THE FREQUENCY RESPONSE OF GLACIERS

By J. F. Nye
(H. H. Wills Physics Laboratory, University of Bristol, Bristol, England)*

ApsTRACT. The theory developed in previous papers to represent the response of a glacier to changes in
the rate ol accumulation and ablation has been used for a number of applications. A method of integrating
the differential equations for a fixed [requency was programmed for a high-speed digital computer. This
pravides a better way of finding the frequency response than the earlier method which used series approxi-
mations for high and low frequencies. Results are given for (a) an artificial glacier showing varying amounts
ol diffusion of the kinematic waves, (b) South Cascade Glacier, Washington, U.S.A.. as a check on previous
results, and (c) Storglaciiren, Kebnekaise, Sweden. The response curves of Storglaciiren are very similar in
shape to those of South Cascade Glacier but, since Storglaciiren moves more slowly, the curves are shifted in
frequency (by a factor of two). The phase of the response at the terminus of Storglaciiren plotted against
[requency shows a double peak.

Certain mathematical results for the artificial case of no diffusion are given in an Appendix.

A computer programme was also written for calculating A and p coefficients and applied to South Cascade
Glacier and Storglaciaren,

ReésuMi. La fiéquence réponse d’un glacier. La théorie développée dans des publications antéricures pour
représenter la réponse d’un glacier aux changements des valeurs d’accumulation ¢t d’ablation a été utilisée
pour nombre dapplications. La méthode d'intégration des équations différentielles pour une fréquence
donnée a é1¢ programmeée pour un calculateur digitalisé 2 grande vitesse. Clest un meilleur chemin pour
trouver la [réquence réponse que I'ancienne méthode qui utilisait des développements en série pour hautes et
basses fréquences, Les résultats sont donnés pour (a) un glacier artificiel montrant des valeurs variables de
diffusion des ondes cinématiques, (b) South Cascade Glacier, Washington, U.S.A., comme contdle de
résultats connus, et (¢) Storglaciiren, Kebnekaise, Suéde. Les courbes des réponses de Storglacidren sont bien
semblables comme forme de celles de South Cascade Glacier mais, comme Storglacidren s’écoule plus
lentement, les courbes sont déplacées en fréquence (par un facteur deux). La phase de la réponse au front de
Storglaciiiren tracée en fonction de la fréquence montre une double pointe,

Certains résultats mathématiques pour le cas artificiel de non diffusion sont donnés en appendice.

Une programmation de calculateur a aussi été écrite pour le caleul des coefficients A et p, et appliquée au
South Cascade Glacier et Storglaciiren.

ZUSAMMENFASSUNG. Die Frequenzerwiderung von Glelschern. Die in fritheren Veroffentlichungen entwickelte
Theorie des Ansprechens von Gletschern aul Anderungen der Akkumulations- und Ablations-geschwindig-
keiten wurde fir cinige Anwendungen benutzt. Fiir eine elektronische Rechenanlage wurde cine Methode
zur Integration der Differentialgleichungen bei fester Frequenz programmiert. Dicser Weg ist fiir das
Auffinden der Frequenzerwiderung besser als die [rithere Methode, die Reihenentwicklungen fir hohe und
niedrige Frequenzen verwendete. Ergebnisse werden vorgelegt fiir (a) einen kinstlichen Gletscher mit
wechselnder Durchlissigkeit der kinematischen Wellen, (b) den South Cascade Glacier, Washington, USA,
als Probe fiir [riihere Ergebnisse, und (¢) den Storglacidren, Kebnekaise, Schweden. Die Erwiderungkurven des
Storglacidren sind denen des South Cascade Glacier der Form nach sehr dhnlich, doch weisen sie eine
Frequenzverlagerung mit dem Faktor 2 auf, da sich der Storglacidren langsamer bewegt, Die Phase der
Resonanz an der Front des Storglaciaren zeigt ein doppeltes Maximum.

Gewisse mathematische Ergebnisse (iir den hypothetischen Fall fehlender Durchlissigkeit werden in
einem Anhang mitgeteilt.

Zur Berechnung von A- und p-Koellizienten wurde ebenfalls ein Rechenprogramm entwickelt und i
den South Cascade Glacier wie den Storglaciziren angewandt.

1. INTRODUCTION

The response of a glacier to changes in the rate of accumulation and ablation has been
examined theoretically in previous papers (Nye, 1960, 1963[a], 1963[b],) which will be
referred to as Nye [1], Nye [II]and Nye [TII]. In this paper we use exactly the same differential
equations as before and present new numerical results for the frequency response of (a) an
artificial glacier chosen for analytical simplicity, (b) South Cascade Glacier, Washington,
U.S.A, and (c) Storglaciiiren, Kebnekaise, Sweden.

Let us first recall the assumptions of the theory and the basic equations. The assumptions
are that (a) the ice has constant and uniform density, (b) the discharge q through a cross-
section at x, where x is distance measured down the glacier, is a function of x, the thickness &

* Parts of this work were done while the author was at the Hammond Metallurgical Laboratory, Yale Univer-
sity, and at the Institute of Geophysics and Planctary Physics, University of California at Los Angeles.
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of the glacier at that section, and the slope a of the upper surface at that section. Thus
q=9q(x,h, a).

h could be taken, for convenience, as the maximum thickness at the section. By this assumption
we postulate that any change of discharge at given x is produced only by a change in the thick-
ness or surface slope of the glacier at the cross-section in question. The theory cannot therefore
take account of changes in discharge caused by changes in ice temperature, which will change
the flow law; nor can it take account of changes in ice discharge caused by physical changes
at the ice—rock interface, as might be caused, for example, by an increase in the amount of
lubrication by melt water.

