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Abstract. We give a characteristic p proof of the Bott vanishing theorem for
projective toric varieties using that the Frobenius morphism on a toric variety lifts to
characteristic p2. A proof of the Bott vanishing theorem was previously known only in
the simplicial case. We also generalize the work of Paranjape and Srinivas about
non-liftability to characteristic zero of the Frobenius morphism on flag varieties by
showing that Bott vanishing fails for a large class of flag varieties not isomorphic to a
product of projective spaces.

Let X be a projective toric variety over a field k. In [4] Danilov states the Bott
vanishing theorem

H\X, Ωj

x/k®L) = 0

where Ωj

x/k denotes the Zariski differentials, L is an ample line bundle on X and />0.
Batyrev and Cox proves this theorem in the simplicial case in [2], The purpose of this
paper is to show that the Bott vanishing theorem is a simple consequence of a very
specific condition on the Frobenius morphism in prime characteristic p.

Assume now that k = Z\pZ, where p > 0 and let X be any smooth variety over k.
Recall that the absolute Frobenius morphism F: J - ^ J o n X is the identity on point
spaces and the p-th power map locally on functions. Assume that there is a flat scheme
X{2) over Z/p2Z, such that X^X(2) xz/p2ZZ/pZ. The condition on Fis that there should
be a morphism F ( 2 ) : X(2) -> Xi2) which gives F by reduction mod p. In this case we will
say that the Frobenius morphism lifts to Z/p2Z. It is known that a lift of the Frobenius
morphism to Z/p2Z leads to a quasi-isomorphism

0<i

where the complex on the left has zero differentials and Ω'x denotes the de Rham
complex of X [5, Remarques 2.2 (ii)]. Using duality we prove that σ is in fact a split
quasi-isomorphism.

In general it is very difficult to decide when the Frobenius lifts to Z/p2Z. However
for varieties which are glued together by monomial automorphisms it is easy. This is
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the case for toric varieties, where we show that the Frobenius morphism lifts to Z/p2Z.
This places the Bott vanishing theorem for (singular and smooth) toric varieties and
the degeneration of the Danilov spectral sequence [4, Theorem 7.5.2, Theorem 12.5]
in a natural characteristic p framework.

In the second half of this paper we study the Frobenius morphism on flag varieties.
This is related to the work of Paranjape and Srinivas [14]. They have proved using
complex algebraic geometry that if Frobenius for a flag variety X over k lifts to the
/7-adic numbers Zp = proj limπ Z/pnZ, then A" is a product of projective spaces. We
generalize this result by showing that Frobenius for a large class of flag varieties
admits no lift to Z/p2Z. This is done using a lemma on fibrations linking non-lifting
of Frobenius to Bott non-vanishing cohomology groups for flag varieties of Hermitian
symmetric type over the complex numbers. These cohomology groups have been studied
thoroughly by M.-H. Saito and D. Snow. It seems likely that if X is a flag variety over
C for which the Bott vanishing theorem holds, then X is a product of projective spaces.

Part of these results have been announced in [1]. We are grateful to D. Cox for
his interest in this work and for pointing out the paper [2]. We thank the referee for
pointing out several inaccuracies and for carefully reading the manuscript.

1. Preliminaries. Throughout this paper k will denote a perfect field of char-
acteristic p>0 and X a smooth k-variety unless otherwise stated.

Let « = dim X. By Ωx we denote the sheaf of ^-differentials on X and Ωx = /\ΩX.
The absolute Frobenius morphism F: X-+ Xis the morphism on X, which is the identity
on the level of points and given by F*: (9X{U)-+F^X(U), F*{f) = fp on the level of
functions. If & is an 0x-module, then F^ = & as sheaves of abelian groups, but the
(^-module structure is changed according to the homomorphism ®χ-+F^.Θx.

1.1. The Cartier operator. The universal derivation d: (9X^ΩX gives rise to a
family of fc-homomorphisms dj: Ωx -> Ωx

+ x making Ωx into a complex of ^-modules
which is called the de Rham complex of X. By applying F+ to the de Rham complex,
we obtain a complex F^ΩX of 0x-modules. Let Bx^Zx<^F^ΩX denote the coboundaries
and cocycles in degree /. There is the following very nice description of the cohomology
of F^ΩX due to Cartier [3].

THEOREM 1. There is α uniquely determined graded Θx-algebra isomorphism

which in degree 1 is given locally as

PROOF. [3] and [9, Theorem 7.2]. •

With some abuse of notation, we let C denote the natural homomorphism Zx -»
Ωι

x, which after reduction modulo Bx gives the inverse isomorphism to C" 1 . The
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isomorphism C: Zχ/Bx -> Ωx is called the Carrier operator.

