d o n c in the l iterature. 

Indeed , according to [7 (b ) ] the latter procédure will i m m e d i a t e l y lead to so -

cal led W e r t h e i m s ingularit ies w h i c h m a y then lead to further numer ica l d i f f i -

cult ies . 

3 .1 . Expansion around the liquid phase 

Ai l m o d e m théories of f reez ing [ 2 - 7 ] are based on expans ions of the d .c . f . 

(direct corrélation funct ion) of the n o n - u n i f o r m solid phase around the coex i s t ing 

u n i f o r m l iquid phase. T o s h o w this w e consider the T a y l o r e x p a n s i o n of C2(r, r'; 

M ) around X = 0. U s i n g (2 .22 ) a n d (2 .33) , w e obtain then for (2 .25) and (2 .26) 

c{t, r') = X 
1 

^(r, r') = Y. 

0 (1 + « ) ! J 

2 

o ( 2 + «) ! J 

dr^ . . . dt„c2+„{r, r', ty, r„; po) M ^ i ) ��� M O . 

dti . . . dr„C2+„(r, r', f i , . . . , r„; po) ^Pi^i) � � � àp{r„), 

(3 .2) 

where the c„(rj . . . ) dénote the w-body d.c.f . def ined as usual [7 (a)] b y success ive 

funct ional dif ferentiat ion of F^^{_p'\. Subs t i tu t ing (3.1) and (3 .2) into (2 .24) , (2 .30) 

and truncat ing the expans ion after a f e w terms we recover the équat ions u s e d in 

ail prev ious invest igat ions ( compare , e .g . , [5 (c), 7 (a)]). 

T h e idea of a Hquid-based theory of freezing goes back to the c lass ic theory of 

K i r k w o o d and M o n r o e [ 1 ] . A s s h o w n e lsewhere [ 7 ( c ) ] , their équat ion is a parti-

cular approximat ion équiva lent to retaining only the first t erm in the r ight -hand 

s ide of (3.1) and (3.2) and n e g l e c t i n g moreover the dens i ty derivat ives of the pair 

corrélation funct ion . A s a resuit of the latter their approximat ion v io lâ tes l inear 

response theory, a fact w h i c h , it is argued in [ 7 ( c ) ] , may well exp la in the bad 

results [ 1 0 ] obta ined f r o m the K i r k w o o d - M o n r o e theory. In the récent théor ies 

[ 2 - 7 ] one or two terms are reta ined in the r ight-hand side of (3.1) and (3.2) . T h i s 

certainly improves th ings wi th respect to linear response theory b u t is still very 

m u c h open to cr i t ic ism. I n d e e d , c lose to freezing dens i ty der ivat ives are usual ly 

ex tremely large. A n idea of th i s can b e obtained by s tudy ing the e x p a n s i o n (3 .1) 

and (3.2) in the case of u n i f o r m fluids. If, for instance, w e ex pa n d the inverse 

compress ib i l i ty of a hard- sphere f luid evaluated at the dens i ty of the sol id in a 

T a y l o r séries around its va lue at the densi ty of the coex i s t ing f luid w e obta in a 

séries s imilar to (3 .1) and (3 .2) b u t w h i c h can be evaluated t erm by t erm f r o m the 

Carnahan-Star l ing équat ion of state (see (4.6) be low) . O n e finds then that 

retaining one term in the T a y l o r expans ion amounts roughly to reta ining on ly 50 
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per cent of t h e s u m (this corresponds to the fact that the compress ibi l i ty nearly 

halves w h e n g o i n g f r o m the Hquid to the so l id) wh i l e the next term also rep-

resents o n l y 50 per cent of the remainder p o i n t i n g to a s low convergence of the 

expans ion . T r u n c a t i n g the formai expans ion of (3 .1) and (3 .2) at an early stage is 

thus b o u n d to in troduce large errorst . 

In order to avoid this di f f iculty we return to the original express ions (2 .25) 

and (2 .26) and o b s e r v e that what is needed are not the higher order d.c.f . of the 

l iquid appear ing in ( 3 . 1 ) - ( 3 . 2 ) but instead an approx imate express ion for the 

ordinary d . c . f . , CzC"". l"'; of a solid (of dens i ty p(r; / ) = Po + K p i f ) — Po))-

propose there fore to approximate the latter b y s o m e ' e f f e c t i v e ' liquid d .c . f . , say 

C2( I r — r'I ; p), s ince this is the only object about w h i c h suf f ic ient information is 

available at présent . T h i s approximation is m a d e expl ic i t by cons ider ing an ef fec-

t ive l iquid w h i c h scales w i th the solid, i.e. s u c h that the smal lest r.l.v. (reciprocal 

lattice vector) of the sol id co ïnc ides with the pos i t ion of the main peak of the 

static s tructure factor of the effective l iquid. T h e dens i ty of the effect ive l iquid, p, 

will then d é p e n d on the average density of the sol id, p{X) = Po + Hp — Po)' but 

also on the lattice s tructure 

c , (r , r'; [p(r; A)]) ~ c f \ | r - r' | ; p ( p ( / ) ) ) , (3 .3 a) 

1 
p(À) = dr pir; À) = po + Àip - Po), 0.3b) 

^�nin(p(/)) = k*(-p); p = -pipU)), (3.3 c) 

where k^;„(p) d é n o t e s the smallest r.l.v. of the so l id of dens i ty p and k*{p) the 

pos i t ion of the main peak of the structure factor of the e f fect ive l iquid of dens i ty 

p. G i v e n p{À) and a lattice, équat ion (3.3 f ) prov ides an impl ic i t équat ion for p, the 

densi ty of the e f fect ive l iquid. C o m b i n i n g (3 .3) w i th (2 .25) and (2 .26) we see that 

ail that w e n e e d to k n o w is the density d e p e n d e n c e of the d.c . f . of the e f fect ive 

l iquid 

' dp' c f \ \ r - r ' \ ; p i p ' ) ) , (3 .4) 
Po 

f p 

dp'ip- p y t \ \ r - r ' \ ; p i p ' ) ) , (3 .5) 
JPo 

which is easier than k n o w i n g the higher order d.c . f . of the coex is t ing l iquid. 

