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Abstract. To eliminate the problem with artificial boundary conditions and facilitate the use of
Fourier methods, the fringe region (or filter, damping layer, absorbing layer, sponge layer) technique
has been used in direct simulations of transitional and turbulent boundary layers. Despite the fact
that good computational results have been obtained with this technique, it is not fully understood.
The analysis in this paper indicates that the primary importance of the fringe region technique is
to damp out the deviation associated with large scales in the direction normal to the wall. The lack
of boundary conditions is compensated by the knowledge of an exact solution in the fringe region
of the computational domain. The upstream influence from the fringe region is small. Numerical
experiments verifying the theoretical predictions are presented.
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1. Introduction. In many computational problems one is faced with infinite
or semi-infinite domains, which for computational reasons must be made finite. The
computational domain is normally reduced to a finite domain by an artificial bound-
ary. Information from the solution in the exterior domain to the solution in the
computational domain is transferred via the artificial boundary conditions. The type
of knowledge about the exterior solution and how to transfer this knowledge to the ar-
tificial boundary conditions is, roughly speaking, what separates the different types of
artificial boundary conditions in the literature. For a discussion on these matters see
Gustafsson and Kreiss [1]; a comprehensive review on artificial boundary conditions
is given by Givoli [2].

The artificial boundary conditions must lead to a well-posed continuous problem
and augmented with numerical boundary conditions, a stable discrete problem. For a
discussion on well-posedness and stability, see Kreiss [3] and Gustafsson, Kreiss, and
Sundström [4]. To eliminate the difficulties with boundary conditions and facilitate
the use of Fourier methods, the fringe region technique, originally introduced by
Spalart [5], has been used in direct simulations of transitional and turbulent boundary
layers; see Bertolotti, Herbert, and Spalart [6], Spalart and Watmuff [7], Lundbladh
et al. [8], and Berlin, Lundbladh, and Henningson [9]. The computational domain is
divided into one useful region and one fringe region. An extra forcing function is added
to the momentum equations in the fringe region to compensate for the periodicity of
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the problem. It is assumed that the nonphysical phenomena occurring in the fringe
region do not invalidate the solution in the remaining part of the computational
domain. Information about the exterior solution is transferred to the computational
domain via the forcing function.

The Fourier–fringe region method for direct simulations of transitional and turbu-
lent boundary layers is efficient and very accurate. In Bertolotti, Herbert, and Spalart
[6] and Högberg and Henningson [10], for example, it is demonstrated that growth
rates of sensitive instability modes are predicted very accurately when evaluated from
direct numerical simulations utilizing the fringe region technique. Despite the fact
that good computational results have been obtained using this technique, it is not
fully understood. The purpose of this paper is to analyze why an already existing
method works well; it is not our ambition to propose a new computational method.

Techniques similar to the Fourier–fringe region technique have also been used in
conjunction with other types of discretization methods and in other fields of physics.
Kloker, Konzelmann, and Fasel [11] suppressed the vorticity disturbances close to the
outflow boundary in a transitional boundary layer by means of a weighting function.
Colonious, Lele, and Moin [12] combined a stretched grid with a filter to avoid reflec-
tions from the outflow boundary. Karni [13] modified the governing equations in the
fringe region to accelerate convergence to steady state. For examples of other fields of
computational physics where the fringe region technique has been used, see Berenger
[14] and Davies [15].

The remainder of this paper will proceed as follows. An exact linear initial bound-
ary value problem for the deviation between the approximate solution computed using
the fringe region technique and an exact solution is derived in section 2 and analyzed
in section 3. Two constant coefficient problems related to the linear problem are
derived in section 4. The constant coefficient problems are analyzed in section 5.
Numerical experiments related to the theoretical results in section 5 are presented in
section 6. In section 7, we sum up and draw conclusions.

2. The linear problem. The direct numerical simulation of a boundary layer
will be considered. The solution computed by the fringe region technique will be com-
pared with an exact solution u(x, y, t) to the Navier–Stokes equations. The solution
is given by

u1
t = P (u1)u, 0 ≤ y, t ≥ 0,

∇ · u1 = 0, 0 ≤ y, t ≥ 0,
(2.1)

where u = (u1, u3),u1 = (u1, u2), and

P (u1) = −
(
A(u1)

∂

∂x
+B(u1)

∂

∂y

)
+ ε

(
C
∂2

∂x2
+D

∂2

∂y2

)
, ∇ · u1 =

∂u1

∂x
+
∂u2

∂y
,

A(u1) =

(
u1 0 1
0 u1 0

)
, B(u1) =

(
u2 0 0
0 u2 1

)
,

C =

(
1 0 0
0 1 0

)
, D =

(
1 0 0
0 1 0

)
.

The dependent variables and parameter u1, u2, u3, and ε are, respectively, the
x and y components of the velocity, the pressure, and the inverse of the Reynolds
number. The problem (2.1) has to be augmented with boundary conditions and an
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Fig. 2.1. A schematic view of the exact solution u and the periodic solution v.

initial condition. At this point it suffices to mention that the solution approaches a
constant value for large y and that we have a no-slip condition at the wall y = 0, i.e.,

u1(x, 0, t) = 0, lim
y→∞u1(x, y, t) = u1

∞.(2.2)

In the fringe region technique one approximates u in the domain [x, y] ∈ Ω0,
Ω0 = [a, b]× [0,∞[ by the periodic solution v to

v1
t = P (v1)v − λ(x)(v1 − ú1), 0 ≤ y, t ≥ 0,

∇ · v1 = 0, 0 ≤ y, t ≥ 0,
(2.3)

where v = (v1, v3),v1 = (v1, v2) satisfies condition (2.2). The forcing function
−λ(x)(v1− ú1) is introduced in order to compensate for the periodicity of v(x, y, t) =
v(x + L, y, t), L > b − a. ú1 is an approximation of the exact solution u1 close to
x = a. The approximation of u by v is schematically depicted in Figure 2.1 and the
fringe function λ(x) used in the numerical experiments presented below is shown in
Figure 2.2. λ(x) has a flat maximum and is nonzero in a portion of the computational
domain with length α called the fringe region.

Let w = u − v. By subtracting (2.3) from (2.1) with artificial boundaries intro-
duced at x = x0, x1 we obtain

w1
t = P (v1)w − E(u1

x,u
1
y)w1 + F (x, y, t), [x, y] ∈ Ω+, t ≥ 0,

∇ ·w1 = 0, [x, y] ∈ Ω+, t ≥ 0,
w = f(x, y), [x, y] ∈ Ω+, t = 0,

L0w = g0(y, t), x = x0, 0 ≤ y, t ≥ 0,
L1w = g1(y, t), x = x1, 0 ≤ y, t ≥ 0,

w1 = 0, x ∈ [x0, x1], y = 0, t ≥ 0,
w1→ 0, x ∈ [x0, x1], y →∞, t ≥ 0,

(2.4)



1368 JAN NORDSTRÖM, NIKLAS NORDIN, AND DAN HENNINGSON

-

-� α

6

x

λ̄

Fig. 2.2. An example of the fringe function.

                                                                          

-� L

-�
fringe region

-�
fringe region

-

6δ

xx = x0 x = x1x = a x = b

Fig. 2.3. Boundary layer thickness as a function of u (dotted line) and v (solid line).

where w = (w1, p), w1 = (u, v), and Ω+ = [x0, x1]× [0,∞[. L0, L1 are the boundary
operators at x0, x1, respectively, and

F = λ(x)(v1 − ú1) = −λ(x)w1 + λ(x)∆u1, ∆u1 = (u1 − ú1),(2.5)

E(u1
x,u

1
y) =

(
(u1)x (u1)y
(u2)x (u2)y

)
.(2.6)

For v1 > 0, x = x0 is an artificial inflow boundary and x = x1 is an artificial outflow
boundary.

Remark. The nonlinearity in (2.4) has been avoided by using u1 − w1 = v1 in
the operator P . Both u and v are assumed to be bounded known functions in this
paper.

3. Analysis of the linear problem. The problem (2.4) is an initial boundary
value problem with variable coefficients and a full collection of data (F, f, g0, g1). The
data cannot be considered small; hence energy estimates will not imply that v is
an accurate approximation of u. However, estimates of the solution in the region
Ω2 = [a, b]× [0,∞[ in terms of the solution in the fringe regions Ω1 = [x0, a]× [0,∞[
and Ω3 = [b, x1]× [0,∞[ and the data are of interest; see Figures 2.1 and 2.3.