2. Liftings of the Frobenius to W2(k). There is a very interesting connection

[13, §5.3] between the Carrier operator and liftings of the Frobenius morphism to flat

schemes of characteristic p2 due to Mazur. We go on to explore this next.

2.1. Witt vectors of length two. The Witt vectors W2{k) (cf., e.g., [11, Lecture

26]) of length 2 over k can be interpreted as the set k x k, where multiplication and

addition for a = (aθ9 aγ) and b = (b0, bx) in W2(k) are defined by

ab = (aobo,a
p

obί+bp

)a1)

and

In the case k = Z/pZ, one can prove that W2(k)^Z/p2Z. The projection on the first

coordinate W2{k)^k corresponds to the reduction JV2(k)-> W2(k)/pW2(k)^k modulo

p. The ring homomorphism F ( 2 ) : W2(k) -• W2(k) given by F{2\a0, ai) = (ap

), α?) reduces

to the Frobenius homomorphism F on k modulo p.

2.2. Splittings of the de Rham complex. The previous section shows that there

is a canonical morphism Spec k -> Spec W2{k). Assume that there is a flat scheme X(2)

over Spec W2(k) such that

(1) X^X™xSpecW2ik)Speck.

Whe shall say that the Frobenius morphism F lifts to W2(k) if there exists a morphism

F ( 2 ) : X{2) -• Xi2) covering the Frobenius homomorphism F{2) on JV2(k), which reduces

to Fvia the isomorphism (1). When we use the statement that Frobenius lifts to W2(k)

we will always implicitly assume the existence of the flat lift X{2).

THEOREM 2. If the Frobenius morphism on X lifts to W2(k) then there is a split

quasi-isomorphίsm

PROOF. For an affine open subset Spec,4 ( 2 )^X ( 2 ) there is a ring homomorphism

F{2):Ai2)->A{2) such that

where φ : Λ{2) -> A = A{2)/pA{2) is some function and p : A-^ A(2) is the yl(2)-homomor-

phism derived from tensoring the short exact sequence of W2{k)-modu\es

0—+pW2(k) —* W2(k)-^>pW2(k) — > 0
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with the flat HK2(/c)-module A{2) identifying A^A{2)/pA{2) with pA(2). We get the fol-

lowing properties of φ:

J

φ(ab) = άpφ(b) + Pφ(a)

where the bar means reduction modulo p. Now it follows that

ap~ι da + dφ(ά)

where a is any lift of a, is a well defined derivation δ : A^>ZlpecA a F^ΩlpecA, which

gives a homomorphism φ : ΩsPecΛ^Zspecy4 ^^ΏspecΛ This homomorphism can be

extended via the algebra structure to give an ,4-algebra homomorphism σ: φiΩ
i

SpecA

-*ZspecA — F*ΩsPecAi which composed with the canonical homomorphism Zs*pecyl->

J(?'(FχΩspecA) gives the inverse Cartier operator. Since an affine open covering

{SρecA(2)} of X{2) gives rise to an affine open covering {Spec Ai2)/pA(2)} of X, we

have proved that σ is a quasi-isomorphism of complexes inducing the inverse Cartier

operator on cohomology.

Now we give a splitting homomorphism of each component σ f: Ωι

x -» F^Ωχ. Notice

that σ0 : @χ^>F^Θx is the Frobenius homomorphism and that σf (/>0) splits C in the

exact sequence

0 — > t f x — > Z i - ^ f l ' I - * 0 .

Since φfZ,- is an ideal in the tf^-algebra F^Ω'X there is a well defined homomorphism

given by ωι-^φ(ω), where φ(ω)(fj) = C(σπ_/(^)Λω). Evaluating φ on σt(z\ where z is

an /-form, one gets

φ(σf (z))(η) = C(σn _ f(^) Λ σt (z)) = C(σπ(ιy Λ Z)) = η A Z .

Now using the perfect duality between β^"1 and Ωx given by the wedge product one

obtains the desired splitting of σf. •

2.3. Bott vanishing. Let X be a normal variety and lety denote the inclusion of

the smooth locus U c X, If the Frobenius morphism lifts to W2(k) on X, then the

Frobenius morphism on U also lifts to W2{k). Define the Zariski sheaf Ωx of /-forms

on X SίSj^Ωij. Since codimpf - U) > 2 it follows (cf., e.g., [7, Proposition 5.10]) that

Ωx is a coherent sheaf on X,

THEOREM 3. Let X be a projective normal variety such that F lifts to W2{k). Then
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for s>0 and L an ample line bundle.

