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A B S T R A C T 

We present a new method for probabilistic generative modelling of stellar colour–magnitude diagrams (CMDs) to infer the 
frequency of binary stars and their mass-ratio distribution. The method invokes a mixture model to account for o v erlapping 

populations of single stars, binaries, and outliers in the CMD. We apply the model to Gaia observations of the old open cluster, 
M67, and find a frequency f B ( q > 0.5) = 0.258 ± 0.019 for binary stars with mass ratio greater than 0.5. The form of the 
mass-ratio distribution function rises towards higher mass ratios for q > 0.3. 

Key words: methods: data analysis – methods: statistical – open clusters and associations: general – open clusters and associa- 
tions: M67. 
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 I N T RO D U C T I O N  

tudies have shown that perhaps 40–90 per cent of field stars in the
ilky Way are born in clusters or associations (Bressert et al. 2010 ;
ard, Kruijssen & Rix 2020 ). Binary stars play an important role

n the evolution of such systems. Through three-body or four-body
ravitational interactions, binaries can enhance the dispersal of a star
luster through ejection of stars. In dense clusters, binaries provide
n energy reservoir that prevents runaway core collapse through
he conversion of binding energy to kinetic energy in three-body
ncounters. Binary stars in a cluster shape its structure and evolution,
hich in turn shapes the structure and evolution of the binary systems

Hut et al. 1992 ; Hurley et al. 2005 ). 
Counts of binary stars in clusters have been done by various

uthors using either radial velocities, photometric colour–magnitude
iagrams (CMDs), or photometric time series analysis. 
CMD photometric methods generally apply some criterion to

eparate single from binary stars, count the binary stars in particular
MD locations (sometimes comparing this to models), and apply

ome mass-ratio function to compute the total binary frequenc y. F or
ome examples of this general approach, see Milone et al. ( 2012 ) and
i & Bregman ( 2013 ) for globular clusters, Elson et al. ( 1998 ) and Li,
e Grijs & Deng ( 2013 ) for young massive Large Magellanic Cloud
LMC) clusters, and Sollima et al. ( 2010 ) for Galactic open clusters.

Radial velocities can be used to detect binary stars through their
rbital motion, and can be used as a cluster membership criterion.
he detected radial velocity binary population must be corrected sta-

istically for declining detection efficiency for low orbital inclination
o derive the cluster binary frequency. Radial velocity studies, e.g.
he WIYN Open Cluster Study (Mathieu 2000 ), have generally been
imited to stars near or abo v e the top of the main sequence. 

Time series analysis to detect variable stars, including binaries,
as been used by Albrow et al. ( 2001 ) for the globular cluster 47
 E-mail: michael.albrow@canterbury.ac.nz 
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ucanae. Inference of a binary frequency is, ho we ver, fairly indirect,
elying on assumptions such as the contact binary lifetime. 

The mass-ratio distribution of field binary stars has been deter-
ined from radial velocity surveys by several authors. Duquen-

oy & Mayor ( 1991 ) found a distribution that peaks around q =
.25 and declines towards higher mass ratios. In contrast, Fisher,
chr ̈oder & Smith ( 2005 ) infer a flat distribution with a sharp
pturn towards higher mass ratios. For globular clusters, Milone
t al. ( 2012 ) find flat or gently rising distributions with q (abo v e
 = 0.5). The model that we will construct below allows these
ossibilities. As noted by Milone et al. ( 2012 ), all the measured
ass-ratio distributions for field stars and clusters are fundamentally

t odds with random draws of secondaries from the initial mass 
unction. 

Overall, it has been found that the frequency of binary stars in open
lusters can range from 25–70 per cent. For globular clusters, the
inary frequency is much lower, certainly less than 25 per cent, and
ossibly less than 5 per cent. Prior to this paper, all estimates rely
n assumptions about the form of the mass ratio ( q ) distribution at
ow q . Estimates are also complicated further by the well-established
henomenon that binaries are more centrally concentrated than single
tars. 

M67 (NGC 2682) is a rich old Milky Way open cluster located
t coordinates RA = 08:51:23, Dec. = + 11:49:02 (J2000) and a
istance of 860 pc. It has been e xtensiv ely studied photometrically
e.g Yadav et al. 2008 ; Sarajedini, Dotter & Kirkpatrick 2009 ; Gao
018 ), and has been the target or several spectroscopic surveys
Pasquini et al. 2012 ; Geller et al. 2021 ). The binary star frequency
as been estimated as > 38 per cent (Montgomery, Marschall &
anes 1993 ), > 26 per cent (Gao 2018 ), > 45 per cent (Davenport &
andquist 2010 ), ∼50 per cent (Fan et al. 1996 ), 34 ± 3 per cent
Geller et al. 2021 ). 

The layout of the remainder of this paper is as follows. In Section 2 ,
e discus Gaia observations of M67, and our filtering to achieve a

lean CMD. In Section 3 , we develop a parametrized generative
odel for the CMD, which we solve in Section 4 . 
© 2022 The Author(s). 
ty. This is an Open Access article distributed under the terms of the Creative 
ch permits unrestricted reuse, distribution, and reproduction in any medium, 

provided the original work is properly cited. 
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Figure 1. Proper motion of stars in a 1 deg radius cone centred on M67. The 
red circle encloses our initial selection of cluster stars. 
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Figure 2. CMD for stars passing the filters as described in Section 2.1 . The 
dashed blue line is the MESA isochrone for an age of 5 Gyr. The red line 
shows the colour-corrected isochrone. Gold and orange dashed lines show 

isochrones for 4 and 6 Gyr, respectiv ely. Cyan curv es show the lower and 
upper cuts applied so that binary-star primary masses are drawn from the 
same population as single stars, and some broader cuts to reject obvious 
outliers. 