The proof of the following theorem is given in Appendix C.
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Theorem 3.1. The solution to the problem (2.4) satisfies

||w1||22 + 2ε

∫ T

0

(||w1
x||22 + ||w1

y||22
)
eλ̃2(T−t) dt

≤ ||f ||2eλ̃2T +

∫ T

0

(||g||2Γ + λ̃3||∆u1||23
)
eλ̃2(T−t) dt

−
(
||w1||21 + 2ε

∫ T

0

(||w1
x||21 + ||w1

y||21
)
eλ̃2(T−t) dt

)
−
(
||w1||23 + 2ε

∫ T

0

(||w1
x||23 + ||w1

y||23
)
eλ̃2(T−t) dt

)
−
∫ T

0

(
(λ̃1 + λ̃2)||w1||21 + λ̃2||w1||23

)
eλ̃2(T−t) dt,(3.1)

where

||f ||2 =

∫
Ω+

|f |2 dx dy, ||g||2Γ =

∫ ∞
0

(|v1||g0|2)x=x0
+ (|v1||g1|2)x=x1

dy,

||∆u1||23 =

∫
Ω3

|∆u1|2 dx dy, ||w1||2i =

∫
Ωi

|w1|2 dx dy,

λi(t) = max
Ωi

κ, κ =
√

((u1)y + (u2)x)2 + 4((u1)x)2, i = 1, 2, 3,(3.2)

λ̃1 = min
0≤t≤T

||√λ1w
1||21

||w1||21
, λ̃2 = max

0≤t≤T
||√λ2w

1||22
||w1||22

, λ̃3 = max
0≤t≤T

||√λ3∆u1||23
||∆u1||23

.

The additional terms on the right-hand side of (3.1) due to the forcing function
in the fringe region technique are

−
∫ T

0

(
(λ̃1 + λ̃2)||w1||21︸ ︷︷ ︸

from Ω1

+ (λ̃2||w1||23 − λ̃3||∆u1||23)︸ ︷︷ ︸
from Ω3

)eλ̃2(T−t) dt.(3.3)

Roughly speaking, (3.3) indicates that |w1| in Ω2 is reduced by the events in the fringe
region Ω1. The effect by the fringe region Ω3 is unclear and depends on the sign of
λ̃2||w1||23 − λ̃3||∆u1||23. More information on the spatial distribution of |w1| cannot
be obtained from (3.1). A more detailed analysis is necessary in order to determine
that distribution and how much of the error w1 that “leaks out” of the fringe regions
Ω1 and Ω3 into the supposedly useful region Ω2. This analysis will be the topic in the
rest of this paper.

4. The constant coefficient problems. A number of approximations of (2.4)
are necessary to facilitate a more detailed analysis. These approximations must be
carefully chosen such that (i) an analysis of the simplified problem is possible and
(ii) the conclusions drawn from the analysis of the simplified problem are relevant for
the full problem (2.4). Two half-plane problems describing the possibility to force w
toward zero inside the fringe region (the inflow problem) and the upstream influence
of the fringe region (the outflow problem) will be constructed.

First of all, the less complicated boundary operators, L0w = w1 and L1w = w1,
will be considered. These boundary operators also lead to well-posedness of (2.4).
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The boundary data g0 = u1(x0, y, t)− v1(x0, y, t), g1 = u1(x1, y, t)− v1(x1, y, t), and
the forcing function F (see (2.5)) are zero at the wall y = 0. Let δ(x) denote the
boundary layer thickness; see Figures 2.1 and 2.3. It is reasonable to assume that
F, g0, g1 also vanish for y > δ(x1) = δ1, i.e., we have

F (x, y, t) = 0, g0(y, t) = 0, g1(y, t) = 0, y = 0, and y > δ1(4.1)

for the problem (2.4).
The domain Ω+ = [x0, x1] × [0,∞[ in (2.4) is expanded to Ω = [x0, x1]×] −∞,

+∞[ in order to enable the use of Fourier transforms in the y direction. The relation
(4.1) now corresponds to

F (x, y, t) = 0, g0(y, t) = 0, g1(y, t) = 0, |y| ≥ δ, 0 < δ <∞.(4.2)

Furthermore, identical initial data in (2.1) and (2.3) are assumed, i.e., f = 0. An
additional simplification is obtained by freezing the variable coefficients at constant
states ū = (ū, v̄) and λ̄. This yields P (v1) = P , E(u1

x,u
1
y) = 0, and F = λ̄(v1 − ú1).

Note that inside the fringe region λ(x) = λ̄; see Figure 2.2.
Remark. Investigating a linear problem by analyzing the corresponding constant

coefficient problem and neglecting the terms E(ū1
x, ū

1
y)w is a common and normally

fruitful procedure; see Kreiss and Lorenz [16] and Johansson [17]. However, in special
cases these terms can be important; see Nordström [18] for an example.

Let us first consider the inflow problem. Let Ω be such that the fringe region is
located to the utmost left in the computational domain and let x1 = a be located at
the very end of the fringe region; see Figures 2.3 and 4.1. At the inflow boundary
g0 = u1(x0, y, t) − v1(x0, y, t) = g. With the exact solution u1 known in the region
close to the inflow boundary, we can put ú1 = u1, which yields F = −λ̄w1. Now let
x0 = 0 and x1 →∞; the Fourier transformed inflow problem becomes

ŵ1
t = P̂ ŵ − λ̄ŵ1, x ≥ 0, t ≥ 0,

∇̂ · ŵ1 = 0, x ≥ 0, t ≥ 0,
ŵ = 0, x ≥ 0, t = 0,

ŵ1 = ĝ, x = 0, t ≥ 0,
|ŵ1| < ∞, x→ +∞, t ≥ 0.

(4.3)

The analysis of (4.3) will yield an estimate of |ŵ| for x > 0. Note that a necessary
(but not sufficient) condition to obtain a small |ŵ| for x > 0 is that the exact solution
u1 is known in a region close to the inflow boundary. It is not sufficient to know u1

at one specific x location. Unless one can put ú1 = u1, a forcing term will remain in
(4.3). That term will lead to solutions |ŵ| = O(λ̄|u1 − ú1|) for x > 0.

Next we consider the outflow problem. Let Ω be such that the fringe region is
located to the utmost right in the computational domain and let x0 < b be located
upstream of the fringe region; see Figures 2.3 and 4.2. At the outflow boundary
g1 = u1(x1, y, t)− v1(x1, y, t) = g. The forcing function cannot be made zero in this
case; we have F = λ̄(v1(x, y, t)− ú1(x, y, t)) = λ̄(v1(x, y, t)−u1(x−L, y, t)) = λ̄∆u1,
∆u1 = (∆u,∆v). Now let x0 → −∞ and x1 = 0; the Fourier transformed outflow
problem becomes

ŵ1
t = P̂ ŵ + F̂ , x ≤ 0, t ≥ 0,

∇̂ · ŵ1 = 0, x ≤ 0, t ≥ 0,
ŵ = 0, x ≤ 0, t = 0,

ŵ1 = ĝ, x = 0, t ≥ 0,
|ŵ1|<∞, x→ −∞, t ≥ 0.

(4.4)
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The analysis of (4.4) will yield an estimate of |ŵ| for x < −α. Note that the fringe
function λ̄ and consequently also F̂ is nonzero for x ∈ [−α, 0], 0 < α <∞, where α is
the length of the fringe region.

The rest of this paper will deal with problems (4.3) and (4.4). The analysis of
(4.3) will indicate if it is possible to force the solution toward zero inside the fringe
region. The analysis of (4.4) will indicate whether that procedure leads to significant
upstream influence from the fringe region. The relevance of the model problems (4.3)
and (4.4) is tested in section 6 when the theoretical and computational results are
compared.

For later reference, the definitions of the Laplace and Fourier transforms and their
corresponding inverses are given below:

φ̃(y, s) =

∫ ∞
0

e−stφ(y, t) dt, φ(y, t) =
1

2πi

∫ η+i∞

η−i∞
estφ̃(y, s) ds,(4.5)

φ̂(ω, t) =
1

2π

∫ ∞
−∞

e−iωyφ(y, t) dy, φ(y, t) =

∫ ∞
−∞

eiωyφ̂(ω, t) dω.(4.6)

5. Analysis of the constant coefficient problems. The Laplace transformed
version of ŵ1

t = P ŵ − λ̄ŵ1 + F̂ , ∇̂ · ŵ1 = 0 can be written as a first-order system of
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ordinary differential equations

Wx =M(λ̄)W + F(λ̄), W =


˜̂u
˜̂v
˜̂p
˜̂vx

 , F(λ̄) = λ̄


0
0˜̂

∆u

− ˜̂∆v/ε

 ,

M(λ̄) =


0 −iω 0 0
0 0 0 1

−(s+ λ̄+ iωv̄ + εω2) iωū 0 −iωε
0 (s+ λ̄+ iωv̄ + εω2)/ε iω/ε ū/ε

 ,

with the solution

W = Wh + Wp, Wh = exMW0, Wp =

∫ x

0

e(x−ξ)MF dξ.(5.1)

Note that in the inflow case F = F(0) = 0 and in the outflow case M =M(0). The
eigenvalues of M are

κ1 = +|ω|, κ2 = −|ω|, κ3 = +|ω|+ ∆3, κ4 = −|ω| −∆4,(5.2)

where

∆3 = +
ū− 2ε|ω|

2ε

(
1 + ϑ

√
1 +

4εσ1

(ū− 2ε|ω|)2

)
,(5.3)