Under a steady rate of accumulation and ablation a,(x), the glacier will reach a steady
state, called the datum state. a.(x) is positive for accumulation and negative for ablation and
is measured as thickness of ice per unit time. The theory is concerned with the behaviour of
small perturbations from this datum state. The equations for the perturbations are

aq: ahl )
g—i—Bn(x) T Bo(x) ax(x,t) (1)
chy
q: — CO(x) hi— Do(x) E (2)

qu(x, t), hu(x, t) and a:(x, t) are the perturbations of the discharge, thickness and accumulation-
rate from the steady-state values. Bo(x) is the width of the upper surface of the glacier, and is
supposed not to change during the perturbation. €o(x) and Dy(x) are functions which, like
By(x), characterize the particular glacier under consideration; eo/Bo has the physical
interpretation of a kinematic wave velocity while Do/B, is a diffusion coeflicient. The details
of the derivation of equations (1) and (2) are given in Nye [III]. If Bo(x), €o(x), Do(x) are
known functions, (1) and (2) are two simultaneous linear equations for determining the
q:(x, 1) and the A (x, t) which result from a given perturbation a:(x, f) in the rate of accumu-
lation and ablation. It is a simplification to assume that a:(x, ¢) is independent of x, so that
we may write it as a:(t). A more general assumption about the x dependence is that
a(x,t) = X(x) a(t)

where X(x) is a known function. But although all the computer programmes to be discussed
have been written for a general function X(x) it has in fact proved adequate in all applications
so far to take X(x) = 1. We shall therefore make this simplification throughout and write
a;(x, t) = al(t).

In this paper we are concerned with the response of a glacier to a simple harmonic variation
of ai(x,t). Thus we put

ai(t) = Aelot,
where 4 is real. Since the system is linear the response, after transients have disappeared, will
be harmonic variations of k. (x, t) and q:(x, t) of the same angular frequency w but, in general,
different phase. Thus we write
hi(x, 1) = H(x, w) et
@ilnt) = Q(xw)eio,

where H and Q are complex. / and Q are the complex amplitudes of the response at given x
to an applied signal of uniform amplitude 4 and angular frequency w. Substitution in
equations (1) and (2) gives

d
22 iwB(x) H = Ba(x) A (3

dH
Q= eo(x) H—Dulx) 7 @
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As already stated, B., €0, Do are known functions of x, and A4 is a real constant. These two
equations then give the complex functions H(x) and 0O (x) for a given choice of w. Since 0 and
H are directly proportional to A4, 4 may be taken equal to 1 without loss of generality.
(L and H are then the response amplitudes to a unit-amplitude oscillation of a;.

2. Direct CoMmpuTaTION OF RESPONSE ClURVES

The above introduction simply summarizes the relevant parts of Nye [ITI] without
adding anything new.

In Nye [II] equations (3) and (4) were considered for a special model in which the
functions characterizing the glacier have the simple polynomial forms

Bu(l’) =1

=) | (5)
Do(x) — %”f(rf&_f)

where o, 8, E, [ are positive constants. ¢ is a time, 8§ is dimensionless and much less than I3
E is dimensionless, and [ is related to the length L of the glacier in the datum state by
l(1—38) = L. The glacier in the datum state runs from x — o to x — . A solution in closed
form was found for £ = 1.

In a real glacier one wishes to solve (3) and (4) when By(x), co(x), Da(x) are given
graphically. In Nye [IIT] this was done by obtaining series approximations of the form

H(x)

= po(®) Fpa(x) o+ pa(2) (fw)?+ ... (6)

A
and m = Ao(x) M (x) tw+2a(x) (iw)>+ ..., (7)

valid for low frequencies, and

H(x
1 = ) ) (i) () (i) (8)

valid for high frequencies. A scheme for computing the A’s and »’s from known functions
Bo(x), eo(x), Do(x) was developed and applied to data derived from Dr. Mark F. Meier’s
work on South Cascade Glacier, Washington, U.S.A. In this way the frequency response of
South Cascade Glacier was computed. The work was done on a desk calculator,

When automatic digital computers became available to the author two possibilities
presented themselves. Iirst, to write a programme for the calculation of i and A coeflicients
previously done by hand, which could then be used for data on any glacier. 'The results from
this programme will be described later. Second, instead of obtaining the freq uency response
in two stages, by first computing the X’s and v’s and then using the two series (7) and (8), it
should be possible to compute solutions of (3) and (4) directly for a number of different w’s,
thereby finding the response curves. This would be a more direct way of finding the frequency
response, and at the same time would avoid any difficulties in the intermediate range of
frequencies where both (7) and (8) might break down.

(1) Results for analytical model

As a start | investigated solutions of (3) and (4) with Bo, €0, Dy having the special forms ().
o is taken as the unit of time and / as the unit of length. A4 is also put equal to 1 without loss
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of generality since both Q) and H are directly proportional to 4. The equations are then

%: 1—iwl (9)
O il il | (10)
with de Do '
colx) = x(1—x) (11)
Do(x) = Ex*(L—%) | (12)

and with the datum glacier running from x = o to L, where . — 1—8. Thuso < x =L < 1.

The boundary conditions at x = 0 and x = L need special consideration. Dy = 0 at
both end points, which are regular singularities of the equations. The problem is fully discussed
in Appendix I (see also Nye [11]) and here we need only quote certain results. A unique
solution for any given w is determined if we simply require that / be not infinite at x = 0
or x — L. The requirement at x = 0 is equivalent to putting Q = o at this point. Near
x — o there is a one-parameter family of solutions satisfying the boundary condition, in the
sense that a particular solution is fixed by the value of one complex constant; but the leading
term is the same for all members of the family, namely

1 X

H‘inr ... and Q= I+iw+ LN

where the dots stand for terms of higher order in x.