N o t i c e that the e f fect ive l iquid which descr ibes the sol id need not be the same as 

the coex i s t ing l iquid a l though this may be the m o s t realistic choice . T h e property 

by wh ich the e f fect ive l iquid m o d e l s (at least in s o m e average sensé) the sol id is 

the structural scal ing property (3.3 c). T h e cho i ce of this property is clearly not 

un ique and instead of scal ing the structure, p = p{p) (3 .3 c), o n e could s i m p l y 

scale the dens i ty p = p. Both choices will be cons idered b e l o w and des igned as the 

effect ive l iquid wi th scaled dens i ty or scaled structure. Sca l ing the dens i ty is 

clearly on ly a p o o r characterization of the sol id but b o t h c h o i c e s retain never the-

less the major e f ï ec t s related to the rapid dens i ty changes incorporated in the 

dens i ty -averaged d .c . f . , c, c of (3.4) and (3.5) . N o t i c e m o r e o v e r that when the final 

1 
c(r, r') = 

(p - Po) 

2 
c{r, r') = 

iP - Po) 

t Very recently it was shown (HENDERSON, J. R., 1984, Molec. Phys., 52, 1467) that for 

uniform Systems a one-term approximation to (3.1) precludes the appearance of a liquid-

vapour coexistence région. 
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phase is a fluid phase (only the density scaling survives in this case) the above 

approximation (3.4) and (3.5) b e c o m e s exact. T h i s is never the case w h e n the 

expansions (3.1) and (3.2) are truncated as donc in the literature (notice also that 

the widely used one - t erm truncation of (3.1) and (3.2) corresponds to approx-

imating c^i | r | ; p) in (3.4) and (3.5) by c f \ | r | ; p„)). 

3.2. Truncated Fourier expansion 

Once c(r, r') and c(r, r') have been prescribed in terms of , p(r) and say the 

l iquid phase data e m b o d i e d in C2(\T — t' \ ; p), the phase transition prob lem is 

reduced effectively to so lv ing the non-l inear intégral équations (2 .27 ) - (2 .30 ) for 

p(r) and pQ. In the case of bulk freezing one has to look for lattice periodic 

solutions, p(r) = p(r + a ) , a be ing any of the direct lattice vectors. T h i s per iod-

icity has been taken into account previously [ 1 7 ] by Fourier expanding p{r) into 

plane waves. Making use of the restricted translational-rotational symmetry of the 

lattice one obtains then an infinité expansion of the type [7 (a)] 

p(r) = p(^X5„Ur)), (3.6 a) 

= Po( l + Z « , ^ » ( r ) ) . (3-6 6) 

according to whether one expands the local density of the solid around its average 

density (p) or around the density of the liquid (po). Each term in the reciprocal 

lattice expansion (3.6) is usually referred to as a 'dens i ty w a v e ' or an ' order 

parameter' . S u c h a densi ty wave, say ^„{t), is obtained by s u m m i n g the plane 

waves, exp t Wj . t, over ail r.l.v. k j of a given length, i.e. be longing to the same 

faïh'eélàr ' in group theoretic language, the lengths be ing labelled by the index n 

(see [7 (a)] for détails). T h e expansion amplitudes in (3.6) are s imply related by 

â„ = aj{\ + OQ) for n =^ 0 and ÔQ = 1, OQ being the fractional density change on 

freezing, p = PQ{\ + OQ), where n = 0 corresponds to the trivial r.l .v. ky = 0, 

<^o(r) = 1-

T h e strategy fo l lowed in ail previous investigations [ 1 - 7 ] consists in so lv ing 

équation (2.30) (with = 0, </>ext('') = 0 and the expansion of c(r, r') around its 

l iquid phase value as d iscussed in §3 .1 ) with the aid of (3.6). Since the <J„(r) are 

orthogonal over the unit cell, équat ion (2.30) can be transformed into 

^„.o + s„an = ^ I dt Ur) exp a^c^ijr)^, (3 .7) 

where s„ = ^„(r = 0) equals the n u m b e r of r.l.v. in the nth star, A the v o l u m e of 

the unit cell and c„ the value of the Fourier transform of c( | r — r' | ) evaluated at 

a wave vector equal to any of the équivalent r.l.v. of the nth star. T h e intégral in 

(3.7) can then be handled numerical ly for any given c„ and équation (3.7) can then 

in principle be solved for the u n k n o w n amplitudes a„ for any given sol id densi ty 

p. T h e latter can then be fixed by the condition Ap = 0, which b e c o m e s , us ing 

(2.24), 

0 = «o(l - C o ) - ^ I ^ „ « „ ' ( 2 ? „ - c J (3.8) 
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Figure 1. To illustrate the slow convergence of the Fourier séries used in the literature 
[1-7] we have représentée! the normalized density, p(r) = p(r)/p, in the direction of 
the three crystallographic axes ([100], [110], [111]) of a f.c.c. lattice as a function of 
the distance to the origin x. Case (a) corresponds to the two order parameter theory 
of [3 (d)] but similar results hold for [2(b)] and [6 (a)]. The density is seen to 
become very négative. Case (6) corresponds to the fifteen order parameter theory of 
[5(c)]. Practically the same results can be obtained by truncating équation (3.11 6) 
instead of (3.6 a) and using a = 612. The density peaks become narrower, their 
height increases by an order of magnitude but there are still régions of négative 
density (p = —10). Case (c) corresponds to the infinité séries (3.11) for the same 
value of a as used in case (b). The négative values have disappeared but the height 
and width of the peaks have changed considerably indicating that even case {b) is 
still far from convergence. (Similar results hold also for the published b.c.c. data.) 

