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We compare the frequency distribution of gene family sizes in the complete genomes of six bacteria (Escherichia
coli, Haemophilus influenzae, Helicobacter pylori, Mycoplasma genitalium, Mycoplasma pneumoniae, and Syne-
chocystis sp. PCC6803), two Archaea (Methanococcus jannaschii and Methanobacterium thermoautotrophicum),
one eukaryote (Saccharomyces cerevisiae), the vaccinia virus, and the bacteriophage T4. The sizes of the gene
families versus their frequencies show power-law distributions that tend to become flatter (have a larger exponent)
as the number of genes in the genome increases. Power-law distributions generally occur as the limit distribution
of a multiplicative stochastic process with a boundary constraint. We discuss various models that can account for
a multiplicative process determining the sizes of gene families in the genome. In particular, we argue that, in order
to explain the observed distributions, gene families have to behave in a coherent fashion within the genome; i.e.,
the probabilities of duplications of genes within a gene family are not independent of each other. Likewise, the
probabilities of deletions of genes within a gene family are not independent of each other.

Introduction

One of the main challenges in the interpretation of
sequence data of complete genomes is to go from the
analysis of the evolutionary process at the level of single
genes to that at the level of gene families and of com-
plete genomes. Genes that have a significant similarity
to each other are presumed to have evolved from a sin-
gle ancestral gene and are part of the same gene family.
The genomes of Methanococcus jannaschii, Haemophi-
lus influenzae, and Escherichia coli have been shown to
contain gene families of various sizes (Brenner et al.
1995; Koonin, Tatusov, and Rudd 1995; Bult et al.
1996). Although a comparative analysis has been done
of the gene family sizes in E. coli and H. influenzae
(Tatusov et al. 1996), the frequency distributions of gene
family sizes have not been characterized, and the criteria
for assignment to a gene family vary among the various
classifications published. Here, we do a systematic,
comparative analysis of the sizes of gene families versus
the frequency per ‘‘size class’’ for the above-mentioned
organisms and for Helicobacter pylori, Mycoplasma
genitalium, Mycoplasma pneumoniae, Methanobacter-
ium thermoautotrophicum, Synechocystis sp. PCC6803,
Saccharomyces cerevisiae, the vaccinia virus, and the
bacteriophage T4. We use a single rigorous method, the
Smith-Waterman algorithm, to determine whether two
genes belong to the same family. Our analysis of the
gene family size distributions of the different genomes
shows them to be power-law distributions. We propose
models that can explain such distributions. It is not our
goal to analyze the evolutionary fate of specific gene
families, but, rather, to find possible patterns in the size
distributions of the gene families in genomes and to
present a general model that could account for such dis-
tributions.
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Materials and Methods

The Smith-Waterman algorithm (Smith and Water-
man 1981), as implemented in the FASTA package
(Pearson 1991), was used to compare the protein-coding
regions within genomes. A previous analysis of this al-
gorithm, in which its predictions were compared to a
similarity analysis based on the 3D structure of proteins,
showed that the algorithm produced no false positives
for E , 0.001 (the E value is the theoretical fraction of
false positives within the total set of positives) in com-
parisons of 320 proteins with less than 40% sequence
similarity, and for E # 0.01, the evolutionary relation-
ships derived from sequence comparisons differed from
those derived from 3D structure comparisons by less
than 1 case in 100 (Brenner et al. 1995). Analyses done
on larger data sets confirm that the E parameter is a
reliable parameter for the fraction of false positives the
Smith-Waterman algorithm produces (Brenner 1996).
The parameters used were the default settings of
‘‘ssearch’’ in the FASTA package, and the same as in
Brenner’s analysis: the similarity matrix is BLOSUM50,
and the gap penalties were 212 and 22 for the creation
and extension of the gap, respectively. We tested wheth-
er the results depended on the E value. Reducing the E
value from 0.01 to 0.001 generally led to only a small
change (,0.1) in the exponents of the distributions and
did not change their shape. For the results presented
here, we used an E value cutoff of 0.01.