Near x — L there is also a one-complex-parameter family of solutions satisfying the
boundary condition. The leading term in this family of solutions, when they are expanded
about the point x = L, is an arbitrary complex constant. For all this family of solutions,

H =

(13)

gt =40,
Q—_— Co H, (14)
. 1—(eytiow) H
and H = oD (15)

where the primes denote differentiation with respect to x. (14) is derived by putting
D, H' — o in (10) (more strictly in (4)); the second may be obtained by differentiating
(10), putting Dy H” = 0, and substituting for Q' from (g). The justification for putting
D, H' — 0 and Do H” = 0 at x = L is that Do(L) — 0 and, as shown in Appendix I, H'(L)
and H"(L) are not infinite in the family of solutions satisfying the boundary condition.

The method of solution is to integrate the simultaneous equations backwards from
x = L, using (g) and (10) at all points except x = L; at x = L (10) does not suffice to fix £’
because Do is zero: we therefore use (15) instead. The starting values of H and @ are not
known, and must be chosen by trial so that the solution satisfies the boundary condition at
x — o, that is, so that Q = o or H is not infinite. To avoid the trial solutions becoming
infinite the testing is done not at x = 0 but at x = ¢, € being small. The value we have to
achieve is

Q(e) = ¢/(1+iw) (16)

from (13). The trials are made as follows. Write H — u—iv and Q = r+is where w, 0, 1, §
are real. Choose arbitrary starting values for , o, say (0,0), at x = L. Find r, s from (14).
Then integrate back to x = e. Let the resulting values of , 5 at x = € be 11, 1. Now choose a
new pair of starting values for u, v, say (1,0), and repeat the integration, obtaining at x = €
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the values r,, 5.. Since @ (¢) depends linearly on the starting value H(L) we have, in general,
Qle) = j+EH(L)
or, taking real and imaginary parts,
r(e) = jithkeu(Ll)—k:o(L)
and s(e) = jathau(L)+kio(L),

where j = ji+ij. and &k = ki +ik; are complex constants. ji, j:, ki, k: are fixed by the
definitions of r1, 51 and 72, 51, so that we have

r(€) = rit(r—ri) u(L) —(s2—s:) (L), (17)

s(€) = si+(s2—s0) u(L) + (ra—r1) 2(L). (18)
Thus the constants in the linear relation are determined by the known values Fry oy Sy 53
If r(e) and s(e¢) are now assigned the values required by (16), (17) and (18) may be solved
to give the correct starting values u(L), »(L). A final integration is now performed using
these starting values, and it should strike the target values r(e), s(e) required by (16), This
is the required solution.

This method * was programmed for an 1.B.M. 709 digital computer, using a Runge-Kutta
integration method, with w, E, 8 and e as variable parameters. It worked successfully for
values of w from o to about 30 (with 8 — 0-01), and was checked against the known analytical
solution for £ — 1. The precision was checked by changing e and the interval. At the highest
frequencies @ = 18 the fit with the boundary condition at ¥ — e deteriorated. This is because,
at these frequencies, a very small change in the starting values at x — £, has a large effect
at ¥ — e (or, put the other way round, a large input Q at x — 0 would be needed to produce
a sensible effect at ¥ = L, because of attenuation by diffusion); thus for a reasonable fit at
* — e very many significant figures would be neceded in the starting values at ¥ — L. But
this effect need not trouble us, because the main purpose was to find the response at x — [,
and this is still determined quite precisely even though the fit at ¥ — e is bad. At still higher
frequencies (say w > 50), where overflow may oceur in the trial integrations, the result is
best obtained by using the high-frequency series (8), of which the leading term is simply
H(x)[4 = (iw)~.

Theresults at v — Lfor £ — o-1 and 1 are shown in Figures 1a, b, ¢, d. (Results for £ — o
did not differ much from those for £ — 1.) If we look first at the curve for £ — 1 in Figure 1a
(already known from Nye [II]), the amplitude |H| of the response to unit amplitude 4
approaches the value 87 = 100 at low frequencies, and approaches zero as w ' at high
frequencies. On the plot of log |H|: log w in Figure 1b the curve for £ — 1 is below the
straight line [H| — ™' (broken line) at low frequencies, above it at medium frequencies,
and approaches it asymptotically at high frequencies. This may be explained by saying that
at high frequencies the glacier acts as a perfect integrator of the changes in accumulation rate,
that is ¢hi /¢t = ax, giving the response |H| ~ w~". At medium frequencies the response at the
terminus is greater than this because it is reinforced by kinematic waves from higher up the
glacier. But at low frequencies the glacier no longer integrates, because the leakage rate is
too fast, and we have A, simply proportional to a.

The curves of |H| for E = o-1 in Figures 1a, b are similar in general form to those for
L7 — 1, but they cross at w — 1-2 (owing presumably to more destructive interference
between the waves).

The phase lag ¢ of the response at v — 7., defined by

H = |H|e 19,

is plotted against log w in Figure 1c. The curve for E — 1 goes through a maximum (at

* Three trial pairs of (L), o(L). namely (0,0), (0,1), (1,0) were in fact used before 1 realized that two were
enough. The results are the same, but the computer did more work than necessary.
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Fig. ra. Frequency response at the lerminus of an artificial glacier. The response amplitude |H| to a unit amplitude variation of
accumulation and ablation rate is plotled against angular frequency w. w is measured in natwral units (o = ). For
illustration a scale of periods, taking o — 6 yr., is shown at the top
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Fig. tb. Same as Figure 1a, bul showing |H| on a logarithmic scale

w = 4/2) as found in Nye [II]. The curve for E = o-1 is similar but more sharply peaked.
Figure 1d is a polar plot for E = o1 of the end of the vector H as it changes with w.