∆4 = − ū+ 2ε|ω|
2ε

(
1−

√
1 +

4εσ2

(ū+ 2ε|ω|)2

)
,(5.4)

and

ϑ = sign(ū− 2ε|ω|), σ1 = s+ λ̄+ ū|ω|+ iωv̄, σ2 = s+ λ̄− ū|ω|+ iωv̄.(5.5)

For Re(s) ≥ 0 there is one double root, i.e., limκ4σ2→0 = −|ω| = κ2.
The relation between the solution for distinct roots and the solution with one

double root is discussed in Appendix A. It is shown that the solution (5.1) can be
written

W(x) =

[
x1 +

∫ x

0

λ̄ae−|ω|ξdξ
]
e|ω|xψ1 +

[
x2 +

∫ x

0

λ̄be|ω|ξ dξ
]
e−|ω|xψ2

+

[
x3 +

∫ x

0

λ̄ce−κ3ξdξ

]
eκ3xψ3 +

[
x4 +

∫ x

0

λ̄ de−κ4ξ dξ

]
eκ4xψ4,(5.6)

where

ψ1 =


1

i |ω|ω
− σ1

|ω|
iω

 , ψ3 =


1

iκ3

ω

0

i
κ2

3

ω

 , ψ2 =


1

−i |ω|ω
σ2

|ω|
iω

 , ψ4 =


1

iκ4

ω

0

i
κ2

4

ω

 .(5.7)

In the inflow problem (F = 0), a = b = c = d = 0, while for the outflow problem
(F 6= 0), a, b, c, d are given in (A.20), (A.21), and (A.22). The constants x1, x2, x3, x4

in (5.6) will be determined by the boundary conditions.
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5.1. Data considerations. Boundary data g = (u0, v0)T and forcing function
F = λ̄∆u1 (see (4.2), (4.3), (4.4)) which satisfy

g(y, 0) = 0,

∫ +∞

−∞
u0(y, t) dy = 0, (g)|y|>δ = 0, (∆u1)|y|>δ = 0,(5.8)

∣∣∣∣ ∂r+jg∂tj∂yr

∣∣∣∣
|y|≤δ

≤ const.,

∣∣∣∣∂r∆u1

∂yr

∣∣∣∣
|y|≤δ

≤ const., j = 0, 1, r = 0, 1, 2 . . . ,(5.9)

are considered. The first condition in (5.8) is required to get compatibility at t = 0,
the second condition guarantees that no additional momentum is added by the fringe
region technique, and the next two conditions state that the data vanish for |y| > δ.
The assumption that g, gt, ∆u1 are sufficiently smooth for |y| ≤ δ is formulated
in (5.9).

In Appendix B it is shown that (5.8) and (5.9) lead to

ĝt(ω, t) = L−1s˜̂g(ω, s),

∣∣∣∣∂j û0(ω, t)

∂tj

∣∣∣∣ ≤ C0 max
−δ≤y≤+δ

∣∣∣∣∂ju0(y, t)

∂tj

∣∣∣∣ |ω|,(5.10)

∣∣∣∣ωr ∂j ĝ∂tj
∣∣∣∣ ≤ C1, ∣∣∣ωr∆̂u

1
∣∣∣ ≤ C2,(5.11)

where j = 0, 1 and C0, C1, C2 are constants.

5.2. The inflow problem. The constants x1, x2, x3, x4 in (5.6) for the inflow
problem are determined in Appendix D. The exact solution to (4.3) in Laplace space
becomes

W(x) =
κ4

˜̂u0 + iω˜̂v0

κ4 + |ω| ψ2e
−|ω|x +

|ω|˜̂u0 − iω˜̂v0

κ4 + |ω| ψ4e
κ4x.(5.12)

Estimates of W and the proof of the following theorem are given in Appendix D.
Theorem 5.1. The solution of the inflow problem (4.3) satisfies∫ ∞

0

|û(x, ω, t)|2e−2ηt dt ≤ C1e−2θx

∫ ∞
0

{(1 + |ω|)2|û0|2 + |ω|2|v̂0|2}e−2ηt dt,(5.13) ∫ ∞
0

|v̂(x, ω, t)|2e−2ηt dt ≤ C2e−2θx

∫ ∞
0

{(1 + |ω|)2|û0|2 + |ω|2|v̂0|2}e−2ηt dt,(5.14)

∫ ∞
0

|p̂(x, ω, t)|2e−2ηt dt

≤ C3e−2|ω|x
∫ ∞

0

{(
1 + |ω|
|ω|

)2

(|(û0)t|2 + (1 + |ω|)2|û0|2)

}
e−2ηt dt

+ C3e−2|ω|x
∫ ∞

0

{|(v̂0)t|2 + (1 + |ω|)2|v̂0|2}e−2ηt dt,(5.15)

∫ ∞
0

|(p̂y)(x, ω, t)|2e−2ηt dt =

∫ ∞
0

|(p̂x)(x, ω, t)|2e−2ηt dt

≤ |ω|2
∫ ∞

0

|p̂(x, ω, t)|2e−2ηt dt,(5.16)
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?

|ω|

−κR

−λ̄/ū

κR2 = −|ω|
κR4 (λ̄ 6= 0)

κR4 (λ̄ = 0)

−θ

Fig. 5.1. Schematic view of Re(κ2) = κR2 , Re(κ4) = κR4 , and θ as a function of |ω|.

where

θ = min
ξ

(|ω|,Re(κ4)) =

{ |ω|, |ω| ≤ (λ̄+ η)/ū
|ω|+ minξ Re(∆4), |ω|> (λ̄+ η)/ū

}
.(5.17)

In (5.13)–(5.17), 0 ≤ η = Re(s), ξ = Im(s), x > 0, C1, C2, C3 are constants, and ∆4 is
defined in (5.4).

We stress the important role of λ̄. Let s = 0, v̄ = 0, λ̄ = 0; then the function
θ in (5.13)–(5.15) becomes θ ≈ −ε|ω|2/ū for |εω| � 1. This leads to a very slow
exponential decay with respect to x of the low frequency modes in the solution. With
λ̄ 6= 0 one obtains a significant improvement for small |ω| (see Figure 5.1) since
Re(κ4(λ̄ 6= 0)) ≈ −λ̄/ū for small |ω|. Note that the presence of λ̄ has no influence on
the decay of the error in the pressure.

The exponential decay of the solution depends on |ω|. Note that θ = |ω| for small
ω if λ̄ 6= 0. Obviously, |ω| → 0 is a crucial case. The solution seems to be of order 1
in the velocities and pressure gradients and of order |ω|−1 in the pressure. However,
(5.13)–(5.15) and (5.10)–(5.11) evaluated for small ω lead to∫ ∞

0

|û(x, ω, t)|2e−2ηt dt ≤ C4(|ω|e−|ω|x)2

×
∫ ∞

0

{|u0(y, t)|2m + |v0(y, t)|2m}e−2ηt dt,(5.18) ∫ ∞
0

|v̂(x, ω, t)|2e−2ηt dt ≤ C5(|ω|e−|ω|x)2

×
∫ ∞

0

{|u0(y, t)|2m + |v0(y, t)|2m}e−2ηt dt,(5.19)∫ ∞
0

|p̂(x, ω, t)|2e−2ηt dt ≤ C6(e−|ω|x)2

∫ ∞
0

{|u0(y, t)|2m + |v0(y, t)|2m}e−2ηt dt

+ C6(e−|ω|x)2

∫ ∞
0

{|(u0)t(y, t)|2m + |(v0)t(y, t)|2m}e−2ηt dt,(5.20)
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where C4, C5, C6 are constants and∣∣∣∣∂ju0(y, t)

∂tj

∣∣∣∣
m

= max
−δ≤y≤+δ

∣∣∣∣∂ju0(y, t)

∂tj

∣∣∣∣ ,(5.21) ∣∣∣∣∂jv0(y, t)

∂tj

∣∣∣∣
m

= max
−δ≤y≤+δ

∣∣∣∣∂jv0(y, t)

∂tj

∣∣∣∣ , j = 0, 1.(5.22)

We can summarize the result in the following way. For large |ω| there is a fast
exponential decay of the solution in the fringe region (estimates (5.13)–(5.15)). Note
that the estimate (5.10)–(5.11) with r sufficiently large means that ĝ, ĝt and hence
also û, v̂, p̂, p̂x, p̂y decay fast as |ω| → ∞. For small |ω|, the exponential decay is small
but, on the other hand, the solution is of order |ω| in the velocities and pressure
gradients while it is of order 1 in the pressure (estimates (5.18)–(5.20)). The primary
importance of the fringe function λ̄ is to damp out the deviation associated with
small |ω|.

