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We survey some interpretations and related issues concerning ‘the frozen accident’ hypothesis proposed

by Francis Crick and how it can be explained in terms of several natural mechanisms involving error-

correction codes, spin glasses, symmetry breaking and the characteristic robustness of genetic networks.

The approach to most of these questions involves using elements of Shannon’s rate distortion theory incor-

porating a semantic system which is meaningful for the relevant alphabets and vocabulary implemented

in transmission of the genetic code. We apply the fundamental homology between information source

uncertainty with the free energy density of a thermodynamical system with respect to transcriptional regu-

lators and the communication channels of sequence/structure in proteins. The collective outcome of these

processes supports previous suggestions that ‘the frozen accident’ may in fact have been a temporal evolu-

tionary adaptation.

Povzetek: Članek obravnava izvor genetskega kodiranja.

1 Introduction

Examining and predicting the geometric/topological struc-

tures of the genetic coding network is essential to un-

derstanding its (co)evolution as a complex communica-

tions system, employing a vocabulary of a given genetic

code that determines the family of proteins encodable by

the genes themselves. The architecture of this network

developed from a coevolution of genes and of genetic

structures that were progressively conditioned to shield

against translation and replication errors. Crick’s hypoth-

esis [30, 31](surveyed in e.g. [4]), in broad terms, says

that on reading the mRNA script, the coding strategy de-

termines the amino acid sequence of the evolved proteins,

as is the case for most organisms. So in a post-transitional

phase any kind of alteration to the size of the code would

have dire consequences owing to a global impact on pro-

teins created by new amino acids subject to the likelihood

of nonsensical messaging. Crick gave flexible rules for

pairing the third base of the codon with the first base of the

anticodon, to the extent that a single tRNA type would be

able to recognize up to three codons. More complex protein

structures arise when there is an enrichment and expansion

of the vocabulary while any ambiguity in the code is mini-

mized, so restricting the content of information. When the

codon meaning is altered, the information selected would

condition that codon to some advantage. In this way the

‘freezing’ was professed to be an outcome of such selec-

tive restrictions and this would put the brakes on further

evolvability.

While over the years there has been much debate and

challenge concerning these rules, and to establish a con-

crete mechanism for the companion ‘wobble hypothesis’,

we outline here several scenarios from the point of view of

coevolutionary rate distortion dynamics in graphs that rep-

resent ‘robustness’ while admitting ‘meaningful’ signalling

paths which are susceptible to vocabulary enrichment, and

furthermore, give rise to structure preserving patterns that

evolve towards optimizing error-correction. These collec-

tive mechanisms can be formulated in the context of a spin-

glass model (cf [12, 21, 25]), that incorporates the On-

sager relations of statistical physics applied to networks of
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mutating sequences and error-correction in the presence of

rate distortion dynamics, then leading to phase transitions

through which symmetry breaking occurs and hence causes

a change in topological structure of the graph. These ob-

servations are supported by a number of relatively recent

theoretical findings, and thus it seems reasonable to provide

some of the necessary background material. Related are the

approaches to evolutionary (population) biology employ-

ing Boltzmann statistics, Fisher and Kolmogorov diffusion

equation methods, and stochastic evolution for which there

is already a large amount written (see e.g. [78]).

A position often maintained is that evolution influences

the emergence of the genetic code by selecting an amino

acid map that is error-minimizing and the subsequent com-

petition between organisms is determined by the overall ca-

pability of their respective codes. Following this line of

thought, Tlusty [73, 74, 75, 76], implementing a topolog-

ical graph-theoretic approach, has developed a model for

the emergence of the genetic code as a supercritical phase

transition occurring within noisy information channels as

traced by maps between nucleotides and amino acids with

error bounds in place. The proposed paradigm is that these

processes are indeed ‘cognitive’ [80, 81, 82, 85] following

the immunology/language perspective of Atlan and Cohen

[6] (see also [26, 27]) that human and biological organiza-

tions at all scales are cognitive in so far that once patterns

of threat and opportunity are perceived, these patterns are

are compared with an internal image of the environment,

and then a choice of responses from a vast repertoire of

possibilities is initiated.

This present paper continues with this theme to establish

one of several possible corollaries derived from [80, 82]

by addressing the question of how coevolutionary robust-

ness against errors, error-correction, and phase transitions

modeled by the topological dynamics of graphs that can

be represented by certain spin glass/error correcting struc-

tures that are susceptible to thermodynamic spontaneous

symmetry breaking; these factors shed further light to ex-

plaining what exactly was the ‘accident’ that did occur.

Such symmetry breaking of the genetic code has been con-

sidered in the context of Lie algebra representations in

[10, 11, 46]. Our perspective using rate distortion dynam-

ics, is that such a sequence of broken symmetries corre-

sponds to phase transitions in the underlying error correct-

ing networks through which the codon allocation to amino

acids is mainly the outcome of error-correction minimiza-

tion and efficiency (see [10] and references therein), a sce-

nario that appears relevant to the approach of Ardell and

Sella [4, 66, 67].

While on the mathematical-physical side of things, sev-

eral explanations for ‘freezing’ and ‘wobbling’ can be

given in terms of error-correction and the structural the-

ory of Lie algebras, which we survey. A novel technique

introduced here involves showing how the dynamics gov-

erning the underlying mechanisms can be represented in

terms of a ‘covariant differentiation’ of the Shannon en-

tropy along ‘meaningful paths’ embedded in a (genetic)

coding graph that also includes a correlation with error-

correction and folding rates. This operation over which

the various ‘directions’ are taken 1 subsequently determines

the holonomy of the system through an error-correction

network–a broader scale geometric representation of tran-

sitional phases in which the broken symmetries may be

expressed in terms of holonomy groups that collectively,

via disjoint union, form a holonomy groupoid, a structure

which in principle can be given explicitly.

2 ‘The Frozen Accident’– or Not

Quite

We start by putting matters into perspective by survey-

ing some basic observations. Recall that genes can

be represented by molecular words written in terms of

the nucleotide bases U (Uracil/Thymine), C(Cytosine),

G(Guanine) and A(Adenine), whereas proteins are written

in a language of 20 letters corresponding to the amino acids

in which each of the latter is encoded by specific triplets

of the basis members, known as codons, so connecting

hereditary characteristics to vital units. In theory there are

64 = 43 codons with the number of possible observables

lying somewhere between 48 and 64 (see e.g. [50, 73]).

However, it is claimed in [50] that the code mapping the

64 codons to the 20 amino acids is anything but random.

There are at least 48 discernable codons but only 20 amino

acids available (and 3 stop codons), so the code is degen-

erate in so far that several codons can represent the same

amino acid. Entropy analysis [1, 55] reveals that the infor-

mation content of a random protein structure can occupy

log
2
(20) ≃ 4.32 bits of entropy per amino acid residue in

a primary sequence.

In the presence of topological changes there would have

been alterations of an excessive amount of (protein) struc-

tures, and those frequently observed tend to be the ones that

have managed to remain intact as the structures became

more complex. The ‘wobble rules’ assume that only 48

codons can be distinguished owing to the physiochemical

limitations of the translational mechanism and the result-

ing codon graph converges to 20 amino acids. The ques-

tion is: does a single sRNA molecule recognize several

codons? The ‘wobble’ effect aside, there exist 64 distin-

guishable codons and the maximal number of amino acids

increases to 25, which is not a dramatic amount by any

means, though it has been a puzzling matter as to why evo-

lution did freeze prior to improving the translational mech-

anism to single out all 64 codons. Once the meaning of

a codon had changed, again, selectivity would apply that

codon to a site for a new amino acid to serve to some ad-

vantage, or otherwise simply to replace it.

The traditional approach to producing more tRNAs

1A reader with some acquaintance with differential geometry will un-

derstand this as ‘covariant differentiation over (or along) a vector field’–

an operation specified by choice of ‘connection’. This we implement on

graphs in §6.
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would have been to change the anticodons of existing ones,

giving rise to a new class of amino acids proliferating

across the code while systematically reshuffling a large

number of codons in the process. To an extent the ‘wobble

hypothesis’ concerns stereochemical limitations on the ac-

tual tRNA capacity to single-out codons [38]. In more basic

terms, interfering with the genetic code would change the

meaning of a codon, hence from our viewpoint, reducing

the fidelity of information when the rate distortion estimate

is violated (see §3.2).

As was recalled in the introduction, Crick’s hypothesis

had suggested that no new amino acids could arise without

disrupting a large number of proteins, hence stalling evo-

lution – a claim that has since been challenged from many

fronts (see e.g. [4, 68]). A product of the coevolutionary

dynamics gives rules for load minimization and diversifica-

tion for regulating patterns of the code that were robust to

both error and redundancy, the degrees of which are influ-

enced by the code’s topology that would have been alter-

able through sequences of stochastic fluctuations. Codons

interchanged through error may subsequently be assigned

to compatible amino acids so minimizing the possible detri-

mental effects. At the same time, an enrichment of the

vocabulary provided a broader scope for the encoding of

proteins [66, 67].

In [77] there is claimed a ‘communality’ and ‘universal-

ity’ to be established out of a tournament between a variety

of innovative sharing protocols which may include several

non-Darwinian mechanisms. Relative to time scales, the

long-term reduces ambiguity, whereas in the short-term the

code has to be fortified to tolerate a higher degree of ambi-

guity in assimilating new types of genes. More specifically

[77]:

A protein that is robust to translational er-

rors a fortiori is also more tolerant to translation

with a different code. Conversely, the less opti-

mized the recipient code, the more error-tolerant

its proteins, and therefore the less harmful the ef-

fect on the established genes of a code change

in the direction of the donor code. This has the

important consequence that in the initial stages

of the genetic code evolution, when the diversi-

fication tendency of codes was strongest, HGT

(horizontal gene transfer) was possible and must

have been extensive despite the presence of many

different codes ... Once the optimization of the

genetic code is complete, there is no pressure to

maintain compatibility. Therefore, the “freezing”

of the universal genetic code could trigger the ra-

diation of the underlying translational machiner-

ies...