It seemed desirable for completeness to calculate the response for £ = o, which corre-
sponds to no diffusion and therefore pure kinematic wave propagation down the glacier. The
differential equations become of first order and hyperbolic, instead of second order and
parabolic. The numerical method used for non-zero I fails for this case. It is shown in
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Fig. 1d. Frequency response at the terminus of an artificial glacier, with E = o- 1. A polar plot of the end of the vetor H as or
changes. Numbers against the curve are values of w in natural units (o — 1)
Appendix IT that, if Bo(x) = 1 and Dy(x) = o, the response at x = L may be expressed
quite generally as

L
L
Hi) — G = i [ew TN (19)
z d
where L = f cn(’;). (20)
£
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T(£) is the travel time for a wave from x = {tox — L;in the case under consideration where
¢, 1s given by (11)

L(1—§)

=3

The integral in (19) was evaluated numerically. At small ¢, wT(€) in the integrand is
large and rapidly changing, so the integral was approximated in the range §{ = 0 to € by
the first two terms in the power series in e. Over the rest of the range § = € to L, Simpson’s
Rule was used. With e between 105 and 103, and with the remainder of the range divided
into 400 intervals, this procedure was satisfactory for values of w up to about 2. The accuracy
was checked by changing e and the interval.

For w = 2 a very small interval would have been needed near £ — e to cope with the
rapid change of wT. It seemed preferable to deal with this range of w by direct integration
of the original differential equations. At the same time this gave a check on the previous
results. Equation (4) simply reduces to Q = o(x) H, with co(x) = x(1—x), and equation
(3) therefore becomes

T(¢) = In

Q'= I—in. (21)

Co

The boundary condition is Q = o at x = 0. At x = 0, which is a singularity, (21) does not
suffice to determine Q' directly. In the neighbourhood of x = o the equation is sufficiently
well represented by
. tw
Q= 1-2%
%

which has the general solution

6L fr) =—aPsrsal

1 +iw’
where P is an arbitrary constant. P = o by the boundary condition, and hence

1

L) = (22)
(21) and (22) were integrated from x = o to L (L = —38, 5 = o0-01) by a Runge-Kutta
method. The previous results from (19) were checked and the range of w extended up to
w — 56 (where the ranges o < x =< 0-8g1 and 0-891 = x = 0-99 were divided into
540 and 600 intervals respectively).

The results for E — o are seen in Figures 1a, b, ¢, e, f. Figure 1a shows |H|: log w. The
drop from maximum response takes place in a rather narrower frequency band when there
is no diffusion. In Figure 1b, which shows log |H|: log w, the response amplitude is seen to
oscillate before settling down to fall off as w~". The phase lag ¢ is no longer confined within
a single 360° range. This is seen in the polar plot of Figures 1¢, f; as w rises from o to 2-95
the vector H rotates clockwise through 2] revolutions; it then rotates a further 22 before
coming in with minor oscillations to ¢ = go”. On the plot in Figure 1c ¢ is taken to be
between 0° and 860° and, for clarity, only the two end branches of the curve for E=0
are shown. Appendix II shows that a good approximation for ¢ except at high frequencies is

$ = (@) In e = 263w degrees,
™ 3
for & = o-o01. This gives values of ¢ correct to about 1 per cent up to w = 2.

A polar plot of H, such as Figures 1d, e, f, must start at ¢ = 0 and finish at ¢ = go°.
For E — o-1 it does not encircle the origin (Figure 1d), but for E — o, as we have seen, it
encircles the origin twice. This poses a continuity problem. As E changes continuously
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between o and o-1 the curve must change the number of times it encircles the origin first
from 2 to 1 and then from 1 to 0. How it can do this in a continuous fashion is an interesting
question which has not been studied in detail. Probably, for certain small values of k£, the
curve actually traverses the origin for finite w. This would mean that H — o for certain
finite w—with an infinite downward oscillation on a plot of log |H|: w. The terminus would
be a node for these frequencies.

1,778

422

1+615

Fig. re. Same as Figure rd but for E — o Fig. 1f. Region near the origin of Figure 1e

(i) Results for South Cascade Glacier

Having studied the numerical solution of the basic equations (3) and (4) with B, ¢, and
D, having the special forms (5), it was a simple matter to modify the computer programme
described in §2(i) so that By, e, and D, could be specified in numerical form rather than
calculated algebraically. The behaviour of By, €o, Do at the end points is restricted to the
forms given in Appendix I: namely that, near x — o0, Bo(x) ~ constant, €o(x) ~ x,
Do(x) ~»% and near x — L, Bo(x) ~ constant, €o(x) ~ constant, Dy(x) ~ L—x. The
physical justification for this choice of behaviour at the end points is discussed in Nye [11] and
[TIT]. The resulting programme was first checked by computing the frequency response of
South Cascade Glacier (Meier and Tangborn, 1965), which was already known from previous
work [Nye I11] using the series approximations (7) and (8). The input data on By, €o, Dy
were identical to those used for the earlier hand calculation, except for a slight change to
make B, non-zero at ¥ — o which ought to have been made before. The resulting frequency
response curves arc shown in Figures 2a and b. The curves computed earlier, and reported
in Nye [III], are also shown for comparison. In the parts of the curves previously obtained
by the low frequency series (7) there is no significant difference. But there are significant
differences in the ¢ curves near the maximum. It seems that the earlier results using the »
series (8) were less accurate for w <= 0-6 yr. ' than was thought at the time, and that the
useful range of this series is therefore rather small. There is a suggestion of an oscillation in ¢
near w = 2 yr. ', which is presumably a real effect in view of the similar oscillation seen in
the special model for £ — o-1 and o. The direct computation of / by solving the equations
for fixed w is certainly a much better procedure when an automatic computer is available.
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Period (yr.
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600 '0,00 T T T 300
400 - 200
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Storglacidren
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+00! 0l e I 10
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Fig. 2a. Frequency response at the termini of two glaciers. The response amplitude |H| to a unit amplitude variation of accumu-
lation and ablalion rate is plotted against angular frequency w, and the period (lop scale). Scale on left: Storglacidren.
Scale on right : South Cascade Glacier. Light broken curve shows resulls of previous ealeulation on South Cascade Glacter
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Fig. 2b. Frequency response al the termini of two glaciers. The phase lag ¢ of H on A is plotted against angular frequency a
and the period (top scale). Broken curve shows result of previous caleulation on South Cascade Glacier
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We next wished to use the same computer programme to find the frequency response of
Storglaciaren, Kebnekaise, Sweden. The first step, namely the deduction of the functions
Bo(x), €o(x), Do(x) from observation is described in the next section. The method used is very
similar to that described in Nye [111] for South Cascade Glacier,