5.3. The outflow problem. The constants x1, x2, x3, x4 in (5.6) for the outflow
problem are determined in Appendix E. The exact solution to (4.4) in Laplace space
becomes W(x) = Wh(x) + Wp(x), where

Wh(x) =
κ3

˜̂u0 + iω˜̂v0

κ3 − |ω| ψ1e
|ω|x − |ω|

˜̂u0 + iω˜̂v0

κ3 − |ω| ψ3e
κ3x,(5.23)

Wp(x) =

[∫ −α
0

λ̄
(κ3 + |ω|)be|ω|ξ + (κ3 − κ4)de−κ4ξ

κ3 − |ω| dξ +

∫ x

0

λ̄ae−|ω|ξ dξ
]
ψ1e
|ω|x

−
[∫ −α

x

λ̄be|ω|ξ dξ
]
ψ2e
−|ω|x

+

[∫ −α
0

λ̄
−2|ω|be|ω|ξ + (κ4 − |ω|)de−κ4ξ

κ3 − |ω| dξ +

∫ x

0

λ̄ce−κ3ξ dξ

]
ψ3e

κ3x

−
[∫ −α

x

λ̄ de−κ4ξ dξ

]
ψ4e

κ4x.(5.24)

Estimates of W and the proof of the following theorem are given in Appendix E.
Theorem 5.2. Consider the outflow problem (4.4). The particular solution sat-

isfies∫ ∞
0

|ûp(x, ω, t)|2e−2ηt dt ≤ C1(λ̄αe|ω|(x+α))2

( |ω|
1 + |ω|2

)2

×
∫ ∞

0

{|∆̂u(x, ω, t)|2m + |∆̂v(x, ω, t)|2m}e−2ηt dt,(5.25)∫ ∞
0

|v̂p(x, ω, t)|2e−2ηt dt ≤ C2(λ̄αe|ω|(x+α))2

( |ω|
1 + |ω|2

)2

×
∫ ∞

0

{|∆̂u(x, ω, t)|2m + |∆̂v(x, ω, t)|2m}e−2ηt dt,(5.26)∫ ∞
0

|p̂p(x, ω, t)|2e−2ηt dt ≤ C3(λ̄αe|ω|(x+α))2

(
1

1 + |ω|
)2

×
∫ ∞

0

{|∆̂u(x, ω, t)|2m + |∆̂v(x, ω, t)|2m}e−2ηt dt,(5.27)
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where

|∆̂u(x, ω, t)|m = max
−α≤x≤0

|∆̂u(x, ω, t)|, |∆̂v(x, ω, t)|m = max
−α≤x≤0

|∆̂v(x, ω, t)|.

The homogeneous solution satisfies∫ ∞
0

|ûh(x, ω, t)|2e−2ηt dt ≤ C4(e|ω|(x+α))2

×
∫ ∞

0

{(1 + ε|ω|)2|û0(ω, t)|2 + ε2|ω|2|v̂0(ω, t)|2}e−2ηt dt,(5.28)∫ ∞
0

|v̂h(x, ω, t)|2e−2ηt dt ≤ C5(e|ω|(x+α))2

×
∫ ∞

0

{(1 + ε|ω|)2|û0(ω, t)|2 + ε2|ω|2|v̂0(ω, t)|2}e−2ηt dt,(5.29)

∫ ∞
0

|p̂h(x, ω, t)|2e−2ηt dt

≤ C6(e|ω|(x+α))2

∫ ∞
0

{(1 + ε|ω|)2|û0(ω, t)|2 + ε2|ω|2|v̂0(ω, t)|2}e−2ηt dt

+ C6(e|ω|(x+α))2

∫ ∞
0

{(
1 + ε|ω|
|ω|

)2

|(û0)t(ω, t)|2 + ε2|(v̂0)t(ω, t)|2
}
e−2ηt dt.

(5.30)

The estimate of the pressure gradient is∫ ∞
0

|(p̂y)(x, ω, t)|2e−2ηt dt =

∫ ∞
0

|(p̂x)(x, ω, t)|2e−2ηt dt

≤ |ω|2
∫ ∞

0

|p̂(x, ω, t)|2e−2ηt dt,(5.31)

where p̂ = p̂h + p̂p. In (5.25)–(5.31), x < −α, η ≥ 0, and C1, C2, C3, C4, C5, C6 are
constants.

The exponential decay of the solution outside the fringe region, x < −α, depends
on |ω|. Just as in the inflow problem, |ω| → 0 is a crucial case. For small |ω|, the
particular solution is of order |ω| in the velocities and pressure gradients while it is of
order 1 in the pressure. Worse is that the homogeneous solution seems to be of order
1 in the velocities and pressure gradients and of order |ω|−1 in the pressure. However,
(5.28)–(5.30), (5.10)–(5.11), and (5.21)–(5.22) lead to∫ ∞

0

|ûh(x, ω, t)|2e−2ηt dt ≤ C7(|ω|e|ω|(x+α))2

×
∫ ∞

0

{|u0(y, t)|2m + ε2|v0(y, t)|2m}e−2ηt dt,(5.32) ∫ ∞
0

|v̂h(x, ω, t)|2e−2ηt dt ≤ C8(|ω|e|ω|(x+α))2

×
∫ ∞

0

{|u0(y, t)|2m + ε2|v0(y, t)|2m}e−2ηt dt,(5.33)
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∫ ∞
0

|p̂h(x, ω, t)|2e−2ηt dt

≤ C9(|ω|e|ω|(x+α))2

∫ ∞
0

{|u0(y, t)|2m + ε2|v0(y, t)|2m}e−2ηt dt

+ C9(e|ω|(x+α))2

∫ ∞
0

{|(u0)t(y, t)|2m + ε2|(v0)t(y, t)|2m}e−2ηt dt,(5.34)

where C7, C8, C9 are constants.
We can summarize the result in the following way. Large |ω| leads to a fast

exponential decay of the solution outside the fringe region (estimates (5.25)–(5.30)).

The estimate (5.10)–(5.11) with r sufficiently large means that ĝ, ĝt, ∆̂u
1

and hence
also û, v̂, p̂, p̂x, p̂y decay fast as |ω| → ∞. For small |ω|, the exponential decay is
small but on the other hand, the solution is of order |ω| in the velocities and pressure
gradients, while it is of order 1 in the pressure (estimates (5.25)–(5.27), (5.32)–(5.34)).
Note that the presence of λ̄ increases the upstream influence from the fringe region;
see (5.25)–(5.27). However, λ̄ is multiplied with |ω| in (5.25), (5.26). This means that
for |ω| small, the effect on the velocities and pressure gradients is small. For large |ω|,
the value of λ̄ is irrelevant due to the fast exponential decay of the solution.

6. Numerical experiments. The upstream influence of the fringe region as
well as the ability to force the solution to the specified inflow values will be studied
computationally and compared with the previous theoretical predictions.

6.1. The numerical method and the fringe region technique. The numer-
ical algorithm in the simulation code uses Fourier series expansions in the horizontal
directions, Chebyshev series in the normal direction, and pseudospectral treatment of
the nonlinear terms. The code, developed by Lundbladh, Henningson, and Johansson
[19], has been thoroughly checked and used on a variety of supercomputers. It was
designed to compute temporally evolving flows. Recently, free-stream boundary con-
ditions and the fringe region technique were added to be able to compute spatially
developing boundary layer flows; see [8], [9].

The fringe function (see Figure 2.2) in the code has the following form:

λ(x) = λ̄

[
S

(
x− xstart

∆rise

)
− S

(
x− xend

∆fall
+ 1

)]
,(6.1)

where λ̄ is the maximum strength of the damping and xstart − xend = α the spatial
extent of the region where the damping function is nonzero. ∆rise, ∆fall are the rise
and fall distance of the damping function, respectively, and S(x) is a smooth step
function rising from zero for negative x to 1 for x ≥ 1. We have used

S(x) =


0, x ≤ 0,
1/[1 + exp( 1

x−1 + 1
x )], 0 < x < 1,

1, x ≥ 1,

which has the advantage of having continuous derivatives of all orders.
The function ú in (2.3) is used to prescribe the inflow conditions. Ideally, it

should be an exact solution to the Navier–Stokes equations. In the code, ú1 = u1
BL =

(uBL, vBL)T is used, where

uBL = UB(x, y) + [UB(x− L, y)− UB(x, y)]S

(
x− xmix

∆mix

)
(6.2)
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Table 6.1
Parameters used in the first set of numerical simulations. ymax is the height of the compu-

tational box. The grid corresponds to the number of modes used in the streamwise and normal
directions, respectively. In addition we have used L = 600, xstart = 300, xend = 600, ∆rise = 100,
∆fall = 40, xmix = 300, and ∆mix = 80 for these simulations.

Run Rδ∗ ymax λ̄ grid
A 2400 10 0.01 384× 49
B 2400 10 0.025 384× 49
C 2400 10 0.05 384× 49
D 2400 10 0.1 384× 49
E 2400 10 0.25 384× 49
F 2400 10 0.5 384× 49
G 2400 10 1.0 384× 49
H 2400 10 4.0 384× 49
I 1600 10 1.0 384× 49
J 800 10 1.0 384× 49
K 2400 20 1.0 384× 97

Table 6.2
Parameters used in the second set of numerical simulations. In addition we have used Rδ∗ =

2400, ymax = 10, λ̄ = 1, xmix = 300, ∆mix = 25, and a grid of 384× 49 for these simulations.