Table 1. 5D selection cuts applied to the Gaia data. 

Minimum Maximum 

l 215.18 216.20 
b 31.48 32.37 
� (mas) 1.006 1.314 
μα (mas yr -1 ) −11.77 −10.06 
μδ (mas yr -1 ) −3.98 −2.04 
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 GAIA P HOTOMETRY  

.1 Selection 

tandard Gaia EDR3 photometry is available in three photometric 
assbands, G BP and G RP integrated from low-resolution spectra, and 
 measured from the astrometric field CCDs (Evans et al. 2018 ;
iello et al. 2021 ). Hereafter, we refer to these as B , R, and G . We
rst made the flux-excess corrections to the B and R magnitudes as
ecommended by Riello et al. ( 2021 ). For our data, these corrections
ere almost negligible. There is a known problem with o v erestimated 
aia B flux for faint red stars (see section 8.1 in Riello et al. 2021 )

o for our analysis we use CMDs in ( G − R , G ). 
Initially, we selected all Gaia EDR3 data from a cone of radius

 deg centred on M67 (NGC 2682). These data included the cluster
s well as many foreground and background stars. We next made a
oarse cut on proper motion, selecting those stars that had a proper
otion ( μα , μδ) that lay within a circle of radius 2 mas yr −1 centred

n ( −11, −3) mas yr −1 (Fig. 1 ). We next filtered out stars with a
arallax uncertainty greater than 20 per cent and fitted a 5D Gaussian 
n Galactic latitude ( l ), Galactic longitude ( b ), μα , μδ , and parallax
 � ) to the remainder. By trial and error, we imposed a cut on this 5D
istribution at a level for which we were satisfied with a moderately
lean CMD, Fig. 2 . The parameter boundaries for the adopted cuts
re listed in Table 1 . This process has resulted in a very clean CMD,
ith less contamination than that of Yadav et al. ( 2008 ), albeit not

s deep as that study. It appears similar in quality to the M67 Gaia
MD derived by Gao ( 2018 ) using machine learning methods. 
The final CMD shows a main sequence with an obvious population 

f binary stars distributed up to 0.75 mag abo v e the main-sequence
idge line, plus a few outliers that may be triple systems, or evolved
inaries. Binary systems with two equal-mass main-sequence stars 
ppear 0.75 mag abo v e the main sequence. Binaries with lower mass
atios appear redder and fainter than the equal-mass case, see for
nstance the tracks in fig. 3 of Elson et al. ( 1998 ). 

There is some evidence for mass se gre gation in M67. F an et al.
 1996 ) found a half-mass radius of 7 arcmin for blue stragglers,
0 arcmin for upper main-sequence stars, and 12 arcmin for the 
ower main sequence. This is confirmed from radial velocity studies 
Mathieu & Latham 1986 ; Geller et al. 2021 ). We might therefore
xpect main-sequence binaries to be more centrally concentrated 
han single stars. Our analysis co v ers stars drawn from a radius
f ∼30 arcmin, so ef fecti v ely av erages o v er an y mass se gre gation
f binaries. The tidal radius of M67 is estimated to be 42 arcmin
Fan et al. 1996 ; Francic 1989 ), and its core radius is 8.24 arcmin
Davenport & Sandquist 2010 ). 

For the analysis presented below, we restricted ourselves to 
onsidering stars that are clearly on the main sequence or are
inaries consisting of two main-sequence stars. We have manually 
emo v ed the few stars that are clearly abo v e the equal-mass-binary
ain sequence. Additionally, we have retained only stars where the 

rimary (or only) component lies within 13.5 < G < 18. These cuts
re shown as magenta curves in Fig. 2 , and were found necessary in
MNRAS 515, 730–738 (2022) 
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Figure 3. Cutout sections of the final CMD near different G magnitudes. The 
red lines are the adopted isochrone with colour correction applied. The yellow 

lines are tracks for binary stars with the same primary mass and varying mass 
ratio. The blue dots mark the locations q = (0.4, 0.5, 0.6). 

3

I  

m  

f  

p  

o  

t  

m  

r  

c  

b  

A
 

 

b  

B

P

a  

 

s  

t  

s  

(  

b  

T  

c  

t  

p  

r

P

w  

f  

o  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/515/1/730/6628660 by guest on 17 Septem
ber 2023
rder that our binary star distribution can be modelled below with
he same primary-star mass function as the single stars. 

.2 Co v ariant uncertainties 

ach 2D data point on the CMD, ( G − R , G ) is formed from G
nd R measurements with independent uncertainties, but the G − R
ombination is not independent of G . Consequently, a ( G − R , G )
atum has an associated covariance matrix 

 = 

[
σ 2 

G −R σG −R,G 

σG −R,G 

σ 2 
G 

]
, (1) 

here σ 2 
G −R = σ 2 

G 

+ σ 2 
R and it can be shown (see Appendix A ) that

he off-diagonal elements, σG −R,G 

= σ 2 
G 

. As viewed in the ( G −
 , G ) plane, each data point can be considered as having a tilted
i v ariate Gaussian probability distribution. 