We may reasonably assume that transmission errors

eventually corrupt code patterns and those codes that can

withstand and manipulate errors possess natural advantages

over those that do not. In concluding differently to Crick’s

assertion, code-messaging evolution is perceived in [4] as

producing structure preserving codes which have near op-

timal error-correcting properties, with the selection of mu-

tations and translational error inducing a bias in the codon

distribution to amino acids which in the long-term favors

optimal error-correction patterns. Crick’s claim of ‘freez-

ing’ makes some sense because the errors themselves con-

dition evolution to some sort of frozen state of an error-

correcting code. Specifically, the claim is that an evolu-

tionary constraint on messages with respect to selective

pressures, may actually induce the error-correcting codes

to evolve rather than to have erased them altogether. Thus,

in this evolutionary context the allied and relevant mecha-

nisms of protein synthesis, folding and mutations, provide

suitable clues.

An underlying assumption proposed in [1] is that an or-

ganism’s complexity reflects upon that of its genome and

therefore has evolutionary consequences. So one may ask

what actually is the information provided by DNA beyond

a road map for the structure of an organism? The current

perspective sees this as a blueprint for constructing an or-

ganism that can survive within its native environment and

then pass on that information to its progeny (cf [33]). In

this respect, an organism’s DNA catalogs not only infor-

mation concerning its structure, but to some extent infor-

mation concerning its environment and the coevolution of

its species as well. In keeping with this basic principle,

one may propose an explanation of genomic complexity

within the information-theoretic framework of Shannon’s

basic principles (see [1, 2] and references therein for related

work). It is in this respect that the fundamental theorems

of information transmission are sufficiently general to the

extent that biological systems can sustain a Shannon-based

coding scheme to facilitate the transmission of genomic in-

formation within a range of mechanisms, provided that se-

mantics can be incorporated as a functional component (see

§4.1 and cf [35]).

3 Encoding and Decoding

3.1 Basic genetic messaging

The transmission of genetic messaging follows a sequence

starting from a source alphabet via a channel code to a tar-

get alphabet. The source messaging in the DNA alphabet

is relayed to the encoding DNA alphabet to the mRNA al-

phabet with certain reciprocation. Leading on from mRNA

messaging in the RNA alphabet is a channel to point mu-

tation through which (genetic) noise may enter, thence a

channel to decoding into which amino acylated tRNA and

mischarged tRNA, with further genetic noise, enter via

translation. Subsequent to decoding is the protein messag-

ing in the target protein alphabet. This is a basic sequence

of events that is schematically represented in [92, Figure

2].

At the same time, evidence suggests that primordial tR-

NAS along with their various companion types and the

overall translation mechanism have coevolved in some de-
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gree of compliance with the genetic code, rather than the

reverse, and possibly the assignment of amino acids to nu-

cleotides may have been pre-translational. If the code were

to be pre-translational in nature, then how it was originally

imprinted within tRNAs could be researched in the quest

of the so-called ‘RNA world idea’ [63, 72].

3.2 The rate distortion function

For the sake of self-containment in this paper, we next

briefly recall some elementary facts from the Shannon the-

ory. As it is commonly understood, distortion arises when

there is a fast relay of information through some chan-

nel which exceeds the latter’s capacity. One of the guid-

ing principles asserts that in order to reproduce a message

transmitted from a source to a receiver, it is necessary to

know what sort of information should be transmitted, and

how. These facts along with specifying the nature of the

communicating channel are essential ingredients for engi-

neering a reliable encoding/decoding system. Following

[14] we briefly recall some of the basic operations.

Source encoder: We may consider some output x(t)
emanating from the source as projected to a finite set of

preselected images; namely, the space of possible source

outputs is partitioned into a set of equivalence classes,

and the source encoder informs the channel encoder of

that class containing the particular source output observed.

Once the channel encoder is informed that the source out-

put belongs to say, the m-th equivalence class, it transforms

the corresponding waveform x̃m(t) across the channel.

These equivalence classes as schematically represented by

a graph (network), are manifestly the main computational

procedures as described in this paper.

Source decoder: Within the system is a cascade of a

channel encoder and a source decoder. The channel de-

coder receives a waveform ỹ(t) of a corresponding func-

tion y(t) over some time interval and decides upon the na-

ture of the message as transmitted. Then it sends its ap-

proximation m′ of the message number to the source de-

coder which in turn creates ym′(t) to register the system’s

estimate of x(t) over that time interval. Initially, we may

think of x(t) and y(t) as ‘waveforms’, but in our case, we

consider these as consisting of a language with its own in-

trinsic grammar/syntax, as well as ‘meaning’ – to be made

more specific in §4.1. Analogous considerations apply to

the channel signals x̃(t) and ỹ(t).

One of Shannon’s notable results was that a communi-

cation system can be designed such that it achieves a level

of fidelity D once the rate distortion R(D) ≤ C, where C

denotes the channel capacity. Putting it another way, if the

receiver can tolerate an average amount of distortion D,

the rate distortion R(D) is the effective rate at which the

source can relay information with that level of tolerance,

and the estimate R(D) ≤ C is a necessary condition for

effective communication. More specifically, R(D) can be

defined in terms of average mutual information as follows.

Firstly, for k, j running over a suitable alphabet, let us write

a given conditional probability assignment as Q(k|j) such

that in the usual way, we have an associated joint distri-

bution P (j, k) = P (j)Q(k|j). We express the average

distortion as

d(Q) =
∑

j,k

P (j)Q(k|j) d(j, k), (3.1)

where d( , ) denotes the distortion measure. A conditional

probability assignment Q(k|j) is said to be D–admissible

if and only if d(Q) ≤ D. The set of all D–admissible

conditional probability assignments we denote by

QD = {Q(k|j) : d(Q) ≤ D}. (3.2)

Along with an average distortion d(Q), we also have an

average mutual information

I(Q) =
∑

j,k

P (j)Q(k|j) log
[Q(k|j)

Q(k)

]

. (3.3)

Then for fixed D, the rate distortion function is defined as

R(D) = min
Q∈QD

I(Q). (3.4)

The rate at which a source produces information subject to

insisting upon perfect reproduction, is the source entropy

H . Given a distortion measure such that perfect reproduc-

tion is assigned zero distortion, then we have R(0) = H .

As D increases, R(D) becomes a monotonically decreas-

ing (convex) function which eventually is zero, typically

at a maximum value for D (see [14, Ch. 1]). This is a

very basic observation, and typically in rate distortion the-

ory one seeks a reduction of H by either slowing down the

emission of coding, or encoding the relevant languages at

a lower rate. In view of Shannon’s theorem, as long as

H < C, there will be suitable fidelity in transmission.

In the case of genetic coding considered here, conditions

of discrete memoryless information source (DMI) and dis-

crete memoryless channels(DMC) [57, 92] are usually as-

sumed, but in any event, how well a communicating system

can evolve in order to satisfy such an estimate is a common

problem for communications engineering since in practice

the source rate may be corrupted due to low memory and

coding congestion; for protein folding and mutations; ref-

erences [2, 32, 55, 73, 74, 80, 81] address such issues.

3.3 The Groupoid Free Energy Density

Recall that for a thermodynamic state of a given system at

fixed temperature T with energy E and entropy S, the free

energy density F is defined to be

F = E − TS. (3.5)

In the Hamiltonian formulism one takes the volume V

and the partition function Z(K) derived from the system’s
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Hamiltonian at inverse temperature K [51, 52]. The free

energy density is then defined to be

F [K] = lim
V−→∞

−

1

K

log[Z(K,V )]

V

= lim
V−→∞

log[Ẑ(K,V )]

V
, where Ẑ = Z−

1

K .

(3.6)

At this stage we introduce the groupoid concept (general-

izing the algebraic concept of a ‘group’) in relationship to

equivalence classes which can be based upon a network

with concatenation of edges, as explained in Appendix 8.1

(see also [40, 41]). Thus, consider an information source

HGα
over a corresponding groupoid Gα; heuristically, we

can consider H as parametrized by Gα. The probability of

HGα
is given by:

P (HGα
) =

exp[−HGα
K]∑

β exp[−HGβ
K]

, (3.7)

where the normalizing sum is over all possible sub-

groupoids of the largest available symmetry groupoid. On

setting

ZG =
∑

α

exp[−HGα
], (3.8)

the groupoid free energy density (GFE) of the system FG

at inverse normalized equivalent temperature K is then de-

fined as

FG[K] = −

1

K
log[ZG(K)]. (3.9)

With each such groupoid Gα we can associate a dual infor-

mation source HGα
. We recall the rate distortion function

between the message sent by the cognitive process and the

observed impact, while noting that both HGα
and R(D)

may be considered as free energy density measures. In

a sense, R(D) constitutes a sort of ‘thermal bath’ for the

process of cognition. Then the probability of the dual in-

formation source can be expressed by

P (HGα
) =

exp[−HGα
/κR(D)τ ]∑

β exp[−HGβ
/κR(D)τ ]

, (3.10)

where κ denotes a suitable dimensionless constant charac-

teristic of the system in the context of a fixed ‘machine

response time’ τ . Associated with (3.10) is a free energy

Morse Function

FR = −λR(D) log[
n∑

α=1

exp[−Hα/λR(D)]], (3.11)

whose critical point behavior determines certain topologi-

cal characteristics of an underlying manifold that can be ex-

pressed in terms of its Morse-theoretic indices [56, 58]. In

each case the sum is over all possible subgroupoids of the

largest available symmetry groupoid (see Appendix 8.1).

Accordingly, the term R(D)κ in (3.10) represents a rate

distortion energy, in this case, a kind of temperature ana-

log. In the context of a fixed response time τ , a decline in

R(D) (on increase in average distortion), acts to ‘lower the

machine temperature’ and thus driving it to more simple,

albeit less enriched signalling. Observe that if a range over

all possible α is taken, the groupoids Gα and corresponding

relationships such as (3.10), create an even larger picture

which reveals the structure of a groupoid atlas [9], a con-

cept that has been applied to several descriptive cognitive

mechanisms as we have demonstrated in [40, 41, 42].

3.4 Phase transition and symmetry breaking

The relationship between phase transitions in physical sys-

tems and topological changes has become a central topic

of research across a broad range of subdisciplines. One

can see that phase transitions in physical systems are ubiq-

uitous, following Landau’s group symmetry shifting argu-

ments [52, 59]. Higher temperatures enable higher sys-

tem symmetries, and as temperature changes, punctuated

shifts to different symmetry states occur in characteristic

manners. The claim in [37] is that the standard way of

studying phase transitions in a physical system is to con-

sider how the empirical values of thermodynamic states,

vary with temperature, volume, or an external field, and

then to associate the experimentally observed discontinu-

ities at a phase transition to the occurrence of a singular-

ity. In such a case analyticity may fail in the mathematical

sense, though it remains to be seen whether this is the ulti-

mate level of an analytic understanding of such transitional

phenomena, or if indeed some reduction to a more basic

level is possible. It is observed that non-analyticity is the

‘shadow’ of a more fundamental phenomenon occurring in

a given model space: a topology change, and that the lat-

ter is a necessary condition for a phase transition to occur.