3. Bo(x), eo(x) AND Dy(x) FOR STORGLACIAREN

Storglaciiren, a valley glacier with an area of 3-1 km.?, situated in the Kebnekaise massit
of northern Sweden, has been studied since 1945 (Schytt, 1959, 1962) with a view to relating
budget and climate. The carliest measurement of the terminus position was made in 18g7.
Professor H. W:son Ahlmann and Dr. V. Schytt have generously made the measurements,
both published and unpublished, available to me for the present study. The material used has
been:

(i) a topographical map of the glacier for 1959 (prepared at Rikets Alménna Kartverk
under the supervision of Dr. Erik Woxnerud) ;

(ii) curves of accumulation and ablation as a function of altitude for all budget years
from 194546 to 1961-62 (the data from 1949-50 to 1958-59 were collected and
reduced by Dr. Woxnerud);

(iii) a long profile of the glacier surface and bed (seismic work by S. R. Ekman) ;

(iv) data on surface velocities (supplied by Dr. Woxnerud).

An w-axis was set down the line of the measured profile. The breadth B(x) was read
from the map and taken as B,(x) (Fig. 4), except for the snout region. The theoretical model
requires that the glacier have a wedge-shaped snout, with Bs(x) non-zero at the terminus.
Therefore a terminus of this type was arbitrarily constructed as the datum state, having an
area roughly equal to the real areca in 1959. This gave L. — 3,300 m.

A curve of mean elevation as a function of x was constructed from the contour map and
used to plot curves of net budget (equal to accumulation minus ablation) versus x (Fig. 3).
The mean of these net budget curves for 1946-61 was then displaced upwards (by 65-1 cm.

L

of ice/yr.) so that the resulting curve as(x) made the integral l ao By dx equal to zero. In
o
this way the function au(x), which gives the budget in the datum state, was chosen (Fig. 3).
On South Cascade Glacier the net budget curves for the individual budget years run approxi-
mately parallel to one another, being displaced up or down by an amount which is taken
as the ai(t) of the theory. On Storglaciaren, however, the variation from year to year is
usually more complicated than this (sce Fig. 3), so that taking a: as independent of x from
year to year is only a very rough approximation. By taking averages over several successive
years the approximation is improved. Accordingly, when we apply the theory in which a.(2)
is independent of x to Storglacidren it is to be understood that a:(¢) is most meaningful when
interpreted as an average over several years. The question of the best interpretation of a;(¢)
for Storglacidren is taken up again in a later paper (Nye, 1965, which will be referred to as
Nye [V]), which deals with the problem of inferring the net budget history from the terminus
record.
Having fixed aq(x), the datum-state discharge qo(x) was computed from
A"
qolx) = J ao(x) Ba(x) dx.
o
The datum-state surface slope ao(x) was taken from the curve of mean current elevation
versus x. Hence Do(x) was computed from the formula
Do(x) = 390(x) cot aq(x)
derived in Nye [T11].
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Fig. 3. Net budget of Storglacidren from 1945 to 1962 plotled against distance x down the glacier. Numbers on curves refer lo
budgel year, e.g. 46 means 1945-46. Curves arve derived from observations provided by Prof. H. W:son Ahlmann, Dr. V.
Schytt and Dr, E. Woxnerud

If the glacier is assumed to have a parabolic cross-section the average velocity wuo(x)
through a section in the datum state is related to the discharge qo(x) by

qo(x) = 3uolx) Bo(x) ho(x),
where hq(x) is the maximum depth. ho(x) was assumed equal to the measured depth. Hence
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uo(x) was found. The values of u(x) were found to be not significantly different from the
velocities directly measured on the surface centre-line, Thus, by a coincidence, if the velocity
of the glacier were to increase so that the mean velocity over a section was equal to the current
centre-line velocity, the glacier would reach a steady state at its current length. Having found
uo(x), €o(x) was deduced from the formulae

4Ba(x) uo(x) not near x = L,

C()(X) =

Bo(x) uo(x) near x = L

derived in Nye [TT1].
"The resulting functions eo(x), Do(x) are shown in Figure 5. In making the functions have

the behaviour required by the analysis at the end points no violence is done to the observational
data.

B,By, (km)

v
| 1 A
o 1 2 3 4
x (km)

Fig. 4. Measured width B(x) and datom width Bo(x) Jor Storglacidgren. B(x) is from data provided by Prof. H. W:son
Ahlmann, Dr, V. Schytt and Dr. E. Woxnerud
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Fig. 5. eu(x) and Da(x) for Storglacidren inferred from observations provided by Prof. H. W :son Ahlmann, Dr. V. Schytt and
Di. E. Waxnerud
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4. FREQUENCY RESPONSE OF STORGLACIAREN

The same programme that was used for South Cascade Glacier gave the frequency
response curves for the snout of Storglaciaren shown in Figure 2a and b. The general shapes
are the same. The amplitude |H|/4 for low frequencies is twice as great as for South Cascade
Glacier —586 yr. (meaning 586 cm. for 4 = 1 cm./yr.) as against 291 yr. for South Cascade
Glacier. This is because this amplitude is given by So/us(L), where S, is the arca of the datum
glacier. The area of Storglaciaren (3-1 km.*) is about the same as that of South Cascade
Glacier (2-7 km.?), but Storglaciiren moves only half as fast. Hence the amplitude is twice
as great.

‘Another feature of interest is the double maximum on the curve of ¢: log w, which does
not appear for South Cascade Glacier. The centre of this double peak is at w = o-115 yr.™'
whereas the peak for South Cascade Glacier appears at w = 0°240 yr. ', which is almost
exactly twice the frequency. (The periods are 55 yr. and 26 yr. respectively.) The reason is
again that Storglaciaren has almost the same length and breadth as South Cascade Glacier
but moves at only half the speed. All time constants are therefore doubled.