.3 Isochrone fitting 

o model the stellar population of the cluster, we rely on having
n isochrone that accurately describes the main-sequence magnitude
nd colour as a function of mass. We used isochrones from the
ESA Isochrones and Stellar Tracks project 1 (Paxton et al. 2011 ,

013 , 2015 ; Choi et al. 2016 ; Dotter 2016 ). After some trial and
rror, we adopted a 5 Gyr isochrone with [Fe/H] = + 0.06 as being
he best fit to the upper main sequence and turnoff. This is consistent
ith the metallicty determinations of Hobbs & Thorburn ( 1991 )

[Fe/H] = −0.04 ± 0.12) and Önehag, Gustafsson & Korn ( 2014 )
[Fe/H] = 0.06). The age, ho we ver, is long compared with most recent
eterminations, which are generally close to 4 Gyr. The age inferred
or M67, ho we ver, depends on the adopted theoretical isochrone
alculations (see fig. 10 of Yadav et al. 2008 ), in particular the
reatment of conv ectiv e o v ershooting. In Fig. 2 , we hav e shown
he M67 Gaia CMD with MESA isochrones for 4, 5, and 6 Gyr
nd [Fe/H] = + 0.06. We based our fit on the main-sequence turnoff
egion, and found that only the 5 Gyr isochrone provided a correct
idth for the subgiant branch and matched the ’hook’ at the top of the
ain sequence. The specific choice of isochrone is inconsequential

or the purpose of this paper since we will eventually marginalize
 v er all parameters associated with the mass distribution. 
The MESA isochrones deviate from the observed main-sequence

idge line near the bottom of the main sequence. We introduce
 colour correction to the isochrone below G = 16.5, implicitly
dopting the G versus mass relation from the isochrone. 

.4 Limits on binary star detection 

epending on the quality of the photometry and the chosen pass-
ands, a given CMD will have a threshold in q below which binaries
re practically indistinguishable from single stars. In Fig. 3 , we show
ections of our final trimmed CMD data, along with the colour-
orrected isochrone for the main sequence and tracks representing
inary stars with a fixed primary mass and different values of q . We
ndicate the locations of binary stars with q = (0.4, 0.5, 0.6). For our
ata, q = 0.5 is a sensible threshold to adopt, as we perceive that
uch binary stars are sufficiently displaced from the main sequence
o be recognized as such. The model we will develop in the following
ection does not depend on this threshold, but it is important for the
nterpretation of the model outputs. 
NRAS 515, 730–738 (2022) 
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 M O D E L  

n this section, we develop a probabilistic generative model for the
ain-sequence region of a CMD. Our aim is to develop a probability

or any location on the CMD as a function of a set of numerical
arameters, and then to sample that probability distribution for the
bserved data in order to learn the probability distributions for
he parameters. Our method is strongly influenced by the mixture

odelling approach of Hogg, Bovy & Lang ( 2010 ). We refer the
eader to Taylor et al. ( 2015 ) for a comprehensiv e e xample of
onstructing a generative probabilistic model, in that case for the
imodal colour–colour distribution for field galaxies from the Galaxy
nd Mass Assembly (GAMA) surv e y. 
Our Gaia data are the set D = ( D k ) for stars k , with each

D k = ( G k − R k , G k ) T . Assuming that our model for the data can
e described by a vector of parameters θ (to be described), then from
ayes theorem the probability distribution for θ , 

 ( θ | D ) = 

P ( D | θ ) P ( θ) 

Z 

, (2) 

where P ( D | θ ) is the likelihood function, P ( θ ) is the prior for θ
nd Z is the marginal likelihood, a constant for a given D and model.

We recognize that the majority of CMD data points are either
ingle stars or binaries, but that there may be some ’bad’ data points
hat would not be represented by a combination of single and binary
tar distributions in the CMD. We adopt a generative mixture model
Hogg et al. 2010 ), where each star has a probability f B of being a
inary, f O of being an outlier, and (1 − f B − f O ) of being a single star.
his approach is a natural treatment for the o v erlapping populations
lose to the main-sequence ridge line, and explicitly does not require
he labelling of an individual star as being a member of a specific
opulation. By design, our data sample contains few outliers, but we
etain the f O term for generality of the model description. 

The likelihood function, 

 ( D k | θ ) = (1 − f B − f O ) P S ( D k | θ ) + f B P B ( D k | θ ) 

+ f O P O ( D k | θ ) , (3) 

here P S ( D | θ ) , P B ( D | θ ) , P O ( D | θ ) are respectively the likelihood
unctions for single stars, binaries, and outliers. We describe each
f these in turn below. The total likelihood is the product of the
ndividual star likelihoods so that 

ln P ( D | θ ) = 

∑ 

ln P ( D k | θ ) . (4) 

k 

http://waps.cfa.harvard.edu/MIST/
art/stac1731_f3.eps
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.1 Error bar rescaling 

t is common in observational studies for measurement uncertainties 
o be underestimated (or o v erestimated). In practice, this is equi v alent
o assuming that the underlying true distribution has an intrinsic 
idth. Such a width could arise from effects such as differential 

eddening or small systematic errors in the photometry. We allow 

or the possibility of an intrinsic width or incorrect error bars in our
odel by adopting a free parameter, h , that scales all data error bars.

n general, this manifests as S G,G −R → h 

2 S G,G −R in the probability 
alculations that follow. From examination of Fig. 2 , it appears that
he data may become more noisy towards the lower main sequence, 
o we allow h to vary linearly along the main sequence as h = h 0 
 h 1 ( G − G 0 ), where we adopt G 0 = 16.0. Error bar scaling thus

ntroduces two parameters to our model. 