or any form équivalent to (3.8) . In practice one bas however to truncate the 

infinité Fourier séries in (3 .6 -8 ) . In most investigations a ' t w o order parameter 

theory ' has been used w h i c h corresponds to retaining three terms in the expan-

sion (3.6) s ince the fîrst term of (3.6) is essentially trivial (n = 0). T h e fîrst order 

parameter corresponds always to the density wave generated by the smal lest 

nonzero r.l.v. of the g iven lattice. T h i s contribution is essential for g iv ing the 

crystal its proper macroscopic periodicity. T h e second order parameter was then 

' selected ' on a fairly arbitrary basis omitt ing for instance r.l.v. of intermédiare 

length. In [7 (a)] an attempt was made to just ify this sélection on the basis of a 

symmetry argument. T h e proof there was based on a m o m e n t expans ion of the 

r.h.s. of (3.7). W e have checked now this m o m e n t expansion by numerical inté-

gration and found that its convergence is too slow to make the results of [7 (a ) ] 
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reliable for values of the dens i ty corresponding to freezing. T h e reasons beh ind 

this order parameter sé lect ion remain thus rather obscure whi le the lack of suf f i -

c ient c o n \ e r g e n c e has, in the mean t ime, b e c o m e the le i tmot iv of our conc lus ions 

about ail prev ious invest igat ions . Very recently [ 4 (c ) ] it was observed that s o m e 

of the p u b l i s h e d results are not numerical ly stable s ince adding or delet ing a 

particular term in the truncated séries (3 .6) made the so lut ion of (3 .7) and (3.8) to 

appear or disappear altogether. In order to il lustrate the lack of convergence 

result ing f r o m an early truncation of the Fourier séries (3 .6) w e have plotted in 

f igure 1 the dens i ty obta ined from (3.6) by us ing the ampl i tudes â„ taken f r o m the 

literature. It is seen that in s o m e of the interstitial régions the dens i ty takes on 

very large négative va lues (e .g. u p to ten t imes the average dens i ty in the best 

cases!) . T h i s is clearly incons is tent wi th the original équat ion (2 .30) which , as 

required by the phys ics , predicts a non-negat ive dens i ty . T h i s d i f f i cu l ty can easily 

be traced back to the fact that in a sol id phase p{r) is h igh ly structured and 

sharply peaked around the lattice sites. T o reproduce this behav iour the n u m b e r 

of t erms w h i c h has to be retained in the Fourier séries (3 .6) is m u c h larger than 

those retained in the literature. As a c o n s é q u e n c e the g o o d agreement (which we 

have checked) of the remaining publ i shed freez ing data wi th the expér imental 

data s h o u l d also be cons idered as spur ious and is p r e s u m a b l y due to a c o m -

pensat ion of errors b e t w e e n the rough approximat ion of c(r, r') ( expanded around 

the l iquid) and of p{t) ( truncated Fourier séries). A hint for the ex i s tence of thèse 

c o m p e n s a t i o n s can be f o u n d in the fact that w h e n increas ing the n u m b e r of terms 

in (3 .6) it b e c a m e necessary to increase also the n u m b e r of terms in (3.1) in order 

to recover the transit ion [5 (c)] . 

3 . 3 . Truncated direct lattice expansion 

T h e per iodic i ty of p(r) in a sol id phase can equal ly wel l be taken into account 

through a direct lattice expans ion of the type 

P(r) = Z <p(r - r , ) | (3 .9) 

w h e r e p is again the average dens i ty of the sol id, the n u m b e r of particles per 

unit cell w h i l e j labels the lattice s ites located at { t j } . In (3 .9) (p{t — t j ) descr ibes 

the dens i ty peak around the site Tj. T h e per iodic i ty is n o w taken care of b y the 

s u m over s i tes in (3 .9) and the fact that for any direct lattice vector a , + a = Tj.. 

T h e d i f f i cu l ty wi th the dens i ty peak représentat ion (3 .9) is that, contrary to the 

dens i ty w a v e s ^„(r), the various peak contr ibut ions are not or thogonal but instead 

m a y s h o w cons idérable overlap. T h e advantage of (3 .9) h o w e v e r is that, s ince 

(p{r — t j ) is sharply peaked around t = Tj, the séries (3 .9) is t erm by term posi t ive 

and rapidly c o n v e r g i n g . In a séries of récent related s tud ies [ 1 0 - 1 2 ] the use of 

(3.9) w i th agaussian peak func t ion 

"P^f - «"y) = ( ^ ) ' e'^P ( - « ( X - X;)^) (3 .10) 

has been advocated . H e r e a measures the w id th of the peaks and X, Xj'are d i m e n -

s ionless coord inates r = a x , Tj = aXj, a be ing the lattice spacing. T h e connec t ion 

b e t w e e n the Gauss ian dens i ty peak expans ion (3 .9) and (3 .10) and the dens i ty 
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wave expans ion (3.6) can easily b e o b t a i n e d from the fo l lowing P o i s s o n s u m 

formula [ 1 3 ] 

P{r)lp = ^ I j e x p ( - « ( x - x,.)^), ( 3 . 1 1 a ) 

= X e x p ( ^ - ^ ç „ ^ ^ a x ) , ( 3 . 1 1 6 ) 

w h e r e q„ dénote s the d i m e n s i o n l e s s w a v e n u m b e r {k„ = (2n/a)q„) of the nth star. 