Such topology changes can be studied within the frame-

work of Morse theoretic influenced topological structures

such as the case, say, for certain handle-body decomposi-

tions [56], an essential observation that may be consequen-

tial for protein functions (cf [82]). Note however, that the

converse of the main result of [37] does not hold, thus rul-

ing out a one-to-one correspondence between phase tran-

sitions and topology changes. An open problem is that of

sufficiency conditions; that is, to determine which kinds of

topology changes can influence a phase transition, and how

this might be achieved. There are other approaches such as

demonstrated in relatively straightforward models, where

as in [64], a fuzzy clustering system based of annealing

through a probabilistic process leads to phase transitions

with critical (non-zero) vectors for the free energy at each

temperature.

Extension of such transitional arguments in terms of rate

distortion and metabolic measures appear direct, particu-

larly in the setting of the groupoids constructed by the dis-

joint union of the homology groups representing the differ-

ent coding topologies identified in [73] (see also [80]). To

clarify matters, let us recall that in many thermodynamic

systems, the associated Hamiltonian may be invariant un-

der a symmetry transformation due to certain parameter
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changes, in contrast to the lowest energy state which is not.

In subsequent phase transitions the overall symmetry is lost

(spontaneous symmetry breaking) and consequently, lower

temperature states will admit lower symmetries, and due to

the randomization of higher temperatures, the higher states

will become more accessible to the system as a result of

their modified symmetries and energy levels [52]. In the

informational context of error-correction, we will need to

turn to the fundamental homology between the Shannon

entropy and the free energy density of the system as out-

lined in §4.1.

This scenario becomes more apparent when we look at

the symmetries of the genetic code and how these are bro-

ken (cf. [71]). For instance, in [46] it is recalled from [15]

that the computation of at least 1071 to 1084 possible ge-

netic codes entails permuting the 64 codons and distribut-

ing them over 20 amino acids. By considering those Lie

algebras admitting 64 dimensional irreducible representa-

tions, [10, 11, 46] initiate a chain of sub-representations

commencing from the Lie algebra sp(6), and postulate a

sequence of symmetry breaking in accordance with that

chain:

sp(6) ⊃ sp(4)⊕ su(2)

⊃ su(2)⊕ su(2)⊕ su(2)

⊃ su(2)⊕ u(1)⊕ su(2)

⊃ su(2)⊕ u(1)⊕ u(1).

(3.12)

At any stage the number of representations occurring corre-

sponds to the number of amino acids that were then incor-

porated into the code and those currently observed are the

net outcome of broken symmetries. In this analysis, four

amino acids (phenylalanine, serine, argine and cysterine)

seemingly do not divide under the U(1)(circle)-action. If

they had subdivided they would have created a ‘symmetry

perfect code’ with 26 amino acids (hence a redundancy of

6) and a stop code (see [46, Figure 1]). Such a claim may

be compared with the combinatorial-geometric arguments

based on the topology of codon space in [73] (see also §6.1)

suggesting that further evolutionary measures may expand

the code’s expression from 20 to possibly 25 amino acids.

The observations of [10, 11] reflect back upon an ear-

lier claim of [48] that the ‘freezing’ of the code would

have been the result of partial symmetry breaking achieved

by the aforementioned parameter choices in the Hamil-

tonian. The work of [10, 11] differs in its approach by

opting for codon-anticodon pairings in place of codon-

amino acid assignments and then applying combinatorial-

branching techniques commencing from the Lie algebra

sl(6, 1). Besides identifying possible ‘wobble-effects’ due

to reshuffling through combinatorial symmetries, they in-

vestigate the structure of eukaryotic and vertebrate mito-

chondrial codes along branching chains and introduce a

Z2-grading on codon space (just as there is a grading into

bosonic and fermionic types in quantum mechanics) thus

extending matters towards representations of super Lie al-

gebras. Along with these codes are variants such as the

metabacteria and chloroplast codes with exchange symme-

tries and branching rules for which such patent intricacy

may eventually necessitate using groupoid techniques.

An alternative approach to Lie algebra representations

due to [47] is to consider representations on hypercubes as

based on Gray coding structures (for a survey of the latter

in genetic error-correction, see [45]). Already some known

group structures show up here for various assortments of

codon doublets, and since sub-symmetries of these repre-

sentations involve cubical methods, patterns of groupoid

symmetries can be expected to be appear. Thus we ap-

proach increasingly complex situations involving groupoid

representations (see e.g. [18]) and groupoid symmetry

breaking, techniques that can be computationally highly

non-trivial, since even for relatively straightforward sym-

metries such as those appearing in certain ‘windmill pat-

terns’, constraints do apply in order to facilitate current

programming capabilities [39]. Other questions may arise,

such as the possibility of breaking ‘mirror symmetry’ states

in the genetic code caused by biochemical perturbations of

chiral fields at the molecular level [8].

3.5 Amino acid encoding–codon decoding

and error load

In order for free energy and error load to fit into the picture,

we follow part of the framework of error-correction net-

work analysis of [73, 74] (cf [66]). We take an amino acid

α to be encoded by a unique codon j represented in the en-

coder matrix [Eαj ], satisfying
∑

j Eαj = 1, and similarly,

the decoder matrix [Djβ ], satisfying
∑

β Djβ = 1, means

that each codon is translated into a unique amino acid β,

given a number Nc of protein chains for c codons. Next we

set

Rij = P (the probability that codon i may be

read correctly as or misread as j),
(3.13)

and then let [Rij ] denote the reading matrix and Cαβ the

chemical distance between the original amino acid α and

the one that is read as β. As adapted from [73, Figure 2]

the passage of encoding/decoding then follows as:

'&%$ !"#i
Rij ///.-,()*+j

Djβ

��
'&%$ !"#α

Eαi

OO

oo Cαβ ///.-,()*+β

(3.14)

On setting Pα = P (amino acid α is required), the error

load HED (the average distortion in an R(D) problem) of

the map specified by encoding/decoding can be expressed

in terms of paths Pαijβ , specifically by

HED =
∑

α→i→j→β

PαijβCαβ

=
∑

α,i,j,β

PαEαiRijDjβCαβ .
(3.15)
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This leads to a ‘take-over’ probability given by PED ∼
exp(−HEDT

−1) and to the average error load ⟨H⟩ as fol-

lows. If we take S to denote entropy due to random drift,

and T to be inversely proportional to average error size

(the strength of the random drift relative to the selection

force that pushes towards maximization), then this proba-

bility can be seen to minimize a functional analogous to the

Helmholtz free energy F in terms of the average error load

⟨H⟩ as in (3.5):

F = ⟨H⟩ − TS

=
∑

ED

HEDPED + T
∑

ED

PED lnPED,
(3.16)

which effectively averages out the difference between the

genetic message relayed by a codon statement and that

which is actually expressed by the genetic/epigenetic trans-

lation machinery itself.

4 Meaningful Paths, Robustness and

Error Correction

4.1 Meaningful paths

We now specify our observations in a more general con-

text. Suppose we consider a pattern of signalling input Si

describing the state of the protein with initial codon stream

S0 to be mixed in an unspecified but systematic algorith-

mic manner with a pattern of an otherwise unspecified on-

going activity, including cellular, epigenetic and environ-

mental signals Wi to create a path of combined signals

x = (a0, a1, . . . , an, . . .). Each ak thus represents some

functional composition of internal and external signals in

an iterative form according to which

Si+1 = f([Si,Wi]) = f(ai), (4.1)

for some unspecified function f . Comparing this with the

situation in §4.2, the above S would be a vector, W a ma-

trix, and f a product of their function at some time stage i.

This path is fed into a highly nonlinear, but otherwise sim-

ilarly unspecified, decision oscillator h which generates an

output h(x) that is an element of one of two disjoint sets

B0 and B1 of possible system responses, as follows. Let

B0 ≡ b0, . . . , bk,

B1 ≡ bk+1, . . . , bm.
(4.2)

Then:

(1) assume a graded response, supposing that if

h(x) ∈ B0, (4.3)

the pattern is not recognized, and

(2) if

h(x) ∈ B1, (4.4)

the pattern is recognized, and some action bj , k+1 ≤
j ≤ m, takes place.

Expecting the coding signals to filtered appropriately (cf

[4]), we can further assume that B0 and B1 admit countable

filtrations of the sort:

B0 = B0
0 ⊆ B1

0 ⊆ B2
0 ⊆ · · ·

B1 = B0
1 ⊆ B1

1 ⊆ B2
1 ⊆ · · ·

(4.5)

where at level j we have set B
j
0 ≡ b

j
0, . . . , b

j
k, and B

j
1 ≡

b
j
k+1, . . . , b

j
m. Note that these oscillators may be influenced

by ‘forcing’ when a signal is subjected to some impulse

such that its frequency, and hence the response, adjusts ac-

cordingly with respect to an applied impulse. More famil-

iar oscillating physical systems may react accordingly by

exhibiting beats and resonance, for instance.

The principal objects of formal interest are paths

x which, through information flow, trigger patterns of

recognition-and-response. That is, given a fixed initial state

a0 = [S0,W0], we examine all possible subsequent paths

x beginning with a0 and leading to the event h(x) ∈ B1.

Thus h(a0, . . . , aj) ∈ B0 for all 0 < j < m, but

h(a0, . . . , am) ∈ B1. We can view B1 then as the set of

final possible states Sf ∪ {Spath} that includes both the fi-

nal physical states and the set of all possible pathological

conformations (see [80, Figure 3]).

For each positive integer n, let N(n) be the number of

high probability grammatical/syntactical paths of length n

which begin with some particular a0, and further leading

to the condition h(x) ∈ B1. These are paths of combined

signals as above, that are structured to some language. For

short, we call such paths ‘meaningful’, assuming, not un-

reasonably, that N(n) will be considerably less than the

number of all possible paths of length n leading from a0 to

the condition h(x) ∈ B1.