Cluster sizes were determined directly from the
output of the Smith-Waterman algorithm; i.e., every se-
quence represents the core of a potential cluster, and all
of the sequences with which it has an E score that is
less than the E value threshold are considered part of
the same cluster. In a perfect world, if one compares all
of the sequences within a genome with each other, one
expects to find N occurrences of each cluster of size N;
i.e., one occurrence of a cluster for each time one of its
members is taken to be the core. In practice, the simi-
larity scores are neither symmetric nor transitive, and
the number of sequences that belong to one cluster var-
ies depending on the sequence which is assumed to be
at its core (the sequence for which the similarities to the
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FIG. 1.—A, The nonnormalized probability distribution (see Methods) for genes in a genome to be members of a gene family of specific
size. Shown are the distributions for S. cerevisiae, E. coli, Synechocystis sp. PCC6803, M. thermoautotrophicum, H. influenzae, M. jannaschii,
H. pylori, M. pneumoniae, M. genitalium, vaccinia virus, and the T4 bacteriophage. In the legend of the figure, the species name is followed
by the (predicted) number of protein-coding regions in that species. B, The frequency–size distribution of gene families with an exponential
binning of the gene family sizes. The binning is done logarithmically: family size 1 falls in class 1, family sizes 2 and 3 fall in class 2, family
sizes 4, 5, 6, and 7 fall in class 3, etc. The x-coordinates of the binned classes are 1, 2, 4, 8, etc. Taking the logarithm of both axes and doing
linear regression yields slopes (correlation coefficients, significances) of 22.81 (0.998, P , 5E 2 8), 22.84 (1.0, P , 5E 2 9), 23.17 (0.991,
P , 5E 2 6), 23.17 (1.0, P , 5E 2 7), 23.27 (0.997, P , 5E 2 5), 23.62 (0.94, P , 0.005), 23.45 (0.996, P , 5E 2 6), 22.69 (0.979,
P , 0.005), 24.02 (0.997, P , 5E 2 5), and 23.8 (0.994, P , 0.005) for S. cerevisiae, E. coli, Synechocystis sp., M. thermoautotrophicum,
M. jannaschii, H. influenzae, H. pylori, M. pneumoniae, M. genitalium, and vaccinia, respectively. No regression was done for T4, which, after
exponential binning, has only three data points.

other sequences are calculated). We display the results
in two ways: (1) The ‘‘raw’’ data, uncorrected for the
fact that the large clusters are overrepresented by a fac-
tor of their size. This is the nonnormalized probability
distribution that a protein sequence that is randomly
chosen from the genome is part of a cluster of a specific
size. (2) The cluster frequencies are divided by their size
to obtain an approximation of the true distribution of the
cluster sizes of the genome and are binned exponential-
ly. The exponential binning allows us to get exponents
for the distributions that include the frequencies of the
larger clusters.

As we show below, the frequency distribution of
the cluster sizes follows a power law. Such a distribution
features very long tails relative to other distributions.
We want to prevent such a distribution from occurring
as a side effect of our methodology. Algorithms that
include single-linkage clustering have been proposed to
determine cluster sizes. Since it is intrinsic to single-
linkage clustering that the probability that a sequence is
added to a cluster grows with the size of the cluster,
such methods tend to increase the frequency of large
clusters relative to small clusters and, hence, will gen-
erate a bias toward a distribution with a long tail. Our
method provides a conservative estimate of the frequen-
cy of large clusters; i.e., the long tails of the distributions
we observe do not result from a bias in our methodol-
ogy, and there is no systematic bias in our results. If,
due to false negatives in our method, the ‘‘true’’ distri-
bution of gene family sizes has longer tails than the one
presented here, it would hardly affect our main conclu-
sion because (1) the shape of the distribution depends
mainly on the sizes of the relatively small gene families
(,16), for which we have the most data points, and (2)
our main conclusion is based on the observation that
our distribution is significantly more like a power law
than an exponential distribution (see Results and Dis-
cussion). Distributions with longer tails than the ones
we observed here are even less like an exponential dis-
tribution.

The goal of our analysis is not to elucidate all the
different clusters and the functions of their proteins, but
to get a quantitative insight into the frequency distri-
butions of cluster sizes. The low error rate that was re-
ported for the Smith-Waterman algorithm might cause
small changes in the exponents of the distributions, but
one does not expect it to change the shapes of the dis-
tributions. The analyses of cluster size versus frequency
that have been published so far for H. influenzae (Bren-

ner et al. 1995), for the (then) partially sequenced ge-
nome of E. coli (Koonin, Tatusov, and Rudd 1996), and
for M. jannaschii on http://www.tigr.org/tdb/mdb/mjdb/
MJfamilies.html do show a power-law distribution of the
cluster sizes versus their frequencies (data not shown).