C o m p a r i n g (3.11 b) and ( 3 . 6 a ) w e see that in the gaussian peak a p p r o x i m a t i o n 

w e have 

-a„ = exp( - - q ^ ] ( 3 . 12 ) 
a 

a w e l l - k n o w n resuit f r o m h a r m o n i e lattiee theory (see e.g. [ 2 ( b ) ] ) . A s o b s e r v e d 

prev ious ly [2 (b), 5 (c ) ] équat ion (3 .12) appears to be very well o b e y e d b y the 

numerica l so lut ions of (3 .7) and (3.8) . F o r instance, the values of â„ o b t a i n e d in 

[5 ( c ) ] correspond to (3 .12) w i t h 4 9 0 < a < 630 and the séries (3.6 a) c a n n o t b e 

d i s t ingu i shed f r o m the séries (3 .11 è) w i t h a ^ 612 w h e n both are t runcated at a 

m a x i m u m value of ç„ ^ 6 as u s e d in [5 (c ) ] . A s we show in figure 1, the full sér ies 

(3 .11 è) is howeve r very di f férent f r o m th is truncated séries d isp laying o n c e m o r e 

the lack of convergence of the reciprocal lattice expansion as used in [5 ( c ) ] and a 

fortiori in [ 1 - 7 ] . 

F inal ly w e not ice that the direct latt ice expansion (3.9) and (3 .10 ) is a very 

rapidly converg ing séries. T o i l lustrate th i s w e consider the idéal part of the free 

e n e r g y dens i ty (2 .18) 

^/ i , = p ( l n ( A V ) - l ) + pG, (3 .13 ) 

where , writ ing the normal ized local d e n s i t y as p(r) = p(t)/p, w e have s e p a r a t e d / i j 

in to a fluid term and a structural c o n t r i b u t i o n G 

rfr p(r) In p(r), ( 3 .14 ) 

w h i c h can be further eva luated w i t h the aid of (3.11 a). T h e intégral in (3 .14 ) can 

be reduced to the unit cell and the resuit wil l dépend on the lattice t y p e and the 

degree of localisation as m e a s u r e d for instance by the w id th of the G a u s s i a n peaks 

or the corresponding L i n d e m a n n ratio L 

< ( A x ) ^ > = - ; L = - y . ( 3 . 15 ) 

where a is the lattice spac ing and d the nearest ne ighbour distance. A s o b s e r v e d in 

[ 1 1 - 1 2 ] , for well local ized dens i ty d is tr ibut ions p(r), i.e. for large a va lues , there 

is little overlap b e t w e e n the di f férent peaks of (3.11 a) and only the peaks ins ide 

the unit cell need to be taken into a c c o u n t in the In-term of (3 .14) . T h i s i m m e -

diately leads to the f o l l o w i n g a p p r o x i m a t e analytic express ion for G : 

G ( a ) ^ | l n P j - l - l n AT .̂ ( 3 .16 ) 
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Figure 2. The structural contribution to the free energy density, G(a), as obtained by 
numerical évaluation of (3.14) ( ) and from the analytic approximation (3.16) ( ). 

W e h a v e c h e c k e d b y direct numerical intégrat ion of (3 .14) (us ing a 16 -po int 

gauss ian-quadrature a long each coordinate axes and tes t ing the numerical stabil ity 

w i t h a 2 4 - p o i n t m e t h o d , this large a m o u n t of p o i n t s be ing necessary because of 

the h i g h l y s tructured integrand of (3 .14)) that the approximat ion (3 .16) is very 

accurate for large a. In figure 2 we s h o w the results for the cubic lattices ( s . c , 

b . c . c , f . c . c ) . T h e relative error invo lved in u s i n g the approximat ion (3 .16) is less 

than 10"^ for a > 90. O n the other end, a s imilar évaluat ion of (3 .14) wi th the aid 

of the reciprocal lattice expans ion ( 3 . 1 1 6 ) is a lmost imposs ib le because of the 

inév i table négat ive va lues obtained for p(r) w h e n the Fourier séries (3.11 è) is 

truncated . 

4 . T H E FREEZING OF ( P E R C U S - Y E V I C K ) HARD S P H è R E S INTO 

(GAUSSIAN) CUBIC LATTICES 

A s d i s c u s s e d in détail in §3 , a large n u m b e r of c o n v e r g e n c e p r o b l e m s are 

e n c o u n t e r e d in the ex i s t ing theoretical s tudies of f reez ing . T h i s makes it necessary 

to recons ider the ques t ion of what is precise ly pred ic ted b y the theory of freez ing 

w h e n thèse c o n v e r g e n c e prob lems are avoided. B e l o w w e s tudy this p r o b l e m for 

the case of the f reez ing of hard sphères ( H S ) . T h i s System is chosen here n e t 

because the theory is in any way restricted to this System but because the hard 

sphère System prov ides the s implest poss ib le tes t ing g r o u n d for the freez ing 

théories . 
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4.1 . The expérimental freezing of hard sphères 

T h e fluid-solid trans i t ion of the hard sphère S y s t e m has been t h o r o u g h l y 

s tud ied b y c o m p u t e r s i m u l a t i o n s [ 1 4 ] . If w e measure t h e d e n s i t y p o f the hard 

sphères o f d iameter a in t e r m s of t h e pack ing fraction, r\ = (n/6)(T^p, the S y s t e m is 

k n o w n to freeze at = 0 4 9 4 into the f .c .c . lattice of d e n s i t y r] = 0 -545 . T h i s 

c o r r e s p o n d s to a fract ional d e n s i t y c h a n g e OQ = 0 1 0 3 . At f r e e z i n g the c o m p r e s s -

ibi l i ty factor {z — Pplp) o f t h e fluid is z^ = 12-4 whi le t h e c h a n g e in e n t r o p y p e r 

partic le ^s = SQ — s a m o u n t s to Ai = \ \6k^. ( N o t i c e the a g r e e m e n t w i t h the e x a c t 

H S relation As/k^ = OQZQ/CI + OQ) [ 1 5 ] w h i c h is at var iance wi th the re la t ions 

p r o p o s e d in [ 2 (b), 3 ( d ) ] . ) A t f r e e z i n g t h e m a i n peak of the s tructure fac tor o f t h e 

f luid reaches a va lue of S{k*, >Jo) = 2 9 0 at a w a v e n u m b e r k*(7 — 7 00. T h e m e a n 

square déviat ion in the so l id at m e l t i n g is < ( A r ) ^ ) ' ' ^ = 0 1 2 6 t ^ w h e r e d is t h e 

nearest n e i g h b o u r d i s t a n c e (d = for a f .c .c . lattice of latt ice spac ing a). 