5. j AND A COEFFICIENTS FOR SOUTH CASCADE GLAGIER AND STORGLACIAREN

A programme for calculating the p and A coeflicients in the low frequency series (6) and (7)
was written; the method was identical to that previously used with a desk computer, except
that the integrations of the differential equations were done by a Runge-Kutta technique
instead of by a predictor-corrector method. The programme was first tested on the B, eo, Do
data for South Cascade Glacier (which were almost identical to those used in the hand
caleulation). The results for ¥ = L are shown in columns (1) and (2) of Table I, with the
previous results shown for comparison in column (3). The dependence of the results on the
number of intervals used is an indication of the accuracy. The interval could have been
further reduced, but in view of the uncertainty in the starting data on Bo, €0, Do any greater
precision obtained would be illusory. The agreement with the result of the hand calculation
is reasonable.

The same programme used with the Bo, €, Do data for Storglaciiren gave the results
shown in columns (4) and (5) of the table. The u’s for Storglaciaren are all greater than those
for South Cascade Glacier, again because Storglaciiren moves relatively slowly. (The A’s also
follow this pattern, less obviously: those with positive time dimensions are greater, while Ao,
with dimensions time—*, is less.)

Tasre I. VALUES orF g's AND N's AT ¥ — L

South Cascade Glacier Storglacidiren
(1) (2) (3) (4) (5)

o yr. 292- 1 292-0 295 5890 5883
pix 10t yr.? —1-15 —1-21 —1-28 —3-18 —3-34
pax 10~ yrd 3-41 379 425 -3 12:5
p3 X107 yr.t —0-9 -1 —1-29 —3-2 —3-8
Mxm“’:" yr.? 2-3 2.9 — 8-0 9-9
y;x‘:o‘” yx‘.':_ 05 —0+75 — —1-8 —&-ig,
p6 X 1070 yrt 14 I'=g = 38 55
Ao yr.=" 0-00342 0-00342 000341 0-001698 0-001700
Ar 0-135 0-142 0-149 0-002 0-096
Az yr. 1-34 1-45 155 171 1-87
A yr.* 1-03 0-g1 2 8.8 10-2
A yr:? —8-5 —10-7 —87.1 —88.9
As yrt 37 46 = —498 —484
As yr.’ 220 240 — 11,100 11,500

Col. (1) South Cascade Glacier, Machine computation. 50 intervals.

Col. (2) The same. 100 intervals.

Col. (3) South Cascade Glacier. Previous computation by desk machine.

Col. Storglacidren. Machine computation. 50 intervals.

4 g 5
Col. (5) The same. 100 intervals.
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6. CoNCLUSIONS

The method for finding the frequency response of a glacier described in §2, by direct
solution of the equations for given w, is much superior to the earlier method which used high
and low frequency approximations. Unlike the earlier method it needs an automatic digital
computer. (An analogue computer might also be very suitable but I have not studied this
possibility.) The method makes it possible to see rather clearly the effect of varying the amount
of diffusion of the kinematic waves in the special analytical model (Figs. 1a, b, ¢, d, e, f).

The frequency response of South Cascade Glacier obtained by this means (Figs. 2a, b)
verifies the earlier calculation made with the low frequency series; but it shows that the earlier
results for high frequencies need correction. The response of Storglacidren, Kebnekaise, is
found to be qualitatively very similar to that for South Cascade Glacier but the time scale is
changed by a factor of about two; Storglaciiren moves more slowly and response times are
twice as long. The phase of the response of Storglaciiren shows a double peak which does not
apparently occur for South Cascade Glacier.

The p and A coefficients for Storglaciiren also reflect the slower time scale for this glacier.
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APPENDIX 1

Benaviour or THE Basic EguaTions NEAR THE END PoinTs

We consider the equations
Q' +vBa(x) H — W(x), (23)
0 = co(x) H—Do(x) H', (24)
where the primes denote differentiation with respect to x; Bo(x), €o(x), Da(x) are known
functions, I(x) is a known (real) driving function, and it is required to solve for the unknown

functions () (x), H(x) in the range x = o0 to x — L. v is a parameter that may be positive real,
pure imaginary, or zero, Equations (3) and (4) in the main part of the paper have this form
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if we write v — iw and W(x) — B,(x) 4. The equations are written in the more general form
(23) and (24), where v can be real as well as imaginary, so that the following discussion shall
be applicable to the similar equations used in deducing influence coeflicients in the following
paper [Nye V].

(1) The homogeneous equations. Near x = o. v real and =o
Here we consider the complementary function which is the solution of the homogeneous
equations formed by putting W(x) = o. Thus
Q +vBu(x) H = o, (25)
Q = co(x) H—Dy(x) H'. (26)
Let the behaviour of the coeflicient functions near x = o be:
Bo(x) = Bi+0(x)  (B: > o),
co(x) = ecrx+0(x%) (ex > 0),
Du(x) = di x*+0(x3)  (di > 0),

This behaviour includes both the special model of equations (5) in the text, and also the two
applications to real glaciers. For a solution near x — o put

H = x%(aotard+ ...), o # 0. (27)
Substitute in (26) to find @, then substitute in (25) and equate coefficients of x* to obtain the
indicial equation

di s —(c1—di) s—(e:+B:rv) = o,
of which the solutions are

§ = [ C]_—dl):‘: (C(_dl) |—4d (€]+BJ ) -I/le (28)
Since ¢1, di, B: are all positive and v = o, the roots are real and opposite in sign. Let them be
1 (positive) and s: (negative).