.2 Outliers 

e begin with the distribution of outliers, since that is the simplest
f the three individual likelihoods. In what follows, we adopt the 
otation 

 ( x , S ) ≡ 1 

2 π
√ 

det ( S ) 
exp 

(
−1 

2 
x T S 

−1 x 
)

(5) 

or a normalized bi v ariate Gaussian centred at (0,0) with covariance
atrix S , e v aluated at x . We also note that a probability density in x

hould strictly be denoted by the deri v ati v e, d P /d x . F or brevity, we
dopt the looser notation, P ( x ). 

From the standard rules of probability, we can expand the outlier 
ikelihood function 

 O ( D k | θ ) = 

∫ 
P ( D k | D 

′ ) P O ( D 

′ | θ ) d 2 D 

′ . (6) 

he first term in the integral is the (Gaussian) probability of the given
ata point D k given a ’true’ CMD location D 

′ . The second term is the
robability distribution on the CMD for outliers, for which we adopt 
 very broad bi v ariate Gaussian. Consequently, the integral becomes 
 convolution 

 O ( D k | θ ) = 

∫ 
N ( D k − D 

′ , h 

2 S k ) N ( D 

′ − D O 

, S 0 ) d 2 D 

′ (7) 

= N ( D 

′ − D k , h 

2 S k ) ∗ N ( D 

′ − D O 

, S 0 ) (8) 

= N ( D k − D O 

, h 

2 S k + S O 

) , (9) 

nd the likelihood is thus a bi v ariate Gaussian. In principle, D O 

nd S O 

could be regarded as elements of θ , but in practice it is
ufficient to set them as constants. Here, we adopt D O 

= (0 . 75 , 16)
nd S O 

= diag [(0 . 75) 2 , (4 . 0) 2 ]. Generally, S k is negligible compared
o S O 

and can be remo v ed from the final covariance with no effect. 
The abo v e description is certainly an imprecise representation of

he outlier distribution but, as noted by Hogg et al. ( 2010 ), much of
he power of a mixture model such as this one comes from simply
ncluding an outlier distribution, even if it is inaccurate in detail. 

.3 Single stars 

e assume that the true locations of single stars in the CMD lie along
he isochrone line, and are drawn from some mass distribution. This

ass distribution is truncated at the top of the main sequence, and
 ades aw ay more gradually at the bottom of the main sequence due
o declining Gaia detection efficiency with increasing G magnitude. 
e model this observational mass distribution as 

 ( M| γ, k, M 0 , M max ) = C M 

M 

−γ × 1 

1 + e −k( M−M 0 ) 

×H ( M max − M) . (10) 

Here, the first term is a power law in M . The second term is a
ogistic function that acts as a smoothed step, centred at M 0 and
ith characteristic width 1/ k , to control the bottom of the mass
istribution. The top of the distribution is subject to a sharp cutoff by
he third term, a Heaviside step function at mass M max = 1 . 186 M �,
orresponding to G = 13.5. The normalization parameter C M 

is 
omputed numerically so that 

∫ ∞ 

−∞ 

P ( M| γ, k, M 0 , M max )d M = 1.
or our M67 data, we finally opted to apply a hard cut near the
ottom of the main sequence, so could have replaced the logistic
unction with a second step function, ho we ver we retain this form
or generality of the model. 

Since there is a one-to-one mapping, D 

′ ( M ), from a given M to
 location on the CMD the single-star likelihood function can be
xpanded as 

 S ( D k | θ ) = 

∫ 
P ( D k | D 

′ ) P ( D 

′ | M) P ( M| θ) d 2 D 

′ d M (11) 

= 

∫ 
P ( D k | D 

′ ( M) ) P ( M| θ) d M (12) 

= 

∫ 
N ( D k − D 

′ ( M) , h 

2 S k ) P ( M| θ) d M. (13) 

e can perform this integration by breaking the mass distribution 
unction into a sum of discrete mass steps of width 	 M and height
 ( M l | θ) located at masses M i , 

 S ( D k | θ ) = 

∑ 

l N ( D k − D 

′ ( M l ) , h 

2 S k ) P ( M l | θ ) 	M. (14) 

In practice, results from using this expression are equi v alent to
mploying the expression we will develop in the following section for 
inary stars, with a mass ratio set to be close to zero. 

.4 Binary stars 

e assume that the more massive star, M 1 , in each binary system is
rawn from the same distribution as the single-star mass function, 
quation ( 10 ). Each secondary star has a mass M 2 = qM 1 , where q is
rawn from a parametrized probability density. After testing various 
orms for this distribution, we adopted a general cubic polynomial, 

 ( q| a k , ̇a k , M; k = 1 .. 3) = 

˜ P 0 ( q) + 


 

3 
k= 1 ( a k + ȧ k ( M − M ref )) ˜ P k ( q) , (15) 

here ˜ P k ( q) are the shifted Legendre polynomials, an orthogonal 
asis set o v er the range 0 < q < 1. This general form allows the
istribution to bend up or down at either or both ends. The form of
he distribution as written requires no normalization since 
∫ 1 

0 

˜ P k ( x)d x = 

{
1 , k = 0 
0 , k > 0 . 