4.2 . The (Perçus-Yevick) hard sphère fluid 

A s stated a b o v e (see (3 .3 ) ) w e wil l a p p r o x i m a t e the d .c . f . o f the so l id p h a s e b y 

the d .c . f . of the fluid p h a s e taken at s o m e eflFective dens i ty f]. T h e H S fluid p h a s e 

wil l be descr ibed here b y the W e r t h e i m - T h i e l e so lu t ion o f the P e r ç u s - Y e v i c k 

( P Y ) équat ions {c{r > a) = 0 = g(r < (T))[14] 

cir/(T;n)= Z 9 i a - r ) ( - ] l j i r j ) , ( 4 .1 ) 

J=0. 1.3 \<^/ 

c(ka; ri) = 24,? ^ � ^ / M / / ' ? ) , (4.2) 
J = 0. 1. 3 

w h e r e the d i m e n s i o n l e s s q u a n t i t y c{k<j ; rj) is the Four ier t rans form of pc(r/a; rf) 

and 

h{ri)= - { \ +2r]?l{\-ri)\ (4 .3 a) 

i M = (^n{^+ïr]?K^-n)\ (4 .3 6) 

I M ^ \ l M , (4 .3 c) 

w h i l e {k = ka) 

J^(k) = k-\sm k - k cos k), ( 4 . 4 a ) 

J^(k) = k-*{{2 - P ) cos k + 2k s in k - 2} ( 4 . 4 6 ) 

Ji(k) = k-^{(\2P - k'' - 24) cos k + ( 4 P - 2'^k) s in k + 24} , ( 4 . 4 c ) 

are the Four ier t r a n s f o r m s of Q{a — r)(r/(7y, 6{x) b e i n g t h e H e a v i s i d e s t e p f u n c -

t ion. F r o m ( 4 . 2 ) - ( 4 . 4 ) w e ob ta in the i so thermal c o m p r e s s i b i l i t y 

^ _ 1 

p dp 
via KTlK^T = (^-ciO; »;))-' 

and équat ion (4 .2) w i t h 7 / 0 ) = 1/(3 + j), K% = ^/p b e i n g t h e idéal gas c o m p r e s s -

ibi l i ty. T h e é q u a t i o n of state can then be obta ined f r o m 

P P / P = (l+n + ri'- y^3)/(l - (4.5) 

dO; n) = {(1 - y)r]'' - 4(1 - y)r,' + 2ri^ - 8r,}/(\ - ri)\ (4 .6 ) 
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where y = 0 w h e n the compressibi l i ty équat ion, and y = 2 w h e n the virial équa-

tion is used to obtain the thermodynamics . T h e y -dependence of (4.5) and (4.6) 

displays the t h e r m o d y n a m i c inconsistency of the P Y approximation. Better, con-

sistent, results can be obtained from the V e r l e t - W e i s express ion for the H S p . c f . 

[ 1 4 ] s ince the latter e m b o d i e s the almost exact Carnahan-Star l ing thermodyna-

mics ( corresponding to équations (4.5) and (4.6) w i th 7 = 1) [14] . Here we will 

cont inue to use the P Y approximation so as to al low easy comparison with the 

earlier invest igat ions [ 2 ( b ) , 3 (d) , 5 (c), 6 (a), 12 ] ail of wh ich have used the PY 

d.c . f . T h i s does h o w e v e r not imply that the results obta ined be low are insensit ive 

to this approximat ion . 

4 .3 . The (gaussian) hard sphère solid 

In order to be able to tackle the numerical convergence problems more easily 

we assume, a priori, that the H S solid consists of a set of gaussian peaks as 

descr ibed by (3 .11) and restrict ourselves to the cub ic lattices ( s . c , b . c . c , f . c . c ) . 

In ( 3 . 1 1 a ) w e then have Xj = («j , . "3). = 1. 2, 3) be ing a posit ive or 

négative integer or zéro, for the s.c. lattice (A/̂ j = 1) to w h i c h we have to add the 

sub-latt ice generated by Xj- = (n, + \, «2 -h \, + 3) to form the b.c .c . lattice 

{Ni = 2) or the three sub-latt ices generated by Xj = (n^, n2 + i , «3 + 2) 

-I- permutat ions to f o r m the f.c.c. lattice (N^ = 4). T h e average density of a 

defect - free sol id is then given by p = ATj/a^, where a is the lattice spacing 

(r = aX). For a g iven sol id density, p, and lattice structure, {Xj}, the only remain-

ing parameter in (3 .11) is the width parameter a. Because of the a priori functional 

assumpt ion about p ( r ) contained in (3.11) the equi l ibr ium condi t ion (2 .10) dégén-