PROOF. Let U be the smooth locus of X and let j denote the inclusion of U into
X. On U we have by Theorem 2 a split sequence

which pushes down to the split sequence (F commutes with j)

O-+ΩX^F*ΩX.

Now tensoring with L and using the projection formula we get injections for s>0

X, Ωr

x ® L®p)

Iterating these injections and noting that the Zariski sheaves are coherent one gets the
desired vanishing theorem by Serre's cohomological ampleness criterion [8, Proposition
IΠ.5.3.]. D

2.4. Degeneration of the Hodge to de Rham spectral sequence. Let I b e a
projective normal variety with smooth locus U. Associated with the complex Ωx there
is a spectral sequence

£ f = H«(X, Ωp

x) => W+q(X, Ωx)

where H'(X, Ωx) denotes the hypercohomology of the complex Ωx. This is the Hodge to
de Rham spectral sequence for Zariski sheaves.

THEOREM 4. If the Frobenius morphism on X lifts to W2(k)9 then the spectral

sequence degenerates at the Eγ-term.

PROOF. AS complexes of sheaves of abelian groups Ω' and F^Ω' are the same
so their hypercohomology agree. Applying hypercohomology to the split injection
(Theorem 2)

0<t

we get

Σ dimk £ £ = dimk W{X, Ωx) = dimk H" (X, F*ΩX)

p+q=n p+q=n

Since E™ is a subquotient of Eψ, it follows that Σp+q=ndimkEπq^ΣP+q=n

άimkEpiq

holds, hence E^^Eψ, so that the spectral sequence degenerates at Eγ. •

3. Toric varieties. In this section we briefly sketch the definition of toric varieties
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[12], [6] and demonstrate how the results of Section 2 may be applied.

3.1. Convex geometry. Let N be a lattice, M=Hom z(7V, Z) the dual lattice, and

let V be the real vector space V—N®ZR. It is natural to identify the dual space V*

of Kwith M®ZR, and we think of Nc: Kand Ma V* as the subsets of integer points.

By a cone in TV we will mean a subset σaV taking the form σ = {r1v1+ +

rsvs\ri>0} for some OteN. The vectors υl9..., vs are called generators of σ. We define

the dual cone to be σ v ={we F*|<w, v}>0, Vi eσ}. One may show that σ v is a cone

in M. A face of σ is any set σ n u1 for some ueσv. Any face of σ is clearly a cone in

TV, generated by the vt for which <M, uf > = 0.

Now let σ be a strongly convex cone in TV, which means that {0} is a face of σ or

equivalently that no nontrivial subspace of V is contained in σ. We define Sσ to be the

semigroup σ v n M. Since σ v is a cone in M, Sσ is finitely generated.

3.2. Affine toric schemes. If A: is any commutative ring the semigroup ring /c[Sσ]

is a finitely generated commutative Λ -algebra, and Uσ = Spec k[SJ is an affine scheme

of finite type over k. Schemes of this form are called affine toric schemes.

3.3. Glueing affine toric schemes. Let τ = σ n u1 be a face of σ. One may assume

that ueSσ. Then it follows that Sτ = Sσ + Z>0 (-w), so that fc[SJ = fe[SJM. In this way

Uτ becomes a principal open subscheme of Uσ. This may be used to glue affine toric

schemes together. We define a fan in TV to be a nonempty set Δ of strongly convex

cones in N satisfying that the faces of any cone in A are also in A and the intersection

of two cones in A is a face of each. The affine schemes arising from cones in A may be

glued together to form a scheme Xk(A) as follows. If σ, τeA, then σ n τεA is a face of

both τ and σ, so Uσnτ is isomorphic to open subsets Uστ in Uσ and Uτσ in Uτ. Take the

transition morphism φστ: ί/στ-> C/τσ to be the one going through Uσnτ. A scheme A^z!)

arising from a fan zl in some lattice is called a toric scheme.

3.4. Liftings of the Frobenius morphism on toric varieties. Let X= Xk(A) be a

toric scheme over the commutative ring k of characteristic p>0. We are going to

construct explicitly a lifting of the absolute Frobenius morphism on X to W= W2{k).

Define Xi2) to be XW(A). Since all the rings W[Sσ] are free WK-modules, this is clearly

a flat scheme over W2{k). Moreover, the identities WΛ[-S'(T]®fΓA:^/c[5σ] immediately

give an isomorphism X(2) x SpccWSpeck = X.