The protein sequence databases we used, with the
dates of their last versions, follow: H. influenzae (Fleish-
mann et al. 1995) (August 21, 1996), M. jannaschii
(Bult et al. 1996) (August 25, 1996), M. genitalium (Fra-
ser et al. 1995) (August 16, 1996), and H. pylori (Tomb
et al. 1997) (August 9, 1997) are from the TIGR data-
base (http://www.tigr.org). The E. coli (Blattner et al.
1997) sequences are from the genetics department, Uni-
versity of Wisconsin (ftp://ftp.genetics.wisc.edu/pub/
sequence/ecoli.seq) (January 24, 1997). The Synecho-
cystis sp. (Kaneko et al. 1996) sequences are from the
Cyanobase (http://www.kazusa.or. jp/cyano/cyano.html)
(September 9, 1996). The M. pneumoniae sequences
(Himmelreich et al. 1996) (November 25, 1996) are
from NCBI (ftp://ncbi.nlm.nih.gov/genbank/genomes/
bacteria/). The M. thermoautotrophicum sequences
(Smith et al. 1997) (September 24, 1997) are from Ge-
nome Therapeutics Corporation (http://www.cric.com/).
The yeast sequences are from the Saccharomyces Ge-
nome database (ftp://genome-ftp.stanford.edu/pub/
yeast/) (January 28, 1997). The Vaccinia virus sequenc-
es (Goebel et al. 1990) (August 1990) are from Gen-
Bank. The T4 sequences (Kutter et al. 1994) are from
ftp://ncbi.nlm.nih.gov/repository/t4phage (May 23,
1997).

Results

The results of the clustering (fig. 1A and B) reveal
remarkable similarities in the frequency distributions of
gene family sizes over the wide variety of genomes an-
alyzed here. All distributions are compatible with a pow-
er law, with the possible exception of that of H. influen-
zae, which has relatively few gene families of interme-
diate size, as was reported in Brenner et al. (1995). Tak-
ing the logarithm of both axes and doing a linear
regression yields correlation coefficients larger than 0.99
for all species except H. influenzae (0.94) and M. pneu-
moniae (0.98) (fig. 1B). All the distributions had a sig-
nificance of fit P , 0.01; the genomes with more than
1,500 genes, except for H. influenzae, had a significance
P , 5E 2 5. We compared the results of fitting the
distribution to a power law to those of fitting it to an
exponential distribution. In all cases, the P values were
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FIG. 2.—The exponent of the power-law distributions from figure 1B versus the number of genes in the genome. As the number of genes
in the genome increases, the exponent of the distribution becomes larger (the slope become less steep). The correlation coefficient of the
logarithm of the number of genes versus the exponent of the distribution is 0.63 (P , 0.05). If M. pneumoniae is not included, the correlation
coefficient becomes 0.91 (P , 0.01).

at least a 10-fold smaller for the power-law fit than for
the exponential fit. In the genomes with more than 1,500
genes, except for H. influenzae, the P values for the
power-law fit are three to six orders of magnitude small-
er than those for the exponential fit.

The results show a trend where, as the number of
genes in the genome increases, the exponent of the dis-
tribution becomes larger (fig. 2). Thus, an increase in
the number of genes leads not only to an increase in the
frequency of clusters of all sizes (fig. 1), but also to a
relative increase of the number of large clusters over the
number of small clusters. A clear exception to this pat-
tern is M. pneumoniae, which shows a relatively high
frequency of large gene families. As more genomes be-
come available, it will be possible to analyze how gen-
eral the observed trend is. It has been argued that the
large majority of the proteins in life on earth come from
only a limited number of families, e.g., 1,000 in Chothia
(1992). In such a scenario, one does of course expect a
relative increase in the number of large gene families
versus the number of small gene families as the number
of genes in a genome becomes larger.

Although power-law distributions have been linked
to complex processes that show self-organized criticality
(Casti 1995), there are several quite simple processes
that can lead to these distributions. One of the simplest
stochastic dynamical processes that produces power-law
distributions is a process with random multiplicative
noise repelled away from zero (Kesten 1973; Sornette
1997; Sornette and Cont 1997). We will consider a sto-
chastic process for the evolution of the genes in a gene
family that acts coherently on all the genes within one
family. At t 5 0, a gene family is founded by a single
ancestor, and through duplications and deletions, the size

of this family will fluctuate over time, with the possi-
bility of the family eventually going extinct and disap-
pearing from the genome. The essential feature of our
model is that the fluctuations that lead to duplications
and deletions are coherent with respect to the genes
within one gene family. That is, if a certain gene is
likely to duplicate, then all genes of its family are likely
to duplicate. The same holds for deletions; i.e., if one
gene is likely to be deleted from the genome, then all
genes in the family of that gene are as likely (or at least
more likely than random genes) to be deleted. The size
St of the gene family at time t will thus fluctuate in the
following manner:

St 5 atSt21 (1)

where at is a random multiplication factor drawn inde-
pendently at each time step from some distribution P(a)
that is likely to be peaked around a 5 1 for realistic
scenarios. The multiplication factor at is determined, for
example, by some randomly fluctuating environment.
The unit of time is the timescale at which we observe
duplication and deletion of genes. For example, the fact
that in the E. coli genome there are 32 genes that are
identical at the amino acid level to at least one other
gene in E. coli (data not shown) indicates that duplica-
tions occur at relatively small evolutionary timescales.
We can therefore safely assume that many time steps
(eq. 1) have occurred over the history of the genomes
that we analyzed. We thus focus in our analysis on the
asymptotic behavior of equation (1) for large times t.
The key point of the model is that all the genes within
a family are affected in the same (or at least a similar)
way by the environment. The model thus assumes that
in consecutive time periods, each gene family tends to
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expand or shrink as a whole with a random factor at.
This is in contrast to models in which each gene is in-
dependently affected by a fluctuating environment. In
such models, the fluctuations in gene family size are on
the order of the square root of the number of genes in
the gene family.

The distribution of gene family sizes in whole ge-
nomes is then the result of many processes (eq. 1) oc-
curring in parallel, for large times t, together with the
occasional introduction into the genome of a new gene
family of size one. This can be shown under very gen-
eral conditions to lead to a power-law distribution P(S)
of the sizes of the surviving gene families in the genome
(see Kesten 1973; Sornette 1997; Sornette and Cont
1997)

P(S) 5 cSg, (2)

where c is a normalization constant, and the exponent g
of the power law is given by

mag 5 2 1 2 , (3)
21 2sa

and ma and s are the mean and variance of the loga-2
a

rithms of the multiplicative noise factor a

ma 5 ^log(a)& (4)

and

s 5 ^log2(a)& 2 m .2 2
a a (5)

A heuristic derivation of this result can be given in
the following way. The size of the gene family at time
t is given by a product of t random factors a

St 5 atat21at22 . . . a1, (6)

or for the logarithm of the size of the gene family,

t

log(S ) 5 log(a ). (7)Ot i
i51

By virtue of the central-limit theorem, the distribution
of log(St) becomes a normal distribution with average

mt 5 mat, (8)

and variance

s 5 s t.2 2
t a (9)

If we define y [ log(St), we thus find for the distribution
Pt(y) at large t:

21 1 y 2 mtP (y)dy 5 exp 2 dy, (10)t 1 2[ ]2 sÏ2ps tt

and by a change of variables we find that St is lognor-
mally distributed:

21 1 log(S ) 2 mt tP(S )dS 5 exp 2 dS . (11)t t t1 2[ ]2 sÏ2ps S tt t

We therefore obtain for the logarithm of the probability
density:

2m mt tlog(P(S )) 5 2log(Ï2ps ) 2 2 1 2 log(S )t t t2 2[ ]2s st t

2log (S )t2 . (12)
22st

Substituting the expressions for mt and st, we find:

2m t ma alog(P(S )) 5 2log(Ï2pts ) 2 2 1 2 log(S )t a t2 2[ ]2s sa a

1
22 log (S ). (13)t22tsa

The first two terms are independent of St and just take
care of the normalization of the distribution. For large
t, the last term becomes negligible, leaving only the sec-
ond term, which is linear in log(St), such that the dis-
tribution effectively becomes a power-law distribution
with exponent 2(1 2 ma/s ), as expected. For a more2

a

rigorous analysis of process (eq. 1) and its resulting dis-
tribution, the reader is again referred to Kesten (1973),
Sornette (1997), and Sornette and Cont (1997). It is im-
portant for the derivation that ma # 0, since otherwise
gene families tend to become infinitely large in the limit
of time going to infinity, leaving the process (eq. 1)
without a stable limit distribution. Our data are in ac-
cordance with this condition. The slopes we observe are
smaller than 21.5, which implies that ma/s , 2½.2