érâtes here into 

^ = 0 , , 4 . 7 , 
d(x 

w h o s e solut ion fixes a for each p and lattice structure. It is convenient to sub-

stract f r o m Q [ p ] its va lue ( independent of a) for a u n i f o r m fluid phase of the same 

density , pg = p, as the average solid density. U s i n g the results o f - § 2 we obtain 

then 

B Aa} = -
^ V 2V]y ]y 

dt p ( r ) In {p{f)lp) - — dt \t' Ap(r)c(r , r') A/)(r'), (4.8) 

where n o w à.p{t) = p{t) — p. U s i n g (3.14) , (3 .11) and (3 .3) we approximate the 

exact resuit (4.8) as 

- = G(a) - - X ' 2 ^ 
P 2 jK„ 

X e x p I - — (k^ + 1^ + m^) zj-c(k„„(r,);fiiri)) (4.9) 

where we have used a constant density path (p(/l) = p) in (3 .3 b) in go ing from the 

fluid to the sol id phase. In (4.9) the first term of (4.8) has been treated in the 

direct lattice and the s econd term in the reciprocal lattice. In the H S case it wou ld 

be easier to treat also the second term in the direct lattice but this w o u l d make our 

treatment rather spécif ie s ince in gênerai the r-space d .c . f . is m u c h less easily 
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access ible than its Fourier transform related to the structure factor. T h e dash o n 

the s u m over r.l.v., q = {k, l, m), in (4 .9) indicates that q = 0 is exc luded f r o m the 

s u m whi le ô,^ is a Kronecker delta. H e r e k = (27t/a)q, k = kcrand 

where k, l, m are n o n - n e g a t i v e integers ( s . c ) , ail o d d or ail even for a f .c .c . lattice, 

and one or ail be ing even for a b .c .c . lattice. 

For each lattice, the first quant i ty to be de termined is the effect ive dens i ty r} o f 

the fluid wh ich m o d e l s the so l id of average dens i ty r}. T o this e n d w e first 

cons ider the structural scal ing c o n d i t i o n (3 .3c ) , k^^Jjf) = k*{r\), wi th S{k*{r]); 

rj) = max Sik, rj), S{k; >/) = (1 — c(k; rj))~^, as obta ined from (4.2) for cik; r}), 

and ̂ min = Aioo(s-c.), / î i i o (b .c . c . ) , ^ i i i ( f . c . c . ) as g iven by (4 .10) . T h e resul t ing 

relation = r]{r]) is s h o w n in figure 3 for the rj values of interest to freez ing. In ail 

three cases we have *} > T\ w h i c h a l lows the sol id to be descr ibed in t erms of a 

stable fluid. T h e unfavourable s i tuat ion of the loose ly packed s .c . lattice is a lready 

apparent f r o m figure 3 s ince it is descr ibed in terms of a very low dens i ty fluid. 

N e x t w e per form the s u m in (4 .9) by s u m m i n g over ail r.l.v. wi thin a s p h è r e of 

radius ç^^,, 0 < ç ^ Qmax � W e find that for the a and ri values relevant to f reez ing 

a radius of g^^, > 18 is required to obta in results w h i c h are stable to o n e w i t h i n 

,600 

,500 

,d00 

.300 

.200 

.500 .550 .600 .650 

Figure 3. The direct corrélations of the solid of average density r\ are approximated by 
those of an eflfective fluid of density The effective density r} is chosen such that 
the two Systems are scaled with respect to their density (r] = r}) (à), or with respect 
to their structure (j) = f\(r\)\ équation (3.3 c)) (b). The unfavourable position of the 
s.c. lattice in case (b) is clearly displayed. 
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Figure 4. The reduced différence in free energy between a solid and a fluid of the same 
density as a function of this density r] and the width parameter a as obtained from 
(4.9) and the structural scaling relation ^(^) of figure 3. Case (a): the double-
minimum structure is obvious for the f.c.c.-lattice although the minimum which 
corresponds to the fluid phase (a = 0) is hardly visible on this scale. The trajectory 
of the minimum corresponding to the solid phase (a ^ 0) is indicated by the dotted 
line together with the three points (large dots) considered in the table. Case (b) : 

b.c.c. lattice with enlarged a-scale in order to display the plateau structure. Case (c): 

s.c. lattice showing no second minimum. 

1 0 ' . S i n c e the n u m b e r of r.l.v. increases as ç^^x ^his represents a m u c h larger set 

of r.l .v. than those u s e d before (q^^^ = 6 for [5 (c ) ] and q^^^ < 3-4 for the remain-

ing s tudies of [ 2 - 7 ] ) . T h e results for (4.9) us ing (3 .16 ) is s h o w n in figure 4 ( a ) for 

the f .c .c . lattice. It is seen that for r] > 0 504 there appears a double-minimum 

structure indicat ing that bes ides the fluid phase ( c o r r e s p o n d i n g to the m i n i m u m at 

a = 0) équat ion (4 .7) admit s also a sol id phase ( c o r r e s p o n d i n g to the m i n i m u m at 

a 0) as e q u i l i b r i u m solut ion. For 0 504 < r\ < 0 -548 the solid is less stable than 

the fluid phase (Acu > 0) whi l e al r] = 0-548 there o c c u r s an exchange of stabil i ty 

(Aco = 0) . F o r each r\, the pos i t ion of the s e c o n d m i n i m u m , say doirf), d é t e r m i n e s 

the value of a = «oCv) be used in (3 .11) . It is seen f r o m figure 4 (a) that as the 

average dens i ty of the solid, r}, increases so does a, l ead ing to an increased local-

ization (3 .15 ) as e x p e c t e d physical ly . At the abso lute l o w e r stability l imit of the 

sol id ?/ = 0 - 5 0 4 w e find ag — 136 correspond ing to a m i n i m u m local izat ion 

<(Ar)^>''^ < 0-149£^ {d = for a f .c .c . lattice) in fa i t agreement w i t h the 

L i n d e m a n n rule (L = 0-126) if the latter is interpreted as a stability l imit ( instead 

of a m e l t i n g rule) w h i c h appears to be the m o s t reasonable choice for a o n e - p h a s e 
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rule. In figure 4 ( 6 ) - ( c ) w e s h o w s o m e of the results for the s.c. and b.c .c . lattices. 