(16) 

y including the deri v ati ve parameters ȧ k ≡ ∂ a/∂ M , the shape of
he distribution is allowed to vary with mass, around some reference
alue M ref , which we choose as the centre of the mass range co v ered
y the CMD main sequence. 
We consider this general model for the distribution as described, 

nd also the more restricted versions with ȧ k set to zero. 
To compute the likelihood, we represent the probability densities 

or M 1 and q as linear combinations of 50 predefined Gaussian basis
unctions, 
MNRAS 515, 730–738 (2022) 
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P ( M 1 ) = 

∑ 

i a i N ( M 1 − M 1 ,i , σM 

) (17) 

P ( q) = 

∑ 

j b j N ( q − q j , σq ) , (18) 

here the centroids, M 1, i and q j are equally spaced across the mass
nd mass-fraction ranges, 0.1 < = M 1 /M � < = 1.1 and 0 < q < = 1.
he Gaussian widths are set to σM 1 = 0 . 01 and σ q = 0.01, which
e found by trial-and-error to produce a good representation of

he underlying functions. The choice of Gaussians for these basis
unctions will become apparent below. 

It is a requirement of the formalism that follows that all a i 
nd b j are zero or positi ve. The coef ficients a i and b j can be
omputed analytically as linear fits to numerical representations of
quations ( 10 ) and ( 15 ). Ho we ver, the optimal linear fit coefficients
re not guaranteed to be positive. Instead, we use the non-ne gativ e
east squares algorithm from Lawson & Hanson ( 1974 ), which
terates to a solution. 

A model magnitude for a binary star is obtained by adding the
uxes of the two components in the appropriate bandpass. This is
one by interpolating magnitudes for masses M 1 and qM 1 from the
sochrones, converting magnitudes to fluxes, adding the fluxes, and
econverting to magnitudes. This procedure is performed separately
or G and R , then the resulting values are combined to form ( G − R ,
 ). 
Each combination of ( M i , q j ) forms a normalized bi v ariate Gaus-

ian in ( M , q ) space with covariance matrix, S M,q = diag ( σ 2 
M 

, σ 2 
q ).

his transforms to a covariance matrix in ( G − R , G ) space,
 G −R,G 

= J S M,q J T , where the Jacobian 

 = 

⎡ 

⎣ 

∂G −R 
∂M 

∂G −R 
∂q 

∂G 

∂M 

∂G 

∂q 

⎤ 

⎦ . (19) 

he partial deri v ati ves in the Jacobian are not dependent on the data
r model parameters and can be pre-computed for any given ( M ,
 ) by interpolating colours and magnitudes from the isochrone. The
ombination of all the ( M , q ) bi v ariate Gaussians map to a set of
ilted o v erlapping bi v ariate Gaussians in ( G − R , G ) space. 

Similar to what we have done previously, we expand the binary-
tar likelihood 

 B ( D k | θ ) = 

∫ 
P ( D k | D 

′ ) P B ( D 

′ | θ ) d 2 D 

′ . (20) 

his can be further decomposed as 

 B ( D k | θ ) = 

∑ 

i,j 

a i b j 

∫ 
P ( D k | D 

′ ) P B ( D 

′ | M i , q j ) d 
2 D 

′ (21) 

= 

∑ 

i,j 

a i b j 

∫ 
N ( D k − D 

′ , h 

2 S k ) N 

× ( D 

′ − D ij , S ij ) d 
2 D 

′ , (22) 

here D ij ≡ D ( M i , q j ) and S ij ≡ J S M i ,q j J 
T . Here, the choice of

aussian bases for M and q becomes apparent. The integral is again
 convolution that can be e v aluated analytically, so that 

 B ( D k | θ ) = 

∑ 

a i b j N ( D k − D ij , h 

2 S k + S ij ) . (23) 
NRAS 515, 730–738 (2022) 

i,j 
.5 Total likelihood 

xpanding equation ( 4 ), 

ln P ( D | θ ) = 

∑ 

k 

ln 
{ 

(1 − f B − f O ) P S ( D k | θ ) 

+ f B P B ( D k | θ ) + f O P O ( D k | θ ) 
} 

. (24) 

nserting the individual likelihoods developed above, we can write
his in a compact nested form, 

ln P ( D | θ ) = 

∑ 

k 

LSE { A k , B k , C k } , (25) 

here LSE is the log sum exp function, 

SE ( a, b, ... ) ≡ ln 
(
e a + e b + ... 

)
, (26) 

nd 

 k = −1 

2 
( D k − D O 

) T S 

−1 
0 ( D k − D O 

) + ln 
f O 

2 π
√ 

det ( S O 

) 
, (27) 

 k = LSE 

l 

{ 

− 1 

2 
( D k − D ( M l )) 

T ( h 

2 S k ) 
−1 ( D k − D ( M l )) 

+ ln 
(1 − f B − f O ) P ( M l | θ ) 	M 

2 π
√ 

det ( h 

2 S k ) 

} 

, (28) 

 k = LSE 

ij 

{ 

− 1 

2 
( D k − D ij ) 

T ( h 

2 S k + S ij ) 
−1 ( D k − D ij ) 

+ ln 
f B a i b j 

2 π
√ 

det ( h 

2 S k + S ij ) 

} 

. (29) 