For σεA, let F (

σ

2 ) : W[Sσ]-> VF[5J be the ring homomorphism extending F ( 2 ) :

W^> W and mapping ueSσ to wp. It is easy to see that these maps are compatible

with the transition morphisms, so we may take Fi2): X(2) -• X(2) to be the morphism

which is defined by Fi2) locally on Spec W[Sσ~\. This gives the lift of F to W2{k) and

completes the construction.

3.5. Bott vanishing and the Danilov spectral sequence. Since toric varieties are

normal we get the following corollary of Section 2:

THEOREM 5. Let X be a projective toric variety over a perfect field k of character-

istic p>0. Then
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Uq(X, ΩP

X®L) = O

where q>0 and L is an ample line bundle. Furthermore the Danilov spectral sequence

Eψ = Hq(X, Ωp

x) => Up+q(X, Ωx)

degenerates at the Eγ-term.

REMARK 1. One may use the above to prove similar results in characteristic zero.

The key issue is that we have proved that the Bott vanishing and degeneration of the

Danilov spectral sequence holds in any prime characteristic. Also using the Poincare

residue map on the weight filtration of the logarithmic de Rham complex [4, §15.7],

one may prove that the Bott vanishing theorem implies the vanishing theorem of Batyrev

and Cox [2, Theorem 7.2] for general projective toric varieties.

4. Flag varieties. In this section we generalize a result due to Paranjape and

Srinivas on the non-lifting of Frobenius on flag varieties not isomorphic to products

of projective spaces. The key issue is that one can reduce to flag varieties with rank 1

Picard group. In many of these cases one can exhibit ample line bundles with Bott

non-vanishing.

We now set up notation. In this section k will denote an algebraically closed field

of characteristic p > 0 and varieties are A>varieties. Let G be a semisimple algebraic

group and fix a Borel subgroup Bin G. Recall that (reduced) parabolic subgroups P^B

are given by subsets of the simple root subgroups of B. These correspond bijectively

to subsets of nodes in the Dynkin diagram associated with G. A parabolic subgroup

Q is contained in P if and only if the simple root subgroups in Q is a subset of the

simple root subgroups in P. A maximal parabolic subgroup is the maximal parabolic

subgroup not containing a specific simple root subgroup.

We shall need the following result from the appendix to [10]:

PROPOSITION 1. Let X be a smooth variety. If the sequence

0 >BX—+ ZX-^LΩX—+0

splits, then the Frobenius morphism on X lifts to W2(k).

We also need the following fact derived from, for instance, [8, Proposition II.8.12

and Exercise Π.5.16(d)].

PROPOSITION 2. Let f: X-+ Y be a smooth morphism between smooth varieties X

and Y. Then for every neN there is a filtration F° 3 F1 3 of Ωn

x such that

LEMMA 1. Let f: X^Y be a surjective, smooth and projective morphism between
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smooth varieties X and Y such that the fibers have no non-zero global n-forms, where

n>0. Then there is a canonical isomorphism

and a splitting σ : Ωx -• Zx of the Cartier operator C: Zx-+Ωx induces a splitting

/ Λ,G \ iftV ^ JLJ V Of O ! £Ί\ ^ flftVTQ. 1 1 J 1 1

PROOF. Notice first that &γ^>f*&x is an isomorphism of rings as/is projective
and smooth. The assumption on the fibers translates mtof^Ωn

x/γ(S)k(y)^H°(Xy, Ωn

Xy) =
0 for geometric points ye Y, when n>0. So we get f*Ωn

x/γ = 0 for n>0. By Proposition
2 this means that all of the natural homomorphisms Ωγ ->f*Ωn

x induced by Θγ -*f*Θx -•
f*Ωx are isomorphisms giving an isomorphism of complexes

0 > Θγ > Ωγ • Ωγ • •••

o
This means that the middle arrow in the commutative diagram

0 • Bγ • Z\ — Ωγ > 0

is an isomorphism and the result follows. •

COROLLARY 1. Let Q^P be two parabolic subgroups of G. If the Frobenius
morphism on G/Q lifts to W2{k\ then the Frobenius morphism on G/P lifts to W2{k).

PROOF. It is well known that G/Q -> G/P is a smooth projective fibration, where
the fibers are isomorphic to Z=P/Q. Since Z is a rational projective smooth variety it
follows from [8, Exercise Π.8.8] that H°(Z, Ωn

z) = 0 for n>0. Now the result follows
from Lemma 1 and Proposition 1. •

In specific cases one can prove using the "standard" exact sequences that certain
flag varieties do not have Bott vanishing. We go on to do this next.