The leading terms of the two linearly independent solutions are proportional to x5 and x$
respectively. (This is true even in the exceptional case where s; and s. differ by an integer
(see e.g. Morse and Peshbach, 1953, p. 532-33).) Therefore one of the two independent
solutions for H is infinite at x — 0. ai, as, ..., can be expressed as multiples of a, by equating
coefficients of higher powers of x. Hence there is a one-parameter set of solutions H(x) satis-
fying a boundary condition that H(x) is not infinite at x — o. This is the first result we wish
to establish.

We now show that this boundary condition is equivalent to @ — o at x = 0. We have,
by substitution of (27) in (26)

0 (%) = (ex—sdy) doxsti- ... . (29)
Hence, since 51 > 0, the solution containing s; gives ) (o) — o. Now, from (28),
= (t'l—di) —(_n+a’r)
52 = 4
od;

that is

sat+1 = o,
the equality occurring if v — o. Therefore in the solution containing s. the exponent of the
first term in (29) is negative or zero. The coeflicient (¢1—sd:) ao is never zero. So the solution
containing s: gives () (0) infinite if » > o, and Q (o) finite and non-zero if v = 0. Hence
the condition 0 (o) — o is equivalent to the condition /(o) not infinite.

(ii) The inhomogeneous equations. Near x — o. v real and =o

Near & = o let

Wx) = Wit ...,
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where the dots stand for terms in x of higher order than zero. We have to find any particular
integral of equations (23) and (24). For this purpose try
H(l) — H1+ tee

Substitute in (24) to find @, then substitute in (23) and equate the constant terms to give

W,
cr VB[I
The leading terms in the general solution are thus

H(}\f) - xal(a()+a1 .7C'+ ...) ';'.'t's"(bu-l-b] N .)+ ”‘jrfl((fl—‘—b’B[) -+ ... o
where 5: > 0, 5» = —1, and a and b, are arbitrary constants. The boundary condition
H(0) not infinite necessitates by — b, = o, It is important to notice that, after the leading
constant term Wi/(¢:+-vBy) from the particular integral, the next term may cither be from
the particular integral or may be the term a, x** from the complementary function. For
example, if v = 0, s1 = a1/d,, and with the special forms (11) and (12) used in the paper this
gives 5: = 1/E(1—8). If E =o0-1, s, is about 10 and so in this case the complementary
function does not appear until about the term x'°.
The behaviour of Q (x) is found from (24) as:
Q(x) = (ex—s1 di) @pxsrtit .,
| (C] — dl) bo XRH_]—F
+{Cr ”—"1/(617} L’Bl)}a+ .
Thus again the condition O (0) — o is equivalent to the condition H(o) not infinite.
For all the members of the one-parameter family of solutions satisfying the boundary
condition at ¥ = o the leading term is the same, namely
H(\) = ”ﬂf‘(f]‘l‘l’Bl)% ey
Q(J{) = i1 ”’}f{_ﬁ ‘I’VBI)}‘ X+ oo

This 1s the second result we wanted to establish.

H; =

(iii) Near x = 0. v = iw
This case with v pure imaginary (w real) is the one needed for the present paper. The
analysis proceeds exactly as before except that () (x) and H(x) are now complex.
The indicial equation solves to give
8 = [(C'|—d1) *}j:({"l-l—ddz } ..I_Idl B LUE'L-HQd]-
Let the roots, which are now complex, be s, — u,--iv; and 5 — u>-}1v2. The leading terms
in [H(x)| for the two independent solutions are |@a| x® and [bo| x¥:. u; is positive and w. is
negative. Hence, just as with v real, the condition |H| not infinite at x — o eliminates one
of the two independent solutions. It may also be proved that us < —1 and s0, as before,
the condition |Q (0)| = o is equivalent. Thus the analysis for v real and v — jw is essentially
the same.
(iv) The homagencous equations. Near x — I,
Put y — L—u, and let the behaviour of the coeflicient functions be
Bo(y) = B.+0(y), Bi>o,
€o(y) = ai+0(y), €1 > 0,
Du(y) =diy+0(y?), di > o.
Lquations (23) and (24) become
Q'—vBo(3) H — —W(3),
O == CU{‘)') H"‘y—DU(_]'J !'["J
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where the primes now denote differentiation with respect to y. Put W(y) = o, and for a
solution near y = o put
H = y*(ao+aiy+ ...), ao # o.
If v — iw the coefficients ao, ax, ..., will be complex. Substitute into the equations, as before.
The lowest power of y is »5~", giving the indicial equation
5(1714'5&1.1) = 0,

whose roots are s = 0 or s — —¢:1/di. The general solution then has the leading terms

H()}) - (a‘,—l— s ‘) —»—_y_t"”’d' (bll+ e .) %
The subsequent coefficients in the two power series are proportional to a, and b, respectively,
so that there is a two-parameter set of solutions. If » = iw the two parameters will be complex.
(v) The inhomogeneous equations. Near x = L
Let W{y) = W:+0(y), and for a particular integral try
H(y) = Hiy+H:p* 4 oo .

By substitution we find, for the leading term,

H W
e _Cl +d[.
The higher coefficients Ha, 1, ..., may also be readily determined. The general solution is

thus
H(y) = (ao+ ...)F+y~ @ (bo+ ...) —{Wif{c:+dr)} y+ ...

If we impose the condition |H| not infinite at x — L (y — o), the second part of the
complementary function is eliminated, since the exponent —e./d: is negative. There is then
a one-parameter (a,) set of solutions in the neighbourhood of x = L satisfying this boundary
condition. (We remember that if v = iw this parameter is complex.) Note that, at x = L,
unlike the situation at x = o, the leading term in these solutions is an arbitrary constant, go.
Note also the result used in the text that for these solutions /4’ and H" at x = L are not
infinite.