In the s.c. case the lattice s u m of (4.9) has the w r o n g sign and the sol id is 

absolute ly unstable (i .e. n o so lut ion of (4 .7) is f o u n d even for the very wide range 

of a and r j values s h o w n in figure 4 (c ) ) . For the b.c .c . lattice we find a m e c h a n i -

cally stable sol id but the s econd m i n i m u m looks m o r e like a plateau than a true 

m i n i m u m and disappears be fore the sol id b e c o m e s stable relative to the fluid. It 

remains an open ques t ion w h e t h e r the présence of this b .c .c . phase is an artefact 

of the approx imat ions or whether instead better approx imat ions m i g h t reveal a 

b .c .c . phase wh ich is, at least, stable wi th respect to the fluid. 

T h e above ca lculat ions have been repeated for the case of dens i ty scal ing 

rj = r j . T h e r e is again a stable f .c .c . phase (figure 5) but the s econd m i n i m u m is 

seen to saturate at a pos i t ive va lue of Ao) so that the sol id remains unstable 

relative to the fluid. T h e behav iour of the s.c. and b.c .c . lattices (not s h o w n ) is 

s imilar to that of figure 4 ( 6 ) - ( c ) except that no stable b .c .c . phase is f o u n d here. 

In the présent theory the stabil ization of the sol id is seen to rest on a fairly 

subt le compét i t ion b e t w e e n the structural (or entropy) contr ibut ion to the free 

energy (as g iven by the first t erm in the r ight-hand s ides of (4 .8) and (4 .9) and the 

correlational (or internai energy) contr ibut ion (the s econd term in the r ight -hand 

sides of (4.8) and (4 .9)) . E v e n w h e n the sol id is mechanica l ly stable its further 

stabil ization relative to the f luid remains sensit ive to the w a y in w h i c h the corréla-

t ions in the sol id are b e i n g m o d e l l e d . D e n s i t y scal ing ( f j = r j ) is seen to yie ld on ly 

a poor characterization of the sol id phase corrélations and no stable sol id wh i l e 

structural scaling (/;(/;)) y ie lds b o t h a thermodynamica l ly stable so l id (Ao) = 0) 

and the proper sé lect ion m e c h a n i s m b e t w e e n the three cub i c lattices. 

2 .50 

2 .00 

1 .50 

1 .00 

.500 

0 . 

200 . 400 . 600 . 

Figure 5. The same as figure 4 (a) but using an effective fluid with density scaling ( f j = rj) 

instead of structural scaling (fj(rj)). The second minimum saturâtes before the solid 
becomes stable with respect to the fluid. 
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4.4 . The hard-sphere fluid-solid coexistence 

W e n o w relax the condi t ion of cons tant dens i ty {r]Q = t}) and look for the 

poss ib i l i ty of a two-phase , fluid-solid, coex i s t ence b y a l lowing the dens i ty of the 

sol id , ri, and the l iquid, //Q , to adjust t h e m s e l v e s to the two-phase e q u i l i b r i u m 

c o n d i t i o n s A/i = 0 and A/) = 0 ( A T = 0 b e i n g satisfied a priori within the présent 

theory) . W e cons ider henceforth on ly f .c .c . so l ids s ince this is the only lattice to 

admit a stable sol id phase relative to the fluid. T h e t w o - p h a s e coex is tence c o n d i -

t ions (2 .28) and (2 .29) b e c o m e n o w 

^A/i = 0 = In (1 + «o) + G(ao(//)) - flo êooo 

r 271̂  

(1 -I- a o ) Z ' 2 ^ e x p 
Mm 

ik' + + m') (4 .11) 

^ ( - P A p + ^pAn) = 0 = {\+ao) In (1 + OQ) - «O + (1 + ao)G(ao('?)) 
PO 

^ 0 0 0 
( 1 + ^ 0 ) ' ^ , ^ 3 - . . - . , - . . 

2 klm 

Ckim, (4 .12) 

w h e r e r\ = r\Q(\ + ûQ), whereas a = «oC'/) dénotes the solution of (4 .7) d i s cus sed 

a b o v e and 

1 
dk 

_no_ 

2(1 - A ) j m^)) 
c^KiJri); fi(r\{X))), (4 .13) 

1 1 1 1 . 1 1 

A ,00 

'. FCC i 
2 .00 

0 . 

2 .00 

0 . 

- 2 .00 

^ ' . 5 5 0 

1 I , , , , 

-4 .00 

.50 1 .00 1 .50 10"! 

Figure 6. The values of Afi obtained from (4.11) and ̂ (/y) for the f.c.c. lattice as a 
function of the fluid density rjg (by steps of 0 005) and the fractional density change 
OQ = (rj — t]o)/*lo � The equilibrium condition A/i = 0 is seen to restrict very strongly 
the possible values. 
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w i t h >;(/l) = >;o(l + Aao) r\{r\) d e t e r m i n e d by the structural scaling c o n d i t i o n 

(3 .3 c). T h e intégral in (4 .13) has b e e n eva lued by a 4 - p o i n t gaussian quadrature 

(accurate to one within 1 0 ' w h e n tes ted w i t h a 8 -po int m e t h o d ) and the lattice 

s u m s in (4 .11) and (4 .12) have been p e r f o r m e d u p to = 18 as discussed above . 