Run L xstart xend ∆rise ∆fall

L 600 300 600 70 15
M 550 300 550 70 15
N 500 300 500 70 15
O 450 300 450 70 15
P 400 300 400 70 15

and vBL is calculated from the continuity equation. UB(x, y) is typically a solution of
the boundary layer equations, for zero pressure gradient it is the Blasius solution. L is
the streamwise length of the periodic simulation box. The parameters xmix and ∆mix

are chosen so that the prescribed flow smoothly changes from the outflow velocity to
the inflow velocity within the fringe region. This choice of ú ensures that the decrease
in boundary layer thickness is confined to the fringe region.

In the simulation code, all quantities are normalized by the displacement thick-
ness at the inflow boundary δ∗ and the free-stream velocity U∞. For the Blasius
boundary layer this means that Rδ∗ = 1.708ε−1/2, where Rδ∗ is the Reynolds num-
ber based on the displacement thickness and ε is the previously defined inverse of
the Reynolds number based on the distance from the leading edge. In the compari-
son below of the simulation results with the theoretical predictions, all quantities are
nondimensionalized with δ∗ and U∞.

First, results from 11 simulations will be presented. The parameters used in the
simulations are listed in Table 6.1. Other simulations have been done in order to
check that the results are converged. Note that the fringe region parameters in this
study do not represent the most computationally efficient ones. Instead, they are
chosen to facilitate a comparison with the theoretical results from the analysis above.
In particular, the fringe region used in most of this study is substantially longer than
the one usually used in practice.

A second set of simulations, where the length of the fringe region is varied, is
performed in order to show that shorter lengths also give adequate damping. The
parameters chosen for those simulations are found in Table 6.2.

An investigation of how well the solution v1 = (u, v)T obtained with the fringe
region technique approximates an exact solution to the Navier–Stokes equations will
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Fig. 6.1. Numerical experiments with varying λ̄ showing the energy of the error vs. the stream-
wise distance. Results from simulations A through H are shown in the direction of the arrow. The
maxima of all curves have been normalized to 1.

be made below. The energy of the error (E) is defined in the following way:

E =

∫ ymax

0

[(u− uBL)2 + (v − vBL)2] dy.(6.3)

Recall that u1
BL coincides with the Blasius solution in the physical part of the

computational domain (S = 0) as well as in the latter part of the fringe region (S = 1);
see (6.2). Thus it can be used to estimate both the upstream influence of the fringe
region and the ability to force the flow toward the correct solution.

Due to the lack of an exact solution to the Navier–Stokes equations (u1
BL is an

approximation of that solution), we cannot expect the error to be exactly zero in
the physical domain. However, the difference between the Navier–Stokes solution
and the boundary layer solution u1

BL decreases with increasing Reynolds number.
At the Reynolds numbers used in this investigation (see Table 6.1) the difference is
small enough to make E in (6.3) a relevant measure of the error in the fringe region
technique.

In the simulations F–H in Table 6.1, values of E in the physical part of the domain
below 10−9 were obtained. This exemplifies the typical accuracy of this technique and
implies that the Blasius solution was approximated to about five significant digits.

6.2. Theoretical and computational results: The inflow problem. Recall
that the fringe region starts at the outflow boundary (x = 300) and ends at the inflow
boundary (x = 600). The error E in (6.3) as a function of the streamwise distance
x is shown in Figure 6.1. For small λ̄ (the top curves in the figure), the error decays
slowly toward the end of the fringe region. When λ̄ increases, the error decays faster
in the region 350 < x < 450. For larger x, the decay slows down. Note that the large
errors at the inflow boundary for small λ̄ leads to large errors in the physical region
of the computational domain, 0 < x < 300.

Figure 5.1, which summarizes the most important theoretical result in Theorem
5.1, shows that errors with small normal scales (large ω) decay fast with a decay rate
proportional to λ̄, whereas errors with large normal scales (small ω) decay slower with
a rate proportional to ω. Thus, for large λ̄ one would first expect to see a fast decay
associated with small normal scales. Further downstream a slower decay associated
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Fig. 6.2. Damping of the fringe region as a function of λ̄, simulations A through H.
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Fig. 6.3. Damping of the fringe region as a function of the length of the fringe region, simula-
tions L through P.

with larger normal scales is expected. The results in Figure 6.1 and 6.2 are consistent
with this theoretically predicted behavior: first a fast decay rate which increases
with λ̄ and then a substantially slower one. Figure 6.2 shows the total damping (the
decrease of E from the maximum value at x ≈ 350 to the value of E at x = 600)
in the fringe region as a function of λ̄. The damping initially increases exponentially
with λ̄. This is also in agreement with the theoretical predictions above.

For the largest λ̄’s the total decay of the error decreases; see Figures 6.1 and
6.2. This phenomenon may be due to the fact that we are forcing toward a solution
which is not an exact solution to the Navier–Stokes equations. Recall that the forcing
function in the inflow problem is F = −λ̄w1 + λ̄(u1 − ú1). In the analysis above,
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Fig. 6.4. Energy of the error vs. the streamwise distance. Variation with Reynolds number.
Simulations G, I, and J. The maxima of all curves have been normalized to 1.
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Fig. 6.5. Energy of the error vs. the streamwise distance. Variation with box height. Simula-
tions G and K. The maxima of all curves have been normalized to 1.

ú1 = u1 was assumed, which yields F = −λ̄w1. If ú1 = u1
BL 6= u1, an additional

forcing term proportional to λ̄ will remain in (4.3). That additional forcing term
grows with λ̄ and will lead to increasing errors in |w|.

In practice one is interested in minimizing the length of the fringe region. Figure
6.3 shows that the damping decreases only slightly when the length of the fringe region
is shortened to 1/3 of the size used in the first set of numerical examples.

6.3. Theoretical and computational results: The outflow problem. The
upstream influence of the fringe region is studied by considering the behavior of the
error E close to the outflow boundary of the physical domain, i.e., in the region
200 < x < 300. Figure 6.4 shows the error for three different Reynolds numbers.
The fact that the Blasius solution approximates the Navier–Stokes solution better for
higher Reynolds numbers explains the decrease of the error in the physical domain
with increasing Reynolds numbers. Figure 6.4 also shows that the upstream influence
in relative terms is independent of the Reynolds number. Since the streamwise dis-
tance in each calculation is scaled with δ∗ at the inflow boundary, this means that
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Table 6.3
Theoretically estimated upstream influence compared with the upstream influence in the numer-

ical experiments shown in Figure 6.5.

ymax Decay rate(ω1) Decay rate(ω2) Estimated slope
10 0.1571 0.0772 0.054
20 0.0785 0.0508 0.038

the upstream influence in absolute terms increases proportionally to the Reynolds
number. For the same reason, the height of the computational box and the fringe
region parameters in (6.1) and (6.2) also increase in absolute terms with the Reynolds
number.

The estimates in Theorem 5.2 and (5.32)–(5.34) show that the error with the
largest normal scale has the slowest upstream decay. The velocity disturbances are
proportional to |ω| exp (|ω|(x+ α)), while the pressure disturbance is proportional
to exp (|ω|(x+ α)). In fact, as the normal scale approaches infinity (ω → 0) the
upstream influence increases without bound (although the amplitude of the velocity
disturbances goes to zero). In the simulations, the largest normal scale is proportional
to the height of the computational box ymax. Thus it is reasonable to assume that the
increase of ymax in absolute terms with the Reynolds number is responsible for most
of the increased upstream influence in Figure 6.4. Indeed, Figure 6.5 shows that this
is the case. When ymax is doubled, the upstream influence substantially increases.

The theoretical analysis above does not account for the influence of the wall nor
the finite height of the computational box. To quantitatively predict the upstream
decay of the error, an estimate of ωmin is required. The slowest varying Fourier com-
ponent that is zero at the wall and has a zero derivative at ymax has a wavelength of
4ymax. Hence, a reasonable estimate of ωmin would be π/(2ymax). Another predic-
tion of ωmin can be obtained by solving the Orr–Sommerfeld equation for a steady
mean flow given by the Blasius profile. For zero frequency disturbances (we consider
a steady mean flow), the boundary conditions in the stability calculation correspond
to the free-stream boundary conditions used in the simulation code. For a discussion
of hydrodynamic instability and the Orr–Sommerfeld equation, see Drazin and Reid
[20].

Table 6.3 shows a comparison between the upstream decay estimated using ωmin =
ω1 = π/(2ymax), ωmin = ω2 corresponding to the least damped, zero frequency, up-
stream propagating mode from the Orr–Sommerfeld equation, and the decay obtained
from Figure 6.5. The slope in Figure 6.5 has been estimated in the interval between
the first peak in E and 100 units upstream of that peak. The decay rates have been
computed using ymax = 10 and ymax = 20. The results using ω2 from the stabil-
ity calculations and the numerical simulation correspond reasonably well whereas the
estimate ω1 underpredicts the upstream influence.