One critical assumption which permits an inference on

the necessary conditions constrained by the asymptotic

limit theorems of information theory, is that the entropy,

as defined by the finite limit

H ≡ lim
n−→∞

log[N(n)]

n
, (4.6)

both exists and is independent of the path x. The rate dis-

tortion principle applies as follows [79]: the restriction

to meaningful sequences of symbols increases the rate at

which information can be transmitted with arbitrary small

error, and that the grammar/syntax of the path can be as-

sociated with a dual information source.

Besides the DMI and DMC properties introduced in

§3.2, we may also assume a typical information source

X to be ‘adiabatic’, ‘piece-wise stationary’ and ‘ergodic’

(APSE), and that the relevant systems engaging in a bio-

cognitive process is describable as such. Specifically, the

essence of ‘adiabatic’ is that given the information source is

parametrized according to some appropriate scheme, then

within continuous ‘pieces’ of that parametrization, alter-

ations in parameter values occur slowly enough so that the

information source X remains as close to stationary and

ergodic as necessary in order to implement the specific
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limit theorems. In this way, ‘structure’ is subsumed within

the sequential grammar and syntax of the dual information

source, rather than within the sets of developmental paths

as considered in [85].

In view of (4.6), the Shannon entropy of X can be stated

more specifically by (see e.g. [5, 14, 29, 49]):

H[X] = lim
n−→∞

log[N(n)]

n
. (4.7)

With respect to e.g. the robustness criteria of §4.2, the time

dependent information sources Xi(t) are identified with

the i-th component of the expressional pattern S(t); that

is, we assign Xi(t) 7→ Si(t), where as before Si(t) =
f(ai−1).

Recalling how the information source uncertainty was

defined as in equation (4.6), an essential observation is a

fundamental homology with the free energy density of a

thermodynamical system such as that displayed in equation

(3.6). Such a homology arises from Feynman’s observa-

tions [36] reflecting in part on Bennett’s work [13] where

this homology is effectively an identity, at least for very

simple systems. From a more general perspective, [36]

postulates the information contained in a message as pro-

portional to the amount of free energy density needed to

erase it. This simply amounts to the fact that computing

in any form takes work and the more complicated a coding

or signalling process so measured by its source uncertainty,

the greater its energy consumption. Putting it another way,

the less information available to us concerning an event the

higher its entropy, and information retrieved is not without

a cost in expenditure (of energy), where ‘cost’ is interpreted

as the necessary number of bits needed to encode a message

(the thermodynamic minimum of energy in terms of bits of

information is kBT log2 e erg/bit, or = kBT erg/nat). So

the efficiency in an information system essentially happens

when there is the minimum amount of energy expended in

retrieving information. Specifically, if F is taken to de-

note the free energy, then setting Λ equal to the minimum

number of nats/sec, the efficiency of the system is given by

η = kBTF
−1Λ (see e.g. [14]).

4.2 Transcriptional regulators and

robustness

There are certain evolutionary innovations resulting from

an interplay of mutations and natural selections whereby, in

a descriptive sense, a genotype corresponds to a regulatory

network with a given topology and a phenotype to that of a

steady state genetic pattern. This mechanism is constrained

by certain conditions requiring processes to sustain a de-

gree of robustness, meaning here a resilience towards envi-

ronmental perturbations and thermodynamic effects, while

at the same time admitting some ‘diversity’ in the process

of messaging reception. Such a function of evolution and

environment is to ensure that proteins can continue their

catalyzing role in the presence of amino acid mutations,

that the regulatory networks can continue to function in a

noisy environment, and that embryos can develop normally

in the presence of such perturbations. In any case, these

regulatory networks, (protein) synthesis and the mutational

operations can be seen as part and parcel with the ques-

tion of folding (misfolding), while observing that error-

minimization permits the appropriate codon allocation to

amino acids through sequences of broken symmetries in

terms of tRNA mutations (see [10, 11]).

Thinking back to the context of §4.1, we next turn to

an analogous, but closely related sequence of N transcrip-

tional regulators represented by their expressional patterns

S(t) = (S1(t),S2(t), . . . ,SN (t)), in network form, at

some time t, that can influence expressions between them-

selves via cross-regulatory and auto-regulatory interactions

as expressed by a matrix W = [wij ], where wij represents

a signaled regulatory influence wij : gene i ⇒ gene j,

given the rules (1) wij > 0, means activating, (2) wij < 0,

repressing, and (3) wij = 0, absence.

In [25] such regulatory interactions describe the expres-

sional state of the network S(t) akin to a typical spin-glass

model [21, 69, 91](see also Appendix 10), as specified by

Si(t+ τ) = σ
[

N
∑

j=1

wijSj(t)
]

, (4.8)

where τ is a constant and σ( ) is a sigmoidal function

σ : S(t)−→(−1, 1). For instance, with strong cooper-

ation we may have σ = sgn, giving Si = ±1. Here

S(t) can be taken as an incoming input, mixed in a sys-

tematic way relative to W = [wij ], to create a path of

combined signals x = (a0, a1, . . . , an, . . .) as to be seen

in §4.1, homologous to the sequence S(t + ∆t), with

n = t(∆t)−1, where on recalling expression (4.1), we set

Si+1 = f([Si,Wi]) = f(ai). Accordingly, the structure

becomes as much of a function of the sequential grammar

and syntax of the dual information source as it is for the

cross-sectional intervals of the space of the W = [wij ] (see

[87]). Typically, one would denote by S(0) an initial state

and by S∞ a stable equilibrium state, with a distance mea-

sure D for graph topologies W,W ′ taken to be

D(W,W ′) =
1

2M+

∑

i,j

|sgn(wij)− sgn(w′

ij)|, (4.9)

where M+ denotes the maximum number of regulatory in-

teractions.

In essence this construction reveals that genotype space,

for instance, can be traversed in small increments with-

out changing the phenotype which has evolutionary sig-

nificance for genetic patterns: randomly selected pairs of

networks of the same phenotype may have very different

structure and may be subject to varying selective pressures.

One may imagine that a large overall ‘diameter’ of the net-

work may be a critical feature for diversity of phenotype,

and because some lengthy travel across the graph may be

necessary to find all new phenotypes [25], a distance mea-

sure of two phenotypes S∞,S′

∞
is given by the Hamming
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distance dH in the form

dH = dH(S∞(j),S′

∞
(j))

= 1−
∑

j

δ

N
[S∞(j)− S′

∞
(j)], 0 ≤ dH ≤ 1,

(4.10)

where Kronecker δ = 1 should both arguments be equal,

and δ = 0 otherwise. Note that for such Hamming codes

it is a basic fact that decoding all patterns of length ≤ k is

equivalent to (dH)min ≥ 2k + 1 (see e.g. [57, 92]).

Related is how, in the statistical mechanics formulation,

genetic algorithms based on spin glass models can reveal

optimal selectivity as increasing with evolution. In [61] it

is shown how selecting those solutions that are at a higher

level of fitness, can be paired (through a crossover oper-

ation say) and then tested. This is performed iteratively

through an algorithm up to the point where there is no fur-

ther improvement in the examined population. Using spin

glass states, [61] apply a chain as represented by vectors of

the spins σ(α) (where α = 1, . . . , P ) indexed by different

members of the population; this spin vector is then imple-

mented in the genetic algorithm. In such a case new spins

ταi = σα
i σ

α
i+1 are created. Selectivity on the basis of mu-

tation and crossover follows from the energy levels of the

Ising spin glass (which is described later in Appendix 10).

5 Rate Distortion Coevolutionary

Dynamics

5.1 The basic equations

Understanding the time dynamics of cognitive systems

away from phase transition critical points thus requires a

phenomenology similar to the thermodynamic Onsager re-

lations. If the dual source uncertainty of a cognitive pro-

cess is parametrized by some vector of quantities K ≡

(K1, . . . ,Km), then in view of the analogy with nonequi-

librium thermodynamics, the gradients in the Kj of the dis-

order, defined as

S ≡ H(K)−

m∑

j=1

Kj ∂H/∂Kj , (5.1)

are of central interest. Note that equation (5.1) is analo-

gous to the definition of entropy in terms of the free energy

density of a physical system, as suggested by the homology

between the latter and the information source uncertainty.

Pursuing the homology further, the generalized Onsager re-

lations defining temporal dynamics become

dKj/dt =
∑

i

Lji ∂S/∂Ki, (5.2)

where the kinetic coefficients Lji are, in first order, con-

stants interpreted as reflecting the nature of the underlying

cognitive phenomena (without requirement of the symme-

try condition Lij = Lji). The partial derivatives ∂S/∂K

are analogous to thermodynamic forces in a chemical sys-

tem, and may be subject to override by external physiolog-

ical driving mechanisms as shown in [79, 88] along with

further extensions of these dynamical procedures.

Induced by the fundamental homology between the

Shannon entropy and free energy density, the rate distortion

R(D) follows a homologous path relation to the latter, thus

suggesting that the dynamics of any bio-cognitive module

interacting in characteristic real–time τ , will be constrained

by the system as described in terms of R(D). This can be

seen more generally [85, 86] by producing a vector–valued

function R(Q) where in the vector Q = (Q1, . . . , Qk), the

first component is defined to be the average distortion, and

then (cf (5.1)), we have

SR ≡ R(Q)−

m∑

i=1

Qi ∂R/∂Qi, (5.3)

which leads to the deterministic and stochastic systems of

equations analogous to the Onsager relations of nonequi-

librium thermodynamics

dQj/dt =
∑

i

Lji ∂SR/∂Qi, (5.4)

together with

dQj
t = Lj(Q1, . . . , Qk, t) dt

+
∑

i

σji(Q1, . . . , Qk, t) dB
i
t,

(5.5)

where the dBi
t represents often highly structured stochastic

noise whose properties may be described in terms of Brow-

nian motion and quadratic variation (see e.g. [60]).

5.2 The phenomenological Onsager

relations

Here we turn to different developmental subprocesses of

gene expression characterized by information sources Hm

interacting via chemical or other types of signals, and as-

sume that different processes become each other’s principal

environments. This is a working hypothesis within a broad

coevolutionary context that underscores the cognitive ele-

ment. Let

Hm = Hm(K1, . . . ,Ks, . . . , Hj , . . .), (5.6)

where the Ks represent other relevant parameters, and

j ̸= m. We regard the dynamics of this system as driven

by a recursive network of stochastic differential equations.