In figures 6 - 7 we s h o w the values of A/i and A/) obta ined f r o m (4.11) and (4 .12) as 

a f u n c t i o n of f/g ^nd � It is s een that the equ i l ibr ium condit ions are very 

s tr ingent condi t ions for the fractional dens i ty change «Q . T h e solution of the jo int 

coex i s t ence condi t ions A/) = 0 = A^ is s h o w n graphical ly in figure 8. T h e inter-

sec t ion po int corresponds to the freez ing point , i .e. to a situation w h e r e the 

mechan ica l ly stable sol id reaches for the first t i m e c o m p l è t e t h e r m o d y n a m i c sta-

bi l i ty wi th respect to the mechanica l ly stable fluid. N o other solut ions have b e e n 

f o u n d for lower dens i t ies whi l e at h igher dens i t ies (>;o > 0-60) we run into c o n -

v e r g e n c e p r o b l e m s wi th the lattice s u m s of (4 .11 ) and (4.12). T h e invest igat ion of 

the freez ing theory a long the metas tab le f luid branch (i.e. for densit ies c lose to 

r a n d o m close packing //g = 0 636) as p e r f o r m e d in [6 (b ) ] is certainly of interest in 

relation to the l imit of c o m p r e s s i o n of the H S fluid but w e doubt that it is 

cons i s t ent to do this w i th the P Y approx imat ion w h i c h ignores the ex i s t ence o f 

such a l imit . S u c h h igh dens i t ies require moreover very précise numerical éva lu-

at ions w h i c h are outs ide the scope of the présent s tudy. 

4 .5 . Resuit s 

O u r numerical results are gathered in the table where they are c o m p a r e d w i t h 

the expér imenta l ( M C , M D ) va lues [ 1 4 ] . W e do not compare them to the o ther 

theoretical values [ 1 - 6 , 1 2 ] s ince the latter have b e e n obtained, as d i s cus sed in 

détail in §3 , by early truncat ion of s lowly convergent séries and are h e n c e n u m e r i -

cally unrel iable . T h e quant i tat ive agreement b e t w e e n theory and e x p e r i m e n t 

obta ined here m a y be cons idered as fairly good . T h e m o d e l l i n g of the d.c . f . of the 

sol id by (3 .3) is certainly our crudest approx imat ion . N e x t to this we cons ider the 

use of a P Y d.c . f . for the ef fect ive H S fluid to be s o m e w h a t doubtfu l , at least in 

the t w o - p h a s e coex i s t ence région. Final ly , the inf luence of the gauss ian d e n s i t y 

peak représentat ion (3 .11) for the sol id (a l though presumably wors t for hard 

sphères) is thought to b e on ly marginal . 

5 . C O N C L U S I O N S 

T h e dens i ty funct ional theory has b e e n used to obtain formally exact é q u a -

t ions descr ib ing the e q u i l i b r i u m t w o - p h a s e coex i s tence be tween a u n i f o r m l iqu id 

and a per iodic sol id. T h i s represents an important improvement of the earlier 

f reez ing théories w h i c h in troduced approx imat ions at an early stage s u c h as the 

truncated T a y l o r expans ion of the free energy of the sol id around the free e n e r g y 

of the l iquid ignor ing the p r o n o u n c e d dens i ty variations wh ich are k n o w n to ex i s t 

in the coex i s t ence région. W e have also s h o w n that the Fourier e x p a n s i o n s of the 

so l id dens i ty in troduced prev ious ly cannot be truncated as donc in the l i terature 

because the Fourier séries c o n v e r g e very s lowly for reasonably wel l loca l i zed 

sol ids . Early truncat ion leads to so l id dens i t ies w h i c h b e c o m e very négat ive in the 

interstitial régions. T h e results obta ined prev ious ly by thèse m e t h o d s are t h u s 

numer ica l ly b iased and the theory has to be reconsidered. W e have analysed the 

theoret ical préd ic t ions for the freez ing of hard sphères us ing three phys ica l 
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H S freezing data obtained from the présent theory and compared to the computer experi-
ments (between brackets whenever available) [14]. 

Solid phase data (f.c.c.) 

(1) Point of marginal mechanical stability 

= 0-504 L = 0 149 (0 126) 

(2) Point of marginal thermodynamic stability relative to the fluid of the same density 
(A/ = 0) 

ri = 0-548 L = 0-088 

(3) Point of phase coexistence (Afi = 0 = Ap) 

t] = 0-567 (0-545) L = 0-074 

Fluid phase data 

(1) Freezing point ï/Q = 0-520 (0-494) 
(2) Compressibility factor at freezingf 

(�12-4 (v)! 

^ ' ' i l 6 . 2 ( c ) j ( ^ ^ - ^ > 

(3) Height and position of the main peak of the (PY) structure factor at freezing 

max S(/î(T; >;o) = 3-65 (2-90) 

at ka = 7-09 (7-00) 

Phase transition data 

(1) Fractional density change «j, = 0-091 (0-103) 
(2) Entropy change! 

f l -03 (v)] 

^^/^« = i l - 3 6 ( c ) f - » ^ > 

t c(v) refers to the use of the compressibility (virial) PY équation of state. 

a p p r o x i m a t i o n s and test ing thoroughly the c o n v e r g e n c e of ail the numerical 

m e t h o d s e m p l o y e d . A s a first approximat ion w e have represented the dens i ty of 

the sol id as a s u m of gaussian peaks w h o s e w i d t h is d e t e r m i n e d by m i n i m i z i n g the 

free energy of the sol id. N e x t we have approx imated the d.c . f . of the sol id by the 

d .c . f . of a H S fluid of (a) the same average dens i ty or (6) the same average 

s tructure as the H S sol id. Final ly , the d .c . f . of the H S fluid has been approx-

imated by the P Y d.c . f . T h e result ing theory predicts a fluid-f.c.c. sol id transit ion 

in fair agreement wi th the s imulat ion results ju s t i f y ing hereby the earlier expecta-

t ions. A t h o r o u g h invest igat ion of the above physical approx imat ions has not yet 

b e e n undertaken but there remains little d o u b t that a quanti tat ive theoretical 

descr ipt ion of first order phase transit ions is poss ib le a long the présent Unes. 
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