Finally it should be mentioned that the height of the computational box is not
the only factor that influences the upstream influence of the fringe region. As an
example, Figure 6.1 shows that it is also influenced by the value of λ̄. Traces of that
influence can be seen in (5.24) and in the estimates (5.25)–(5.27), but in general there
is not a complete explanation for that behavior in the simplified analysis presented
above.

7. Summary and conclusions. An exact linear problem describing the devi-
ation between an exact solution of the Navier–Stokes equations and the approximate
solution computed using the fringe region technique was derived and energy estimates
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were obtained. However, the data could not be considered small; hence these estimates
did not imply that the deviation was small. Moreover, only limited information about
the spatial distribution of the deviation could be obtained from the linear problem. To
facilitate a more detailed analysis, the linear problem was simplified and two constant
coefficient half-plane problems describing the possibility to force the deviation toward
zero inside the fringe region (the inflow problem) and the upstream influence of the
fringe region (the outflow problem) were constructed. These problems were formally
solved exactly and estimates of the deviation were obtained.

Theorem 5.1 indicates that it is possible to force the deviation toward zero in
the fringe region. Large |ω| (corresponding to large y derivatives) leads to a fast
exponential decay of the deviation in the fringe region. For small |ω|, the decay is
small, but on the other hand, the deviation is of order |ω| in the velocities and pressure
gradients while it is of order 1 in the pressure. It was also shown that the primary
importance of the fringe function λ̄ is to damp out the deviation associated with small
|ω|. Furthermore, it is important to know the exact solution in a region close to the
inflow boundary. It is not sufficient to know u1 at one specific x location.

Theorem 5.2 indicates that the upstream influence from the fringe region is small.
Large |ω| leads to a fast exponential decay of the solution outside the fringe region.
For small |ω|, the decay is small, but on the other hand, the solution is of order |ω|
in the velocities and pressure gradients while it is of order 1 in the pressure. The
fringe function λ̄ increases the upstream influence. Fortunately, λ̄ is multiplied with
|ω| in the estimates for the velocities and pressure gradients. This means that for |ω|
small, the effect of λ̄ is small. For large |ω|, the value of λ̄ is irrelevant due to the fast
exponential decay of the solution.

Numerical computations using a Navier–Stokes code with the fringe region tech-
nique implemented were performed and comparisons with the theoretical results were
done. In the inflow problem, the slow decay of the large normal scales for large
λ̄ predicted in Theorem 5.1 was verified. Furthermore, the exponential increase in
damping of the fringe region due to the increase in λ̄ was also verified. The impor-
tance of knowing an accurate solution in a region close to the inflow boundary was
further stressed. The upstream influence predicted in Theorem 5.2 was also compared
with computational results. By increasing the height of the computational box and
thereby reducing the smallest normal wavenumber available, an increased upstream
influence was obtained. The theoretical decay rates using estimates of ωmin from
Orr–Sommerfeld calculations and the decay rates from the Navier–Stokes calculations
agreed reasonably well.

By combining the conclusions drawn from the analysis and numerical computa-
tions in this paper we arrive at the following. It is possible to force the periodic
solution computed by the fringe region technique toward the exact solution. The lack
of boundary conditions in the fringe region technique can be compensated by the
knowledge of an exact solution to the incompressible Navier–Stokes equations in the
fringe region of the computational domain. Moreover, the price one has to pay in
the form of upstream influence from the fringe region is small. In short, the analysis
and computations in this paper indicate that it is possible to use the fringe region
technique in combination with the Fourier method to obtain accurate numerical solu-
tions to the inflow-outflow problem associated with the incompressible Navier–Stokes
equations.

Appendix A. The matrix exponential and coinciding eigenvalues. An
explicit form of the solution given in (5.1) will be derived. For Re(s) ≥ 0 there is
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a double root at σ2 = 0, i.e., limκ4σ2→0 = −|ω| = κ2. Let Ms = TDT−1 and
Md = SKS−1 be the matrix M for distinct and coinciding eigenvalues, respectively.
The matrices T,D,T−1 are

T =

 | | | |
ψ1 ψ3 ψ2 ψ4

| | | |

 , D =


|ω| 0 0 0
0 κ3 0 0
0 0 −|ω| 0
0 0 0 κ4

 ,

T−1 =

 | | | |
φ1 φ2 φ3 φ4

| | | |

 ,

ψ1 =



1

i |ω|ω

− σ1

|ω|

iω


, ψ3 =



1

iκ3

ω

0

i
κ2

3

ω


, ψ2 =



1

−i |ω|ω
σ2

|ω|

iω


, ψ4 =



1

iκ4

ω

0

i
κ2

4

ω


,(A.1)

φ1 =



− εκ3κ4

2σ1

ε|ω|κ4(κ4(σ1−σ2)+|ω|(σ1+σ2))
2(κ3−κ4)σ1σ2

− εκ3κ4

2σ2

−ε|ω|κ3(κ3(σ1−σ2)+|ω|(σ1+σ2))
2(κ3−κ4)σ1σ2


, φ2 =



−iεω(κ3+κ4)
2σ1

−iεω(σ1+σ2)(κ2
4−ω2)

2(κ3−κ4)σ1σ2

−iεω(κ3+κ4)
2σ2

iεω(σ1+σ2)(κ2
3−ω2)

2(κ3−κ4)σ1σ2


,(A.2)

φ3 =



− |ω|2σ1

εω2(κ2
4−ω2)

(κ3−κ4)σ1σ2

|ω|
2σ2

− εω2(κ2
3−ω2)

(κ3−κ4)σ1σ2


, φ4 =



iεω
2σ1

iεω(κ4(σ1+σ2)+|ω|(σ1−σ2))
2(κ3−κ4)σ1σ2

iεω
2σ2

−iεω(κ3(σ1+σ2)+|ω|(σ1−σ2))
2(κ3−κ4)σ1σ2


.(A.3)

The matrices S,K,S−1 are

S =

 | | | |
Ψ1 Ψ3 Ψ2 Ψ4

| | | |

 , K =


|ω| 0 0 0

0 ū+ε|ω|
ε 0 0

0 0 −|ω| 1
0 0 0 −|ω|

 ,

S−1 =

 | | | |
Φ1 Φ2 Φ3 Φ4

| | | |

 ,
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Ψ1 =



1

i |ω|ω

−2ū

iω


, Ψ3 =



1

i ū+ε|ω|
εω

0

i (ū+ε|ω|)2

ε2ω


,(A.4)

Ψ2 =



1

−i |ω|ω
0

iω


, Ψ4 =



1
|ω|

0

ū+2ε|ω|
|ω|

−i ω|ω|


,(A.5)

Φ1 =



ū+ε|ω|
4ū

− ε3|ω|3
ū(ū+2ε|ω|)2

(ū+ε|ω|)(ū+4ε|ω|)
4(ū+2ε|ω|)2

|ω|(ū+ε|ω|)
2(ū+2ε|ω|)


, Φ2 =



−iω
4|ω|

−iε|ω|ω
(ū+2ε|ω|)2

iω(3ū2+8ūε|ω|+8ε2ω2)
4|ω|(ū+2ε|ω|)2

−iūω
2(ū+2ε|ω|)


,(A.6)

Φ3 =



− 1
4ū

ε2ω2

ū(ū+2ε|ω|)2

− ū
4(ū+2ε|ω|)2

|ω|
2(ū+2ε|ω|)


, Φ4 =



iεω
4ū|ω|

−iε2ω(ū+ε|ω|)
ū(ū+2ε|ω|)2

−iε|ω|(3ū+4ε|ω|)
4ω(ū+2ε|ω|)2

iεω
2(ū+2ε|ω|)


.(A.7)

A.1. Calculation of the matrix exponentials. Let A, B, C, D, E be square
4-by-4 matrices and x = (a, b, c, d)T an arbitrary vector. Furthermore, let A =
BCB−1 and DE = ED. The formulas

eA =
∞∑
i=0

Ai

i!
, eA = BeCB−1, eD+E = eDeE,(A.8)

in the theory for matrix exponentials (see Golub and Van Loan [23]) lead to

exMsx = TexDT−1x, exMdx = SexKS−1x,

exD =


e|ω|x 0 0 0

0 eκ3x 0 0
0 0 e−|ω|x 0
0 0 0 eκ4x

 .
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Let K = K1 + K2, where

K1 =


|ω| 0 0 0

0 ū+ε|ω|
ε 0 0

0 0 −|ω| 0
0 0 0 −|ω|

 , K2 =


0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 .

It is easily verified that K1K2 = K2K1. Equation (A.8) leads to exK = exK1exK2 ,
where exK2 = I + xK2 and

exK =


e|ω|x 0 0 0

0 e(ū+ε|ω|)x/ε 0 0
0 0 e−|ω|x xe−|ω|x

0 0 0 e−|ω|x

 ,

exK1 =


e|ω|x 0 0 0

0 e(ū+ε|ω|)x/ε 0 0
0 0 e−|ω|x 0
0 0 0 e−|ω|x

 , exK2 =


1 0 0 0
0 1 0 0
0 0 1 x
0 0 0 1

 .