Letting the Kj and Hm all be represented as parameters

Qj (with the caveat that Hm does not depend on itself),

we follow the generalized Onsager formulation of [85] in

terms of the equation

Sm = Hm −
∑

i

Qi ∂Hm/∂Qi, (5.7)
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to obtain a recursive system of phenomenological Onsager

relations, in terms of a system of stochastic differential

equations

dQj
t =

∑

i

[Lji(t, . . . , ∂S
m/∂Qi, . . .) dt

+ σji(t, . . . , ∂S
m/∂Qi, . . .) dBi

t],

(5.8)

in which, for ease of notation, both the terms Hj and the

external Kj’s are expressed by the same symbol Qj . As

m ranges over the Hm, we could allow different kinds of

‘noise’ dBi
t having particular forms of quadratic variation

which may represent a projection of environmental factors

within the scope of what may be viewed as a rate distor-

tion manifold [41]. The noise factor is significant in view

of the findings of [7] where it was observed that perturba-

tions of the network parameters inducing stochastic fluc-

tuations in the molecular patterns, may in turn influence

regulatory mechanisms, and in a similar way to how the

presence of stochastic resonance may amplify certain sig-

nals, noise-spectral measurements may then uncover fur-

ther mechanisms which could be potentially beneficial to

the code’s evolution.

We remark that equation (5.8) can be generalized some-

what [85] with respect to crosstalk, its distortion, the in-

herent time constants of the various bio-cognitive modules,

and in particular, the overall available free energy density.

As shown in [42], analysis of the rate distortion dynamics

on a case-by-case basis, motivates integration to a multidi-

mensional Itô process as given by

Qα
t = Qα

0 +
∑

β={ij}

[

∫ t

0

Lβ(s, . . . , ∂S
β
R/∂Q

α, . . .) ds

+

∫ t

0

σβ(s, . . . , ∂S
β
R/∂Q

α, . . .) dBβ
s ],

(5.9)

and this in turn leads to a stochastic flow on a suitable topo-

logical manifold which in this present context could serve

as a more general model for the codon space. In fact, such

a flow property had already been observed in [73], namely,

that the standard genetic code and it variants evolve as a

flow within the codon space. However, given that ‘freez-

ing’ of some sort is likely to re-occur in the quest for opti-

mal error-correction, we expect such a flow to be stalled at

certain time intervals, thus creating singularities in the flow

in a dynamical systems sense (an analytic technicality to be

finessed here).

5.3 A metric on a space of languages

Let us note that equations (5.1) and (5.2) can be derived in

a simple parameter-free covariant manner which relies on

the underlying topology of the information source space

that is implicit to the processes as envisaged. Different bio-

cognitive phenomena have, according to our development,

dual information sources, and we are interested in the local

properties of the system near a particular reference state.

We impose a topology on the system, so that near to a par-

ticular language A dual to an underlying bio-cognitive pro-

cess, there is an open set U of closely similar languages Â,

such that A and Â are subsets of U .

Since the information sources dual to the processes are

similar, for all pairs of languages A, Â in U within a given

embedding alphabet, we define a metric on the latter by

M(A, Â) = | lim

∫

A,Â
d(Ax, Âx)

∫

A,A
d(Ax,Ax̂)

− 1|, (5.10)

with respect to a distortion measure d(Ax, Âx), and ap-

ply standard integration arguments over the high probabil-

ity paths, where the usual metric properties apply, as in

e.g.[22]. In the context of [4], we may see such a metric

as derived from an informational driven physico-chemical

distance function with respect to the analogous A and Â
coding. Also, since H and M are both scalars, a covariant

derivative can be defined directly as

dH/dM = lim
Â−→A

H(A)−H(Â)

M(A, Â)
, (5.11)

where H(A) is the source uncertainty of language A.

A relatively straightforward case is the following. Sup-

pose the system is set in some reference configuration A0.

To obtain the unperturbed dynamics of that state, impose a

Legendre transform using this derivative, defining another

scalar

S ≡ H −MdH/dM. (5.12)

The simplest possible Onsager relation – here seen as an

empirical, fitted, equation like a regression model, becomes

dM/dt = LdS/dM, (5.13)

where t is the time and dS/dM represents an analog to the

thermodynamic force in a chemical system (cf [14, §6.4]).

5.4 Mutations: mutual entropy between

sequence-structure

As analogous to the expressional patterns of §4.2, the pre-

vious techniques are applied to the following case of mu-

tations which are themselves functions of evolution, and

together with selection and translational error, can influ-

ence the distribution of codons to the extent that the latter

favor patterns of error-correction that drift to some optimal

level and can ameliorate mutation effects [4, 66, 67]. For

instance, let us consider as in [55] a series of amino acid

sequences

{

. . . , Seqt−1, Seqt, Seqt+1, . . .
}

=
{

Seqt
}

t∈Z
, (5.14)

where each Seqt applies to one protein chain, ordered by

a discrete temporal order t ∈ Z of corresponding tertiary

structures

{

. . . , Strt−1, Strt, Strt+1, . . .
}

=
{

Strt
}

t∈Z
. (5.15)
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Such a chain can be represented as a noisy digital com-

munication channel with an output probability of at least

∼ 30%, and with a Shannon limit at 10−2 bits/amino acid,

where at each level t of sequence-structure we have the

coding sequence

Seqt ⇒ Encoder ⇒ Folding channel

⇒ Decoder ⇒ Strt
(5.16)

as depicted in [55, Figure 1].

In [4] it is claimed that codes evolving with messages

that mutate under such a process, tend to freeze with redun-

dancy. This situation can be reduced to analyzing three dif-

ferent possibilities: the coevolution of genetic codes with:

(1) transitional-biased message mutation and no transla-

tion misreading;

(2) translational misreading and no transition bias in mu-

tation;

(3) transition-biased message mutation and translational

misreading.

An example in [55] considers concatenated primary se-

quences
{

Seqt
}

t∈Z
resulting in a stream of letters from the

amino acid alphabet A with (alphabetical) size |A| = 20.

The encoder is a map that uses a block code of fixed length

n, say, to encode the source through the code book; in other

words, a map for every sequence

Seqt−→(single code word)Xn(Seqt), (5.17)

represented by an n-vector (X1, . . . Xn) of integers. The

code word in turn belongs to the book of 20 possible

structure symbols A∗ = {a∗1, . . . , a
∗

20}, the finite set of

all code words corresponding to the 20 amino acid sym-

bols {A,G, . . .}, where a∗j ∈ A∗ are contact vectors de-

termining the amino acid sequence. The message input

term Xn(Seqt) from (5.17) is relayed over a noisy channel

which then outputs an n-vector Υn(Strt) = (Y1, . . . , Yn)
representing the folded protein chain Strt, following which

a single use of the channels is the transmission of a single

amino acid sequence subject to the channel capacity

C = max
p(A)

I(A,A∗). (5.18)

In view of §5.3, we modify the role of Â via the assignment

Â 7→ A∗, and for times stages t, t′, take as above the metric

M(Strt, Strt′). At each side of the communication chan-

nel we have for the symbol sequences |SA| = 7702314
amino acid symbols and |SA∗ | = 31609 corresponding

structural symbols [55].

As for the code rate, we have R(D) = H(A)/n, where

H(A) is interpreted as the Shannon entropy of the amino

acid sequence, where n is the code block length imple-

mented by the encoder. Assuming the code rate R(D) and

channel capacity C are known, then in accordance with the

Rate Distortion Theorem, we have R(D) < C, leading to,

for every block size, n > nmin = H(A)/C, and the codes

exist, and no such code when R(D) ≥ C. The Shannon

entropy H(A) = 3.90 bits for the amino acid alphabet A,

and H(A∗) = 3.76 bits for the structural code words in

A∗ [55]. Further, the mutual entropy between structure and

sequence following [2] is given by

I(Seqt : Strt) = H(Seqt)−H(Seqt|Strt), (5.19)

and should the environment directly influence the structure,

then we would have

H(Strt|Seqt) ≃ H(Seqt|Envt). (5.20)

When taking H(Strt|Seqt) = 0, we can re-formulate

(5.19) as

I(Seqt : Envt) ≃ I(Seqt : Strt)

= H(Strt)−H(Strt|Seqt)

= H(Strt),

(5.21)

which in view of the mutual entropy between sequence and

structure, expresses to what extent the thermodynamical

entropy of possible protein structures can be constrained by

information about the environment as it is coded by the se-

quence. For instance, excessive noise and random inputs of

symbols in SA∗ would most probably corrupt a correspond-

ing code in A∗, and once again the Shannon estimate serves

as a threshold should errors exceed a critical bound. Em-

pirically, the Protein Data Bank (PBD) provides sequence-

structure data giving H(A) = 3.90 bits, with block length

n = 400, with transmission rate R(D) = 0.010 bits per

amino acid symbol followed, with channel capacity esti-

mated at C = 0.016 bits (per amino acid symbol). When

restricted to N25 = 2372 protein chains with mutual se-

quence identity of < 0.25, the estimated C(25) = 0.016
bits, was attained (see [55, Figure 4]).

6 The Topological Hypothesis and

Phase Transitions

6.1 The codon space as a graph

The carrier for the dynamics surveyed here is modeled on a

rate distortion manifold which has wide-scale overlap with

those codon spaces structured in such a way that evolution

can be influenced by mapping out those regions which can

accommodate load minimization and diversification so that

site type, coding fitness, targets, etc. can be correlated as

in [4]. One expects the rate distortion manifold to have (in

an analytic sense) some degree of differentiability, though

here we will finesse this technical issue and elect to con-

sider the underlying combinatorial structure. Specifically,

we let Γ = (V,E) denote a graph with V denoting a finite

vertex set, E an edge set with an oriented edge e = (u, v)
(accordingly, e−1 = (v, u)) such that u = i(e) is the initial

vertex and v = t(e) is the terminal vertex, and let F be
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the number of enclosed faces. As seen in [73, 74] there is

a formulation of the code that emerges at the phase transi-

tion appears in the form of a mode eαi that minimizes the

free energy F . The codon space can be described as such a

graph Γ whose vertices are the codons and two codons i, j
are linked by an edge if (see §3.5) there exists an associ-

ated Rij( ̸= 0) in the reading matrix, under the following

conditions/observations:

(1) The vertex set V consists of codons whereby two

codons are linked by an edge in the likelihood they

may be confused by misreading.

(2) Two codons are most likely to be confused if all their

letters, except for one, agree and then they are con-

nected by an edge. The resulting graph Γ is natural for

considering the impact of translation errors on muta-

tions because such errors almost always involve a sin-

gle letter difference, that is, a movement along an edge

of the graph to a neighboring vertex.