.6 Priors 

s described in the preceding sections, our general model has 13
arameters, θ = ( γ, k, M 0 , a 1 , a 2 , a 3 , ̇a 1 , ̇a 2 , ̇a 3 , f B , f O , h 0 , h 1 ). To
ompute the posterior probability distribution for θ , we must define a
rior distribution, P ( θ ). We assume that this distribution is separable
or most parameters, except a k and ȧ k , which we couple to limit the
otal change in shape of P ( q ) along the main sequence. Additionally,
e require h 1 to be positive, and scale its potential distribution with
 0 . In the absence of any compelling previous knowledge, and after
ome trial and error, we generally adopt sensible uniform, normal or
runcated-normal distributions as follows: 

P ( log 10 k) = N (2 , 0 . 3) 

P ( M 0 ) = N ( M min + 	M / 2 , 	M / 2) 

P ( γ ) = N (0 , 1) 

P ( a i ) = N (0 , 2) 

P ( ̇a i ) = N (0 , 0 . 1 /	M)) 

P ( f B ) = U (0 . 02 , 0 . 95) 

P ( f O 

) = U (0 , 0 . 05) 

 ( log 10 h 0 ) = N (0 . 1 , 0 . 3) 

P ( h 1 ) = N T (0 , 0 . 4 h 0 , 0 , 2) , (30) 

here M min is the minimum main-sequence mass, 	 M is half of the
ass range of the CMD main sequence, U ( a , b ) is the uniform

istribution between a and b , and N T ( a, b, c, d) is the normal
istribution centred at a with standard deviation b truncated below c
nd abo v e d . 

 RESULTS  A N D  C O N C L U S I O N S  

e hav e inv estigated four different models that use or do not use ȧ k 
nd h 1 in various combinations. 
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Table 2. Posterior parameter values and 1 σ uncertainties. 

A B C D 

log 10 k 2 . 37 + 0 . 18 
−0 . 16 2 . 35 + 0 . 18 

−0 . 16 2 . 40 + 0 . 19 
−0 . 18 2 . 37 + 0 . 18 

−0 . 16 

M 0 0 . 549 + 0 . 0031 
−0 . 0034 0 . 549 + 0 . 0032 

−0 . 0034 0 . 5490 + 0 . 0030 
−0 . 0034 0 . 549 + 0 . 0031 

−0 . 0032 

γ 0 . 04 + 0 . 25 
−0 . 25 0 . 04 + 0 . 24 

−0 . 27 0 . 03 + 0 . 25 
−0 . 24 0 . 03 + 0 . 24 

−0 . 24 

a 1 0 . 4 + 0 . 5 −0 . 5 0 . 4 + 0 . 5 −0 . 6 0 . 4 + 0 . 5 −0 . 5 0 . 4 + 0 . 5 −0 . 6 

a 2 0 . 71 + 0 . 34 
−0 . 30 0 . 7 + 0 . 36 

−0 . 33 0 . 71 + 0 . 35 
−0 . 30 0 . 7 + 0 . 39 

−0 . 33 

a 3 −0 . 1 + 0 . 4 −0 . 4 −0 . 1 + 0 . 4 −0 . 4 −0 . 1 + 0 . 4 −0 . 4 −0 . 1 + 0 . 4 −0 . 4 

ȧ 1 0 −0 . 1 + 0 . 4 −0 . 4 0 −0 . 1 + 0 . 4 −0 . 4 

ȧ 2 0 0 . 0 + 0 . 4 −0 . 4 0 0 . 0 + 0 . 4 −0 . 4 

ȧ 3 0 0 . 0 + 0 . 4 −0 . 4 0 0 . 0 + 0 . 4 −0 . 4 

f B 0 . 43 + 0 . 10 
−0 . 07 0 . 43 + 0 . 11 

−0 . 07 0 . 43 + 0 . 11 
−0 . 07 0 . 42 + 0 . 11 

−0 . 07 

f O 0 . 0060 + 0 . 0044 
−0 . 0028 0 . 0061 + 0 . 0043 

−0 . 0029 0 . 0062 + 0 . 0045 
−0 . 0030 0 . 0063 + 0 . 0044 

−0 . 0030 

h 0 1 . 36 + 0 . 11 
−0 . 10 1 . 36 + 0 . 11 

−0 . 10 1 . 69 + 0 . 08 
−0 . 08 1 . 69 + 0 . 08 

−0 . 07 

h 1 0 . 17 + 0 . 05 
−0 . 05 0 . 17 + 0 . 05 

−0 . 05 0 0 

	 ln P 0.00 −0.01 −4.49 −4.49 
	 log 10 Z 0.00 −0.04 −3.08 −3.25 
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To sample the posterior distributions (equation 25 ), we have used 
he af fine-inv ariant ensemble sampler EMCEE (F oreman-Macke y 
t al. 2013 ), and the nested sampler (Skilling 2004 ) DYNESTY
Higson et al. 2019 ; Speagle 2020 ). Fundamentally, these are differ-
nt approaches to sampling the probability space. EMCEE , a Markov 
hain Monte Carlo sampler, starts with a number of points (w alk ers)
istributed close to a guess at the posterior maximum probability. 
t then uses a quasi-downhill iteration on −ln P to roughly locate
he maximum. The w alk ers converge to a stationary distribution
hat mirrors the probability distribution. In contrast, the nested 
ampler begins with points distributed throughout the entire prior 
ypervolume, iteratively replacing points that are outside a rising 
robability contour. Despite the different methods, both samplers 
onverged to the same results. Following this process, the Nelder–
ead method was used to locate the maximum posterior probability 