The final result in the single root case is

exMsx = TexDT−1x = u1ψ1e
|ω|x + u2ψ3e

κ3x + u3ψ2e
−|ω|x + u4ψ4e

κ4x,(A.9)

where

TexD =

 | | | |
ψ1e
|ω|x ψ3e

κ3x ψ2e
−|ω|x ψ4e

κ4x

| | | |

 ,(A.10)

T−1x = aφ1 + bφ2 + cφ3 + dφ4 =


u1

u2

u3

u4

 .(A.11)

The final result in the double root case is

exMdx = SexKS−1x

= v1Ψ1e
|ω|x + v2Ψ3e

(ū+ε|ω|)x/ε + ((v3Ψ2 + v4Ψ4) + xv4Ψ2)e−|ω|x,(A.12)

where

SexK =

 | | | |
Ψ1e

|ω|x Ψ3e
(ū+ε|ω|)x/ε Ψ2e

−|ω|x (Ψ4 + xΨ2)e−|ω|x

| | | |

 ,(A.13)

S−1x = aΦ1 + bΦ2 + cΦ3 + dΦ4 =


v1

v2

v3

v4

 .(A.14)
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A.2. Convergence of the diagonal form to the Jordan form. It will be
verified that

exMsx
σ2→0→ exMdx.(A.15)

Consider (A.9) for small σ2; a Taylor expansion yields

eκ4x =

(
1− σ2

ū+ 2ε|ω|x
)
e−|ω|x +O(σ2

2)(A.16)

and consequently

TexDT−1x = u1ψ1e
|ω|x + u2ψ3e

κ3x

+

(
(u3ψ2 + u4ψ4)− x σ2

ū+ 2ε|ω|u4ψ4

)
e−|ω|x.(A.17)

Equations (A.17) and (A.12) imply that (A.15) holds if

u1ψ1 → v1Ψ1, u2ψ3 → v2Ψ3, u3ψ2 + u4ψ4 → v3Ψ2 + v4Ψ4,

− σ2

ū+ 2ε|ω|u4ψ4 → v4Ψ2(A.18)

as σ2 → 0. Elementary but tedious algebra, the use of (A.1)–(A.3), (A.4)–(A.7),
(A.10), (A.11), (A.14), and

κ3 =
ū+ ε|ω|

ε
+

σ2

ū+ 2ε|ω|+O(σ2
2), κ4 = −|ω|− σ2

ū+ 2ε|ω|+O(σ2
2), σ1 = 2ū|ω|+σ2

confirm that (A.18) and consequently also (A.15) hold.

A.3. The homogeneous and particular solution. The homogeneous part of
the solution Wh in the single root case is given in (A.9) while its double root form is
given in (A.12). It is possible to choose the coefficients ui in (A.9) as functions of the
coefficients vi in (A.12) such that the single root form converges to the double root
form. Let 

u1

u2

u3

u4

 =


1 0 0 0
0 1 0 0

0 0 1 |ω|(ū+2ε|ω|)+σ2

|ω|σ2

0 0 0 − ū+2ε|ω|
σ2




v1

v2

v3

v4

 .(A.19)

Elementary algebra shows that (A.19) leads to (A.18); i.e., the single root solution
converges to the double root solution as σ2 → 0.

Equation (A.15) implies that the particular solution Wp in (5.1) can be deter-
mined by using x = F(λ̄) in (A.9), (A.10), (A.11). The result is

Wp(x) =

∫ x

0

λ̄ae−|ω|ξ dξ e|ω|xψ1 +

∫ x

0

λ̄be|ω|ξ dξ e−|ω|xψ2

+

∫ x

0

λ̄ce−κ3ξ dξ eκ3xψ3 +

∫ x

0

λ̄de−κ4ξ dξ eκ4xψ4,

where

a =
−|ω| ˜̂∆u− iω ˜̂∆v

2σ1
, b =

+|ω| ˜̂∆u− iω ˜̂∆v
2σ2

,(A.20)
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c = +
εω2(κ2

4 − ω2)

(κ3 − κ4)σ1σ2

˜̂
∆u− iωκ4(σ1 + σ2) + 2ūω2

2(κ3 − κ4)σ1σ2

˜̂
∆v,(A.21)

d = − εω2(κ2
3 − ω2)

(κ3 − κ4)σ1σ2

˜̂
∆u+ iω

κ3(σ1 + σ2) + 2ūω2

2(κ3 − κ4)σ1σ2

˜̂
∆v.(A.22)

Appendix B. Data considerations. Equation (4.5) leads to Lĝt = s˜̂g(ω, s)−
ĝ(ω, 0). The first condition in (5.8) yields ĝ(ω, 0) = 0 and hence ĝt = L−1s˜̂g(ω, s).
The mean value theorem and (4.6) yield

û0(ω, t) = û0(0, t) +
∂û0(θω, t)

∂ω
ω,

∂û0(θω, t)

∂ω
=

1

2π

∫ ∞
−∞

(−iy)e−iθωyu0(y, t) dy, 0 < θ < 1.(B.1)

The second condition in (5.8) leads to û0(0, t) = 0. The third condition in (5.8) and
(B.1) lead to ∣∣∣∣∂û0(θω, t)

∂ω

∣∣∣∣ ≤ 1

2π

∫ δ

−δ
|y||u0(y, t)| dy ≤ δ2

π
|u0(y, t)|m,

|u0(y, t)|m = max
−δ≤y≤+δ

|u0(y, t)|.

The second condition in (5.8) also yields
∫ +∞
−∞ (u0)t(y, t)dy = 0; hence (û0)t can be

estimated in a similar way. Let us summarize the results. Conditions (5.8) in physical
space lead to

ĝt(ω, t) = L−1s˜̂g(ω, s),

∣∣∣∣∂j û0(ω, t)

∂tj

∣∣∣∣ ≤ C0 ∣∣∣∣∂ju0(y, t)

∂tj

∣∣∣∣
m

|ω|, j = 0, 1,

in transformed space. C0 is a constant.
The definition of the Fourier transform (4.6), (5.8), and (5.9) yield∣∣∣∣ωr ∂j ĝ∂tj

∣∣∣∣ ≤
∣∣∣∣∣ 1

2π

∫ δ

−δ
e−iωy

∂r+jg

∂yr∂tj
dy

∣∣∣∣∣ ≤ C1,∣∣∣ωr∆̂u
1
∣∣∣ ≤ ∣∣∣∣∣ 1

2π

∫ δ

−δ
e−iωy

∂r∆u1

∂yr
dy

∣∣∣∣∣ ≤ C2, j = 0, 1,(B.2)

where C1, C2 are constants. The estimates in (B.2) with r > 0 mean that ĝ, ĝt, and

∆̂u
1

decay fast as |ω| → ∞.

Appendix C. Proof of Theorem 3.1. Integration of |w1|2t over the domain
Ω+ = [x0, x1]× [0,∞[ and frequent use of the continuity equations ∇·u1 = 0,∇·v1 =
0,∇ ·w1 = 0 lead to

||w1||2t + 2ε(||w1
x||2 + ||w1

y||2)

= −
∫

Ω+

(w1)T (E + ET )w1 + 2λ(|w1|2 − (w1)T∆u1) dx dy︸ ︷︷ ︸
IT
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− 2

∫ ∞
0

[
v1

(
u2 + v2

2

)
+ up− ε(uux + vvx)

]x=x1

x=x0

dy︸ ︷︷ ︸
BT1

− 2

∫ x1

x0

[
v2

(
u2 + v2

2

)
+ vp− ε(uuy + vvy)

]y→∞
y=0

dx︸ ︷︷ ︸
BT2

.(C.1)

ET + E is a real nonsingular symmetric matrix, which means that IT , the first
term in (C.1), can be written

IT =

∫
Ω+

[XTw1]T
(
λ+ κ1 0

0 λ+ κ2

)
[XTw1] dx dy

+

∫
Ω+

λ(|w1|2 − 2(w1)T∆u1) dx dy.

The matrix X has the eigenvectors of ET + E as columns and κ1,2 = ±κ where κ
is given in (3.2). With the exact solution u1 known in the left fringe region Ω1 (see
Figures 2.1 and 2.3) we can put ú1 = u1, which yields ∆u1 = 0. In the right fringe
region Ω3, ∆u1 6= 0. This yields −IT ≤ −λ̃1||w1||21 + λ̃2||w1||22 + λ̃3||∆u1||23.