(3) The native state of the protein has the lowest available

free energy induced by the interaction of the amino

acid sequence with the embedding environment.

(4) Recall that there is an embedding Γ−→S into a sur-

face S, and the topology of Γ is characterized by its

genus γ(S) which is the minimal number of holes re-

quired for Γ to be embedded in S such that no two

edges cross. For the underlying network we have the

well-known combinatorial formula γ = 1 − 1

2
(V −

E − F ).

Thus the greater the number of connected compo-

nents in the graph, the higher the genus becomes for

a minimal embedding. In [73] the interconnected 64-

codon graph can be embedded in a surface with genus

γ(S) = 41. If only 48 effective codons are consid-

ered, then the genus is reduced to γ(S) = 25.

In light of these observations, it is claimed that the evo-

lution of the code is determined by the underlying topol-

ogy of its graph and in a transitional phase, it is only those

modes with the least error-bound that can emerge and are

subjected to alteration by the topology. From the perspec-

tive of [59], a free energy argument serves as a Morse func-

tion whose critical points characterize just such a topology.

More specifically, [73] considers the topology of the code

as imposing an upper limit to the number of low modes

– critical points – of the corresponding free energy-analog

functional, and this is also the number of amino acids. The

low modes define a partition of the codon surface into do-

mains, and in each domain a single amino acid is encoded.

The partition optimizes the average distortion by minimiz-

ing the boundaries between the domains as well as the dis-

similarity between neighboring amino acids. This bound

on the number of low nodes (and thus as claimed, the num-

ber of amino acids) arises as an application of the well-

known chromatic number as given by Heawood’s formula

[62]:

chr(γ(S)) = int[
1

2
(7 +

√

1 + 48γ(S))], (6.1)

where chr(γ(S)) is the number of color domains of a

surface S with genus γ(S), and int[x] denotes the inte-

ger value of x. Recall also that the Euler characteristic

χ(S) = 2− 2γ(S). In particular, in [73, 75] it is the genus

that represents the number of holes in the protein folding

error network associated with the code and the chromatic

number chr(γ(S)) is a measure of the number of protein

symmetries (see Tables 1 and 2.)

Example 6.1. Several topological configurations for dou-

blet and triplet codes of 3-letter alphabets drawn from

the mRNA alphabet {U,C,G,A} are exhibited in [73,

Fig. 3] and are enumerated by (6.1). The topologi-

cal limit to the number of amino acids (AA’s) for differ-

ent codes as given by the chromatic number chr(g(S))
is also given. For instance, a code of 48 codons gives

rise to g = g(S) = 25 and chr(g(S)) = 20,

the maximal number of amino acids. Other cases are

listed in [73, Table 1]. Further calculations for pairs

(g(S), chr(g(S)) are presented in [82] where the chromatic

number chr(g(S)) gives the number of protein symmetries:

(0, 4), (1, 7), (2, 8), (3, 9), (5, 10), (6, 11), (7, 11),
(8, 12), (9, 12).

More generally, for a topological manifold M having

a Morse function F , χ(M) can be expressed as the al-

ternating sum of the function’s Morse indices µi (i =
0, 1, ...,m) of F on M , defined as the number of critical

points (dF (xc) = 0) of index i, that is, the number of neg-

ative eigenvalues of the matrix Hi,j = ∂F 2/∂xi∂xj . Then

by the Poincaré-Hopf theorem,

χ(M) =
m
∑

i=0

(−1)iµi, (6.2)

which holds true for any Morse function on M (see e.g.

[56] and Appendix 9.2 here).

Remark 6.1. Applying a spontaneous symmetry break-

ing argument to FR generates topological transitions in the

codon graph structure as the ‘temperature’ R(D) increases;

that is, as the average distortion D declines, via the inherent

convexity of the rate distortion function. In other words,

as the channel capacity connecting codon machines with

amino acid machines increases, the more complex coding

schemes become possible. In this respect, we recall that for

the surface S, the Euler characteristic χ(S) = 2 − 2γ(S)
as in (9.4) can be expressed in terms of the cohomology

structure of S (e.g. [53, Theorem 13.38]) where by the

Poincaré Duality Theorem, the homology groups of a man-

ifold are related to the cohomology groups in the comple-

mentary dimension (e.g. [19, p.348]) and thus points to the

‘fundamental homology’ described earlier. One can then

envisage the (co)homology groupoid to be taken as the dis-

joint union of the (co)homology groups of the embedding

manifold.
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6.2 Spectrum of the graph Laplacian

Next we consider the Laplacian ∆ of Γ. If a pair of vertices

(i, j) ∈ E are adjacent, then in terms of e.g. the reading

matrix [Rij ] (with Rij > 0), we have

∆ij = ∆ji = −Rij < 0, (6.3)

otherwise ∆ij = 0, and ∆ii = −
∑

i̸=j ∆ij (see Appendix

§9.3). For instance, if Γ is taken to be the error graph of

§6.1, then ∆ is the operator that measures the effect of er-

rors and so regulates any phase transition.

Corresponding to the n-th eigenvalue λn, the eigenfunc-

tion un admits at most n weak sign graphs; in particular,

for n = 2, the eigenfunction u2 divides Γ into precisely

two weak sign graphs (see §9.3). Thus it is of interest to de-

termine the dimension of the corresponding eigenspace and

multiplicity m of λ2. The quantity m is a measure of the

first energy excitation being the primal mode for types of

continuous (or second order) phase transitions. The chro-

matic number chr(γ(S)) of (6.1) identifies the maximal

number of first excited modes of the ∆.

Letting m̄(S) denote the supremum of m over all possi-

ble ∆ on S, there is the estimate of Colin de Verdiére stat-

ing that m̄(S) ≥ chr(γ(S))− 1 (see e.g. [74]). In the case

of functions, the graph Γ is a reliable ‘spectral’ model for

S in the sense that from [34, Theorem 5.7], the eigenvalues

of all orders of ∆ on Γ converge to those of the continuous

Laplacian on functions as defined on S (see Appendix 9.3).

6.3 Phase transitions and holonomy

Given the graph Γ = (V,E), the star of a vertex st(v) is

the set of edges emanating from v, that is

st(v) = {e : i(e) = v}. (6.4)

The various components of the graph may be thought of a

comprising a cell network in which the coupling and equiv-

alence of cells leads to a natural groupoid structure having

a system of specific equivalence classes [v]V and [e]E , for

vertices and edges, respectively (see Appendix 8.1). With

the inclusion of this extra structure we then append Γ to

Γ = (V,E,∼v,∼e). Here the vertices (nodes) of the

network are representative of certain cells where the syn-

chrony of the system depends on groupoid symmetries that

in a sense is broken by an impinging rapid crosstalk internal

to the system while the latter attempts to manage a slower

external crosstalk.

Next, we implement some general procedures based

upon the idea of a connection ∇ on Γ, relative to the stars

(st) of vertices which following [17], is explained with

some details in Appendix 9.1 as the combinatorial ana-

log of covariant differentiation (a principle familiar to stu-

dents of calculus). We take vertices (e1, e2, . . . , ek+1) in-

terpreted as k+1 information sources (X1,X2, . . . ,Xk+1)
in accordance with the APSE condition of §4.1, where the

Xi act with the set of tuning parameters. A connection ∇

is considered as an operation

∇(Xi,Xj) : st(Xi)−→st(Xj), (6.5)

for 1 ≤ i, j ≤ k + 1, satisfying certain properties (see Ap-

pendix 9.1). With respect to the metric M = M(Xi,Xj)
applied to these information sources, the above connec-

tion in (6.5) implements on the underlying network, the

covariant differentiation along the path Xi−→Xi, just as

in (5.11):

dH/dM = lim
Xj−→Xi

H(Xj)−H(Xi)

M(Xi,Xj)
. (6.6)

Corresponding to each Xi, a maximized channel capacity

Ci is assigned, in accordance with the Shannon estimate

H(Xi) ≤ Ci, for 1 ≤ i ≤ k + 1, thus respecting the Rate

Distortion Theorem along paths Xj−→Xi. If necessary,

we can view (X1,X2, . . . ,Xk+1) as comprising a closed

geodesic, and as explained in Appendix 9.1, the set of these

in a given graph will thus specify ∇. Once we have a han-

dle on ∇ it is then possible to apply to Γ certain operations

analogous to the more familiar differential-geometric set-

ting in order explore the structural geometry of the various

graphs as described (cf [40]).

This technique of the network geometry can be applied

to the entropy rates occurring in the various cases we have

considered so far. For the sequence-structure-environment

in the noisy communication channels along with the data of

§5.4, we assign Strt (at time t) to a corresponding sensory

input St, further combined with environmental signals Wt,

and combined signals at just as in (4.1):

{

Strt+1 = f([Strt,Wt]) = f(at)

I(Seqt : Envt) = H(Strt)
(6.7)

(here we have made replacements i 7→ t and j 7→ t′), where

we make a straightforward assignment from the vertex in-

formation source, at time t:

Xt 7→ Strt, (6.8)

(and likewise for Seqt). Using the principle of (6.5) applied

to the mutual information

I(Seqt : Envt) = H(Strt), (6.9)

in (5.21), leads to considering the covariant derivative

dH/dM = lim
Strt−→Strt′

H(Strt)−H(Strt′)

M(Strt, Strt′)
, (6.10)

as implementing the graph connection

∇(Strt, Strt′) : st(Strt)−→st(Strt′), (6.11)

where again at each time stage t, the Shannon estimate

H(Strt) ≤ Ct is observed. Likewise, the error load HED

of §3.5 expressed in terms of paths Pαijβ in (3.15) and their

concatenation, now become the meaningful paths of §4.1.



66 Informatica 36 (2012) 53–73 J. F. Glazebrook et al.

In this present graph formulism these paths are considered

as determined by edges eν ∈ E, where each ν = ν(αijβ)
is a multi-index of the path subscripts.

A property of the connection ∇ in (6.5) is its holonomy

which can be best described by considering how, in the

traditional differential-geometric sense, a smooth connec-

tion implements the parallel translation of vectors around

closed paths, and the induced representation of the space

of the latter into a group of global symmetries is essen-

tially the holonomy (of the connection). The classic ex-

ample is the Poincaré first–return map of a dynamical sys-

tem that incorporates typical phase transitions. In the com-

binatorial setting of [17] the holonomy of ∇ can be de-

scribed formally in terms of permuting the ‘stars’ of ver-

tices towards a spatiotemporal reorientation, as follows.