Let Y be a smooth divisor in a smooth variety X. Suppose that Y is defined by
the sheaf of ideals / ^ Θx. Then [8, Proposition 11.8.17(2) and Exercise Π.5.16(d)], for
instance, gives for n e N an exact sequence of #y-modules

From this exact sequence and induction on n it follows that H°(/yi, Ωj

pn ® Θ(m)) = 0,
when m<j andy'>0.

4.1. Quadric hypersurfaces in F1. Let Y be a smooth quadric hypersurface in



FROBENIUS MORPHISM ON A TORIC VARIETY 363

P", where n>4. There is an exact sequence

From this it is easy to deduce that

using that H°(F, Ωj

pn (g) Θ{m)) = 0, when m <j and j > 0.
4.2. The incidence variety in F1 x F1. Let A" be the incidence variety of lines and

hyperplanes in F1 x P", where n>2. Recall that X is the zero set of xoyo+
so that there is an exact sequence

Using the Kunneth formula it is easy to deduce that

4.3. Bott non-vanishing for flag varieties. In this section we search for specific
maximal parabolic subgroups P and ample line bundles L on 7= G/P, such that

where z>0. These are instances of Bott non-vanishing. This will be used in Section 4.4
to prove non-lifting of Frobenius for a large class of flag varieties.

Let Θ{\) be the ample generator of Pic Y. By flat base change one may produce
examples of Bott non-vanishing for Y for fields of arbitrary prime characteristic by
restricting to the field of the complex numbers. This has been done in the setting of
Hermitian symmetric spaces, where the cohomology groups HP(Ύ, Ωq ® Θ(ή)) have been
thoroughly investigated by Saito [15] and Snow [16, 17]. We now show that these
examples exist. In each of the following subsections Y will denote G/P, where P is the
maximal parabolic subgroup not containing the root subgroup corresponding to the
marked simple root in the Dynkin diagram in Figure 4.3. These flag varieties are the
irreducible Hermitian symmetric spaces.

4.3.1. Type A. If Y is a Grassmann variety not isomorphic to projective space
(Y—G/P, where P corresponds to leaving out a simple root which is not the left or
right most one), one may prove [16, Theorem 3.3] that

4.3.2. Type B. Here Y is a smooth quadric hypersurface in P", where n >4 and
the Bott non-vanishing follows from Section 4.1.

4.3.3. Type C. By [17, Theorem 2.2] it follows that

H\Y,Ω\®Θ{\))Φ0.

4.3.4. Type D. For the maximal parabolic P corresponding to the leftmost
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FIGURE 4.3.

marked simple root, Y=G/P is a smooth quadric hypersurface in P", where n>4 and

Bott non-vanishing follows from Section 4.1. For the maximal parabolic subgroup

corresponding to one of the two rightmost marked simple roots we get by [17, Theorem

3.2] that

4.3.5. Type E6. By [17, Table 4.4] it follows that

U\Y,Ω5®Θ(2))Φ0.

4.3.6. Type E7. By [17, Table 4.5] it follows that
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4.3.7. Type G2. Here Y is a smooth quadric hypersurface in P6 and the Bott
non-vanishing follows from Section 4.1.

4.4. Non-lifting of Frobenius for flag varieties. We now get the following:

THEOREM 6. Let Q be a parabolic subgroup contained in a maximal parabolic
subgroup P in the list 4.3.1-4.3.7. Then the Frobenius morphism on G/Q does not lift to
W2{k). Furthermore if G is of type A, then the Frobenius morphism on any flag variety
G/Q^Pm does not lift to W2{k).

PROOF. If P is a maximal parabolic subgroup in the list 4.3.1-4.3.7, then the
Frobenius morphism on G/P does not lift to W2(k). By Corollary 1 we get that the
Frobenius morphism on G/Q does not lift to W2(k). In type A the only flag variety
not admitting a fibration to a Grassmann variety ^P"1 is the incidence variety. The
non-lifting of Frobenius in this case follows from Section 4.2. •

REMARK 2. The above case by case proof can be generalized to include projec-
tive homogeneous G-spaces with non-reduced stabilizers. It would be nice to prove in
general that the only flag varieties enjoying the Bott vanishing property are products
of projective spaces. We know of no other visible obstruction to lifting Frobenius to
W2(k) for flag varieties than the non-vanishing Bott cohomology groups.
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