BT2 is identically zero since condition (2.2) leads to w1 = 0 at the wall (y = 0)
and at infinity (y →∞). The estimate −BT1 ≤ ||g||2Γ is obtained by using

L0w =

[(
(v1 + |v1|)/2 0 1

0 (v1 + |v1|)/2 0

)
− ε
(

1 0 0
0 1 0

)
∂

∂x

]
w = v1g0,

L1w =

[(
(v1 − |v1|)/2 1 0

0 (v1 − |v1|)/2 0

)
− ε
(

1 0 0
0 1 0

)
∂

∂x

]
w = v1g1

as boundary conditions. Nordström [21] and Hesthaven and Gottlieb [22] derived
similar strongly well-posed boundary conditions for the compressible Navier–Stokes
equations. The estimates of IT , BT1, and BT2 above and time integration of (C.1)
conclude the proof of Theorem 3.1.

Appendix D. Proof of Theorem 5.1. Recall thatM =M(λ̄) and F = F(0) =
0. The solution is given by (5.6) with a = b = c = d = 0. The boundary conditions
in the inflow problem are(

˜̂u
˜̂v

)
(0) =

(
˜̂u0

˜̂v0

)
,

∣∣∣∣ ˜̂u
˜̂v

∣∣∣∣ (x→∞) <∞.

The conditions at infinity yield x1 = x3 = 0 while x2 and x4 are determined by(
˜̂u0

˜̂v0

)
=

(
1 1

−i|ω|/ω iκ4/ω

)(
x2

x4

)
= Es

(
x2

x4

)
.(D.1)

Equation (D.1) determines x2, x4 uniquely if Es is nonsingular. However,

lim
σ2→0

det(Es) = lim
σ2→0

i

ω
(κ4 + |ω|) = 0, σ2 = s+ λ̄− ū|ω|+ iωv̄,

which seems to imply that the inflow problem is not well-posed.
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At σ2 = 0 there is a double root. The equation corresponding to (D.1) in the
double root case is (see (A.19))(

˜̂u0

˜̂v0

)
=

(
1 1/|ω|

−i|ω|/ω 0

)(
y2

y4

)
= Ed

(
y2

y4

)
.

With a proper choice of constants x2, x4,(
x2

x4

)
=

(
1 (|ω|(ū+ 2ε|ω|) + σ2)/(|ω|σ2)
0 −(ū+ 2ε|ω|)/σ2

)(
y2

y4

)
= A

(
y2

y4

)
,(D.2)

the single root solution converges to the double root solution as σ2 → 0. With that
choice, (D.1) transforms to(

˜̂u0

˜̂v0

)
= EsA

(
y2

y4

)
=

(
1 1/|ω|

−i|ω|/ω −i{(ū+ 2ε|ω|)(κ4 + |ω|) + σ2}/(ωσ2)

)(
y2

y4

)
,(D.3)

where

lim
σ2→0

EsA = Ed, lim
σ2→0

det(EsA) = det(Ed) =
i

ω
6= 0.(D.4)

By solving (D.3) for y2, y4 and transforming back to x2, x4 through the relation
(D.2), we obtain

W(x) =
κ4

˜̂u0 + iω˜̂v0

κ4 + |ω| ψ2e
−|ω|x +

|ω|˜̂u0 − iω˜̂v0

κ4 + |ω| ψ4e
κ4x.(D.5)

The solution (D.5) for each component u, v, p can be written

˜̂u = e−|ω|x
{(

1 +
|ω|
∆

)
˜̂u0 − i ω

∆
˜̂v0

}
+ e−(|ω|+∆)x

{
−|ω|

∆
˜̂u0 + i

ω

∆
˜̂v0

}
,(D.6)

˜̂v = e−|ω|x
{
−i |ω|

ω

(
1 +
|ω|
∆

)
˜̂u0 − |ω|

∆
˜̂v0

}
+ e−(|ω|+∆)x

{
+i
|ω|
ω

(
1 +
|ω|
∆

)
˜̂u0 +

(
1 +
|ω|
∆

)
˜̂v0

}
,(D.7)

˜̂p = e−|ω|x
{
σ

|ω|
(

1 +
|ω|
∆

)
˜̂u0 − i σ

∆

ω

|ω|
˜̂v0

}
,(D.8)

where the notations ∆ = ∆4, σ = σ2, κ4 = −|ω| −∆ have been used. The definitions
of κ4, ∆4, and σ2 are given by (5.2), (5.4), and (5.5) above.

Note that limσ→0 ∆ = 0 indicates that the inflow solution might have a singularity
at σ = 0. However, a Taylor expansion yields

lim
σ→0

˜̂u = e−|ω|x((1 + |ω|x)˜̂u0 − iωx˜̂v0),

lim
σ→0

˜̂v = e−|ω|x(−iωx˜̂u0 + (1− |ω|x)˜̂v0),

lim
σ→0

˜̂p = e−|ω|x(ū+ 2ε|ω|)
(

˜̂u0 − i ω|ω|
˜̂v0

)
.
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Note also that σ(ω = 0) = s+ λ̄ 6= 0.

We need estimates of ˜̂u, ˜̂v, ˜̂p. Note that

Re(σ) > 0⇒ min
ξ

Re(∆) > 0, Re(σ) < 0⇒ min
ξ

Re(∆) < 0, Re(σ) = η+ λ̄− ū|ω|,

where s = η + iξ. Let the function θ be defined by

θ = min
ξ

(|ω|,Re(κ4)) =

{ |ω|, |ω| ≤ (λ̄+ η)/ū
|ω|+ minξ Re(∆), |ω|> (λ̄+ η)/ū

}
.(D.9)

Equation (D.9) and estimates of (D.6)–(D.8) lead to

|˜̂u(x, ω, s)| ≤ K1e
−θx

{
(1 + |ω|)|˜̂u0|+ |ω||˜̂v0|

}
,(D.10)

|˜̂v(x, ω, s)| ≤ K2e
−θx

{
(1 + |ω|)|˜̂u0|+ |ω||˜̂v0|

}
,(D.11)

|˜̂p(x, ω, s)| ≤ K3e
−|ω|x

×
{(

1 + |ω|
|ω|

)
(|s˜̂u0|+ (1 + |ω|)|˜̂u0|) + |s˜̂v0|+ (1 + |ω|)|˜̂v0|

}
,(D.12)

where the constants K1, K2, and K3 are of order 1.

Parseval’s relation and the estimates (D.10)–(D.12) lead to (5.13)–(5.15). To
obtain the estimate (5.15), the first relation in (5.10) has been used. By the defini-
tion of the Fourier transform and the form of the solution in (D.8) we also get the
estimate (5.16).

Appendix E. Proof of Theorem 5.2. Recall thatM =M(0) and F = F(λ̄) 6=
0. The boundary conditions(

˜̂u
˜̂v

)
(0) =

(
˜̂u0

˜̂v0

)
,

∣∣∣∣ ˜̂u
˜̂v

∣∣∣∣ (x→ −∞) <∞

lead to

x2 = −
∫ −α

0

λ̄be|ω|ξ dξ, x4 = −
∫ −α

0

λ̄de−κ4ξ dξ,

x1 =
(κ3

˜̂u0 + iω˜̂v0 − (κ3 + |ω|)x2 − (κ3 − κ4)x4)

κ3 − |ω| ,

x3 =
(−|ω|˜̂u0 − iω˜̂v0 + 2|ω|x2 − (κ4 − |ω|)x4)

κ3 − |ω| ,

and the solution W(x) = Wh(x) + Wp(x). Wh(x) and Wp(x) are given in (5.23)
and (5.24), respectively.

The solution outside the fringe region at x = −α − β, β > 0, can formally be
written

Wh = A1ψ1e
−|ω|(α+β) +A3ψ3e

−κ3(α+β), Wp = B1ψ1e
−|ω|(α+β) +B3ψ3e

−κ3(α+β),
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where

A1 = +
κ3

˜̂u0 + iω˜̂v0

κ3 − |ω| , A3 = −|ω|
˜̂u0 + iω˜̂v0

κ3 − |ω| ,

B1 =

∫ −α
0

λ̄
(κ3 + |ω|)be|ω|ξ + (κ3 − κ4)de−κ4ξ + (κ3 − |ω|)ae−|ω|ξ

κ3 − |ω| dξ,

B3 =

∫ −α
0

λ̄
−2|ω|be|ω|ξ + (κ4 − |ω|)de−κ4ξ + (κ3 − |ω|)ce−κ3ξ

κ3 − |ω| dξ.

Note that the denominator κ3−|ω| is nonzero for all s, ω. It can be shown that |A3ψ3|
and |B3ψ3e

−Re(κ3)α| are bounded. Due to the fast exponential decay of e−Re(κ3)β ,
A3ψ3e

−κ3(α+β) can be neglected compared with A1ψ1e
−|ω|(α+β) and B3ψ3e

−κ3(α+β)

can be neglected compared with B1ψ1e
−|ω|(α+β).

Elementary but tedious algebra and the use of Parseval’s relation lead to the
estimates (5.25)–(5.30). To obtain the estimate (5.30), the first relation in (5.10) has
been used. By the definition of the Fourier transform and the form of the solution in
(5.24) we also get the estimate (5.31) of the pressure gradients.

Acknowledgment. We thank Anders Lundbladh for many fruitful discussions.
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