oint for each model. 
In Table 2 , we list the parameter medians and 1 σ uncertainties for

ur four models that include or exclude the combinations of ȧ k and 
 1 . Posterior parameter distributions for all parameters for the most
eneral model (model B) are shown as marginalized corner plots and 
istograms in Fig. 4 . The parameters are well defined but, as might be
xpected, there are covariances between f B and the shape parameters 
or the q distribution (i.e. we would expect q distributions that rise
owards q = 0 to result in a higher value of f B ). Corner plots for the

ore restricted models are similar. 
Also listed in Table 2 are two extra values for each model. First,

e quote the relative maximum probability, 	 ln P ( θ | D ), for each
odel. This is a measure of how well the model fits the data.
or readers more familiar with the χ2 statistic, 	 ln P is equi v alent

o 	χ2 /2. Secondly, we quote the Bayes factor, 	 log 10 Z , which
ndicates the o v erall relativ e probability of the different models
iven the data, compensating implicitly for the extra fit freedom 

hat is introduced with additional parameters. An interpretation 
f 	 log 10 Z is given by Kass & Raftery ( 1995 ), that 	 log 10 Z >

0.5, 1, 2) represents (’substantial’, ’strong’, ’decisi ve’) e vidence 
or a proposition. The quoted 	 log 10 Z values have an estimated
ncertainty of 0.2. 
In Fig. 5 , we summarize the implied results for the mass ratios and

inary fractions. For each model, we use random samples from the 
osterior parameter distribution to show the mass-ratio distribution 
unction and the fraction of binary stars with a mass ratio greater
han a given q , 

 B ( q 
′ > q) = f B 

∫ 1 

q 

P ( q| a k , ̇a k , M; k = 1 .. 3) d q. (31) 

his latter quantity is tabulated in Table 3 for equally spaced values
f q . Readers may use this table to find binary fractions with mass
atios abo v e an y particular desired limit. The distributions implied
y the prior, equation ( 30 ), are shown for comparison, demonstrating
hat it is the likelihood, not the prior, that is driving the results. 

In Fig. 6 , we show our final data, along with three random
ealizations of model A with the posterior maximum probability 
arameters. 
From these results we conclude the following: 

(i) There is decisive evidence that models A and B, with error bar
caling that increases towards the lower main sequence ( h 1 ), are better
han those with constant scaling. We remind the reader that an error
ar scaling greater than 1 is equi v alent to allowing an intrinsic width
o the main sequence, so that models A and B can also be interpreted
s allowing for an increasing main-sequence width towards fainter 
agnitudes. 
(ii) All of the models have a rising mass-ratio distribution function 

ith q for q > 0.5 (Fig. 5 ). This shows that more binary stars (per
nit q ) exist with high-mass ratios than intermediate-mass ratios, but
ot with the extreme peak found by Fisher et al. ( 2005 ). 
(iii) Below q ≈ 0.3, there is little constraint on the form of the
ass-ratio distribution function. This is to be expected, since such 

inary stars lie on or very close to the main sequence and cannot be
istinguished from single stars. 
(iv) The implied binary fraction is well constrained for q � 0.3,

ut becomes increasingly less so as q → 0. 
(v) The ’best-fitting’ model is model A, which has a constant 
ass-ratio distribution function shape. Ho we v er, the impro v ement

f fit o v er the other model (B) that includes h 1 is negligible ( 	 ln P =
.01). 
(vi) The model with the strongest evidence, Z , is also model A

ith a constant shape to the q distribution. Ho we ver, the e vidence
hat this model is better than model B (which has a mass-varying
hape) is insubstantial. Having fewer parameters, we adopt model A 

s our fa v oured option. 
(vii) Since the fraction of outliers, f O , is negligible for each model,

e can interpret f B as being the binary frequency, without need for
djustment. 

(viii) Formally, the fa v oured models A and B imply an o v erall
inary fraction, f B = 0 . 43 + 0 . 11 

−0 . 07 , but this result may be unreliable.
he lower limit is sensible, and is imposed by the reliable detection
f binaries with q > 0.5, coupled with the realistic expectation that
he binary frequency below this threshold is not zero. Ho we ver, the
eason for the upper limit is not obvious, yet is none the less required
y the data. Larger values of f B could eventuate if the binary mass-
atio distribution function were to rise more steeply towards q = 0
han is apparent in Fig. 5 . Such behaviour is permitted by the prior
see the final column of Fig. 5 ), yet is not fa v oured by the (data-
riven) likelihood. We are unable to pinpoint a particular physical 
ause. Restricting ourselves to higher mass-ratio binaries, we find 
 B ( q > 0.5) = 0.258 ± 0.019. 

 SUMMARY  

e have presented a new generative model for star-cluster CMD that
llows the measurement of the binary star mass-ratio distribution as 
MNRAS 515, 730–738 (2022) 
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M

Figure 4. Corner plot for the most general model, model B, showing the 1 σ and 2 σ contours of the posterior probability distribution projected against each pair 
of parameters (marginalized o v er the remaining parameters). The 1D histograms show the marginalized probability distributions for each individual parameter. 
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ell as the binary star frequency. The model naturally accounts for
he locations of stars on the CMD without individual classification
f stars as single or binaries. 
The first application of the model is presented using Gaia

hotometry of the old open cluster, M67. By considering a 5D
hase-space distribution of stars in the direction of M67, we
ave obtained a very clean sample of cluster stars that cover
he low-main sequence through to just abo v e the main-sequence 
urnoff. 