Let C = {e1, . . . , en} be any cycle in the graph Γ, for

which the terminal and initial vertices satisfy t(eα) =
i(eα+1) modulo n. Then the connection around C leads

to a permutation

∇C = ∇en
◦ · · · ◦ ∇e1

◦ ∇e0
, (6.12)

of the star set st(u). The holonomy group Hol(Γ,∇)u at a

vertex u of Γ, is the subgroup of the permutation group of

st(u) generated by the permutations ∇C over all such cy-

cles C that pass through the vertex u. A phase transition

may then be represented by a permutation through vertices

in Γ, and such a ‘geometric phase’ accounts for how the

various bio-cognitive modules shift gear and create a reori-

entation of the system.

Now let us return to equivalence classes and the role of

groupoids. This implements the above permutation groups

of st(u). A holonomy groupoid is obtained via the disjoint

union

Hol(Γ,∇) =
∨

u∈Γ

Hol(Γ,∇)u, (6.13)

which pieces together the local operations, and at the same

time produces an equivalence class representation of the

phase transition and its internal amplitudes. We summarize

this as follows: the holonomy groupoid represents a glob-

alization of the local dynamic iterates by providing what is

essentially a representation of the graph’s path components

onto some prevailing group of symmetries. In the presence

of symmetry breaking, it would be reasonable to consider

the groups Hol(Γ,∇)u as commensurable to some degree

with, for instance, the corresponding Lie groups featuring

in the sp(6) chain in (3.12), or that of the sl(6, 1) chain as

enumerated [10, 11].

7 Discussion and Conclusions

The code’s development passed through ‘accidental

phases’ created by probabilistic events that could be both

regulated and manipulated by an evolving error-correction

mechanism. Here we have viewed the latter within the

framework of Shannon entropy and the context of the fun-

damental homology relative to the free energy density of

a thermodynamical system. A common thread to this and

other works suggests that increased selection forces may

have been significantly enhanced by rate distortion dy-

namics in regard to the critical behavior of the free en-

ergy Morse function and varying topology, a function of

which would have induced an order of redundancy so man-

dated by coevolution. Thermodynamic parameter changes

in turn induced spontaneous symmetry breaking, which we

have shown can captured by several techniques of repre-

sentation theory. One can then invert Landau’s arguments

and apply them to the (co)homology groupoid in terms

of the rising ‘temperature’ R(D), to obtain a punctuated

shift to increasingly complex genetic codes with increasing

channel capacity. Our development here realizes mappings

codon space−→amino acid space quite explicitly in the

context of rate distortion manifolds.

Such arguments can be supported by the known mech-

anisms occurring in the case of protein folding. The lat-

ter originating from an amino acid string is not an en-

tirely random process, but may be the consequence of an

evolved structured statement by an information source’s

uncertainty, and the occurrence of mutations which may

not have been all random but were subject to environ-

mental forces. Thus our present survey, besides regarding

the functioning of gene expression as a cognitive process,

has a link to the theme of the thermodynamic free energy

landscape picture as a function of information sequences

[3, 91](cf [54]), evolution as a problem in non-equilibrium

statistical physics, and the self-referential character of evo-

lutionary processes at large [43] (cf [83, 84]). We cer-

tainly acknowledge (though details are beyond the scope

of this survey) that the evolution of organisms has evolved

through environmentally sensitive biochemical processes.

The phylogenetic analysis of sequence data and branching

events suggests that amino acid sequences alter at almost

a constant rate which is purported to depend on the func-

tional nature of each class of protein. Thus the changing

mechanism has been hypothesized in terms of an evolu-

tionary, stochastic ‘molecular clock’ whereby minor fluc-

tuations can alter the evolutionary rate of certain protein

classes [90]. At the same time we have seen in the cogni-

tive paradigm that some organisms may increase their rates

of potentially deleterious mutation in response to environ-

mental stress, and such occurrences afford a parallel inter-

pretation in terms of rate distortion analysis as was previ-

ously surveyed.

Returning to the redundancy issue, the corresponding

evolutionary processes may be capable of extending the

code’s expression from 20 to 25 amino acids with the possi-

bility of there being many other protein folding codes [73]

(cf [10, 11, 46]). Having said this, we add that there re-

main a number of open questions concerning the role of

the rate distortion function R(D), since this in turn drives

punctuated changes in the genetic code and further explo-

ration will be necessary. But what seems to follow from

the collective processes we have described in explaining

‘the frozen accident’, is that certain adaptation effects are
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in play (just as one finds in various neurocognitive and bio-

sociological phenomena), and in this respect it seems fitting

to quote from [4]:

... Our work has been motivated by the belief

that the patterns of the standard genetic code may

be explicable as adaptations of a system of infor-

mation processing. If this turns out to be plau-

sible and correct, we may say that adaptations

have reduced the deleterious consequences of ge-

netic and physiological error at a very fundamen-

tal level of biological organization ...

So the ‘frozen accident’ by any reasonable account, may

have arisen as an evolutionary ‘adaptation’ against a tem-

porary unreadiness (or an enforced over-robustness) to as-

similate a barrage of highly complex genetic messaging,

in a noisy and not so user-friendly biological environment,

during which time error-correction patterns strived to crys-

tallize and to evolve accordingly in order to withstand on-

going selective pressures. It is perhaps from this point of

view that advocates of the ‘RNA world idea’ are likely to

view a given adaptation at one stage as simply providing a

pre-adaptation at another [63, 72].

We point out that holonomy and symmetry breaking are

essentially geometric concepts that arise from the iterates

of local-to-global procedures, and one such product of this

is indeed the holonomy groupoid, a concept that has been

introduced in this paper for the purpose of analyzing ge-

netic networks in a novel setting. Further, the question of

groupoid representations may uncover deeper conceptual

issues in view of representation spaces that are spaces of

operators (‘fields of Hilbert or Banach spaces’ as in e.g.

[18]), a setting that may be compared the ‘supersymmetric’

model of [10, 11], but one that is likely to be highly non-

trivial and costly in a computational sense. Thus in view

of the various methods we have brought to the forefront,

we cannot fail to acknowledge the remarkable insight of

Erwin Schrödinger who claimed that classical physics was

insufficient for understanding fundamental life processes.

In particular, Schrödinger [65] had envisaged the potential

importance of information theory in evolutionary genetics,

how living systems can be alterable under thermodynamic

effects that are often the results of adverse biological con-

tagion and that quantum mechanical effects might catalyze

potential mutations, revealing the organization and evolu-

tionary drive of the genetic code all the more extraordinary.
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8 Appendix: Groupoids and Their

Atlases

8.1 Concept of a groupoid

Many bio-cognitive processes are naturally dynamical sys-

tems (see e.g. [40]). One aim in these systems is to unify

the internal and external symmetries, and to be able to re-

duce vast myriad–like network configurations into man-

ageable schemes involving the corresponding equivalence

classes analogous to those already mentioned in source en-

coding/decoding, etc. in §3.2 (see also §5.3 below). A pre-

cise way of doing this lies within the categorical concept

known as a groupoid (see e.g. [20, 28, 89]). In essence, a

groupoid G consists of both a set of objects X and a set of

morphisms, or ‘arrows’, each of which project to an object

in X , and all such morphisms are invertible.

Remark 8.1. The most familiar example of a groupoid, as

known to students of algebra, is that of a ‘group’ where

there is a single object (‘the identity’). Hence groupoids

can be viewed as extensions of the ‘group’ concept to

sets of multiple identities thus providing a wide scope

of applications to the dynamics of neurocognitive, socio–

bioinformatic and cellular networks (see e.g. [40, 71]).

A groupoid can be depicted by

α, β : G

α
//

β
// X (8.1)

where the groupoid morphisms (α, β) onto objects, are

called the range and source maps, respectively. Informally,

the groupoid represents a feature of built in reciprocity be-

tween its algebraic structures, internalizing and externaliz-

ing the prevailing symmetries. The morphisms α, β sat-

isfy certain algebraic relations of associativity, existence of

two-sided identities, etc. (for details, see [20, 28, 89]). A

groupoid can here be understood in relationship to a link-

age by a meaningful path of an information source dual to a

cognitive process for which the underlying principle is that:

states aj , ak in a set A are related by the groupoid mor-

phism if and only if there exists a high probability grammat-

ical path connecting them to the same base point, and the

tuning across the various possible ways in which that can

happen – the different cognitive languages – parametrizes

the set of equivalence relations and creates the groupoid.

Example 8.1. Since we have already mentioned equiva-

lence classes in the context of source encoding/decoding,

it seems appropriate to see how an equivalence relation

R defined on (a set) X takes shape as a groupoid. Here

we have the two projections α, β : R−→X , and a prod-

uct (x, y)(y, z) = (x, z) whenever (x, y), (y, z) ∈ R to-

gether with an identity, namely (x, x), for each x ∈ X .

Moreover, the essential equivalence relations and equiva-

lence classes derived from a systems space (network) arise

from the orbit equivalence relation of some groupoid G act-

ing on that space (see e.g. [89]). In the context of con-
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nected (sub)networks/graphs with path concatenation, rep-

resentable in terms of equivalence classes, natural groupoid

structures arise in accordance with equivalence classes of

relations R(xy), as above, that is simply interpreted as

there exists an edge linking node x to node y (thus xRy).

Conversely, a groupoid (of equivalence relations) admits an

underlying graph structure via its implicit scheme of ob-

jects and morphisms between objects (for details, see e.g.