APPENDIX 11
FrEQUENCY RESPONSE WITH NO DIFFUSION

We derive here some results for the frequency response of a glacier in which diffusion is
neglected. Earlier work on this problem is described in Nye [T]. We treat the case Bo(x) =1
and put Dy(x) = o. Equations (3) and (4) then reduce to

d!
—Q'+wa = A
dx
(30)
0 =cox) H
Substituting for H in the first equation gives the first-order ordinary differential equation
for O :
d0,  iw
Fx ’kc“(x) Q.: A' (51)
The integrating factor is most conveniently taken as exp { —iw 7T (x)} where
L
e [ 2 <x<L (
(J—) . Cn(x’) (0 =X )‘ 32)
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T (x) is then the time taken for a kinematic wave travelling with velocity ¢, to go from the
point x to the end of the glacier. Multiplying the differential equation by exp {—iwT(x)}

and integrating from o to L we have
i

7
[Qexp {—iwT()}] = 4 f exp {—iwT(£)} dE.
0 o
On the left-hand side O = 0 at x = o by the boundary condition and T(L) = o by its
definition. Hence we simply obtain

I
Q(L) = 4 | exp {—iwT(§)} dt. (33)
0
Alternatively, the independent variable in the integrand may be taken as 7. From the
definition (32),
dT(x) 1
dx 7(—'—()(1’).
Since 7T is a function of x, x may be expressed as a function of 7, and hence ¢, originally a
function of x, may be expressed as a function of 7, namely ¢,(7). We then have
To
QL) = 4 | e(T) exp {—iwT}dT, (34)

where T, is the value of T(x) for x — o.

Equations (33) and (34) are the leading results we want. In (33) the response at x = L
is expressed as a sum of contributions from all points up-stream with the appropriate phase
delays. In (34) the response is expressed as the sum of a number of contributions of linearly
varying phase, each with amplitude e.(T) d7T. (The vector diagram used in optical dif-
fraction problems is analogous. We see, incidentally, that the length of the spiral vector
diagram is constant and equal to the length of the glacier, for

. L
eo(T)dT = | d¢ = L.
o o
A resultant vector of length L corresponds to w — 0. As w increases from zero the vector
diagram curls up, maintaining constant length, and the resultant decreases in length.) H(L)
is readily obtained from Q (L) simply by dividing by ed(L).

A possible shape for the function eq(x) is shown in Figure 6a. We have drawn the curve
symmetrically about a point ¥ — x,,, and have arranged that ¢.(0) — o and e,(L) is non-zero.
Both the special model used in this paper

co(x) = x(1—x), (L<1)
and the one considered in Nye [I]
€x (o @),

colx) =
ef1—x) F=<agL<i
have these features. The function eo(7T) then has the general shape, for T = o, shown in
Figure 6b. eo(7) is non-zero at T — o, rises to a maximum and then approaches zero as
T — o0, Since ¢y = 0 at x = 0, T, is infinite,
If we now arbitrarily define es( 7") for negative T as zero, equation (34) may be rewritten
with new limits of integration as
o
Qw,L) = 4 | e(T) exp (—iwT) dT. (35)
—

Thus O (w, L) is the complex Fourier transform of e,( 7).
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If €o(x) is symmetrical about its maximum at x = xy, it is readily shown that (7)) is
also symmetrical about its maximum, at 7 — T,, say, except of course for the missing tail
at T < 0. We now derive a standard result for the complex Fourier transform of a sym-
metrical function. Let f(7) be a function of 7 symmetrical about 7 — o: f(T) = f(—T).
Now shift the function f(7) a distance 7, to the right to give a new function ¢X(7), say,

o(T) =f(T—Tw).

J(T) is chosen so that ¢X(T) differs from €.(7") only in possessing the negative tail that ¢,(T)
lacks (shown dotted in Figure 6b). Then

o

f *(T) exp (—iwT) dT — ‘[f( T—Tp) exp (—iwT) dT

— 00

= exp (—iwTo) [ f(s) exp (—iws) ds, (36)

where 5 = T—Ty,. In the imaginary part of the integral,

— Jf(s) sin ws ds,

the sign of the integrand changes as the sign of s is changed, since f(s) = f(—s). The integral
in (36) is therefore real and so

[ €X(T) exp (—iwT) dT = Real s exp (—iwTm). (37)
Thus, if the negative tail of €,(T) were not missing, () (w, L) would be given by (37), and so
the phase lag ¢ would be proportional to frequency w,

¢ = wly. (38)

Now the Iourier transtorms of ¢,(7) and e¥(7T) will differ only by the Fourier transform of
the negative tail, and, if eo( 7) at T — o is fairly small, this will have a significant effect only
on the high frequencies. Thus (38) is expected to be a good approximation except at high
frequencies.

€, (x) ¢, (T)
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Fig. 6
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In the special model used in the text, equation (11), T, the travel time from the maximum
of e, to the point x = L, is given by
L 7

T _ dx B dx 1 L . 1—8
SN 1" ) T b e Rl L T

1 1

Hence, except at high frequencies,

1—8
$=wln—. (89)
As shown in the text for 8 — o-o1, this approximation for ¢ is within 1 per cent of the
computed values up to w — 2,
Since ¢/w is the time lag of Q (L) or H(L) on 4, the result (38) may be expressed even more
simply: if €o(x) is a symmetrical _function and there is no diffusion, the time lag of Q (L) or H(L) on
A equals the travel time of a wave from the maximum of o to the point x — L, except at high Srequencies.

The behaviour of ¢ at high frequencies can be found by returning to (34) and integrating
twice by parts:

4w (fw)? _(t'w):

(¢}

T
R — fc::(T) exp (—iwT) dT,
since €o( 7o) = o0 and ¢;(7,) — o. Thus, for high frequencies Q (L) becomes proportional to
(iw)~", giving ¢ — l=. Since ¢,(7) for T = o is positive, the next term in the series shows
that ¢ — }= is approached from the higher side.
o being small it is clear from (39) that, as w increases, the end of the vector Q (L, w) (and
therefore also the vector H(L, w)) will rotate about the origin several times before finally,

as w — o0, coming in to the origin at the angle ¢ — im. Figure re, f shows an example of
this behaviour.
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