We find the frequency of binary stars in M67 with mass ratios
reater than 0.4 to be f B ( q > 0.5) = 0.258 ± 0.019. The mass-ratio
istribution is found to rise gently towards higher mass ratios. There
NRAS 515, 730–738 (2022) 

t  
s no compelling evidence that the form of the distribution varies
ith primary mass along the main sequence. 

ATA  A N D  C O D E  AVAI LABI LI TY  

aia Early Data Release 3 (EDR3) data are publicly available via
he Gaia archive, ht tps://gea.esac.esa.int /archive/, and the Centre
e Donn ́ees astronomiques de Strasbourg(CDS) catalogue service,
t tps://vizier.cds.unist ra.fr/viz-bin/VizieR . 
The code used for this analysis is written in PYTHON and

UDA (via the PYCUDA PYTHON library). CUDA is an extension
o C/C ++ that uses an NVIDIA graphical processing unit to per-

art/stac1731_f4.eps
https://gea.esac.esa.int/archive/
https://vizier.cds.unistra.fr/viz-bin/VizieR
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Figure 5. Summary of the mass-ratio distribution function and binary fraction for the different models. Each of the first four columns represents a different 
model, corresponding to the tabulated parameters in Table 2 . The upper ro w sho ws the mass-ratio distribution function for 1000 random weighted samples from 

the posterior distribution. The lo wer ro w sho ws the fraction of binary stars with mass ratio greater than q for each model, with the red line representing the 
median of the posterior distribution and the shaded regions indicating the 1 σ and 2 σ uncertainties in this quantity. The final column shows the same information, 
but obtained from random sampling of the prior distribution. 

Table 3. Fraction of binary stars with mass ratio greater than a given q for 
each model. 

q A B C D 

0.1 0 . 37 + 0 . 05 
−0 . 05 0 . 37 + 0 . 06 

−0 . 05 0 . 38 + 0 . 06 
−0 . 05 0 . 37 + 0 . 06 

−0 . 05 

0.2 0 . 34 + 0 . 034 
−0 . 033 0 . 34 + 0 . 039 

−0 . 034 0 . 34 + 0 . 037 
−0 . 033 0 . 33 + 0 . 04 

−0 . 04 

0.3 0 . 310 + 0 . 024 
−0 . 024 0 . 307 + 0 . 030 

−0 . 029 0 . 310 + 0 . 027 
−0 . 025 0 . 305 + 0 . 031 

−0 . 029 

0.4 0 . 284 + 0 . 020 
−0 . 020 0 . 282 + 0 . 027 

−0 . 027 0 . 285 + 0 . 021 
−0 . 022 0 . 280 + 0 . 027 

−0 . 026 

0.5 0 . 258 + 0 . 019 
−0 . 019 0 . 256 + 0 . 026 

−0 . 026 0 . 258 + 0 . 020 
−0 . 020 0 . 254 + 0 . 026 

−0 . 026 

0.6 0 . 227 + 0 . 018 
−0 . 018 0 . 224 + 0 . 025 

−0 . 025 0 . 228 + 0 . 019 
−0 . 019 0 . 224 + 0 . 025 

−0 . 026 

0.7 0 . 188 + 0 . 016 
−0 . 016 0 . 185 + 0 . 023 

−0 . 022 0 . 188 + 0 . 017 
−0 . 017 0 . 186 + 0 . 023 

−0 . 023 

0.8 0 . 136 + 0 . 014 
−0 . 013 0 . 134 + 0 . 019 

−0 . 019 0 . 137 + 0 . 015 
−0 . 014 0 . 136 + 0 . 019 

−0 . 019 

0.9 0 . 071 + 0 . 010 
−0 . 009 0 . 070 + 0 . 013 

−0 . 012 0 . 072 + 0 . 010 
−0 . 010 0 . 071 + 0 . 013 

−0 . 012 
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orm parallel calculations. We use CUDA to perform the likeli- 
ood calculation from Section 3.5 . The CUDA language exposes 
PU hardware cores as groups of threads arranged into blocks. 

n our code, GPU threads are used to sum o v er basis func-
ions, and blocks to sum o v er data points. The code is being
eveloped publicly at https:// github.com/MichaelDAlbrow/ CMDF 

tter. 
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osterior maximum for model A. Single stars are shown in blue, binaries in red. 

t on 17 Septem
ber 2023
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PPENDI X  A :  C M D  C OVA R I A N C E  

he covariance, σ G − R , G can be calculated from the definition of
ovariance and the algebra of expectation values ( E ), 

G −R,G 

= Cov ( G − R, G ) 

= E[( G − μG 

)(( G − R) − μG −R ] 

−E[ G − μG 

] E[( G − R) − μG −R ] 

= E[( G − μG 

) ( ( G − μG 

) − ( R − μR ) ) ] − 0 × 0 

= E[( G − μG 

) 2 − ( G − μG 

)( R − μR )] 

= E[( G − μG 

) 2 ] − E[( G − μG 

)( R − μR )] 

= E[( G − μG 

) 2 ] − E[( G − μG 

)] E[( R − μR )] 

= σ 2 
G 

− 0 × 0 

= σ 2 
G 

(A1) 
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