[20, 44]). Thus we have the two-way associations whereby

‘objects’ can be identified with ‘nodes’, and ‘morphisms’

identified with ‘edges’ in groupoids (of equivalence rela-

tions) and networks, respectively:

Network
equivalence relation

=⇒ Groupoid

Network
underlying graph

⇐= Groupoid

9 Appendix: Some Geometry of the

Network Architecture: Geodesics

and Phase Transitions

9.1 Connections on graphs and geodesics

Firstly, for graph–theoretic models there are certain com-

binatorial notions which can be used to replicate a ‘dif-

ferential’ structure as realized on a standard differentiable

manifold (such as a sphere or a torus). Let Γ = (V,E)
be a graph with V denoting a finite vertex set, E an edge

set with an oriented edge e = (u, v) (accordingly, e−1 =
(v, u)) such that u = i(e) is the initial vertex and v = t(e)
is the terminal vertex. The star of a vertex st(v) is the set

of edges emanating from v, that is

st(v) = {e : i(e) = v}. (9.1)

In principle, we would like a handle on both the groupoid

and geometric dynamics of a given network. One point is

that the star of a vertex may be viewed as the combinatorial

version of the tangent space to a manifold at a point, rather

similar to how the latter may be regarded as an equivalence

class of curves through that point. In [17] there is defined

the notion of a connection ∇ on a graph Γ expressed in

terms of a set of one–to–one functions ∇(u, v), one for

each oriented edge e = (u, v) of Γ satisfying the following

relationships:

(1) ∇(u, v) : st(u)−→st(v)

(2) ∇(u, v)(u, v) = (v, u)

(3) ∇(v, u) = (∇(u, v))−1

Given a graph Γ admits a connection ∇, [17] define

the notion of a 3–geodesic as a sequence of four vertices

(u, v, w, z) with edges {u, v}, {v, w} and {w, z} for which

∇(v, w)(v, u) = (w, z). (9.2)

Remark 9.1. In differential calculus, a ‘connection’ is sim-

ply a generalized gradient implementing covariant differ-

entiation. We have already encountered a form of this in

(5.11). The notion of a graph/network connection intro-

duced here is a more manageable concept, particularly for

bio-cognitive modules, and does not involve applying the

advanced techniques of calculus.

A k–geodesic is defined inductively across a sequence

of (k + 1) vertices. The three consecutive edges {d, e, f}
of a 3–geodesic is referred to as an edge chain. A

closed geodesic can then be specified as a sequence

of edges e1, . . . , en such that each consecutive triple

(eα, eα+1, eα+2) is an edge chain for each 1 ≤ α ≤
n,modulo n . The geodesic returns to the same pair of

edges in the same order. Thus one finds a unique closed

geodesic through each pair of edges in the star of the vertex,

and as pointed out in [17], the set of all closed geodesics

completely determines the connection on the graph.

In terms of the geometric evolution of our networks, the

family (GA,∇A) of local groupoids with connection satis-

fies:

(1) Once ∇A is given, then the graph geodesics can be

derived iteratively from (9.2).

(2) Conversely, given the underlying graph of each GA,

the connection ∇A is determined by the set of all

closed geodesics as specified.

We also have the following useful characterization [17]:

given (Γ,∇), a subgraph Γ0 = (V0, E0) ⊂ Γ is said to be

totally geodesic if all geodesics commencing at E0 remain

within E0. In other words, for every two adjacent vertices

u, v in Γ0, we have

∇(u, v)(st(u) ∩ E0) ⊆ E0. (9.3)

Note that the above concepts have been formulated graph-

theoretically, and as mentioned in Remark 9.1, they do not

require the usual manipulations of advanced differential

calculus.

9.2 The graph Betti numbers

By analogy with finding the dimensions of the homology

groups of a topological manifold, [17] specify the notion

of Betti numbers associated with Γ. This involves the using

certain concepts such as an axial function ϕ and generic di-

rection ξ. Thus we regard (Γ,∇) as having an axial func-

tion ϕ and write this as (Γ, ϕ) when ∇ is understood. In

which case the index of a vertex u ∈ V is the number

of edges e ∈ st(u) such that the product ϕ(e) · ξ < 0.

Let βi(ξ) denote the number of vertices u such that the in-

dex at u is exactly i. When these values do not depend

on the choice of direction ξ, they are called the Betti num-

bers of (Γ, ϕ), and satisfy a combinatorial duality condition

βi(Γ, ϕ) = βd−i(Γ, ϕ), for 1 ≤ i ≤ d. In certain cases,

they can shown to be similar to the indices of a standard
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Morse function (see [17, 58, 56]) such as FR in (3.11).

Thus on the underlying graph of the groupoid on which

FR is defined, we identify FR with a Morse function com-

patible with a generic direction on (Γ, ϕ) whose index is

essentially a measure of the homology of information relay

within the graph, where at level i, we have µi = βi(Γ, ϕ).
In fact, to clarify the role of the topological invariants

of Γ to those of the surface S, we need the following de-

scription. Firstly, S taken to be a compact surface permits

seeing S also as a (connected) compact, one-dimensional

complex manifold (viz. a Riemann surface) on which a

certain analytic group action takes place. The standard

way of representing Γ (see e.g. [17, §4]) is to identify V
as the (finite) fixed point set, and E as the (finite) set of

one-dimensional orbits of this action. Consequently, the

βi(Γ, ϕ) coincide with the usual Betti numbers βi(S) of S,

and by the Poincaré-Hopf Theorem we have

χ(S) =
∑

i

(−1)iβi(Γ, ϕ). (9.4)

9.3 The graph Laplacian

Suppose now that Γ = (V,E) is an undirected loop-free

graph. If the vertices(nodes) are indexed 1 ≤ i ≤ N , then

the graph Laplacian ∆ can be viewed as a symmetric N ×
N matrix defined as follows (see e.g. [16, 74]):

(1) If vertices (i, j) ∈ E are adjacent, then the corre-

sponding entry in the matrix ∆ij = ∆ji < 0.

(2) Otherwise, ∆ij = 0, and the diagonal terms imply

that the sum over rows and columns vanishes, leading

to ∆ii = −
∑

i ̸=j ∆ij .

Note the term ‘weighted Laplacian’ is sometimes used for

the operator ∆, whereas in other cases ‘Laplacian’ is used

for when the negative entries are all ∆ij = −1. Specif-

ically, if f : V−→R is a vector function induced by the

vertices of Γ, and x ∼ y denotes there is an edge linking x
and y, then from [16]:

(∆f)(x) = −
∑

x∼y

[f(x)− f(y)]. (9.5)

Of particular interest are the eigenvalues of ∆ ordered as

0 = λ1 ≤ λ2 ≤ · · · ≤ λN , obtainable through the spec-

trum of an associated operator L, for which

⟨f, Lf⟩ =
∑

x,y∈V

Lxyf(x)f(y) =
∑

xy∈E

[f(x)− f(y)]2.

(9.6)

Also, we have the Rayleigh Quotients [16], given by







R∆ = ⟨f,∆f⟩
⟨f,f⟩

RL(f) =
∑

xy∈E
[f(x)−f(y)]2

∑
x∈V

f(x)2 .
(9.7)

In [34, Theorem 5.7] estimates on (9.7) lead to showing

that, in the case of functions, the eigenvalues of the graph

Laplacian converge to those of the continuous Laplacian.

Further, in [34] it is shown that the zeta functions of the

former converge to those of the latter, where

ζ(n)(s) =
∑

λn
k
̸=0

(λn
k )

−s. (9.8)

In the continuous case, sets that are the zero-level sets of

the eigenfunctions are called nodal sets, and nodal domains

are those sets in which a corresponding eigenfunction takes

on one sign and they are separated by nodal sets. Courant’s

nodal line theorem (see e.g. [24]) states that if the eigen-

functions of a continuous Laplacian on a domain are or-

dered according to increasing eigenvalues, then the nodes

of the n-th eigenfunction divide the domain into no more

than n nodal domains. In the combinatorial case, for the

graph Laplacian, the nodal domains become sign-graphs:

maximal connected subgraphs on which an eigenfunction

carries the same sign. On weak sign-graphs the eigenfunc-

tion is either ≥ 0 or ≤ 0, while on strong sign-graphs,

the sign of the eigenfunction is either > 0 or < 0. This

leads to an analogue of Courant’s nodal line theorem in the

combinatorial case [16]: On a connected graph Γ, the n-th

eigenfunction un of the Laplacian ∆ admits at most n weak

sign graphs. The case n = 2 is significant because the cor-

responding eigenfunction u2 then splits Γ into exactly two

weak sign graphs and λ2 is significant for Brownian motion

on the graph and to its first excited energy level.

10 Spin Glasses in Brief

Spin glass models, as discrete structures, may be based on

combinatorial decompositions of surfaces usually in some

square lattice configuration which can be modified (e.g.

from square to triangular). The basic idea leading to the

prototypical 2-dimensional Ising model goes as follows (we

follow [23, 69]). Firstly, consider a sequence of symbols

ai = 0, 1 and a signal vi transmitted across some time in-

terval. Set vi = v if ai = 1, and vi = −v if ai = 0.

Then let a(i, j) (for 1 ≤ i, j ≤ m) denote the m2 bits of

information transmitted. These are subject to redundancy

relations

a(i,m+ 1) =

m
∑

j=1

a(i, j),

a(m+ 1, j) =
m
∑

i=1

a(i, j),

(10.1)

with addition mod 2. The quantity m2/(m + 1)2 is the

rate of the code and measures the redundancy. With noise

terms y(i, j) included, the modified signal is then taken to

be u(i, j) = v(i, j) + y(i, j). This leads to a simple error-

correcting code that is of the Hamming type [57]. Further,

the correspondence u(i, j) = 1
2 (σ(i, j) + 1) between in-

formation bits and Ising spins or qubits σ(i, j) in mod 2

addition and spin multiplication respectively, are equiva-

lent.
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More specifically, let a qubit σ(i, j) be attached to each

edge of some lattice which is to be viewed as a configura-

tion space P = {±}Z
2

. On taking J1 (horizontal) and J2
(vertical) to be interaction constants, the Hamiltonian H(σ)
is given by

H(σ) = −
∑

J1σ(i, j) σ(i+ 1, j)

+ J2σ(i, j) σ(i, j + 1),
(10.2)

for the appropriate ranges of summation. Suppose we con-

sider H(σ) over a finite lattice given by ΛLM = {(i, j) :
|i| ≤ M , |j| > L}, and then take the thermodynamic

limit. If J1, J2 > 0, there are interactions in which the en-

ergy is minimized on alignment of all of the spins. Then

either:

i) all are ↑ or ↓, or,

ii) σ(i, j) ≡ 1, or σ(i, j) ≡ −1, respectively.

For absolute temperature T , the equilibrium state is that

which minimizes [internal energy] − T · [entropy]. Within

the model two competing forces can be realized by the fol-

lowing:

1. One minimizes the internal energy by attempting to

align the signs either ↑ or ↓ to create order: it wins if

T is small.

2. The other, on maximizing entropy, attempts to pro-

duce as much chaos as possible: it wins if T is large.

At finite critical temperature Tc, chaos wins if T ≥ Tc, and

order wins if T < Tc .
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