a

This, in turn, implies that although the size of a gene
family may fluctuate for a very large time, eventually
each gene family tends to become extinct in a genome.
That is, the slopes of the distributions we obtain, to-
gether with the stochastic model we propose, suggest
that no gene family lives forever in any particular ge-
nome, unless other mechanisms prevent certain gene
families from going extinct. The latter is actually an
essential condition for the derivation of the power-law
distribution. If gene families can go extinct, there should
be the possibility of occasional introduction of a gene
from a new family into the genome, e.g., by horizontal
gene transfer. It can be shown (Kesten 1973; Sornette
1997) that the asymptotic distribution of gene family
sizes is independent of the form of the influx of new
genes. Alternatively, there could be mechanisms that
prevent certain gene families from going extinct; i.e.,
gene family size one acts as a reflecting boundary for
those gene families. One can imagine selection acting
particularly strongly against the deletion of the last gene
in a gene family. In either case, any combination of
influx and/or reflective boundary conditions will lead to
the same power-law distribution of gene family sizes in
the genome.

We observe that the exponent of the distribution
becomes larger as the number of genes increases. The
variation in the exponent between the various organisms
can be explained as a variation in the variance s . Keep-2

a

ing the mean ma fixed, a smaller variance gives a smaller
(steeper) angle. A biological interpretation of this is that
as the size of the genome decreases, there will be less
room for variation in the sizes of the multiplication
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events. A similar interpretation is that the competition
between gene families for space in the genome is effec-
tively bigger in a smaller genome, which leads to a
smaller value of ma. That is, the larger competition in
smaller genomes leads to shorter average lifetimes of
gene families in these small genomes.

Discussion

It may seem contradictory that, in our model, gene
families tend to decrease in size on average over all gene
families over time, whereas, in evolution, many gene
families have started with one member and have grown
over time. Note, however, that our model does not pre-
vent any particular gene family from growing. The sit-
uation is analogous to the game of roulette where, al-
though on average people will lose, at the end of the
evening there will be plenty of winners. Our model does
not predict which families will grow, as it predicts the
distribution of gene family sizes, rather than the size of
any specific family. It has been our goal to define the
minimum requirement for a dynamical process that ex-
plains the shape of the frequency distribution of gene
family sizes. The essential feature of our model is that
it describes the dynamics of gene duplication and de-
letion at the level of the gene family; i.e., the genes
within one family behave alike. The most obvious ex-
planation for such coherent behavior is that genes within
one family have related functions. As the requirements
of this function vary over time, so does the presence of
the gene family in the genome. Another explanation for
the fact that genes within one gene family behave alike
is that they lie clustered on the genome and, as parts of
the genome are duplicated or deleted, the genes within
one gene family are affected in a similar way. A statis-
tically significant clustering of related genes within the
genome has been observed in H. influenzae and E. coli
(Tamames et al. 1997); the overall trend for spatial clus-
tering of genes within the same gene family is, however,
only very slight (unpublished data) and cannot explain
their coherent behavior.

We believe that it is unlikely that the observed
power laws in the distribution of gene family sizes can
be explained by a model which does not contain dynam-
ical coherence at the level of gene families. Power-law
distributions are distributions with long tails. We studied
a number of birth and death processes, containing ran-
dom duplication and deletion effects along with a ran-
dom influx of genes. These models, which treat individ-
ual genes as independent, all lead to distributions with
exponential tails (see Bell [1996] for a birth-and-death
model to explain the size distribution of repetitive DNA
elements). As shown above, the frequency distribution
of gene family sizes is significantly more in accordance
with a power-law distribution than with an exponential
distribution. As noted earlier, processes that treat the
genes as independent lead to fluctuations in gene family
that are on the order of the square root of the size of
the family. This fact contradicts the power-law shapes
of the curves we obtained. Power laws are scale-invari-
ant distributions, which implies that the fluctuations are

on the order of the size of the gene family. An alter-
native model that has been used to explain power-law
distributions is so-called self-organized criticality (see
Casti 1995 and references therein). The power laws that
we observed are very steep, some having exponents
smaller than 24. Power laws with this kind of steepness
generally cannot be accounted for by self-organized crit-
icality, which typically produces power laws with slopes
larger than 22. We therefore argue that the model pre-
sented here represents the most general setting by which
the observed distributions can be explained. The main
conclusion of this paper, then, is that the frequency dis-
tribution of gene family sizes can only be explained by
a model that explicitly takes the relatedness of the genes
within a gene family into account. This coherence of the
genes within a gene family supports a shift in analyzing
a genome in terms of the presence of gene families rath-
er than of single genes.
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